WorldWideScience

Sample records for double-quantum mas nmr

  1. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t2 domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t1) dimension. We employ experimental 23Na and 27Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl2O5), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  2. Hydrogen-bond interactions in organically-modified polysiloxane networks studied by 1D and 2D CRAMPS and double-quantum 1H MAS NMR

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Dybal, Jiří

    2002-01-01

    Roč. 35, č. 27 (2002), s. 10038-10047 ISSN 0024-9297 R&D Projects: GA ČR GA203/98/P290; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : Hydrogen bonding * polysiloxane * 1H MAS NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.751, year: 2002

  3. 1H- 1H double-quantum CRAMPS NMR at very-fast MAS ( νR = 35 kHz): A resolution enhancement method to probe 1H- 1H proximities in solids

    Science.gov (United States)

    Mafra, Luís; Gomes, José R. B.; Trébosc, Julien; Rocha, João; Amoureux, Jean-Paul

    2009-01-01

    A High-resolution two-dimensional (2D) 1H double-quantum (DQ) homonuclear recoupling experiments, combined with smooth amplitude-modulation (SAM) homonuclear decoupling is presented. The experiment affords highly resolved and clean 1H DQ-SQ 2D spectra at very-fast MAS rates ( νR = 35 kHz). The method is well suited to probe 1H- 1H distances in powdered solids and demonstrations are applied on a NaH 2PO 4 powdered sample, an inorganic compound having hydrogen bonding networks.

  4. Spectral editing in MAS NMR of aprotic solids. 31P-113Cd cross-polarization and heteronuclear double-quantum filtering studies in II-IV-V2 semiconductor alloys.

    Science.gov (United States)

    Franke, D; Hudalla, C; Eckert, H

    1993-03-01

    Magic-angle-spinning NMR spectra of aprotic solids, ceramics and glasses frequently suffer from poor site resolution due to wide chemical shift distribution effects. In such cases, cross-polarization and heteronuclear double-quantum filtering experiments involving nuclei other than 1H offer unique spectral editing capabilities. The utility of such assignment techniques for examining site populations in semiconductor alloys is demonstrated for the chalcopyrite systems CdGeAs2-xPx, CdSiAs2-xPx and ZnxCd1-xGeP2. The results permit a distinction between local and non-local effects on experimental chemical shift trends and reveal that compositional dependences observed in these alloys are dominated by non-local chemical shift contributions.

  5. A double quantum (129)Xe NMR experiment for probing xenon in multiply-occupied cavities of solid-state inclusion compounds.

    Science.gov (United States)

    Brouwer, Darren H; Alavi, Saman; Ripmeester, John A

    2007-03-07

    A method is presented for detecting multiple xenon atoms in cavities of solid-state inclusion compounds using (129)Xe double quantum NMR spectroscopy. Double quantum filtered (129)Xe NMR spectra, performed on the xenon clathrate of Dianin's compound were obtained under high-resolution Magic-Angle Spinning (MAS) conditions, by recoupling the weak (129)Xe-(129)Xe dipole-dipole couplings that exist between xenon atoms in close spatial proximity. Because the (129)Xe-(129)Xe dipole-dipole couplings are generally weak due to dynamics of the atoms and to large internuclear separations, and since the (129)Xe Chemical Shift Anisotropy (CSA) tends to be relatively large, a very robust dipolar recoupling sequence was necessary, with the symmetry-based SR26 dipolar recoupling sequence proving appropriate. We have also attempted to measure the (129)Xe-(129)Xe dipole-dipole coupling constant between xenon atoms in the cavities of the xenon-Dianin's compound clathrate and have found that the dynamics of the xenon atoms (as investigated with molecular dynamics simulations) as well as (129)Xe multiple spin effects complicate the analysis. The double quantum NMR method is useful for peak assignment in (129)Xe NMR spectra because peaks arising from different types of absorption/inclusion sites or from different levels of occupancy of single sites can be distinguished. The method can also help resolve ambiguities in diffraction experiments concerning the order/disorder in a material.

  6. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  7. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    Science.gov (United States)

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright 2010 John Wiley & Sons, Ltd.

  8. Detection of Anisotropy in Cartilage Using 2H Double-Quantum-Filtered NMR-Spectroscopy

    Science.gov (United States)

    Sharf, Y.; Eliav, U.; Shinar, H.; Navon, G.

    Double-quantum-filtered (DQF) NMR spectroscopy of I = 1 spin systems is a diagnostic tool for the detection of anisotropy in macroscopically disordered systems. For deuterium, this method reveals the presence of a residual quadrupolar interaction for D 2O in bovine nasal cartilage. This tissue is not macroscopically ordered and the quadrupolar splitting is not resolved. Fitting the calculated spectral lineshapes to the experimental results was possible only when a distribution of the residual quadrupolar interaction, omega(q), was assumed. The series of DQF lineshapes obtained for different creation times in the DQF experiment could be fitted using a single set of three parameters: the average residual quadrupolar interaction overlineω q/2π = 110 Hz, its standard deviation Δω q/2π = 73 Hz, and the transverse relaxation rate of 63 s -1. Separate deuterium DQF measurements for the constituents of the cartilage, collagen, and chondroitin sulfate indicated that the DQF spectra of cartilage are the result of anisotropic motion of D 2O due to binding to the fibrous collagen in the tissue.

  9. Absolute quantification of Na + bound fraction by double-quantum filtered 23Na NMR spectroscopy

    Science.gov (United States)

    Mouaddab, Mohamed; Foucat, Loïc; Donnat, Jean Pierre; Renou, Jean Pierre; Bonny, Jean Marie

    2007-11-01

    A method is described for the absolute quantification of double-quantum filtered spectra of spin-3/2 nuclei ( 23Na). The method was tested on a model system, a cationic exchange resin for which the number of Na + binding sites was quantitatively controlled. The theoretical and experimental approaches were validated on samples with different Na + concentrations. An excellent agreement between the results obtained by double-quantum and single-quantum acquisitions was found. This method paves the way for absolute quantification of both bound and free fractions of Na +, which are determining factors in the characterization of salted/brined/dried food products.

  10. Improving the double quantum filtered COSY experiment by "Moving Tube" NMR.

    Science.gov (United States)

    Donovan, Kevin J; Allen, Mary; Martin, Rachel W; Shaka, A J

    2012-06-01

    Most 2D NMR spectra show artifacts that become increasingly more prominent as the relaxation delay between transients is decreased. Additionally, "rushing" a 2D experiment may lead to reduced sensitivity. It is shown here how to collect a DQF-COSY spectrum in less time, without artifacts, and with improved sensitivity, by a hardware solution we call Moving Tube NMR (MT NMR): the sample volume is physically moved out of the receiver coil after each transient and replaced by a fresh aliquot that is nearer to the equilibrium magnetization M(0). MT NMR was implemented with an automated mechanism that gave accurate and reproducible vertical tube movement, and a very long 5mm outer diameter (OD) NMR tube to hold a larger sample volume. Comparison of conventional and MT NMR DQF-COSY showed increased sensitivity and far reduced artifacts in the latter. The so-called t(1)-noise in the MT spectrum was no worse than in the conventional spectrum, pointing to the excellent specifications of the long 5mm OD tube, and the good mechanical handling of the automated drive. Thus, MT NMR could improve throughput for routine 2D NMR experiments without reducing sensitivity or adding artifacts, if sufficient sample is available. MT NMR could also be useful in cases of limited solubility, or for nuclei with long T(1) relaxation times. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. PFG-assisted selection and suppression of 1H NMR signals in the solid state under fast MAS

    Science.gov (United States)

    Fischbach, Ingrid; Thieme, Karena; Hoffmann, Anke; Hehn, Manfred; Schnell, Ingo

    2003-11-01

    Under fast MAS conditions, techniques for 1H signal selection and suppression, which have originally been developed for solution-state NMR, become applicable to solids. In this work, we describe how WATERGATE and DANTE pulse sequences can be used under MAS to selectively excite or suppress peaks in 1H solid-state spectra. As known from the liquid-state analogues, signal selection and/or suppression is supported by pulsed-field gradients which selectively dephase and rephase transverse magnetisation. Under MAS, the required field gradients are provided by a simple pair of coils which have been built into a standard fast-MAS probe. PFG-assisted techniques enable efficient selection or suppression of 1H peaks in a single transient of the pulse sequence without the need for phase cycles. Therefore, these tools can readily be incorporated into solid-state MAS NMR experiments, which is demonstrated here for 1H- 1H double-quantum NMR spectra of supramolecular systems. In the examples presented here, the 1H signals of interest are relatively weak and need to be observed despite the presence of the strong 1H signal of long alkyl sidechains. PFG-assisted suppression of this strong perturbing signal is shown to be particularly useful for obtaining unambiguous results.

  12. Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility.

    Science.gov (United States)

    Naumova, Anna; Tschierske, Carsten; Saalwächter, Kay

    In recent years, the analysis of proton double-quantum NMR build-up curves has become an important tool to quantify anisotropic mobility in different kinds of soft materials such as polymer networks or liquid crystals. In the former case, such data provides a measure of orientation-dependent residual (time-averaged) dipolar couplings arising from anisotropic segmental motions, informing about the length and the state of local stretching of the network chains. Previous studies of macroscopically ordered, i.e. stretched, networks were subject to the limitation that a detailed build-up curve analysis on the basis of a universal "Abragam-like" (A-l) build-up function valid for a proton multi-spin system was only possible for an isotropic orientation-averaged response. This situation is here remedied by introducing a generic orientation-dependent build-up function for an anisotropically mobile protonated molecular segment. We discuss an application to the modeling of data for a stretched network measured at different orientations with respect to the magnetic field, and present a validation by fitting data of different liquid-crystal molecules oriented in the magnetic field. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of coke by MAS 13C-NMR

    International Nuclear Information System (INIS)

    Nagy, J.B.; Tuel, A.; Munck, M.; Derouane, E.G.

    1991-01-01

    The molecular architecture of coke is difficult to determine. Nuclear magnetic resonance spectroscopy allows one to understand the chemical environment or types of hydrogen and carbon in the sample. It is also possible to estimate the proportion of atoms in the various environments. Here, liquid-state and solid-state NMR have been used to characterize different series of feedstocks and coke samples. Liquid phase 13 C NMR was used to analyse feeds and products separated by HPLC (PEW) in fractions called aliphatics, mono-, di-, tri-, and polyaromatics. An internal lock with deuterated chloroform was used due to the small amount of material present in each fraction. The NMR analysis gives the aromaticity and gives a nice correlation with the results obtained by GC/MS (average no of C-atoms in each fraction, chainlength, no. of substituents etc.). Structural features were gained by comparison of different fractions, while differences were seen, when feed and product were compared. For liquid samples, a model has been proposed in which the feed is supposed to be described as a mixture of six model compounds. Results concerning three series of feedstocks and the structural paramaters deduced from 13 C and 1 H NMR spectra are discussed and compared with the experimental data obtained from elemental analysis. In the solid state, by using Cross Polarization (CP) and Magic Angle Spinning (MAS), it is possible to obtain information on different carbon structural types. Structural parameters, such as the aromaticity f a or the H/C ratio can be evaluated with a good reliability. (AB) (23 refs.)

  14. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    Science.gov (United States)

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe. PMID:21036557

  15. 1H and 13C NMR studies of glycine in anisotropic media: Double-quantum transitions and the effects of chiral interactions

    Science.gov (United States)

    Naumann, Christoph; Kuchel, Philip W.

    2011-07-01

    The 1H NMR spectrum of glycine in stretched gelatin gel and in cromolyn liquid crystal displays a well-resolved doublet due to 1H- 1H dipolar interaction. Multiple spectra were obtained within a wide range of offset frequencies of partially saturating radio-frequency (RF) radiation to generate steady-state irradiation envelopes or z-spectra of glycine. Maximal suppression of the doublet occurred when the irradiation was applied exactly at the centre frequency, between the two glycine peaks. This phenomenon is due to double-quantum transitions and is similar to our previous work on quadrupolar nuclei 2H (HDO) and 23Na +. When the 13C isotopomer glycine-2- 13C was used, the same effect was found in twice, split by 1JCH + 2 DCH. Additional signals in 1H and 13C NMR due to prochiral-chiral interactions were found when glycine-2- 13C was dissolved in chiral anisotropic gelatin and κ-carrageenan gels. The NMR spectra were successfully simulated assuming a 2JHH coupling constant of -16.5 Hz and two distinct dipolar coupling constants for the - 13CH 2- group ( DC,HA, and DC,HB).

  16. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  17. Hardware modification of a 7 mm MAS NMR probe to a single-crystal goniometer.

    Science.gov (United States)

    Kovács, Gábor; Rohonczy, János

    2006-07-01

    Tensorial terms of the Hamiltonian can be measured by solid-state single-crystal nuclear magnetic resonance (NMR) spectroscopy which requires a goniometer NMR probehead. Goniometer probes; however, are not standard parts of solid NMR spectrometers and are available only at a much higher price than magic-angle spinning (MAS) probeheads widely used in research. Due to requirements of MAS experiments, modern probeheads are designed for small ceramic rotors, which are 1-4 mm in diameter, to reach very high angular frequencies, so there are several older 7 mm MAS probeheads used rarely todays in NMR laboratories. In this paper, a simple method is presented how to rebuild step-by-step a 7 mm Bruker MAS probehead to be suitable for single-crystal spectroscopy. In the second part (31)P chemical shift tensors of Na(4)P(2)O(7) x 10H(2)O are determined to demonstrate the functionality of the rebuilt probehead.

  18. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Kobera, Libor; Brus, Jiří

    2013-01-01

    Roč. 51, č. 11 (2013), s. 734-742 ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : solid-state NMR * 27Al MAS NMR * factor analysis Subject RIV: JN - Civil Engineering Impact factor: 1.559, year: 2013

  19. HR MAS 1H NMR spectroscopy analysis of marine microalgal whole cells

    OpenAIRE

    Chauton, Matilde S.; Optun, Odd Inge; Bathen, Tone F.; Volent, Zsolt; Gribbestad, Ingrid S.; Johnsen, Geir

    2003-01-01

    To study the use of nuclear magnetic resonance (NMR) spectroscopy as a method of classification, we performed high-resolution magic angle spinning proton (HR MAS 1H) NMR spectroscopy analysis of whole-cell samples of Dunaliella sp. (Chlorophyceae), Amphidinium carterae (Dinophyceae), Phaeodactylum tricornutum and Thalassiosira pseudonana (Bacillariophyceae). Emphasising the potential use of NMR spectroscopy as a routine analysis of microalgae we chose a straightforward procedure for culturing...

  20. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  1. Measuring proton shift tensors with ultrafast MAS NMR.

    Science.gov (United States)

    Miah, Habeeba K; Bennett, David A; Iuga, Dinu; Titman, Jeremy J

    2013-10-01

    A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton shift tensor parameters for the OH hydrogen-bonded protons in tyrosine·HCl and citric acid at Larmor frequencies of up to 850 MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Wan, Chuan; Vjunov, Aleksei; Wang, Meng; Zhao, Zhenchao; Hu, Mary Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-06-01

    27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relative integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.

  3. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    OpenAIRE

    Peterson, Gregory W.; Wagner, George W.; Balboa, Alex; Mahle, John; Sewell, Tara; Karwacki, Christopher J.

    2009-01-01

    Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu3(BTC)2 framework. Indeed, 1H MAS NMR reveals that a major disruption of the...

  4. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    International Nuclear Information System (INIS)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M.; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P.; Alcantara, Glaucia B.

    2014-01-01

    High resolution magic angle spinning 1 H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  5. {sup 1}H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Química. Lab. de RMN; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Ciências Biológicas. Laboratório Genética Molecular e Citogenética; Alcantara, Glaucia B., E-mail: glaucia.alcantara@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Inst. de Química

    2014-07-01

    High resolution magic angle spinning {sup 1}H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  6. 29Si MAS NMR for the zeolite Y - gallium oxide system

    International Nuclear Information System (INIS)

    Sulikowski, B.; Derewinski, M.; Olejniczak, Z.; Segnowski, S.

    1994-01-01

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of 29 Si has been described and discussed

  7. Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Bharti, S K; Bhatia, Anil; Tewari, S K; Sidhu, O P; Roy, Raja

    2011-10-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plants with a number of pharmaceutical and nutraceutical applications. Metabolic profiling has been performed by HR-MAS NMR spectroscopy on fresh leaf and root tissue specimens from four chemotypes of W. somnifera. The HR-MAS NMR spectroscopy of lyophilized defatted leaf tissue specimens clearly distinguishes resonances of medicinally important secondary metabolites (withaferin A and withanone) and its distinctive quantitative variability among the chemotypes. A total of 41 metabolites were identified from both the leaf and root tissues of the chemotypes. The presence of methanol in leaf and root tissues of W. somnifera was detected by HR-MAS NMR spectroscopy. Multivariate principal component analysis (PCA) on HR-MAS (1) H NMR spectra of leaves revealed clear variations in primary metabolites among the chemotypes. The results of the present study demonstrated an efficient method, which can be utilized for metabolite profiling of primary and secondary metabolites in medicinally important plants. Copyright © 2011 John Wiley & Sons, Ltd.

  8. HR MAS1H NMR and chemometrics as useful tool to assess the geographical origin of cocoa beans - Comparison with HR1H NMR.

    Science.gov (United States)

    Marseglia, A; Acquotti, D; Consonni, R; Cagliani, L R; Palla, G; Caligiani, A

    2016-07-01

    Chocolate and cocoa-based products are among the goods with higher added value. A current trend of the cocoa market is to offer to the consumers high quality cocoa products, namely mono-origin cocoa. However, a reliable analytical method able to trace the geographical origin of cocoa is lacking. In this work we tested the capability of HR MAS 1 H NMR combined with chemometrics to assess the geographical origins of 60 fermented and dried cocoa beans of 23 different cocoa producing countries from the three major crop-growing areas (Africa, Central/South America, Asia/Oceania). Metabolic profiling was determined by HR MAS 1 H NMR directly on cocoa powder after the method optimization. The same samples were also subjected to extraction and analysis with HR 1 H NMR. HR MAS 1 H NMR, as 1 H NMR analysis, allowed the simultaneous detection of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins. Moreover, HR MAS allows the detection of lipids, not present in the aqueous extract utilized for 1 H NMR. The data set obtained is therefore representative of all classes of cocoa compounds. Untargeted HR MAS 1 H NMR and 1 H NMR datasets were utilized as fingerprint of the samples and elaborated with multivariate statistical methods. A targeted quantitative approach of selected metabolites was possible only with HR 1 H NMR data, because HR MAS 1 H NMR does not give reliable quantitative results. All the approaches adopted showed a discrimination of the cocoa origins. HR MAS presents the advantages to obtain a very rapid picture of the samples, comprising both lipophilic and hydrophilic components, avoiding any sample manipulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  10. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna

    2008-01-01

    ) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...

  11. Thermal evolution of mullite from gel precursors studied by mass spectrometry and MAS NMR

    International Nuclear Information System (INIS)

    MacKenzie, K.J.D.; Meinhold, R.H.; Patterson, J.A.; Schneider, H.; Schmucker, M.; Voll, D.

    1999-01-01

    Mullite (Al 6 Si 2 O 13 ) has long been a compound of technical importance, being the principal phase formed when clay minerals are heated. More recently, the development of sol-gel hybrid (organic-inorganic) synthesis methods has opened the way for the production of high-purity mullite of controllable grain size, which has excellent potential in high-technology engineering applications. The finished properties of gel-derived mullite depend on the homogeneity of the gel, which is strongly influenced by the starting materials and reaction conditions. A less-understood aspect of the evolution of crystalline mullite from the gel precursor is the effect of the thermal pre-treatment which can lead to the formation of an Al species with a characteristic MAS NMR resonance at about 30 pp. The role of this species, which is often ascribed to 5-coordinated Al is also not well understood. This paper reports an investigation into the relationship between the thermal pre-treatment regime of mullite precursor gels and the appearance of the 30 ppm Al MAS NMR signal as mullite crystallization proceeds. Copyright (1999) Australasian Ceramic Society

  12. Magnetic-Field-Gradient-Coil System for Solid-State MAS and Cramps NMR Imaging

    Science.gov (United States)

    Buszko, M.; Maciel, G. E.

    The idea of combining cylindrical coils for producing a longitudinal gradient with respect to the MAS axis with quadrupole (straight wire) magnetic-field-gradient coils for producing two transverse gradients for 3D MAS and CRAMPS imaging has been demonstrated. A modified set of a double Maxwell pair and two sets of quadrupole (eight-wire) coils were combined in a compact way and adapted for a 5 mm MAS rotor, achieving gradients of high efficiency (4.3 and 2.9 G/cm A for longitudinal and transverse coils, respectively), low inductance (3.5 and 1.9 μH, respectively), and very good linearity(1%). A 60 μm spatial resolution in a TREV-CRAMPS imaging experiment on solid polyethylene oxide was demonstrated; gradient pulses of 12 μs duration were generated by applying currents of 2.3 and 1.5 A to longitudinal and transverse coils, respectively. This magnetic-field-gradient-coil configuration could also be applied in other areas of NMR where time-dependent gradients are required.

  13. MAS1H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    Science.gov (United States)

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS 1 H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (T m ). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. 1H CSA parameters by ultrafast MAS NMR: Measurement and applications to structure refinement.

    Science.gov (United States)

    Miah, Habeeba K; Cresswell, Rosalie; Iuga, Dinu; Titman, Jeremy J

    2017-10-01

    A 1 H anisotropic-isotropic chemical shift correlation experiment which employs symmetry-based recoupling sequences to reintroduce the chemical shift anisotropy in ν 1 and ultrafast MAS to resolve 1 H sites in ν 2 is described. This experiment is used to measure 1 H shift parameters for L-ascorbic acid, a compound with a relatively complex hydrogen-bonding network in the solid. The 1 H CSAs of hydrogen-bonded sites with resolved isotropic shifts can be extracted directly from the recoupled lineshapes. In combination with DFT calculations, hydrogen positions in crystal structures obtained from X-ray and neutron diffraction are refined by comparison with simulations of the full two-dimensional NMR spectrum. The improved resolution afforded by the second dimension allows even unresolved hydrogen-bonded sites 1 H to be assigned and their shift parameters to be obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins

    Science.gov (United States)

    Linser, Rasmus; Chevelkov, Veniamin; Diehl, Anne; Reif, Bernd

    2007-12-01

    Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2O:H 2O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken α-spectrin as a model system. The labeling scheme allows to record proton detected 1H, 15N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1H T1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.

  16. Relation Between Acid and Catalytic Properties of Chlorinated Gamma-Alumina. a 31p Mas Nmr and Ftir Investigation

    Directory of Open Access Journals (Sweden)

    Guillaume D.

    1999-07-01

    Full Text Available In this paper, we have studied the effect of chlorine on the surface properties of gamma-alumina, especially on their acid properties. The use of FTIR spectroscopy and 31P MAS NMR of adsorbed trimethylphosphine allows to propose a chlorination mechanism. To correlate the surface properties of these chlorinated gamma-alumina with their catalytic properties, we have used a model reaction, the cracking of n-heptane under reforming conditions. The analysis of the correlation between acid properties determined by 31P MAS NMR and the catalytic results (in terms of activities and selectivities allows to identify which sites are involved in the cracking reaction.

  17. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Brus, Jiří; Šeděnková, Ivana; Policianová, Olivia; Kobera, Libor

    2013-01-01

    Roč. 100, 1 January (2013), s. 59-66 ISSN 1386-1425 R&D Projects: GA ČR GPP106/11/P426; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : solid-state NMR * factor analysis * 19F MAS NMR Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.129, year: 2013

  18. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...

  19. New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Urbanová, Martina; Šeděnková, Ivana; Brusová, H.

    2011-01-01

    Roč. 409, 1/2 (2011), s. 62-74 ISSN 0378-5173 R&D Projects: GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Keywords : 19F MAS NMR * factor analysis * polymorphism Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.350, year: 2011

  20. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques

    Science.gov (United States)

    Dec, Steven F.; Bronnimann, Charles E.; Wind, Robert A.; Maciel, Gary E.

    1H NMR spectra are reported on eight representative solid samples, including pure powdered crystalline samples, synthetic organic polymers, a silica gel, HY zeolite, and a lignite. Spectra were obtained by the following three approaches: (1) single pulse on a static sample, (2) CRAMPS, and (3) single pulse with magic-angle spinning (MAS-only). The MAS-only results were obtained as a function of MAS speed. Although the MAS-only technique is capable of achieving a significant degree of line narrowing, even with modest MAS speeds, MAS-only spectra of the general quality of the apparently undistorted high-resolution 1H spectra obtained by the CRAMPS technique are not obtained at the highest MAS speeds examined (21 kHz for a polymethylmethacrylate sample), unless the 1H- 1H dipolar interactions in the sample are rather weak, as with silica gel or a zeolite. Thus, caution should be exercised in interpreting 1H MAS-only spectra, especially if CRAMPS results are not available as a calibration.

  1. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    Science.gov (United States)

    Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.

    2012-01-01

    The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  2. Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR.

    Science.gov (United States)

    Mobarhan, Yalda Liaghati; Struppe, Jochem; Fortier-McGill, Blythe; Simpson, André J

    2017-08-01

    High-resolution magic angle spinning (HR-MAS) NMR is a powerful technique that can provide metabolic profiles and structural constraints on intact biological and environmental samples such as cells, tissues and living organisms. However, centripetal force from fast spinning can lead to a loss of sample integrity. In analyses focusing on structural organization, metabolite compartmentalization or in vivo studies, it is critical to keep the sample intact. As such, there is growing interest in slow spinning studies that preserve sample longevity. In this study, for example, reducing the spinning rate from 2500 to 500 Hz during the analysis of a living freshwater shrimp increased the 100% survivability threshold from ~14 to 40 h. Unfortunately, reducing spinning rate decreases the intensity of the isotropic signals and increases both the intensity and number of spinning sidebands, which mask spectral information. Interestingly, water suppression approaches such as excitation sculpting and W5 WATERGATE, which are effective at higher spinning rates, fail at lower spinning rates (<2500 Hz) while simpler approaches such as presaturation are not able to effectively suppress water when the ratio of water to biomass is very high, as is the case in vivo. As such there is a considerable gap in NMR approaches which can be used to suppress water signals and sidebands in biological samples at lower spinning rates. This research presents simple but practically important sequences that combine PURGE water suppression with both phase-adjusted spinning sidebands and an analogue of TOSS termed TOSS.243. The result is simple and effective water and sideband suppression even in extremely dilute samples in pure water down to ~100 Hz spinning rate. The approach is introduced, described and applied to a range of samples including, ex vivo worm tissue, Daphnia magna (water fleas), and in vivo Hyalella azteca (shrimp).

  3. Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments

    Science.gov (United States)

    Sai Sankar Gupta, Karthick Babu; Daviso, Eugenio; Jeschke, Gunnar; Alia, A.; Ernst, Matthias; Matysik, Jörg

    2014-09-01

    In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional 13C-13C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-13C labelled samples, spin diffusion leads to propagation of signal enhancement to all 13C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.

  4. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia

    2005-01-01

    High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, th...... on the goethite surface. Even larger Li hyperfine shifts (289 ppm) were observed for Li+-exchanged goethite, which contains lithium ions in the tunnels of the goethite structure, confirming the Li assignment of the 145 ppm Li resonance to the surface sites. Udgivelsesdato: 2005-Oct-6...

  5. HR-MAS NMR for rapid identification of illicit substances in tablets and Blotter papers seized by Police Department

    International Nuclear Information System (INIS)

    Souza, Luciano F.; Vieira, Tarcísio S.; Lião, Luciano M.; Alcantara, Glaucia B.

    2016-01-01

    Illicit substances found in blotter papers and tablets seized by police are traditionally identified and characterized from extracts of these materials. However, the procedures involved in extraction stages can result in artifacts and even contamination of the samples to be analyzed. On the other hand, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) is a technique that requires no pretreatment steps, enabling direct analysis of the material, including the analysis of new illegal synthetic psychoactive substances. This study presents and discusses applications of the HR-MAS NMR in the analysis of tablets and blotter papers seized. Additional analysis in solution of the extracts of these materials was performed to compare the obtained spectral resolution signals. The results demonstrated that the HR-MAS NMR allowed the rapid identification of 3,4-methylenedioxy-N-methylcathinone (methylone), 4-methylmethcathinone (mephedrone), 2,5-dimethoxy-4-bromoamphetamine (DOB) and 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2- methoxyphenyl)methyl]ethanamine (25B-NBOMe) in samples of tablets and blotter papers seized in Goiás State, Brazil. (author)

  6. HR-MAS NMR for rapid identification of illicit substances in tablets and Blotter papers seized by Police Department

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciano F.; Vieira, Tarcísio S.; Lião, Luciano M., E-mail: lucianoliao@ufg.br [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Química; Alcantara, Glaucia B. [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Instituto de Química

    2016-07-01

    Illicit substances found in blotter papers and tablets seized by police are traditionally identified and characterized from extracts of these materials. However, the procedures involved in extraction stages can result in artifacts and even contamination of the samples to be analyzed. On the other hand, high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) is a technique that requires no pretreatment steps, enabling direct analysis of the material, including the analysis of new illegal synthetic psychoactive substances. This study presents and discusses applications of the HR-MAS NMR in the analysis of tablets and blotter papers seized. Additional analysis in solution of the extracts of these materials was performed to compare the obtained spectral resolution signals. The results demonstrated that the HR-MAS NMR allowed the rapid identification of 3,4-methylenedioxy-N-methylcathinone (methylone), 4-methylmethcathinone (mephedrone), 2,5-dimethoxy-4-bromoamphetamine (DOB) and 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2- methoxyphenyl)methyl]ethanamine (25B-NBOMe) in samples of tablets and blotter papers seized in Goiás State, Brazil. (author)

  7. 27Al MAS NMR spectroscopic identification of reaction intermediates in the carbothermal reduction and nitridation of alumina

    International Nuclear Information System (INIS)

    Jung, Woo-Sik; Chae, Seen-Ae

    2010-01-01

    The reaction intermediates in the carbothermal reduction and nitridation (CRN) reaction of γ-Al 2 O 3 were identified by 27 Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. This identification ruled out the possibility of a reaction mechanism involving the gaseous reaction intermediates. In the CRN reaction of γ-Al 2 O 3 , AlO 4 units were converted to AlN stepwise via AlN x O 4-x (x = 1, 2, 3) intermediates, while AlO 6 units were more slowly converted to AlN than AlO 4 units and the NMR peaks of partially nitridated AlO 6 units were not detected. The NMR peak intensities of partially nitridated AlO 4 units became weaker with increasing reaction temperature.

  8. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  9. Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance

    DEFF Research Database (Denmark)

    G. Kolyagin, Yury; V. Yakimo, Alexander; Tolborg, Søren

    2016-01-01

    119Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5–40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders......-BEA zeolites with natural 119Sn isotope abundance using conventional MAS NMR equipment....

  10. Determination of the structural changes by Raman and 13C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Science.gov (United States)

    Cozar, O.; Filip, C.; Cioica, N.; Coţa, C.; Tripon, C.; Nagy, E. M.

    2013-11-01

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and 13C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  11. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Carmelo Corsaro

    2015-01-01

    Full Text Available NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  12. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164 ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  13. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2013-08-01

    Full Text Available medium, provided the original work is properly cited. Supra-Molecular Structure and Chemical Reactivity of Cellulose I Studied Using CP/MAS 13C-NMR Viren Chunilall, Tamara Bush and Per Tomas Larsson Additional information is available at the end... can be used in the production of many different types and qualities of pulp samples for a broad range of applications. The sulphite process can be categorised according to the pH into four different types of pulping namely Acid bi-sulphite, Bi...

  14. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  15. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    KAUST Repository

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  16. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  17. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    Science.gov (United States)

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2018-01-01

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C- 13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  18. 6Li MAS NMR Study of Lithium Insertion into Hydrothermally Prepared Li-Ti-O Spinel

    Czech Academy of Sciences Publication Activity Database

    Krtil, Petr; Dědeček, Jiří; Kostlánová, Tereza; Brus, Jiří

    2004-01-01

    Roč. 7, č. 7 (2004), A163-A166 ISSN 1099-0062 R&D Projects: GA ČR GA203/03/0823 Institutional research plan: CEZ:AV0Z4040901 Keywords : lithium insertion * spinel * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.271, year: 2004

  19. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Chrestensen, Inge Byg; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...... hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side...... chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose...

  20. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    Science.gov (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  1. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  2. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced....... Comparative analysis of wheat and waxy maize starches demonstrated that starches were similar upon gelatinization independent of botanical origin and that the torsion angles of the glycosidic linkages were averages of the crystalline A and B type structures. In starch suspension phosphorous in immobile...... regions was only observed in NA starch. Moreover phosphorous was observed in a minor pH-insensitive form and as major phosphate in hydrated GEL and BE starches....

  3. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alite...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  4. The effect of antitumor glycosides on glioma cells and tissues as studied by proton HR-MAS NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Isabel García-Álvarez

    Full Text Available The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning ((1H HR-MAS nuclear magnetic resonance (NMR spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM, significant increases in choline containing metabolites were observed in the (1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death.

  5. Quality of spelt pasta enriched with eggs and identification of eggs using 13C MAS NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    Filipović Jelena S.

    2015-01-01

    Full Text Available This paper deals with the characteristics of spelt pasta enriched with eggs. Eggs were added to spelt farina in the quantity of 0, 124 or 248 g/kg (equivalent to 0, 3 or 6 eggs, respectively. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Relatively low coefficients of variation have been obtained for each applied assay (1.25-12.42%, which confirmed the high accuracy measurements and statistically significant results. Standard score analysis is applied for accessing the contribution of eggs content to spelt pasta quality. Maximum scores regarding quality (0.89 and chemical characteristics (0.70, have been obtained for 6 eggs spelt pasta formulation. It is also shown that the presence of eggs in pasta can be clearly confirmed by 13C MAS NMR spectroscopy. Simultaneous increase in area of peak positioned at 29.5 and 176 ppm is directly associated with the increase in the content of added eggs in the corresponding samples. Pertinent data point at positive contribution of eggs to the spelt pasta and also that NMR spectrum can be used in the egg quantity control. [Projekat Ministarstva nauke Republike Srbije, br. TRI 46005 i br. TR 31029

  6. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    Science.gov (United States)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  7. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    International Nuclear Information System (INIS)

    ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    1999-01-01

    13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase

  8. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase -Zeolite-Catalyzed Conversion of Cyclohexanol in Water

    Energy Technology Data Exchange (ETDEWEB)

    Vjunov, Aleksei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Mary Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Feng, Ju [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camaioni, Donald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mei, Donghai [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Jian Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Chen [TU Munchen, Garching (Germany); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); TU Munchen, Garching (Germany)

    2014-01-07

    The catalytic conversion of cyclohexanol on zeolite HBEA in hot liquid water leads to dehydration as well as alkylation products. A novel micro autoclave suitable for application in MAS NMR at high temperatures and pressures is developed and successfully applied to obtain new insight into the mechanistic pathway leading to an understanding of the reactions under selected experimental conditions.

  9. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR.

    Science.gov (United States)

    Ferreira, Ana S D; Barreiros, Susana; Cabrita, Eurico J

    2017-05-01

    We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (D fast ) associated with interparticle diffusion and another with slow diffusion (D slow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the D fast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the D slow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Structural investigations of borosilicate glasses containing MoO{sub 3} by MAS NMR and Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Caurant, D., E-mail: daniel-caurant@enscp.f [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris (ENSCP, ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Majerus, O.; Fadel, E.; Quintas, A. [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris (ENSCP, ParisTech), 11 rue Pierre et Marie Curie, 75231 Paris (France); Gervais, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR-CNRS 7574, Universite Pierre et Marie Curie, 75252 Paris (France); Charpentier, T. [CEA, IRAMIS, Service Interdisciplinaire sur les Systemes Moleculaires et Materiaux, CEA Saclay, 91191 Gif-sur-Yvette (France); Neuville, D. [Physique des Mineraux et des Magmas, UMR-CNRS 7047, Institut de Physique du Globe, place Jussieu, 75252 Paris (France)

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO-MoO{sub 3} system was studied by {sup 29}Si, {sup 11}B, {sup 23}Na MAS NMR and Raman spectroscopies by increasing MoO{sub 3} or B{sub 2}O{sub 3} concentrations. Increasing MoO{sub 3} amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO{sub 4}{sup -} units and on the distribution of Na{sup +} cations in glass structure. By increasing B{sub 2}O{sub 3} concentration, a strong evolution of the distribution of Na{sup +} cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO{sub 4} or Na{sub 2}MoO{sub 4}) formed during melt cooling.

  11. LC/ESI-MS n and 1H HR-MAS NMR analytical methods as useful taxonomical tools within the genus Cystoseira C. Agardh (Fucales; Phaeophyceae).

    Science.gov (United States)

    Jégou, Camille; Culioli, Gérald; Kervarec, Nelly; Simon, Gaëlle; Stiger-Pouvreau, Valérie

    2010-12-15

    Species of the genus Cystoseira are particularly hard to discriminate, due to the complexity of their morphology, which can be influenced by their phenological state and ecological parameters. Our study emphasized on the relevance of two kinds of analytical tools, (1) LC/ESI-MS(n) and (2) (1)H HR-MAS NMR, also called in vivo NMR, to identify Cystoseira specimens at the specific level and discuss their taxonomy. For these analyses, samples were collected at several locations in Brittany (France), where Cystoseira baccata, C. foeniculacea, C. humilis, C. nodicaulis and C. tamariscifolia were previously reported. To validate our chemical procedure, the sequence of the ITS2 has been obtained for each species to investigate their phylogenetic relationships at a molecular level. Our study highlighted the consistency of the two physico-chemical methods, compared to "classical" molecular approach, in studying taxonomy within the genus Cystoseira. Especially, LC/ESI-MS(n) and phylogenetic analyses converged into the discrimination of two taxonomical groups among the 5 species. The occurrence of some specific signals in the (1)H HR-MAS NMR spectra and/or some characteristic chemical compounds during LC/ESI-MS(n) analysis could be regarded as discriminating factors. LC/ESI-MS(n) and (1)H HR-MAS NMR turned out to be two relevant and innovative techniques to discriminate taxonomically this complex genus. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Characterization of interphases appearing on LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} using {sup 7}Li MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dupre, Nicolas; Guyomard, Dominique [Institut des Materiaux Jean Rouxel, 2 rue de la Houssiniere, BP 32229, F-44322 Nantes Cedex 3 (France); Martin, Jean-Frederic [Institut des Materiaux Jean Rouxel, 2 rue de la Houssiniere, BP 32229, F-44322 Nantes Cedex 3 (France); Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Yamada, Atsuo; Kanno, Ryoji [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan)

    2009-04-01

    {sup 7}Li MAS NMR, usually a bulk characterization technique, is used here to analyze the positive electrode/electrolyte interphase. The sharpening of the NMR spectra line shape as the amount of surface species increases shows that the observed signal is clearly the sum of signals due to the distribution of lithium ions in the interphase in terms of distance from the bulk of electrode active material. This technique is then used to compare characteristics of the interphase coming from the contact with LiPF{sub 6}-based electrolyte in the case of storage or electrochemical cycling. A clear influence of the change of potential on the interphase configuration and in particular on its intimacy with the bulk of active material is deduced from the change in NMR spectra lineshape. This information is hardly obtained by other characterization technique, making NMR a powerful tool for the study of interphases and passivation layers in lithium batteries materials. (author)

  13. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes.

  14. A CRAMPS and 13C CP/MAS NMR examination of solid-solid transitions in n-Hexatriacontane (C36H74)

    Science.gov (United States)

    Stewart, Michael J.; Mathias, Lon J.

    1994-07-01

    The normal paraffins can undergo several transitions before melting and may thus serve as interesting model compounds for polyethylene, which also undergoes solid-solid transitions, the strongest and best-known being the so-called alpha transition. Our examination of n-Hexatriacontane (C36) has been greatly furthered by the use of the solid-state H-1 NMR technique known as CRAMPS (combined rotation and multiple pulse spectroscopy). This technique, combined with DSC and C-13 CP/MAS NMR, has allowed us to make tentative assignments for the molecular motions occurring at different temperatures below the melting point.

  15. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    Science.gov (United States)

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  16. Solid-state 51V MAS NMR spectroscopy determines component concentration and crystal phase in co-crystallised mixtures of vanadium complexes

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Hazell, Alan Charles; Skibsted, Jørgen Bengaard

    2010-01-01

    The oxo-peroxo-vanadium(v) and dioxo-vanadium(v) complexes of N,N-bis(2-pyridylmethyl)glycinate (bpg(-)), VO(O-2)(bpg) (1) and V(O)(2)(bpg) (2) co-crystallize in variable ratios in an anhydrous and a dihydrate phase with the overall formulation 1(x)2(1-x)center dot nH(2)O, n = 0 or 2, where 0 ... oxide ligand (O2-) in the same position. Characteristic chemical shift differences...... for the vanadium atoms of the two complexes mean that V-51 solution state and MAS NMR spectroscopy can be used to determine the concentration of 1 and 2 in bulk samples. Significantly, however, V-51 MAS NMR spectroscopy also reports on the identity of the crystal phase. This is possible because the isotropic V-51...

  17. Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples

    International Nuclear Information System (INIS)

    Alcantara, Glaucia Braz; Honda, Neli Kika; Castro Ferreira, Marcia Miguel; Ferreira, Antonio Gilberto

    2007-01-01

    This paper describes the potentiality of chemometric analysis applied in 1 H HR-MAS NMR and FT-IR data for lichen chemotaxonomic investigations. Lichens present a difficult morphologic differentiation and the chemical analyses are frequently employed for their taxonomic classification, mainly due to the secondary metabolites to be relatively constant for these organisms. The lichen chemotaxonomic classification is usually carried out by color reactions, chromatography, fluorescence and mass spectrometry analysis, where the identification is obtained by one or more techniques. There are some papers which use the carbohydrate content in chemotaxonomy investigation. However, the majority of these techniques involve laborious and time consuming sample pre-treatment. This work focuses on application of 1 H high resolution magic angle spinning - nuclear magnetic resonance (HR-MAS NMR) and Fourier transform infrared (FT-IR) associated with chemometric analysis to intact samples. In comparison to other traditional techniques, 1 H HR-MAS NMR and FT-IR allied with chemometrics provided a fast and economic method for lichen chemotaxonomy. Both methods were useful for lichen analysis and permitted the satisfactory distinction among families, genera and species, although better results were achieved for FT-IR data

  18. Chemometric analysis applied in {sup 1}H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, Glaucia Braz [Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, CEP 13565-905, Sao Carlos/SP (Brazil)]. E-mail: glabraz@yahoo.com.br; Honda, Neli Kika [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul, P.O. Box 549, CEP 79070-900, Campo Grande/MS (Brazil); Castro Ferreira, Marcia Miguel [Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, CEP 13084-971, Campinas/SP (Brazil); Ferreira, Antonio Gilberto [Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, CEP 13565-905, Sao Carlos/SP (Brazil)

    2007-07-09

    This paper describes the potentiality of chemometric analysis applied in {sup 1}H HR-MAS NMR and FT-IR data for lichen chemotaxonomic investigations. Lichens present a difficult morphologic differentiation and the chemical analyses are frequently employed for their taxonomic classification, mainly due to the secondary metabolites to be relatively constant for these organisms. The lichen chemotaxonomic classification is usually carried out by color reactions, chromatography, fluorescence and mass spectrometry analysis, where the identification is obtained by one or more techniques. There are some papers which use the carbohydrate content in chemotaxonomy investigation. However, the majority of these techniques involve laborious and time consuming sample pre-treatment. This work focuses on application of {sup 1}H high resolution magic angle spinning - nuclear magnetic resonance (HR-MAS NMR) and Fourier transform infrared (FT-IR) associated with chemometric analysis to intact samples. In comparison to other traditional techniques, {sup 1}H HR-MAS NMR and FT-IR allied with chemometrics provided a fast and economic method for lichen chemotaxonomy. Both methods were useful for lichen analysis and permitted the satisfactory distinction among families, genera and species, although better results were achieved for FT-IR data.

  19. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations......, even at temperatures above the Neel temperature, TN, 77 K. The formation of a Li+ inner-sphere complex on the surface of lepiclocrocite was confirmed by the observation of a signal with a large 7Li hyperfine shift in the 7Li  MAS NMR spectrum. The effect of pH and relative humidity (RH...

  20. Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state 19F high-speed MAS NMR

    International Nuclear Information System (INIS)

    Katoh, Etsuko; Sugisawa, Hisashi; Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao; Yamazaki, Toshimasa

    1999-01-01

    Radiation effects on molecular structure of polytetrafluoroethylene (PTFE) were studied by high-resolution solid-state 19 F high speed magic angle spinning (HS MAS) NMR spectroscopy. Samples used for the NMR studies were prepared by electron beam irradiation of PTFE with a wide range of irradiation doses from 0.5-10 MGy in the molten state at 340 deg. C under oxygen-free atmosphere. While the non-irradiated PTFE displayed only an intense peak of the internal CF 2 , several new signals corresponding to CF 3 , CF 2 and CF groups were observed for the PTFE which was high temperature irradiated at 340 deg. C in oxygen-free atmosphere (hti-PTFE). Intensities of these new signals increased with an increase of irradiation dose. The present solid-state 19 F HS MAS NMR studies provide not only the first experimental evidence regarding the existence of crosslinking structure in hti-PTFE, directly detected as the CF signal, but also the crosslinking density which can be estimated from a proportion of the CF versus total fluorine signal intensities. The higher the irradiation dose, the higher the crosslinking density; hti-PTFE with 10 MGy contains one crosslinking site per approximately 24 CF 2 groups, while the hti-PTFE with 5 MGy contains one crosslinking site per approximately 36 CF 2 groups. Further, G value of crosslinking (G(x)) was estimated from the signal intensities of 19 F HS MAS NMR spectra. The highest G(x)-value, 1.85, was observed for the 2MGy hti-PTFE sample, suggesting that crosslinking of PTFE is formed most efficaciously with 2 MGy irradiation in the molten state at 340 deg. C under oxygen-free atmosphere

  1. The combined use of quantum chemical calculations and CP/MAS NMR spectroscopy to investigate soil bound residues of labeled xenobiotics

    Science.gov (United States)

    Lewandowski, Hans; Philipp, Herbert; Meier, Robert J.; Narres, Hans-Dieter; Berns, Anne E.

    2010-05-01

    Application of solid state Nuclear Magnetic Resonance (NMR) spectroscopy to 13C- and 15N-labeled compounds is a powerful tool to study the interactions of xenobiotics with soil and its components. The type of interaction with soil components, like organic matter or the mineral phase, influences binding and release of a xenobiotic and its metabolites in soil. As such interactions to the soil matrix cause shifts in the initial positions of the NMR signals of the investigated labeled compound, NMR can be used to elucidate the binding type of bound residues. Density functional theory (DFT) calculations are excellent suited to support such NMR studies of xenobiotics. In a first step, DFT calculations were used to support the interpretation of the spectra of labeled xenobiotics, their metabolites and reaction products synthesized through reaction with model substances (representing specific functionalities of humic substances). In a second step, they allow to evaluate the influence of possible bonds on the initial chemical shift (e.g. towards higher or lower field). This can be especially helpful in the case of bonds like van-der-Waals interactions, for which it is difficult to prepare defined model substances. CP/MAS-NMR spectroscopy and DFT calculations were applied to study the interactions of several labeled xenobiotics and soil organic matter.

  2. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    Science.gov (United States)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  3. Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy.

    Science.gov (United States)

    Tessem, May-Britt; Bathen, Tone F; Löfgren, Stefan; Saether, Oddbjørn; Mody, Vino; Meyer, Linda; Dong, Xiuqin; Söderberg, Per G; Midelfart, Anna

    2006-12-01

    The purpose of the present study was to investigate metabolic changes in different compartments of the rat lens (anterior, nuclear, posterior, and equatorial) after exposure to an acute double threshold dose of ultraviolet-B radiation (UVR-B) by using high-resolution magic angle spinning (HR-MAS) (1)H nuclear magnetic resonance (NMR) spectroscopy and pattern recognition (PR) METHODS: methods. One eye in each of 28 6-week-old female albino Sprague-Dawley rats was exposed to in vivo 7.5 kJ/m2 UVR-B for 15 minutes. The contralateral eye was left unexposed. One week after irradiation, all rats were killed, and both lenses were isolated. Each lens was cored by a trephine, and the cylinder was sliced into three portions (anterior, nuclear, and posterior). The lens material that remained after the coring process was analyzed as the equatorial region. Analysis of lens metabolism was performed by HR-MAS 1H NMR spectroscopy (14.1 T; Avance DRX600; Bruker BioSpin GmbH, Rheinstetten, Germany), and the metabolic profiles were statistically analyzed by the PR method of principal component analysis (PCA). Metabolic differences were detected among the compartments in the lens, both in samples from the contralateral nonexposed lenses and in samples from lenses exposed to in vivo UVR-B. In the rat lens, exposure to UVR-B caused changes in GSH, phosphocholine, myo-inositol, succinate, formate, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) and in levels of the amino acids phenylalanine, taurine, hypo-taurine, tyrosine, alanine, valine, isoleucine, and glutamate, that varied among lens compartments. HR-MAS 1H NMR spectroscopy, combined with PR methods (PCA), is effective for analysis of separate parts of the intact rat lens. To understand the biochemistry of the lens, it is important to divide the lens into sections, representing functionally and anatomically distinct compartments.

  4. Observation of immobile regions in natural rubber at ambient temperature by solid-state C-13 CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, F.H.; Rasmussen, T.; Pedersen, Walther Batsberg

    1999-01-01

    Employing C-13 CP/MAS NMR spectroscopy, the existence of immobile regions in natural rubber (cis-1,4-polyisoprene) corresponding to a few percent of the monomer units has been detected at ambient temperature. For synthetic rubbers no immobile regions have been detected at all. Applying different ...... physical and chemical treatments to natural rubber it is shown that mastication, gamma-irradiation, and increasing the temperature, slightly above the ambient, reduce the amount of immobile regions. (C) 1999 Elsevier Science Ltd. All rights reserved....

  5. Fate of [15N]glycine in peat as determined by 13C and 15N CP-MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Benzing-Purdie, L.M.; Cheshire, M.V.; Williams, B.L.; Sparling, G.P.; Ratcliffe, C.I.; Ripmeester, J.A.

    1986-01-01

    Peat samples, nonsterile, sterilized by γ irradiation or autoclaving, were incubated with [ 15 N]glycine for a period of 6 months. The 13 C NMR data showed the established trend of increased humification with decreasing particle size and that autoclaving had significantly disturbed the humification-particle size distribution. The 15 N CP-MAS NMR spectra showed the presence of [ 15 N]glycine in all fractions after incubation. 15 NH 4 + , a result of either biological or chemical deamination, was one of the main products in the nonsterile peat series. The 15 N spectra also showed resonances corresponding to amine, secondary amide, and pyrrole-type nitrogen and the presence of glycine derivatives and melanoidins. The results presented give the first spectroscopic evidence of the possible involvement of the Maillard reaction in the humification process

  6. Characterizing crystal disorder of trospium chloride: a comprehensive, 13C CP/MAS NMR, DSC, FTIR, and XRPD study

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Šturcová, Adriana; Brus, Jiří; Beneš, Hynek; Skořepová, E.; Kratochvíl, B.; Čejka, J.; Šeděnková, Ivana; Kobera, Libor; Policianová, Olivia; Šturc, A.

    2013-01-01

    Roč. 102, č. 4 (2013), s. 1235-1248 ISSN 0022-3549 R&D Projects: GA ČR GPP106/11/P426 Institutional support: RVO:61389013 Keywords : trospium chloride * solid state NMR * factor analysis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.007, year: 2013

  7. 13C and 31P CP/MAS NMR studies of the polytopal ligand rearrangement process of tungsten tris(trimethylphospine) hexahydride in the solid state

    International Nuclear Information System (INIS)

    Heyes, S.J.; Green, M.L.H.; Dobson, C.M.

    1991-01-01

    W(PMe 3 ) 3 H 6 (1), an archetypal nine-coordinate transition-metal complex, has been studied in the crystalline state by variable-temperature 13 C and 31 P CP/MAS NMR spectroscopy. The NMR spectra are consistent with a tricapped-trigonal-prismatic geometry for the complex, with two phosphine ligands in eclipsed prismatic sites and the third capping the prismatic face opposite the other two. The two prismatic phosphines are shown to be on inequivalent sites. At temperatures above 340 K, exchange broadening shows the occurrence of ligand functionality interchange between the different phosphine environments. Analysis of these line shapes and magnetization-transfer data, in the slow limit of exchange, for the both 13 C and 31 P nuclei shows activation parameters of E a = 148.8 ± 15 kJ mol -1 and A = 6.6 x 10 23 s -1 for the ligand-functionality-interchange process. The most likely mechanism involves a double-rearrangement mechanism with polyhedral edge stretches through a monocapped-square-antiprismatic geometry to a tricapped-trigonal-prismatic intermediate in which all phosphines occupy capping positions. This allows complete scrambling of the ligand functionality, in a manner such that the spatial movement of the phosphine ligands within the crystalline frame need only be relatively small. An additional dynamic process, involving a tripod reorientation of the PMe 3 rotors, has been detected by dipolar broadening of the 13 C NMR spectra. 31 refs., 10 figs., 2 tabs

  8. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  9. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study

    Czech Academy of Sciences Publication Activity Database

    Gil, B.; Zones, S. I.; Hwang, S.-J.; Voláková, Martina; Čejka, Jiří

    2008-01-01

    Roč. 112, č. 8 (2008), s. 2997-3007 ISSN 1932-7447 R&D Projects: GA ČR GA104/07/0383; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : nuclear magnetic resonance * adsorbed probe molecules * angle- spinning NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  10. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    Science.gov (United States)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  11. Transitions in Al Coordination during Gibbsite Crystallization Using High-Field 27 Al and 23 Na MAS NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Zhang, Xin [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Jaegers, Nicholas R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Wan, Chuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Graham, Trent R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Felmy, Andrew R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Clark, Sue B. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-11-30

    Mechanisms of nucleation and growth of Al hydroxides such as gibbsite from aqueous solution, particularly in highly alkaline conditions, remain poorly understood. In this work, quantitative 27Al and 22Na MAS NMR experiments were conducted on solid samples extracted from the crystallization of gibbsite from an amorphous aluminum hydroxide gel precursor. The use of high magnetic field and fast sample spinning allowed transitional tetrahedral (AlT) and pentahedral (AlP) aluminum species to be observed along with the octahedral aluminum (AlO) that dominates the gibbsite product. Low-coordinated Al species could be detected at concentrations as low as 0.1% of the total Al sites. It is established that (a) AlT and AlP coexist on the surface of growing gibbsites even with a combined percentage over the total Al sites of less than 1%; (b) Different synthesis methods generate gibbsite with varying amounts of low-coordinated Al; (c) the amorphous gel precursor contains a significant amount of low-coordinated Al sites with AO: AlP: AlT ratios of approximately 4:2:1; (d) upon hydration, the external, low-coordinated Al sites become six-fold coordinated by interacting with the oxygen in H2O and the 27Al MAS NMR peak position shifts to that for the AlO sites; (e) gibbsite with increased long range order is synthesized over longer times by gradually incorporating residual AlP and AlT sites into octahedrally-coordinated AlO sites; (f) trace Na is predominantly a surface species on gibbsite particles. These findings provide a basis for understanding the gibbsite crystallization mechanism, along with a general means of characterizing gibbsite surface properties that are of equal importance for understanding related processes such as dissolution behavior.

  12. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    Science.gov (United States)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  13. Atomic structure and dehydration mechanism of amorphous silica: Insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles

    Science.gov (United States)

    Kim, Hyun Na; Lee, Sung Keun

    2013-11-01

    Detailed knowledge of the atomic structure of hydrous species on surface of amorphous silica and the effect of temperature and particle size on their atomic configurations are essential to understand the nature of fluids-amorphous silicates interactions and the dehydration processes in the amorphous oxides. Here, we report the 29Si, 1H MAS, and 1H-29Si heteronuclear correlation (HetCor) NMR spectra of 7 nm and 14 nm amorphous silica nanoparticles—a model system for natural amorphous silica—where previously unknown details of changes in their atomic structures with varying dehydration temperature and particle size are revealed. Diverse hydroxyl groups with varying atomic configurations and molecular water apparently show distinct dehydration trends. The dehydration (i.e., removal of water) of amorphous silica nanoparticles mostly results in the increase of isolated silanol by removing water molecules from hydrogen-bonded silanols associated water molecules. With further increase in dehydration temperature, the intensity of isolated silanol peak decreases above ˜873 K, suggesting that the condensation of isolated silanol may occur mainly above ˜873 K. The entire dehydration (and dehydroxylation) process completes at ˜1473 K. Both the water (i.e., physisorbed water and hydrogen-bonded water) and hydrogen-bonded silanol species show a dramatic change in the slope of intensity variation at ˜873 K, indicating that most of silanols is hydrogen-bonded to water rather than to other silanols. The fraction of hydrogen-bonded proton species is also much smaller in 14 nm amorphous silica nanoparticles than in 7 nm amorphous silica nanoparticles mainly due to the presences of larger fractions of water and hydrogen-bonded silanol species. 29Si NMR results show that with increasing dehydration temperature, the fraction of Q4 species apparently increases at the expense of Q2 and Q3 species. The fractions of Q2 and Q3 structures in 7 nm amorphous silica nanoparticles are

  14. In situ (1)H and (13)C MAS NMR kinetic study of the mechanism of H/D exchange for propane on zeolite H-ZSM-5.

    Science.gov (United States)

    Arzumanov, Sergei S; Reshetnikov, Sergei I; Stepanov, Alexander G; Parmon, Valentin N; Freude, Dieter

    2005-10-27

    The kinetics of hydrogen (H/D) exchange between Brønsted acid sites of zeolite H-ZSM-5 and variously deuterated propanes (propane-d(8), propane-1,1,1,3,3,3-d(6), propane-2,2-d(2)) have been monitored in situ by (1)H MAS NMR spectroscopy within the temperature range of 503-556 K. The contribution of intramolecular hydrogen transfer to the H/D exchange in the adsorbed propane was estimated by monitoring the kinetics of (13)C-labeled carbon scrambling in propane-2-(13)C in situ with (13)C MAS NMR at 543-573 K. Possible mechanisms of the exchange have been verified on the basis of the analysis of the variation of protium concentration in both the methyl and the methylene groups of propane in dependence of the reaction time. The main route of the exchange consists of a direct exchange of the acidic OH groups of the zeolite with either the methyl groups or the methylene group presumably with a pentacoordinated carbonium ion intermediate. The assumption that the intramolecular H scrambling between the methyl groups and the methylene group of propane via carbenium-ion-type intermediates is the fastest process among the other possible routes does not account for the experimental kinetics of H/D exchange for propanes with different initial contents and locations of deuterium in a propane molecule. The rate constant (k(3)) for intramolecular H/D exchange between the methyl and the methylene groups is 4-5 times lower compared to those of the direct exchange of both the methyl (k(1)) and the methylene (k(2)) groups with Brønsted acid sites of the zeolite, the k(1) being ca. 1.5 times higher than k(2). At lower temperature (473 K), the exchange is slower, and the expected difference between k(1) and k(2) is more essential, k(1) = 3k(2). This accounts for earlier observed regioselectivity of the exchange for propane on H-ZSM-5 at 473 K. Faster direct exchange with the methyl groups compared to that with the methylene groups was attributed to a possible, more spatial

  15. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    Science.gov (United States)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  16. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    International Nuclear Information System (INIS)

    Miura, Kento; Nakano, Takato

    2015-01-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13 C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  17. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeweid, Marcia A. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting Quantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of 14N via the quadrupolar interaction. Because 14N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe 14N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional 13C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf(η5-C5H5)21-C5H5)2, Zr

  18. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Risskov Sørensen, Daniel [Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark); Nielsen, Ulla Gro [Department of Physics, Chemistry and Pharmacy, Campusvej 55, University of Southern Denmark, 5230 Odense M (Denmark); Skou, Eivind M., E-mail: ems@kbm.sdu.dk [Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  19. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  20. Effect of Ge/Si substitutions on the local geometry of Si framework sites in zeolites: A combined high resolutionsup29/supSi MAS NMR and DFT/MM study on zeolite Beta polymorph C (BEC)

    Czech Academy of Sciences Publication Activity Database

    Whittleton, Sarah R.; Vicente, A.; Fernandez, C.; Rastegar, Somayeh F.; Fishchuk, Anna V.; Sklenák, Štěpán

    2018-01-01

    Roč. 267, SEP 2018 (2018), s. 124-133 ISSN 1387-1811 R&D Projects: GA ČR(CZ) GA15-14007S Grant - others:Ga MŠk(CZ) LM2015070 Institutional support: RVO:61388955 Keywords : 29 Si MAS NMR * bec * Ge-zeolites * Germanoaluminosilicates * Zeolite Beta polymorph C Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.615, year: 2016

  1. One-Pot Synthesis, X-Ray Diffraction and MAS NMR Spectroscopic Study of Gallosilicate Nitrate Cancrinite Na8[GaSiO4]6(NO34(H2O6

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2010-01-01

    Full Text Available One-pot synthetic gallosilicate nitrate cancrinite (CAN framework topology have been synthesized under hydrothermal conditions at 100 °C. The synthesized product was characterized by, X-ray powder diffraction, IR, Raman and 29Si, 23Na MAS NMR spectroscopy, SEM and thermogravimetry. The crystal structure refinement of pure nitrate cancrinite has been carried out from X-ray data using Rietveld refinement method. Gallosilicate cancrinite Na8[GaSiO4]6(NO34(H2O6 crystalline hexagonal with space group P63 and a = 12.77981 Å (2, c = 5.20217 Å (1, (Rwp = 0.0696 Rp = 0.0527. The results by MAS NMR spectroscopy confirmed the alternating Si, Ga ordering of the gallosilicate framework for a Si/Ga ratio of 1.0. A distribution of the quadrupolar interaction of the sodium cations caused by the enclatherated water molecules and motional effects can be suggested from the 23Na MAS NMR. Thermogravimetric investigation shows the extent of nitrate entrapment, stability within the cancrinite cage and decomposition properties. SEM clearly shows the hexagonal needle shaped crystals of nitrate cancrinite.

  2. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  3. Tunnelling and relaxation in semiconductor double quantum wells

    International Nuclear Information System (INIS)

    Ferreira, R.; Bastard, G.

    1997-01-01

    Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)

  4. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations

    Czech Academy of Sciences Publication Activity Database

    Paluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J. P.; Dračínský, Martin; Polenova, T.; Potrzebowski, M. J.

    2015-01-01

    Roč. 17, č. 43 (2015), s. 28789-28801 ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : solid-state NMR * angle spinning NMR * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04475h

  5. Universal quantum computing with nanowire double quantum dots

    International Nuclear Information System (INIS)

    Xue Peng

    2011-01-01

    We present a method for implementing universal quantum computing using a singlet and triplets of nanowire double quantum dots coupled to a one-dimensional transmission line resonator. This method is suitable and of interest for both quantum computing and quantum control with inhibition of spontaneous emission, enhanced spin qubit lifetime, strong coupling and quantum nondemolition measurements of spin qubits. We analyze the performance and stability of all the required operations and emphasize that all techniques are feasible with current experimental technology.

  6. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  7. 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: revealing J coupling and chemical shift two-dimensional correlations in disordered solids.

    Science.gov (United States)

    Guerry, Paul; Smith, Mark E; Brown, Steven P

    2009-08-26

    Two-dimensional (2D) variations in (2)J(P(1),P(1)), (2)J(P(1),P(2)), and (2)J(P(2),P(2)) are obtained--using the REINE (REfocused INADEQUATE spin-Echo) pulse sequence presented by Cadars et al. (Phys. Chem. Chem. Phys. 2007, 9, 92-103)--from pixel-by-pixel fittings of the spin-echo modulation for the 2D correlation peaks due to linked phosphate tetrahedra (P(1)-P(1), P(1)-P(2), P(2)-P(1), and P(2)-P(2)) in a (31)P refocused INADEQUATE solid-state MAS NMR spectrum of a cadmium phosphate glass, 0.575CdO-0.425P(2)O(5). In particular, separate variations for each 2D (31)P REINE peak are obtained which reveal correlations between the J couplings and the (31)P chemical shifts of the coupled nuclei that are much clearer than those evident in previously presented 2D z-filtered (31)P spin-echo spectra. Notably, such correlations between the J couplings and the (31)P chemical shifts are observed even though the conditional probability distributions extracted using the protocol of Cadars et al. (J. Am. Chem. Soc. 2005, 127, 4466-4476) indicate that there is no marked correlation between the (31)P chemical shifts of neighboring phosphate tetrahedra. For 2D peaks at the P(2) (31)P chemical shift in the direct dimension, there can be contributions from chains of three units (P(1)-P(2)-P(1)), chains of four units (P(1)-P(2)-P(2)-P(1)), or longer chains or rings (-P(2)-P(2)-P(2)-): for the representative glass considered here, best fits are obtained assuming a glass comprised predominantly of chains of four units. The following variations are found: (2)J(P(1),P(1)) = 13.4 +/- 0.3 to 14.8 +/- 0.5 Hz, (2)J(P(1),P(2)) = 15.0 +/- 0.3 to 18.2 +/- 0.3 Hz, and (2)J(P(2),P(2)) = 5.9 +/- 0.6 to 9.1 +/- 0.9 Hz from the fits to the P(1)-P(1), P(1)-P(2), and P(2)-P(2) peaks, respectively. The correlation of a particular J coupling with the (31)P chemical shifts of the considered nucleus and the coupled nucleus is quantified by the coefficients C(F(2)) and C(F(1)) that correspond to the

  8. A solid state NMR study of Layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  9. An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study

    DEFF Research Database (Denmark)

    Bierring, M.; Nielsen, J.S.; Siu, Ana

    2008-01-01

    Continuous operation of a polymer photovoltaic device under accelerated conditions for more than 1 year has been demonstrated (8760h at 72 degrees C, 1000Wm(-2), AM 1.5, under vacuum). Formation of hydrogen-bonded networks is proposed to be responsible for the long lifetime and high stability...... observed in photovoltaic devices employing polythiophene substituted with carboxylic-acid moieties under oxygen free conditions. H-1 and C-13 solid-state NMR, IR, and ESR spectroscopy of unmodified and isotopically labeled polythiophenes were studied. Distances between the isotopically labeled carboxylic...... acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite...

  10. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  11. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-02

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer.

  12. Structure resolution of Ba5Al3F19 and Iivestigation of fluorine ion dynamics by synchrotron powder diffraction, variable-temperature solid-state NMR, and quantum computations

    International Nuclear Information System (INIS)

    Martineau, C.; Fayon, F.; Suchomel, M.R.; Allix, M.; Massiot, D.; Taulelle, F.

    2011-01-01

    The room temperature structure of Ba 5 Al 3 F 19 has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) 27 Al and ultrafast magic-angle-spinning (MAS) 19 F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba 5 Al 3 F 19 . The 19 F isotropic chemical shift and 27 Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the 19 F and 27 Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the 19 F MAS NMR spectrum of Ba 5 Al 3 F 19 . Variable-temperature 1D MAS 19 F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba 5 Al 3 F 19 is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.

  13. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  14. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sevelsted, Tine F.; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  15. Measurement of glutathione in human brain at 3T using an improved double quantum filter in vivo

    Science.gov (United States)

    Choi, Changho; Zhao, Chenguang; Dimitrov, Ivan; Douglas, Deborah; Coupland, Nicholas J.; Kalra, Sanjay; Hawesa, Halima; Davis, Jeannie

    2009-06-01

    A single voxel proton NMR double quantum filter (DQF) for measurement of glutathione (GSH) in human brain at 3T is reported. Yield enhancement for the CH 2 resonances of the cysteine moiety at 2.95 ppm has been achieved by means of dual encoding. After the preparation of double quantum and zero quantum coherences (DQC and ZQC) at equal magnitude, the first DQC encoding was followed by interchange of DQC and ZQC, and another DQC encoding. The multi-quantum coherences were fully utilized to generate a GSH target signal at ˜2.95 ppm. The optimal echo time and the editing efficiency were obtained with numerical analysis of the filtering performance and phantom measurements. The dual-DQC encoding method provided GSH yield greater by a factor of 2.1 than single-DQC encoding for identical slice-selective RF pulses in phantom tests. Using the phantom relaxation times and the ratio of edited GSH to N-acetylaspartate (NAA) 2.0-ppm peak areas, the concentration of GSH in the medial parietal cortex of the healthy human brain in vivo was estimated to be 1.0 ± 0.3 mM (mean ± SD, n = 7), with reference to NAA at 10 mM.

  16. Pumped double quantum dot with spin-orbit coupling

    Directory of Open Access Journals (Sweden)

    Sherman Eugene

    2011-01-01

    Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn

  17. Simulating electron spin entanglement in a double quantum dot

    Science.gov (United States)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  18. Extended orbital modeling of spin qubits in double quantum dots

    Science.gov (United States)

    White, Zack; Ramon, Guy

    2018-01-01

    Orbital modeling of two electron spins confined in a double quantum dot is revisited. We develop an extended Hund-Mulliken approach that includes excited orbitals, allowing for a triplet configuration with both electrons residing in a single dot. This model improves the reliability and applicability of the standard Hund-Mulliken approximation, while remaining largely analytical, thus it enables us to identify the mechanisms behind the exchange coupling dynamics that we find. In particular, our calculations are in close agreement with exchange values that were recently measured at a high interdot bias regime, where the double occupancy triplet configuration is energetically accessible, demonstrating reduced sensitivity to bias fluctuations, while maintaining the large exchange needed for fast gating.

  19. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  20. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    Science.gov (United States)

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-05

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Condensed aromatic rings and E{sub 4}/E{sub 6} ratio: humic acids in gleysoils studied by NMR CP/MAS{sup 13}C, and dipolar dephasing; Aneis aromaticos condensados e relacao E{sub 4}/E{sub 6}: estudo de acidos humicos de gleissolos por RMN de {sup 13}C no estado solido utilizando a tecnica CP/MAS desacoplamento defasado

    Energy Technology Data Exchange (ETDEWEB)

    Saab, Sergio da Costa [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica]. E-mail: scsaab@uepg.br; Martin-Neto, Ladislau [Empresa Brasileira de Pesquisa Agropecuaria, Sao Carlos, SP (Brazil)

    2007-03-15

    In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS {sup 13}C techniques, did not show significant correlation between the E{sub 4}/E{sub 6} ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS {sup 13}C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E{sub 4}/E{sub 6} ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures. (author)

  2. In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material.

    Science.gov (United States)

    Stowe, Ashley C; Shaw, Wendy J; Linehan, John C; Schmid, Benjamin; Autrey, Tom

    2007-04-21

    The mechanism of hydrogen release from solid state ammonia borane (AB) has been investigated via in situ solid state (11)B and (11)B{(1)H} MAS-NMR techniques in external fields of 7.1 T and 18.8 T at a decomposition temperature of 88 degrees C, well below the reported melting point. The decomposition of AB is well described by an induction, nucleation and growth mechanistic pathway. During the induction period, little hydrogen is released from AB; however, a new species identified as a mobile phase of AB is observed in the (11)B NMR spectra. Subsequent to induction, at reaction times when hydrogen is initially being released, three additional species are observed: the diammoniate of diborane (DADB), [(NH(3))(2)BH(2)](+)[BH(4)](-), and two BH(2)N(2) species believed to be the linear (NH(3)BH(2)NH(2)BH(3)) and cyclic dimer (NH(2)BH(2))(2) of aminoborane. At longer reaction times the sharper features are replaced by broad, structureless peaks of a complex polymeric aminoborane (PAB) containing both BH(2)N(2) and BHN(3) species. The following mechanistic model for the induction, nucleation and growth for AB decomposition leading to formation of hydrogen is proposed: (i) an induction period that yields a mobile phase of AB caused by disruption of the dihydrogen bonds; (ii) nucleation that yields reactive DADB from the mobile AB; and (iii) growth that includes a bimolecular reaction between DADB and AB to release the stored hydrogen.

  3. Surface characteristics of the iron-oxyhydroxide layer formed during brick coatings by ESEM/EDS, {sup 23}Na and {sup 1}H MAS NMR, and ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Allahdin, O. [Chaire Unesco « Sur la gestion de l' eau », Laboratoire Hydrosciences Lavoisier, Université de Bangui, Faculté des Sciences, B.P. 908 (Central African Republic); Wartel, M. [Université Lille1, Laboratoire LASIR (UMR CNRS 8516), Equipe Physico-chimie de l' Environnement, Bât. C8, 2" è" m" e étage, 59655 Villeneuve d' Ascq cedex (France); Mabingui, J. [Chaire Unesco « Sur la gestion de l' eau », Laboratoire Hydrosciences Lavoisier, Université de Bangui, Faculté des Sciences, B.P. 908 (Central African Republic); Revel, B. [Université Lille1, Service RMN, Bât. C4, 59655 Villeneuve d' Ascq cedex (France); Nuns, N. [Université Lille1, Institut Chevreul, 59655 Villeneuve d' Ascq cedex (France); Boughriet, A., E-mail: abdel.boughriet@univ-lille1.fr [Université Lille1, Laboratoire LASIR (UMR CNRS 8516), Equipe Physico-chimie de l' Environnement, Bât. C8, 2" è" m" e étage, 59655 Villeneuve d' Ascq cedex (France)

    2015-09-01

    Brick made locally by craftsmen in Bangui (Central African Republic) was modified first by HCl activation and second by iron-oxyhydroxide impregnation through the precipitation of ferric ions by NaOH at various fixed pH values (ranging from 3 to 13). The elemental analyses of synthesized compounds were performed using ICP-AES, and their surface chemistry/properties were investigated by environmental scanning electron microscopy (ESEM/EDS), {sup 1}H and {sup 23}Na MAS NMR spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The evidence of different {sup 23}Na chemical environments and the coexistence of Si and Al bound to ferrihydrite were made. The surface properties of this material which was found to be dependent upon synthesis pH, contributed to enhance metal uptake from water. - Highlights: • HCl-activated brick was coated at different Fe(III)-precipitation pH. • Surface properties were determined by ESEM, NMR and ToF-SIMS. • Al- and Si-bearing ferrihydrite and different Na environments were detected. • The pH used for modified-brick synthesis influenced metal uptake from water.

  4. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase--zeolite-catalyzed conversion of cyclohexanol in water.

    Science.gov (United States)

    Vjunov, Aleksei; Hu, Mary Y; Feng, Ju; Camaioni, Donald M; Mei, Donghai; Hu, Jian Z; Zhao, Chen; Lercher, Johannes A

    2014-01-07

    A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid-liquid-gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The (13) C spectra show that dehydration of 1-(13) C-cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the (13) C label. A simplified kinetic model shows the E1-type elimination fully accounts for the initial rates of 1-(13) C-cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2-hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl-1-cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100-fold faster per proton. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System

    Energy Technology Data Exchange (ETDEWEB)

    Cabana, Jordi; Shirakawa, Junichi; Chen, Guoying; Richardson, Thomas; Grey, Clare P.

    2009-10-09

    Li and 3IP NMR experiments were conducted on a series of single- or two-phase samples in the LiFePCvFePCM system with different overall lithium contents, and containing the two end-members and/or two metastable solid solution hases, Lio.6FeP04 or Lio.34FeP04. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for Li+-Fe2+ interactions was bserved for both Lio.6FeP04 and Lio.34FePC>4. The strength of this interaction leads to the formation of LiFePCvlike clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.

  6. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  7. Transport studies in p-type double quantum well samples

    International Nuclear Information System (INIS)

    Hyndman, R.J.

    2000-01-01

    The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions

  8. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  9. Spin transport properties in a double quantum ring with Rashba spin-orbit interaction

    Science.gov (United States)

    Naeimi, Azadeh S.; Eslami, Leila; Esmaeilzadeh, Mahdi; Abolhassani, Mohammad Reza

    2013-01-01

    We study spin-resolved electron transport in a double quantum ring in the presence of Rashba spin-orbit interaction and a magnetic flux using quantum waveguide theory. We show that, at the proper values of the system parameters such as the Rashba coupling constant, the radius of the rings, and the angle between the leads, the double quantum ring can act as a perfect electron spin-inverter with very high efficiency. Also, the double quantum ring can work as a spin switch. The spin polarization of transmitted electrons can be controlled and changed from -1 to +1 by using a magnetic flux.

  10. Magic angle for barrier-controlled double quantum dots

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  11. Bose condensation of interwell excitons in double quantum wells

    CERN Document Server

    Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K

    2002-01-01

    The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...

  12. Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by 1H high resolution-magic angle spinning (HR-MAS) NMR.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter

    2017-10-15

    Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An evaluation of microwave-driven stannylation followed by in situ {sup 119}Sn MAS n.m.r. spectroscopy as a probe for hydroxyl functionality in medium-rank British coals and macerals

    Energy Technology Data Exchange (ETDEWEB)

    Manak, H.; Monsef-Mirzai, P.; McWhinnie, W.R.; Hamor, T.A. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry

    1997-07-01

    The paper describes the derivatization of hydroxyl groups in coals and coal macerals by stannylation. Stannylation of a range of phenolic compounds with Me{sub 3}SnCl, Bu{sub 3}SnCl and (Bu{sub 3}Sn){sub 2}O (TMTO) was carried out under both microwave-driven and conventional conditions. The degree of Stannylation was influenced by the steric environment of the OH group, implying that stannylation in comparison with, say trimethylsilylation of OH groups could help to map the steric environments of phenolic groups in coals. Good maceral separations of Creswell coal and acceptable separation of Cottonwood coal were achieved. The whole coals and the macerals were stannylated with TBTO under microwave-enhanced conditions and the products were examined by {sup 119}Sn MAS n.m.r. and X-ray photoelectron spectroscopy. The reaction was confined to surface regions. Differences were found in the behaviour of the macerals. The crystal and molecular structures of the trimethylstannyl derivative of 2,6-diphenylphenol were determined, to establish the validity of the claim to have stannylated model compounds. Molecular parameters were compared with related systems. 18 refs., 3 figs., 5 tabs.

  14. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  15. MAS NMR study of the photoreceptor phytochrome

    NARCIS (Netherlands)

    Rohmer, Thierry

    2009-01-01

    Plants, algae and bacteria respond to light in various manners. The effect of light on the growth of plants is called photomorphogenesis and is regulated by the photoreceptor protein named phytochrome. Phytochrome is formed in the dark in its inactive red-absorbing (Pr) state and transformed upon

  16. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David

    2007-01-01

    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation......: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots...... and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...

  17. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  18. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

    International Nuclear Information System (INIS)

    Wang, Chen; Cao, Jianshu; Ren, Jie

    2014-01-01

    We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices

  19. The silicalite(MFI)/p-nitroaniline system. I. Location of the sorbed molecules at medium and high pore-fillings. A study by X-ray powder diffraction, 29Si mas NMR and energy minimization calculations

    Science.gov (United States)

    Mentzen, B. F.; Lefèbvre, F.

    1998-05-01

    Structural investigation of the silicalite(MFI)/np-nitroaniline system by X-ray powder diffraction, establishes the existence of two single phased host/guest complexes corresponding to n=4 and 8 at medium and high pore-fillings respectively. Predictive studies by molecular mechanics simulations indicate that the pNAN molecules are located at the channel-intersections (for n=4) or in the elliptic channel-sections of the MFI topology (for n=8). 29Si solid-state mas NMR measurements show that the actual MFI framework symmetry of the silicalite.4pNAN complex is acentric Pn21a. Interpretation of the XRD pattern corresponding to the saturated silicalite. 8pNAN complex by Rietveld type structure refinements shows that two independent pNAN molecules are located on sites II (zig-zag channel sections) and sites III (straight channel sections). The van der Waals type interactions between the sorbed molecules take place at the channel-intersections (sites I). These sites are not occupied by extra-framework species. This is in agreement with the commensurability criterion already observed in several MFI/sorbate systems. Une étude structurale du système silicalite(MFI)/np-nitroaniline (pNAN) par diffraction des rayons X sur poudres, dans le domaine des concentrations 4des canaux (pour n=4) ou dans les sections elliptiques des canaux de la charpente zéolithique MFI (pour n=8). L'étude structurale du complexe silicalite.4pNAN, par diffraction X et RMN à l'état solide du noyau 29Si, établit que le groupe d'espace est non-centrosymétrique Pn21a. Dans le complexe saturé silicalite.8pNAN, deux espèces pNAN indépendantes sont adsorbées sur les sites II (canaux en zig-zag) et III (canaux droits). En accord avec le critère de commensurabilité, les sites I (intersections des canaux) ne contiennent pas d'espèces extra-charpente.

  20. Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well

    DEFF Research Database (Denmark)

    Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.

    1997-01-01

    At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between...

  1. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.

    Science.gov (United States)

    Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T

    2017-10-27

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  2. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot

    Science.gov (United States)

    Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.

    2017-10-01

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  3. Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher

    2005-01-01

    The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum well...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....

  4. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    OpenAIRE

    Hu, Yongjie; Churchill, Hugh; Reilly, David; Xiang, Jie; Lieber, Charles; M. Marcus, Charles

    2007-01-01

    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top g...

  5. Relaxation of electron energy in the polar semiconductor double quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2002-01-01

    Roč. 314, - (2002), s. 490-493 ISSN 0921-4526 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum dots * relaxation * double quantum dots * electron-photon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  6. Numerical Solutions and Structures of Double Quantum Jet Solving by an Upwind Scheme

    Science.gov (United States)

    Lin, San-Yih

    2005-11-01

    The solutions of a double quantum jet are analyzed by solving the quantum fluid dynamical formulation (QFD) of the Schr"odinger equation. The QFD equations are obtained by expressing the Schr"odinger wave function as =ρ^1/2(iS/)and u=(u,v). In QFD, Q=-ρ-1/2δρ^1/2 is called as quantum potential. An upwind method is developed to solve the QFD equations. The method use a third-order upwind method to discrete convection terms and the central finite difference method to discrete the quantum potential. A fourth-order Runge-Kutta method is used for time marching. Two cases, one-dimensional free particle with external potential and two-dimensional free particle with external potential, are presented to illustrate the accuracy of the QFD solver. The computational results are compared well with the results obtained by solving the Schr"odinger equation. Finally, the QFD solver is applied to solve the solutions of a double quantum jet and to investigate its structures. First, a mathematical formulation is derived to describe the double quantum jet. The jet has the probability density equals 2 and the velocity equals 2 at the inlet of the jet. Then, the solutions are computed by the QFD solver. The structures of the solutions are affected by the strength of the quantum potential. The interesting phenomena of quantum clustering are found.

  7. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    Calle, A.M.; Pacheco, M.; Orellana, P.A.

    2013-01-01

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  8. States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings

    International Nuclear Information System (INIS)

    R-Fulla, M.; Marín, J.H.; Suaza, Y.A.; Duque, C.A.; Mora-Ramos, M.E.

    2014-01-01

    The energy structure of an on-axis two-donor system (D 2 0 ) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D 2 0 complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D 2 0 energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D 2 0 complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D 2 0 →D 0 +D + +e − . • We compare the D 0 eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D 2 0 spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D 2 0 complex

  9. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  10. Two-electron double quantum dot coupled to coherent photon and phonon fields

    Science.gov (United States)

    Sato, Yuya; Chen, Jason C. H.; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa

    2017-09-01

    Two-electron states of a double quantum dot (DQD) under irradiation of coherent boson (photon and phonon) fields are studied by measuring spin-flip tunneling current in the Pauli spin blockade regime. This measurement scheme allows us to investigate Rabi splitting and associated boson dressed states particularly in the deep dispersive regime where the detuning δ ≡ℏ ω -EAB between the boson energy ℏ ω and energy spacing EAB of the two-level system is significantly large (δ ˜ℏ ω ), where the permanent dipole moment in the DQD plays a significant role in the hybridization.

  11. Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells

    CERN Document Server

    Yu Guang You; Zhang, J Y; Zheng, Z H; Yang, B J; Zhao Xiao Wei; Shen De Zhen; Kong Xiang Gui

    1999-01-01

    Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells is studied by recording photoluminescence spectra and photoluminescence decay spectra. The exciton tunnelling from the wide well to the narrow well and the thermal dissociation of excitons are two factors that influence the exciton recombination in this structure. In the narrow well, both of the two processes decrease the emission intensity, whereas, in the wide well, these two processes have contrary influences on the exciton density. The change of the emission intensity depends on which is the stronger one. (author)

  12. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  13. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  14. Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot

    DEFF Research Database (Denmark)

    Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W

    2009-01-01

    We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute...... both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes....

  15. Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, D. [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Utsumi, Y. [Department of Physics Engineering, Faculty of Engineering, Mie University, Tsu, Mie, 514-8507 (Japan); Marthaler, M. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Schön, G. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2013-12-04

    Motivated by recent experiments on the real-time single-electron counting through a semiconductor GaAs double quantum dot (DQD) by a nearby quantum point contact (QPC), we develop the full-counting statistics of coupled DQD and QPC system. By utilizing the time-scale separation between the dynamics of DQD and QPC, we derive the modified master equation with tunneling rates depending on the counting fields, which fulfill the detailed fluctuation theorem. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiments.

  16. Manipulative Properties of Asymmetric Double Quantum Dots via Laser and Gate Voltage

    International Nuclear Information System (INIS)

    Shun-Cai, Zhao; Zheng-Dong, Liu

    2009-01-01

    We present a density matrix approach for the theoretical description of an asymmetric double quantum dot (QD) system. The results show that the properties of gain, absorption and dispersion of the double QD system, the population of the state with one hole in one dot and an electron in another dot transferred by tunneling can be manipulated by a laser pulse or gate voltage. Our scheme may demonstrate the possibility of electro-optical manipulation of quantum systems. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  17. A quantum walk in phase space with resonator-assisted double quantum dots

    International Nuclear Information System (INIS)

    Bian Zhi-Hao; Qin Hao; Zhan Xiang; Li Jian; Xue Peng

    2016-01-01

    We implement a quantum walk in phase space with a new mechanism based on the superconducting resonator-assisted double quantum dots. By analyzing the hybrid system, we obtain the necessary factors implementing a quantum walk in phase space: the walker, coin, coin flipping and conditional phase shift. The coin flipping is implemented by adding a driving field to the resonator. The interaction between the quantum dots and resonator is used to implement conditional phase shift. Furthermore, we show that with different driving fields the quantum walk in phase space exhibits a ballistic behavior over 25 steps and numerically analyze the factors influencing the spreading of the walker in phase space. (paper)

  18. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor.

    Science.gov (United States)

    Hu, Yongjie; Churchill, Hugh O H; Reilly, David J; Xiang, Jie; Lieber, Charles M; Marcus, Charles M

    2007-10-01

    One proposal for a solid-state-based quantum bit (qubit) is to control coupled electron spins on adjacent semiconductor quantum dots. Most experiments have focused on quantum dots made from III-V semiconductors; however, the coherence of electron spins in these materials is limited by hyperfine interactions with nuclear spins. Ge/Si core/shell nanowires seem ideally suited to overcome this limitation, because the most abundant nuclei in Ge and Si have spin zero and the nanowires can be chemically synthesized defect-free with tunable properties. Here, we present a double quantum dot based on Ge/Si nanowires in which we can completely control the coupling between the dots and to the leads. We also demonstrate that charge on the double dot can be detected by coupling it capacitively to an adjacent nanowire quantum dot. The double quantum dot and integrated charge sensor serve as an essential building block to form a solid-state qubit free of nuclear spin.

  19. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot

    Science.gov (United States)

    Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex

    Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.

  20. Real two-stage Kondo effect in parallel double quantum dot

    International Nuclear Information System (INIS)

    Liao, Yan-Hua; Huang, Jin; Wang, Wei-Zhong

    2015-01-01

    We study the two-stage Kondo effect in asymmetric parallel double quantum dots. In the triplet, the magnetic moment screenings on two dots occur at the same Kondo temperature. In the critical regime of the triplet–singlet quantum phase transition, a two-stage Kondo screening accompanied with two kinds of Kondo resonance with two energy scales is observed. This is contrast to previous works, in which the Kondo peak in the second screening has not been observed. For large asymmetry of the Kondo coupling, the Kondo resonance in the second step is very weak, which indicates that the screening occurs mainly between two dots and is not a real Kondo screening. Therefore, the side-coupled double quantum dots, which have been extensively studied in the literature, are not an ideal candidate to show a real two-stage Kondo screening. - Highlights: • A real two-stage Kondo screening is not observable in side-coupled 2 quantum dots. • A two-stage Kondo screening is observed in asymmetric parallel 2 quantum dots. • The Kosterlitz–Thouless-type quantum phase transition is studied

  1. Controlled release of stored pulses in a double-quantum-well structure

    International Nuclear Information System (INIS)

    Carreno, F; Anton, M A

    2009-01-01

    We show that an asymmetric double-quantum-well structure can operate as an optical memory. The double quantum wells are modelled like an atomic ensemble of four-level atoms in the Λ-V-type configuration with vacuum-induced coherence arising from resonant tunnelling through the ultra-thin potential energy barrier between the wells. A weak quantum field connects the ground level with the two upper levels and an auxiliary classical control field connects the intermediate level with the upper levels. The quantum field can be mapped into two channels. One channel results from the adiabatic change of the control field which maps the incoming quantum field into the coherence of the two lower levels like in a Λ-type atomic ensemble. The other channel results from the mapping of the quantum field into a combination of coherences between the two upper levels and the ground level, and it is allowed by the adiabatic change of the upper level splitting via an external voltage. The possibility of releasing multiple pulses from the medium resulting from the existence of a non-evolving component of the two-channel memory is shown. A physical picture has been developed providing an explanation of the performance of the device.

  2. Studies of the structure of mixed crystals of the system Na1+2xMgxZr2-x(PO4)3 by 31P-MAS-NMR

    International Nuclear Information System (INIS)

    Jaeger, C.; Scheler, G.; Barth, S.; Feltz, A.

    1987-01-01

    It is proved by 31 P-NMR that the mixed crystals of the series Na 1+2x Mg x Zr 2-x (PO 4 ) 3 are composed of five introduced basic structures NaZr 2 (PO 4 ) 3 , Na 2 Mg 0.5 Zr 1.5 (PO 4 ) 3 , Na 3 MgZr(PO 4 ) 3 , Na 4 Mg 1.5 Zr 0.5 (PO 4 ) 3 , and Na 5 Mg 2 (PO 4 ) 3 (x ≤ 1). The Mg 2+ - and Zr 4+ -ions are statistically distributed. No amorphous minor constituents can be found. The region of this series of mixed crystals is already broken up for x > 1, whereas the theoretical limit is c = 1.5. For x > 1 monophosphates are formed partially with Na + and Mg 2+ in the second coordination sphere of phosphorus. (author)

  3. Magnetotransport through an Aharonov–Bohm ring with parallel double quantum dots coupled to ferromagnetic leads

    International Nuclear Information System (INIS)

    Shao-Quan, Wu; Tao, Hou; Guo-Ping, Zhao; Wan-Lun, Yu

    2010-01-01

    Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper studies the magnetotransport through an Aharonov–Bohm (AB) ring with parallel double quantum dots coupled to ferromagnetic leads. It calculates the transmission probability in both the equilibrium and the nonequilibrium case, analyses the conductance and the tunnel magnetoresistance for various parameters, and obtains some new results. These results show that this system is provided with an excellent spin filtering property, and that a large tunnelling magnetoresistance and a negative tunnelling magnetoresistance can arise by adjusting relative parameters; these facts indicate that this system is a possible candidate for spin valve transistors, and has important applications in spintronics. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland)

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition from the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.

  5. Hot electron and real space transfer in double-quantum-well structures

    International Nuclear Information System (INIS)

    Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

    1991-01-01

    The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

  6. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electron-nuclear interaction in 13C nanotube double quantum dots

    DEFF Research Database (Denmark)

    Churchill, H O H; Bestwick, A J; Harlow, J W

    2009-01-01

    environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe......For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...

  8. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot

    International Nuclear Information System (INIS)

    Coden, Diego S Acosta; Romero, Rodolfo H; Räsänen, Esa

    2015-01-01

    We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau–Zener transition—when supplemented with a time-dependent field tailored with optimal control theory—can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit. (paper)

  9. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  10. Suppression of hyperfine dephasing by spatial exchange of double quantum dots

    Science.gov (United States)

    Drummond, David; Pryadko, Leonid P.; Shtengel, Kirill

    2012-12-01

    We examine the logical qubit system of a pair of electron spins in double quantum dots. Each electron experiences a different hyperfine interaction with the local nuclei of the lattice, leading to a relative phase difference, and thus decoherence. Methods such as nuclei polarization, state narrowing, and spin-echo pulses have been proposed to delay decoherence. Instead we propose to suppress hyperfine dephasing by the adiabatic rotation of the dots in real space, leading to the same average hyperfine interaction. We show that the additional effects due to the motion in the presence of spin-orbit coupling are still smaller than the hyperfine interaction, and result in an infidelity below 10-4 after ten decoupling cycles. We discuss a possible experimental setup and physical constraints for this proposal.

  11. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    Science.gov (United States)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  12. Crossover from negative to positive magnetoresistance in the double quantum well system with different starting disorder

    International Nuclear Information System (INIS)

    Kannan, E S; Karamad, M; Kim, Gil-Ho; Farrer, I; Ritchie, D A

    2010-01-01

    Magnetotransport measurements were performed in two widely separated double quantum well systems with different starting disorders. In the weak magnetic field regime, a crossover from negative to positive magnetoresistance in the longitudinal resistivity was observed in the system with weak disorder when the electron densities in the neighboring wells were significantly unbalanced. The crossover was found to be the result of the exchange-energy-assisted interactions between the electrons occupying the lowest subbands in the neighboring wells. In the case of the system with strong disorder short range scattering dominated the scattering process and no such transition in longitudinal resistivity in the low magnetic field regime was observed. However, at high magnetic fields, sharp peaks were observed in the Hall resistance due to the interaction between the edge states in the quantum Hall regime.

  13. Asymmetric double quantum well structure as a tunable detector in the far-infrared range

    CERN Document Server

    Shin, U; Park, M J; Lee, S J

    1999-01-01

    The eigenvalues and the wave functions of GaAs/Al sub x Ga sub 1 sub - sub x As asymmetric double quantum well structure have been calculated by using of complex energy method. Based on theoretical calculations, tuning ranges from 9 to 14 mu m are predicted for the proposed asymmetric coupled-quantum-well structure. In addition we calculated the energy eigenvalues and the wave functions of an electron in GaAs/Al sub x Ga sub 1 sub - sub x As single quantum well structure (including delta-perturbation). the variation in E sub 1 , the ground state energy eigenvalue of the electron, depends on the strength and position of the perturbation within the well.

  14. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  15. Pauli-spin blockade in a vertical double quantum dot holding two to five electrons

    International Nuclear Information System (INIS)

    Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S

    2009-01-01

    We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.

  16. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  17. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot

    Science.gov (United States)

    Hartke, T. R.; Liu, Y.-Y.; Gullans, M. J.; Petta, J. R.

    2018-03-01

    Quantum confinement leads to the formation of discrete electronic states in quantum dots. Here we probe electron-phonon interactions in a suspended InAs nanowire double quantum dot (DQD) that is electric-dipole coupled to a microwave cavity. We apply a finite bias across the wire to drive a steady state population in the DQD excited state, enabling a direct measurement of the electron-phonon coupling strength at the DQD transition energy. The amplitude and phase response of the cavity field exhibit oscillations that are periodic in the DQD energy level detuning due to the phonon modes of the nanowire. The observed cavity phase shift is consistent with theory that predicts a renormalization of the cavity center frequency by coupling to phonons.

  18. Quantum spin and charge pumping through double quantum dots with ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hui, E-mail: hpan@buaa.edu.cn [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191 (China); Chen, Ziyu; Zhao, Sufen [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Lue, Rong [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-06-06

    The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green's function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring. -- Highlights: → We theoretically investigate the pumping of electrons through double quantum dots attached to ferromagnetic leads. → An oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. → When both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration. → By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. → When only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions.

  19. NMR spectroscopy of lactate in the skeleton muscle: visibility, quantification and measurement of carbon 13 enrichment by double quantum edition

    International Nuclear Information System (INIS)

    Jouvensal, L.

    1997-01-01

    The metabolism of skeleton muscles gave rise to numerous research works since the beginning of the century in order to make some reply about the muscle physiology with the will to improve the sport performances or the understanding of muscles diseases. This metabolism is complex and the lactate has an importance place; the purpose of this work is to answer these questions with some strategy studies by nuclear magnetic resonance spectroscopy. (N.C.)

  20. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  1. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  2. Readout of a single electron spin in a double quantum dot using a quantum point contact

    International Nuclear Information System (INIS)

    Zhang Jianping; Ouyang Shihua; You, J Q; Lam, C.-H.

    2008-01-01

    We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout via a quantum point contact (QPC). We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD. Two cases with one and two electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory current through the QPC. In the two-electron case, the readout of the spin state of the electron in one of the dots called the qubit dot is essentially similar after considering hyperfine interactions between the electrons and the nuclear spins of the host materials and a uniform magnetic field applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot, we propose to determine the success of the electron injection from the variations of the QPC current after applying an oscillating magnetic field to the qubit dot

  3. Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling

    Science.gov (United States)

    Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing

    2018-04-01

    We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.

  4. Quantum Hall effect in InAs/AlSb double quantum well

    International Nuclear Information System (INIS)

    Yakunin, M.V.; Podgornykh, S.M.; Sadof'ev, Yu.G.

    2009-01-01

    Double quantum wells (DQWs) were first implemented in the InAs/AlSb heterosystem, which is characterized by a large Lande g factor |g|=15 of the InAs layers forming the well, much larger than the bulk g factor |g|=0.4 of the GaAs in conventional GaAs/AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4 eV), features with odd filling factors ν=3,5,7, ... are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν=3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν=1 state. The observation of a similar effect for ν=3 in an InAs/AlSb DQW may be due to the large bulk g factor of InAs

  5. SU(4) Kondo effect in double quantum dots with ferromagnetic leads

    Science.gov (United States)

    Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu

    2018-02-01

    We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.

  6. E/Z MAS demonstration

    International Nuclear Information System (INIS)

    Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Los Alamos National Laboratory has developed E/Z MAS, a new generation nuclear material accountability application based on the latest technology and designed for facilities required to track nuclear materials with a simple-to-use interface. E/Z MAS is based on years of experience spent developing nuclear material accounting systems. E/Z MAS uses a modern relational database with a web server and enables users on a classified local area network to interact with the database with web browsers. The E/Z MAS Demonstration poster session demonstrates the E/Z MAS functions required by an operational nuclear facility to track material as it enters and leaves a facility and to account for the material as it moves through a process. The generation of internal facility reports and external reports for the Russian Federal system will be demonstrated. Bar-code readers will be used to demonstrate the ability of EZ MAS to automate certain functions, such as physical inventories at facilities

  7. The molecular mobility of water in natural polymers : Silk Bombyx mori with a low water content as studied by H-1 DQF NMR

    NARCIS (Netherlands)

    Rodin, VV; Knight, DP

    2004-01-01

    The molecular mobility of water in fibres of natural silk (Bombyx mori) was studied by the double-quantum-filtered (DQF) and single-pulse H-1 NMR techniques. The results obtained showed a slow motion of water molecules and their strong interaction with silk macromolecules. At different model

  8. Lithium ion mobility in lithium phosphidosilicates: Crystal structure, {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy, and impedance spectroscopy of Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Toffoletti, Lorenzo; Landesfeind, Johannes; Klein, Wilhelm; Gasteiger, Hubert A.; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747, Garching bei Muenchen (Germany); Kirchhain, Holger; Wuellen, Leo van [Department of Physics, University of Augsburg, Universitaetsstrasse 1, 86159, Augsburg (Germany)

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7) x 10{sup -6} Scm{sup -1} at 0 C to 1.2(2) x 10{sup -4} Scm{sup -1} at 75 C (Li{sub 8}SiP{sub 4}) and from 6.1(7) x 10{sup -8} Scm{sup -1} at 0 C to 6(1) x 10{sup -6} Scm{sup -1} at 75 C (Li{sub 2}SiP{sub 2}), as determined by impedance measurements. Temperature-dependent solid-state {sup 7}Li NMR spectroscopy revealed low activation energies of about 36 kJ mol{sup -1} for Li{sub 8}SiP{sub 4} and about 47 kJ mol{sup -1} for Li{sub 2}SiP{sub 2}. Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP{sub 4} anions and Li counterions. Li{sub 8}SiP{sub 4} contains isolated SiP{sub 4} units surrounded by Li atoms, while Li{sub 2}SiP{sub 2} comprises a three-dimensional network based on corner-sharing SiP{sub 4} tetrahedra, with the Li ions located in cavities and channels. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Broadband MAS NMR spectroscopy in the low-power limit

    Science.gov (United States)

    Sanders, Kevin J.; Pell, Andrew J.; Wegner, Sebastian; Grey, Clare P.; Pintacuda, Guido

    2018-04-01

    We investigate the performance of broadband adiabatic inversion pulses in the high-power (short high-powered adiabatic pulse, SHAP) and low-power (single-sideband-selective adiabatic pulse, S3AP) RF regimes on a spin system subjected to large anisotropic interactions. We show by combined experimental results and spin dynamics simulations that when the magic-angle spinning rate exceeds 100 kHz S3APs begin outperforming SHAPs. This is especially true for low-gamma nuclei, such as 6 Li in paramagnetic Li-ion battery materials. Finally, we show how S3APs can be improved by combining multiple waveforms sweeping over multiple sidebands simultaneously, in order to produce inverted sideband profiles free from intensity biasing.

  10. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  11. Shallow donor impurities in different shaped double quantum wells under the hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Sokmen, I.

    2005-01-01

    The combined electric field and hydrostatic pressure effects on the binding energy of the donor impurity in double triangle quantum well (DTQW), double graded (DGQW) and double square (DSQW) GaAs-(Ga,Al)As quantum wells are calculated by using a variational technique within the effective-mass approximation. The results have been obtained in the presence of an electric field applied along the growth direction as a function of hydrostatic pressure, the impurity position, barrier width and the geometric shape of the double quantum wells

  12. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    Science.gov (United States)

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  13. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  14. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLGm$\\bar{x}$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace}13C{r_brace} and 19F{l_brace}13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements

  15. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    Science.gov (United States)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  16. A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology

    International Nuclear Information System (INIS)

    Tagliaferri, M.L.V.; Crippa, A.; De Michielis, M.; Mazzeo, G.; Fanciulli, M.; Prati, E.

    2016-01-01

    We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing. - Highlights: • Charge sensing of tunable, by position and number, quantum dots is demonstrated. • A compact T-shaped design with five gates at a single metalization level is proposed. • The electrometer is a silicon-etched nanowire acting as a disorder tolerant MOSSET.

  17. A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferri, M.L.V., E-mail: marco.tagliaferri@mdm.imm.cnr.it [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Crippa, A. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); De Michielis, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mazzeo, G.; Fanciulli, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Prati, E. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-03-11

    We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing. - Highlights: • Charge sensing of tunable, by position and number, quantum dots is demonstrated. • A compact T-shaped design with five gates at a single metalization level is proposed. • The electrometer is a silicon-etched nanowire acting as a disorder tolerant MOSSET.

  18. Near-infrared intersubband transitions in InGaAs-AlAs-InAlAs double quantum wells

    International Nuclear Information System (INIS)

    Semtsiv, M.P.; Ziegler, M.; Masselink, W.T.; Georgiev, N.; Dekorsy, T.; Helm, M.

    2005-01-01

    Intersubband optical transitions at short wavelengths in strain-compensated In 0.70 Ga 0.30 As--AlAs double quantum wells are investigated by means of mid-infrared absorption. Trade-offs between achieving a high transition energy and a large oscillator strength of the two highest-energy intersubband transitions using our strain-compensation approach are analyzed as a function of the widths of the two wells. Two design strategies leading to relatively strong intersubband optical transitions at 800 meV, 1.55 μm, are described and the corresponding structures grown using gas-source molecular-beam epitaxy on (001)InP are investigated. The strongest intersubband transitions obtained experimentally are generally between 300 and 600 meV, 2-4 μm. Significant oscillator strength, however, also extends out to 800 meV, 1.55 μm

  19. Tilted magnetic field quantum magnetotransport in the double quantum well with a sizable bulk g-factor: InxGa1-xAs/GaAs

    NARCIS (Netherlands)

    Yakunin, M.V.; Galistu, G.; de Visser, A.

    2008-01-01

    Rich patterns of transformations in the structure of quantum Hall (QH) effect and magnetoresistivity under tilted magnetic fields were obtained in the InxGa1-xAs/GaAs double quantum well at mK temperatures. Local features correspond to the calculated intersections of Landau levels from different

  20. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    NARCIS (Netherlands)

    Yakunin, M.V.; de Visser, A.; Galistu, G.; Podgornykh, S.M.; Sadofyev, Y.G.; Shelushinina, N.G.; Harus, G.I.

    2009-01-01

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk

  1. Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations.

    Science.gov (United States)

    Stevensson, Baltzar; Mathew, Renny; Edén, Mattias

    2014-07-24

    Melt-derived bioactive phosphosilicate glasses are widely utilized as bone-grafting materials for various surgical applications. However, the insight into their structural features over a medium-range scale up to ∼ 1 nm remains limited. We present a comprehensive assessment of the spatial distribution of phosphate groups across the structures of 11 Na2O-CaO-SiO2-P2O5 glasses that encompass both bioactive and nonbioactive compositions, with the P contents and silicate network connectivities varied independently. Both parameters are known to strongly influence the bioactivity of the glass in vitro. The phosphate distribution was investigated by double-quantum (31)P nuclear magnetic resonance (NMR) experiments under magic-angle spinning (MAS) conditions and by molecular dynamics (MD) simulations. The details of the phosphate-ion dispersion were probed by evaluating the MD-derived glass models against various scenarios of randomly distributed, as well as clustered, phosphate groups. From comparisons of the P-P interatomic-distance spreads and the statistics of small phosphate clusters assessed for variable cutoff radii, we conclude that the spatial arrangement of the P atoms in phosphosilicate glasses is well-approximated by a statistical distribution, particularly across a short-range scale of ≤ 450 pm. The primary distinction is reflected in slightly closer P-P interatomic contacts in the MD-derived structures over the distance span of 450-600 pm relative to that of randomly distributed phosphate groups. The nature of the phosphate-ion dispersion remains independent of the silicate network polymerization and nearly independent of the P content of the glass throughout our explored parameter space of 1-6 mol % P2O5 and silicate network connectivities up to 2.9.

  2. High Tech M&As

    DEFF Research Database (Denmark)

    Toppenberg, Gustav

    2013-01-01

    of findings are not applicable to the high-tech industry; in fact this industry has many additional challenges. In this study, we aim to explore the process of M&A in the high-tech industry by drawing on extant literature and empirical field work. The paper outlines a research project in progress which...... intends to provide theoretical, empirical and practical contributions in answering the research question: what role does Operations and IT play in creating value in high-tech M&As? The research adds a needed perspective on M&A literature by unveiling unique challenges and opportunities faced by the M......&A teams in this sector. The phenomenon is studied from multiple perspectives: integration team, acquiring group and the company being acquired....

  3. Sol-gel chemistry synthesis and DTA-TGA, XRPD, SIC and {sup 7}Li, {sup 31}P, {sup 29}Si MAS-NMR studies on the Li-NASICON Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Belam, W., E-mail: WahidBelam@yahoo.fr [Chemistry Department, Bizerta Science Faculty, 7021 Jarzouna, Bizerta (Tunisia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The samples of Li-NASICON were elaborated by sol-gel chemistry. Black-Right-Pointing-Pointer The calcined temperatures of the studied samples were deduced from their thermograms. Black-Right-Pointing-Pointer The recorded X-ray powder diffractograms were indexed in the rhombohedral system. Black-Right-Pointing-Pointer The synthesized Li-NASICON materials are excellent lithium fast cation conductors. - Abstract: Five selected compounds of Li-NASICON, Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5), were synthesized by sol-gel chemistry in order to obtain pure polycrystalline powder and then analyzed by different physicochemical characterizations such as coupled DTA (differential thermal analysis)-TGA (thermogravimetric analysis), XRPD (X-ray powder diffraction), CIS (complex impedance spectroscopy) and MAS (magic angle spinning)-NMR (nuclear magnetic resonance). So the calcined temperature of each sample has been deduced from its corresponding DTA-TGA thermogram. However, the recorded X-ray powder diffractograms were indexed in the rhombohedral system with R3{sup Macron }c space group which corresponds to the ideal structure of NASICON. Whereas, the complex impedance spectroscopy study showed that these Li-NASICON materials are excellent lithium fast cation conductors with total electric conductivity maximal value 1.97 Multiplication-Sign 10{sup -3} S cm{sup -1} at 293 K in the case of Li{sub 3}Zr{sub 1.5}P{sub 3}O{sub 12}. Furthermore, {sup 7}Li, {sup 31}P and {sup 29}Si MAS-NMR spectroscopy study and DFT/B3LYP theoretical calculations of chemical shifts were performed to discuss the ambiguousness that exists between the resonance peak number in the experimental spectrum and the crystallographic site number relative to Li{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}.

  4. New techniques in NMR spectroscopy

    International Nuclear Information System (INIS)

    Hughes, C.E.

    1998-10-01

    In 1989, Soerensen introduced a method, the unitary bound, for calculating the maximum efficiencies of coherence transfer processes in NMR. This thesis applies this method to quadrupolar nuclei, an area not investigated by Soerensen. In doing so, several questions are raised, and answered, as to the implications of the unitary bound for coherence transfer processes in all areas of NMR. These include discussions of when such processes can be reversed without loss of signal and when sequential coherence transfer steps can be carried out with both steps having the maximum efficiency. One area of NMR of quadrupolar nuclei which has attracted some interest over the past few years has been the selective excitation of 23 Na nuclei in ordered environments. This was hinted at by Jaccard et al. in 1986 and demonstrated in biological systems by Eliav et al. in 1992, who achieved the selective excitation using a double-quantum filtration (DQF) experiment. The following year, Kemp-Harper and Wimperis demonstrated that the Jeener-Broekaert experiment could be used to achieve the same selectivity through excitation of quadrupolar order. The unitary bound shows that neither of these experiments achieve the maximum coherence transfer efficiency. This thesis sets out to improve upon the efficiency of these two experiments. Two multiple-pulse experiments are investigated. One seeks to improve upon the efficiency of the Jeener-Broekaert experiment for spin I = 3/2 nuclei by 33% to achieve the unitary bound efficiency. The other seeks to improve the efficiency of the selective DQF experiment by 41% to achieve the bound for spin I= 3/2 nuclei. 23 Na NMR spectra of cartilage and a lyotropic liquid crystal are presented which show that, although the new version of the Jeener-Broekaert experiment achieves no greater efficiency in practical application than the original, the new DQF experiment produces up to half of the expected improvement in efficiency. Alternative techniques to the

  5. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2009-12-15

    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  6. Photoluminescence energy transitions in GaAs-Ga1-xAlxAs double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Mora-Ramos, M.E.; Duque, C.A.

    2009-01-01

    The photoluminescence energy transitions in GaAs-Ga 1-x Al x As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  7. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  8. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    Science.gov (United States)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  9. Computer assisted design of poly-silicon gated enhancement-mode, lateral double quantum dot devices for quantum computing

    Science.gov (United States)

    Bishop, Nathaniel; Young, Ralph; Borras Pinilla, Carlos; Stalford, Harold; Nielsen, Erik; Muller, Richard; Rahman, Rajib; Tracy, Lisa; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2012-02-01

    We discuss trade-offs of different double quantum dot and charge sensor lay-outs using computer assisted design (CAD). We use primarily a semi-classical model, augmented with a self-consistent configuration interaction method. Although CAD for quantum dots is difficult due to uncontrolled factors (e.g., disorder), different ideal designs can still be compared. Comparisons of simulation and measured dot characteristics, such as capacitance, show that CAD can agree well with experiment for relevant cases. CAD results comparing several different designs will be discussed including a comparison to measurement results from the same designs. Trade-offs between poly-silicon and metal gate lay-outs will also be discussed. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  11. Single-electron regime and Pauli spin blockade in a silicon metal-oxide-semiconductor double quantum dot

    Science.gov (United States)

    Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Hydrogen and deuterium NMR of solids by magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, ..beta../sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of ..beta... A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of /sup 1/H with /sup 2/H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids.

  13. Insight into the local magnetic environments and deuteron mobility in jarosite (AFe3(SO4)2(OD)6, A = K, Na, D3O) and hydronium alunite ((D3O)Al3(SO4)2(OD,OD2)6), from variable temperature 2H MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Heinmaa, Ivo; Samoson, Ago

    2011-01-01

    susceptibility and follows a Curie-Weiss law above 150 K. ii) Fe-OD2 and D2O near Fe vacancies. The Fe near these vacancies shows strong local anti-ferromagnetic couplings even high above the Néel temperature (ca. 65 K). 2H NMR can discriminate between D2O and D3O+ ions substituted on the A site due...... to the different temperature dependence of their isotropic shifts. An activation energy of 6.3(4) kJ/mol is determined for the D3O+ motion in the isostructural compound D3OAl3(SO4)2(OD)6. Our NMR results support theories that ascribes the spin glass behavior of (H3O)Fe3(SO4)2(OD)6 is to disorder of the D3O+ ion...

  14. Hydrogen and deuterium NMR of solids by magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Eckman, Richard Raymond [Univ. of California, Berkeley, CA (United States)

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, βm = Arccos(3-1/2), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when HD was small. This often occurs naturally when the nuclei are semi-dilute or involved in

  15. Transport in Weakly Coupled Vertical Double Quantum Dots: Single-Particle Energy Level Spectroscopy and Hyperfine Interaction Effects

    Science.gov (United States)

    Payette, Christopher

    2011-12-01

    Performing transport measurements on weakly coupled vertical double quantum dots, we study by magneto-resonant-tunneling spectroscopy, single-particle energy spectra of the constituent dots over a wide energy window. The measured energy spectra are well modeled overall by ideal spectra calculated for elliptical and parabolic in-dot-plane confinement potentials. However, in regions where single-particle energy levels are naively expected to cross, we observe pronounced level anti-crossing behaviour and strong resonant current variations (both enhancement and suppression). Within a coherent tunneling picture, these effects can be attributed to coherent level mixing induced by weak perturbations in the nearly ideal dot confinement potentials. We analyze the energy spectra in detail, and focus on examples of two-, three- and four-level crossings where we observe the suppression of an otherwise strong current resonance, a signature of dark state formation due to destructive interference. The mixing we measure and model at two three-level crossings represents an all-electrical analogue of coherent population trapping. We also explore the limitations of the applicability of the coherent level mixing model and demonstrate in-situ alteration of the coupling between levels. We further examine the electron spin-nuclear spin (hyperfine) interaction. In the familiar two-electron spin blockade regime, on application of an out-of-dot-plane magnetic field, we observe current switching and hysteresis, and a funnel-like structure in the leakage current, all hallmarks of the hyperfine interaction. The measurements bring to light a strong gate voltage dependence, significant device-to-device variations, and an intricate bias voltage history dependence not accounted for in any existing model. Unexpectedly, we also observe signatures of the hyperfine interaction at high bias, well outside the spin blockade regime. We characterize these features and suggest how the hyperfine interaction

  16. Charged excitonic complexes in GaAs/Al0.35Ga0.65As p-i-n double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Larionov, A. V.; Alessi, M. Grassi

    1999-01-01

    Photoluminescence (PL) and PL excitation measurements (PLE) have been performed in GaAs/AlxGa1-xAs double quantum well (QW) structures under different applied electric fields. An emission due to charged excitons (trions) has been identified in the PL spectra similar to 3 meV below the heavy-hole ......, as shown by (i) an analysis of the PL polarization for resonant excitation of the heavy- and the light-exciton ground state, and (ii) the analysis of the Zeeman effect for the trion PL band in the Faraday geometry, i.e., for a magnetic field normal to the QW's....

  17. Molecular structure of humin and melanoidin via solid state NMR.

    Science.gov (United States)

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-05-19

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry, and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective (13)C substitution, (1)H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose, and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogeneous network-type polymer in which sugar molecules cross-link the heterocycles. © 2011 American Chemical Society

  18. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    Science.gov (United States)

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-03-01

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  19. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Abhishek; Boatz, Jennifer C. [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Wheeler, Travis B. [University of Pittsburgh School of Medicine, Department of Cell Biology (United States); Wel, Patrick C. A. van der, E-mail: vanderwel@pitt.edu [University of Pittsburgh School of Medicine, Department of Structural Biology (United States)

    2017-03-15

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  20. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption.

    Science.gov (United States)

    Volkringer, Christophe; Meddouri, Mohamed; Loiseau, Thierry; Guillou, Nathalie; Marrot, Jérôme; Férey, Gérard; Haouas, Mohamed; Taulelle, Francis; Audebrand, Nathalie; Latroche, Michel

    2008-12-15

    The vanadium-based terephthalate analogs of MIL-68 have been obtained with gallium and indium (network composition: M(OH)(O(2)C-C(6)H(4)-CO(2)), M = Ga or In) by using a solvothermal synthesis technique using N,N-dimethylformamide as a solvent (10 and 48 h, for Ga and In, respectively, at 100 degrees C). They have been characterized by X-ray diffraction analysis; vibrational spectroscopy; and solid-state (1)H and (1)H-(1)H radio-frequency-driven dipolar recoupling (RFDR), (1)H-(1)H double quantum correlation (DQ), and (13)C{(1)H} cross polarization magic angle spinning (CPMAS) NMR spectroscopy. The three-dimensional network with a Kagomé-like lattice is built up from the connection of infinite trans-connected chains of octahedral units MO(4)(OH)(2) (M = Ga or In), linked to each other through the terephthalate ligands in order to generate triangular and hexagonal one-dimensional channels. The presence of DMF molecules with strong interactions within the channels as well as their departure upon calcination (150 degrees C under a primary vacuum) of the materials has been confirmed by subjecting MIL-68 (Ga) to solid-state (1)H MAS NMR. The (1)H-(1)H RFDR and (1)H-(1)H DQ spectra revealed important information on the spatial arrangement of the guest species with respect to the hybrid organic-inorganic network. (13)C{(1)H} CPMAS NMR of activated samples provided crystallographically independent sites in agreement with X-ray diffraction structure determination. Brunauer-Emmett-Teller surface areas are 1117(24) and 746(31) m(2) g(-1) for MIL-98 (Ga) and MIL-68 (In), respectively. Hydrogen adsorption isotherms have been measured at 77 K, and the storage capacities are found to be 2.46 and 1.98 wt % under a saturated pressure of 4 MPa for MIL-68 (Ga) and MIL-68 (In), respectively. For comparison, the hydrogen uptake for the aluminum trimesate MIL-110, which has an open framework with 16 A channels, is 3 wt % under 4 MPa.

  1. Morphology and side-chain dynamics in hydrated hard α-keratin fibres by 1H solid-state NMR

    Science.gov (United States)

    Melian, Claudiu; Demco, Dan E.; Istrate, Monica; Balaceanu, Andreea; Moldovan, Dumitrita; Fechete, Radu; Popescu, Crisan; Möller, Martin

    2009-10-01

    The effect of hydration on phase composition, aminoacids side-chain dynamics, and domain thickness of hard α-keratin was investigated by 1H solid-state NMR. Decomposition of wide-line 1H NMR spectra was used to determine the phase composition and to obtain information on molecular motion. Proton spin-diffusion NMR experiments using a double-quantum dipolar filter were used to estimate the rigid domain sizes for the hydrated Caucasian hair fibres. The relative domain sizes were obtained from the solution of spin-diffusion equation for cylindrical morphologies in the initial-rate approximation by a novel approach. A qualitative model describing the morphological and molecular dynamics changes induced by hydration was developed.

  2. Broadband rotational resonance in solid state NMR spectroscopy.

    Science.gov (United States)

    Chan, Jerry C C; Tycko, Robert

    2004-05-08

    A new technique for restoring nuclear magnetic dipole-dipole couplings under magic-angle spinning (MAS) in solid state nuclear magnetic resonance (NMR) spectroscopy is described and demonstrated. In this technique, called broadband rotational resonance (BroBaRR), the coupling between a pair of nuclear spins with NMR frequency difference close (but not necessarily equal) to the MAS frequency is restored by the application of a train of weak radio-frequency pulses at a carrier frequency close to the average of the two NMR frequencies. Phase or amplitude modulation of the pulse train at half the MAS frequency splits the carrier into sidebands close to the two NMR frequencies. The pulse train then removes offsets from the exact rotational resonance condition, leading to dipolar recoupling over a bandwidth controlled by the amplitude of the pulse train. (13)C NMR experiments on uniformly (15)N,(13)C-labeled L-valineHClH(2)O powder validate the theoretical analysis. BroBaRR will be useful in studies of molecular structures by solid state NMR, for example in the detection of long-range couplings between carbons in uniformly labeled organic and biological materials.

  3. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  4. In-plane magneto-photoluminescence studies of modulation-doped GaAs/AlGaAs coupled double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    KIM,YONGMIN; PERRY,C.H.; SIMMONS,JERRY A.; KLEM,JOHN F.

    2000-05-11

    In-plane magnetic field photoluminescence spectra from n series of n-type modulation doped GaAs/Al{sub 0.3}Ga{sub 0.7}As coupled double quantum wells show distinctive doublet structures related to the tunnel-split ground sub-level states. The magnetic field behavior of the upper transition from the antisymmetric state strongly depends on sample mobility. In a lower mobility sample, the transition energy displays an N-type kink with field (namely a maximum followed by a minimum), whereas higher mobility samples have a linear dependence. The former is attributed to a coupling mechanism due to homogeneous broadening of the electron and hole states. The results are in good agreement with recent theoretical calculations.

  5. Probing the internal energy structure of a serially coupled double quantum dot system with Rashba spin-orbit coupling through finite-frequency shot noise

    Science.gov (United States)

    Xue, Hai-Bin; Liu, Xu-Ping; Chen, Bin

    2018-01-01

    The finite-frequency shot noise of electron transport through a serially coupled double quantum dot system with Rashba spin-orbit coupling is studied based on an effective particle-number-resolved quantum master equation. We demonstrate that the finite-frequency shot noise displays an obvious dip, and the dip position, which is independent of the spin polarizations of the source and drain electrodes, is determined by the energy difference between the coherent singly-occupied eigenstates of the quantum dot system. These results suggest that the dip position of the finite-frequency shot noise can be used to quantitatively extract the information about the energy difference between the coherent singly-occupied eigenstates and the magnitude of Rashba spin-orbit coupling. The predicted properties of the finite-frequency shot noise are of particular interest for understanding of the internal dynamics of the coupled quantum dot systems.

  6. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, S. K., E-mail: sklyo@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Pan, W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by the electric and magnetic fields.

  7. Diamond Deposition and Defect Chemistry Studied via Solid State NMR

    Science.gov (United States)

    1994-06-30

    of the CSA powder patterns are characterized for CF. , hydroxyapatite . 25 groups. Within a certain band of motional narrowing, CF2 and HnchroughNMR e...containedinan epoxy -sealedglas tube. Ilm2. Room tmperature high-speed (15 kHz) MAS "FNMRspetra This Io r ofintensityoffthe highfrequency shoukde featurewould of

  8. TCSP ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 MODIS Airborne Simulator (MAS) dataset was collected by a MODIS Airborne Simulator (MAS), which is a multi-spectral line-scanner system that acquires...

  9. An NMR Investigation of Phase Structure and Chain Dynamics in the Polyethylene/Montmorillonite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Novel exfoliated and interacted polyethylene (PE/montmorillonite (MMT nanocomposites prepared by in situ polymerization were characterized by solid-state nuclear magnetic resonance (NMR. The phase structure and molecular mobility were investigated by proton and carbon NMR under static and magic-angle spinning (MAS conditions. The results showed that incorporation of MMT layer enhanced the polyethylene crystallinity behavior. The chain mobility of crystalline phase, interphase and amorphous phase was hindered in the nanocomposites. The phase structure and chain dynamics were also investigated upon changing the temperature. The orthorhombic and monoclinic phases were detected according to the 13CP/MAS NMR. Quantitative characterization of the phase structure was also conducted by 13C DP/MAS upon changing the temperature. Finally, the difference in the phase structure and chain dynamics in each phase of PE/nanocomposites was compared based on the NMR results when fiber filler was introduced.

  10. Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds

    International Nuclear Information System (INIS)

    Alam, Todd M.

    2004-01-01

    Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials

  11. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  12. Competition between the In/Ga intermixing and the electronic coupling effects in self-assembled InAs/GaAs double-quantum-dots

    International Nuclear Information System (INIS)

    Pocas, Luiz Carlos; Sawata, Marcella Ferraz; Lourenco, Sidney Alves; Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano; Quivy, A.A.

    2012-01-01

    Full text: The notable progress in the fabrication of low-dimensional semiconductor structures during the last years has made it possible to reduce the effective device dimension from three-dimensional bulk materials, to low dimensional quantum systems, as for example, to quasi-two dimensional quantum well systems and to quasi-zero dimensional quantum dots systems. Semiconductors quantum dots (QDs) have attracted considerable interest from both fundamental and technological point of view and have been extensively studied in aspects involving its structural properties and the electronic structure of the confined charge carriers. These systems have been utilized for applications on optoelectronics devices such as lasers, detectors, photodiodes, solar cells, etc. In despite of its fundamental importance, many aspects of their behavior are still not fully understood including, as for example, carrier capture and escape, optical transitions, effects of the inhomogeneous size and energy distribution, etc. Quantum dots grown by Stranski-Krastanov (SK) technique are self-assembled islands, favored by relaxation of the elastic energy that emerge due to the difference of lattice parameter between the epitaxial layer and the substratum. One of the challenges in growing of QDs by SK is to have control of both size and distribution of the islands in the samples. Recently, the growth of samples with vertically stacked multilayer separated by a layer of another semiconductor material, known as stacked QDs, have shown a vertical alignment of QDs which leads to a better QDs size distribution for the upper layers. The strength of electronic coupling, in the case of vertically stacked QDs, as well as the QDs size distribution, is controlled by thickness of the layers that separate the quantum dots (spacer layers). In this work we present a study from a set of self-assembled stacked InAs/GaAs double-quantum-dots grown on GaAs-(001) substrates by molecular beam epitaxy obtained by SK

  13. Competition between the In/Ga intermixing and the electronic coupling effects in self-assembled InAs/GaAs double-quantum-dots

    Energy Technology Data Exchange (ETDEWEB)

    Pocas, Luiz Carlos; Sawata, Marcella Ferraz [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil); Lourenco, Sidney Alves [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil); Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica; Quivy, A.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: The notable progress in the fabrication of low-dimensional semiconductor structures during the last years has made it possible to reduce the effective device dimension from three-dimensional bulk materials, to low dimensional quantum systems, as for example, to quasi-two dimensional quantum well systems and to quasi-zero dimensional quantum dots systems. Semiconductors quantum dots (QDs) have attracted considerable interest from both fundamental and technological point of view and have been extensively studied in aspects involving its structural properties and the electronic structure of the confined charge carriers. These systems have been utilized for applications on optoelectronics devices such as lasers, detectors, photodiodes, solar cells, etc. In despite of its fundamental importance, many aspects of their behavior are still not fully understood including, as for example, carrier capture and escape, optical transitions, effects of the inhomogeneous size and energy distribution, etc. Quantum dots grown by Stranski-Krastanov (SK) technique are self-assembled islands, favored by relaxation of the elastic energy that emerge due to the difference of lattice parameter between the epitaxial layer and the substratum. One of the challenges in growing of QDs by SK is to have control of both size and distribution of the islands in the samples. Recently, the growth of samples with vertically stacked multilayer separated by a layer of another semiconductor material, known as stacked QDs, have shown a vertical alignment of QDs which leads to a better QDs size distribution for the upper layers. The strength of electronic coupling, in the case of vertically stacked QDs, as well as the QDs size distribution, is controlled by thickness of the layers that separate the quantum dots (spacer layers). In this work we present a study from a set of self-assembled stacked InAs/GaAs double-quantum-dots grown on GaAs-(001) substrates by molecular beam epitaxy obtained by SK

  14. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann

    2016-01-01

    investigated by characterizing lignin and silica coprecipitates by FTIR and solid state NMR. Silica particles were coprecipitated with three different lignins, three lignin model compounds, and two silanes representing silica-in-lignin model compounds. Comparison of 29Si SP/MAS NMR spectra revealed differences...

  15. "Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides.

    Science.gov (United States)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang

    2016-04-15

    As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. HR-MAS NMR metabolomics of 'Swingle' citrumelo rootstock genetically modified to overproduce proline.

    Science.gov (United States)

    de Oliveira, Caroline S; Carlos, Eduardo F; Vieira, Luiz G E; Lião, Luciano M; Alcantara, Glaucia B

    2014-08-01

    The accumulation of proline is a typical physiological response to abiotic stresses in higher plants. 'Swingle' citrumelo, an important rootstock for citrus production, has been modified with a mutated Δ(1)-pyrroline-5-carboxylate synthetase gene (VaP5CSF129A) linked to the cauliflower mosaic virus 35S promoter to induce the overproduction of free proline. This paper presents a comparative metabolomic study of nontransgenic versus transgenic 'Swingle' citrumelo plants with high endogenous proline. (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and multivariate analysis showed significant differences in some metabolites between the nontransgenic and transgenic leaves and roots. The overproduction of proline has reduced the sucrose content in transgenic leaves, revealing a metabolic cost for these plants. In roots, the high level of free proline acts for the adjustment of cation-anion balance, causing the reduction of acetic acid content. The same sucrose level in roots indicates that they can be considered as sucrose sink. Similar behavior may be waited for fruits produced on transgenic rootstock. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    Science.gov (United States)

    2009-01-01

    further confirmation of these assignments, Soxhlet - extracted (MeOH) Cu3(BTC)2 is totally devoid of both DMF peaks, leaving only the pristine methine...recoupling to obtain unambiguous assignments of the paramagnetically shifted peaks in Cu(alanine)2(H2O). This method was also applied to Cu3(BTC)2, where

  18. Location of Chemisorbed Methylium Ions in Zeolites by Neutron Diffraction and 13C MAS NMR

    Czech Academy of Sciences Publication Activity Database

    Vratislav, S.; Dlouhá, M.; Bosáček, Vladimír

    2002-01-01

    Roč. 74, Suppl. (2002), s. S1320-S1322 ISSN 0947-8396 R&D Projects: GA ČR GA202/00/1427 Institutional research plan: CEZ:AV0Z4040901 Keywords : zeolites * neutron diffraction * chemisorbed methyl Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.231, year: 2002

  19. Structural characteristics of marine sedimentary humic acids by CP/MAS sup(13)C NMR spectroscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Wahidullah, S.

    acides humiques de la mer d’Arabie ; les acides humiques des stdiments estuariens et &tiers de la baie du Bengale sont dominks par les hyd.rates de carbone et les structures aro- matiques, ainsi que, dans une moindre mesure, par les structures... ont CtC Ctudiks dans diffkrents environnements de d6pp8ts par RMN du 13C (&at solide) et les rksultats ont Ctt cornparks avec les analyses chimiques traditionnelles en milieu liquide. Les donnkes obte- nues sont en accord avec la littkrature...

  20. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    International Nuclear Information System (INIS)

    Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.

    2011-01-01

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.

  1. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  2. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  3. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  4. Pressure and temperature influence on tri calcium silicate hydration. A {sup 1} H and {sup 29} Si NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, B.; Zanni, H. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Lab. de Physique et Mecanique des Milieux Hetorogenes

    1998-02-01

    In this study, the tri calcium silicate is hydrated with and without ground quartz, at high temperature (up to 160 degrees Celsius) and high pressure (up to 1000 bars) in order to reproduce deep oil wells conditions and to understand the pressure and temperature influence on cement hydration. The hydration has been studied by {sup 29} Si MAS NMR (Magic Angle Spinning Nuclear Magnetic Resonance), CP-MAS NMR (Cross-polarization MAS NMR) and {sup 1} H CRAMPS NMR (Combined Rotation and Multi Pulse Spectroscopy Nuclear Magnetic Resonance). Cross-polarization, for long contact times, allows to separate crystalline phases from poorly crystallized hydrates and to detect small amounts of the crystalline phases. The influence of pressure is also studied by cross-polarization. (authors) 5 refs.

  5. "Turn-off" fluorescent sensor based on double quantum dots coupled with chemometrics for highly sensitive and specific recognition of 53 famous green teas.

    Science.gov (United States)

    Hu, Ou; Xu, Lu; Fu, Haiyan; Yang, Tianming; Fan, Yao; Lan, Wei; Tang, Hebing; Wu, Yu; Ma, Lixia; Wu, Di; Wang, Yuan; Xiao, Zuobing; She, Yuanbin

    2018-05-30

    Fluorescent "turn-off" sensors based on double quantum dots (QDs) has attracted increasing attention in the detection of many materials due to their properties such as more useful information, higher fluorescence efficiency and stability compared with the fluorescent "turn-off" sensors based on single QDs. In this work, highly sensitive and specific method for recognition of 53 different famous green teas was developed based on the fluorescent "turn-off" model with water-soluble ZnCdSe-CdTe double QDs. The fluorescence of the two QDs can be quenched by different teas with varying degrees, which results in the differences in positions and intensities of two peaks. By the combination of classic partial least square discriminant analysis (PLSDA), all the green teas can be discriminated with high sensitivity, specificity and a satisfactory recognition rate of 100% for training set and 100% for prediction set, respectively. The fluorescent "turn-off" sensors based on the single QDs (either ZnCdSe QDs or CdTe QDs) coupled with PLSDA were also employed to recognize the 53 famous green teas with unsatisfactory results. Therefore, the fluorescent "turn-off" sensors based on the double QDs is more appropriate for the large-class-number classification (LCNC) of green teas. Herein, we have demonstrated, for the first time, that so many kinds of famous green teas can be discriminated by the "turn-off" model of double QDs combined with chemometrics, which has largely extended the capability of traditional fluorescence and chemometrics, as well as exhibits great potential to perform LCNC in other practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-04-15

    As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.

  7. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  8. High-resolution solid-state NMR study of isotactic polypropylenes

    Directory of Open Access Journals (Sweden)

    O. Fricova

    2012-03-01

    Full Text Available The high-resolution solid-state 13C NMR spectra were recorded for metallocene (m and Ziegler-Natta (ZN isotactic polypropylenes (iPP in pelletized form using cross polarization (CP and magic angle spinning (MAS techniques within the temperature range of 20–160°C. Besides the CP MAS experiments also the MAS 13C NMR spectra (without CP, MAS 1H NMR spectra and rotating frame spin-lattice relaxation times T1ρ (13C were measured at elevated temperatures. With the rise of temperature the splitting of CH2, CH and CH3 signals into two components was detected in 13C NMR spectra and assigned to amorphous and crystalline phases. The temperature dependences of chemical shifts and integral intensities obtained from the deconvoluted spectra provided information on the main chain and CH3 groups motions in amorphous and crystalline regions of studied samples. While T1ρ (13C values show that the rate of segmental motion in amorphous regions in m-iPP and ZN-iPP is virtually the same, larger linewidths in 13C and 1H NMR spectra indicate somewhat larger restraints of the motion in amorphous regions of ZN-iPP.

  9. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  10. Solid State NMR Studies of the Aluminum Hydride Phases

    Science.gov (United States)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  11. NMR spectroscopy of lactate in the skeleton muscle: visibility, quantification and measurement of carbon 13 enrichment by double quantum edition; Spectroscopie RMN du lactate dans le muscle squeletique: visibilite, quantification et mesure de l'enrichissement au carbone 13 par edition a double quantum

    Energy Technology Data Exchange (ETDEWEB)

    Jouvensal, L

    1997-12-18

    The metabolism of skeleton muscles gave rise to numerous research works since the beginning of the century in order to make some reply about the muscle physiology with the will to improve the sport performances or the understanding of muscles diseases. This metabolism is complex and the lactate has an importance place; the purpose of this work is to answer these questions with some strategy studies by nuclear magnetic resonance spectroscopy. (N.C.)

  12. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    Science.gov (United States)

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC.

  13. Communication: Molecular dynamics and 1H NMR of n-hexane in liquid crystals

    Science.gov (United States)

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; de Lange, Cornelis A.; Dong, Ronald Y.; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-01

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  14. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adrian C. J., E-mail: WeberA@BrandonU.CA [Chemistry Department, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9 (Canada); Burnell, E. Elliott, E-mail: elliott.burnell@ubc.ca [Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1 (Canada); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands); Atomic, Molecular and Laser Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Lange, Cornelis A. de, E-mail: c.a.de.lange@vu.nl [Atomic, Molecular and Laser Physics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Dong, Ronald Y., E-mail: rondong@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Muccioli, Luca, E-mail: Luca.Muccioli@unibo.it; Pizzirusso, Antonio, E-mail: Antonio.Pizzirusso80@gmail.com; Zannoni, Claudio, E-mail: Claudio.Zannoni@unibo.it [Dipartimento di Chimica Industriale “Toso Montanari,” Università di Bologna and INSTM, viale Risorgimento 4, 40136 Bologna (Italy)

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  15. Synchronized and concurrent experiments in Moving Tube NMR: using separate sample volumes for different pulse sequences.

    Science.gov (United States)

    Donovan, Kevin J

    2014-10-01

    This study presents a new application of sample shuttling with a long NMR tube (Moving Tube NMR, MT-NMR) as a method for collecting different experiments synchronously or even concurrently using separate sample regions. Synchronized experiments were performed using an automated shuttling apparatus to move different sample regions into the coil between transients such that each experiment was collected using a separate, specific sample segment. Additionally, a 2D NOESY spectrum and a double quantum filtered COSY (DQCOSY) spectrum were collected concurrently by shuttling between two different sample regions during the NOESY mixing time. These applications of the Moving Tube technique show that it is a useful platform for compounded data acquisition to optimize spectrometer time by minimizing measurement times and avoiding problems arising from instrument and sample instabilities. Furthermore, collecting a DQCOSY during a 2D NOESY mixing time opens a wide array of possibilities, as this principle can be applied to collect any experiment during a NOESY mixing time provided that the mixing period is longer than the sum of the sample shuttling time plus a complete scan of the intermittent experiment. While this methodology relies on the use of a long sample tube, it does not require excessive sample volumes, as two milliliters is enough to constitute multiple sample regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. NMR-spectroscopy

    International Nuclear Information System (INIS)

    Lundin, A.G.; Fedin, Eh.I.

    1986-01-01

    Physical foundations are given and the most important areas of nuclear magnetic resonance (NMR) application in physics, chemistry, biology are described. A detailed review of the investigations conducted and the NMR applications in different science and technology fields is presented. The method basic experimental variants, including such new ones as high resolution in a solid body; rare isotope resonance; two-dimensional and multi-quantum fourier-spectroscopy; large molecule NMR; NMR tomography and NMR intrascopy etc. are considered. The instruments are briefly described. NMR is characterized as one of the most important investigation methods of the material composition, its molecular and crystal structure, visualization of the living organism and nonmetallic object inner structure

  17. SAFARI 2000 MODIS Airborne Simulator (MAS) Browse Images

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) collected imagery for the SAFARI 2000 field campaign. Currently available data consist of browse imagery and flight track...

  18. CAMEX-4 ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of cloud and surface features from its vantage...

  19. TCSP ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is a multi-spectral line-scanner system that acquires image data in 50 spectral bands over wavelengths ranging from 0.46 to 14.3...

  20. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  1. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  2. Characterization of some coals and coal intercalations by high-resolution /sup 1/H (BR-24/MAS at 270 MHz) and /sup 13/ (CP/MAS) n. m. r. in solids

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, H.; Scheler, G.; Kuenstner, E.

    1988-04-01

    High resolution /sup 1/H n.m.r. studies combining the BR-24 multiple-pulse method after BURUM and RHIM with fast magic-angle sample spinning (MAS), and high resolution solid-state /sup 13/C n.m.r. measurements with cross polarization (CP) and MAS have been used for investigating: a number of coals of different ranks; GDR soft brown coals characterized by textural differences; and typical intercalations to be found in such soft brown coals. The resolution level of /sup 1/H n.m.r. spectra achieved so far at a resonance frequency of 270 MHz permits determination of essential functional groups. The coalification series ranging from soft brown coal to anthracite shows an increase of the aromaticity values f/sub a//sup C/ and also an increase of the f..cap alpha../sup H/ values, which is analogous to the increases in reflectance and carbon content. There are marked differences between the functional groups to be found in detrital and xylite-containing soft brown coals. Tertiary (Miocene) brown coals from the 2nd Lower Lusatian seam (GDR) (i.e. unbedded, poorly bedded, bedded, xylite-containing unbedded, and gelified bedded coals) differ significantly due to variations in micropetrographical composition. Varying amounts of cellulose and lignin are contained in the xylites of the 2nd Lower Lusatian seam. /sup 13/C and /sup 1/H n.m.r. measurements are employed to determine the main constituents of substances such as pyropissite, retinite, fusite and 'monkey hairs' (fossilized rubber). 48 refs., 5 figs., 3 tabs

  3. Two dimensional NMR of liquids and oriented molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  4. Two dimensional NMR of liquids and oriented molecules

    International Nuclear Information System (INIS)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of 13 C and 1 H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface

  5. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  6. Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields.

    Science.gov (United States)

    Gan, Zhehong; Gor'kov, Peter; Cross, Timothy A; Samoson, Ago; Massiot, Dominique

    2002-05-22

    We report the acquisition of solid-state NMR spectra of quadrupolar nuclei obtained at very high magnetic fields (25 and 40 T), thus improving spectral sensitivity and resolution. For an example compound, the MAS spectrum obtained at 40 T is nearly free from the second-order quadrupolar broadening and can be interpreted quantitatively in a very simple manner.

  7. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  8. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  9. Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractions.

    Science.gov (United States)

    Keeler, Camille; Maciel, Gary E

    2003-05-15

    13C CP-MAS and DP-MAS spin-counting experiments have been carried out on an absolute basis for a specific whole soil and its humin, humic acid, and fulvic acid fractions, as well as a sample of the soil that was treated with 2% HF(aq). The results confirm previous conclusions that a substantial fraction of the carbon content indicated by classic elemental analysis is missed in some samples, especially whole soil and humin, by both CP-MAS and DP-MAS 13C NMR methods, and that the problem is more serious for CP-MAS than for DP-MAS. This study also confirms the fact that treatment of soil organic matter with 2% HF(aq) dramatically reduces this problem but may generate some structural uncertainties associated with significant structural alterations that accompany the HF(aq) treatment, as indicated by the 13C NMR data. The relationship between the "missing carbon" problem and the concentration of paramagnetic centers, especially Fe(III) centers, is explored in substantial detail.

  10. Pollen morphology of Cornus mas L. and Cornus sanguinea L.

    OpenAIRE

    Karlıoğlu Kılıç, Nurgül; Tuttu, Gamze

    2017-01-01

    Pollen morphology of Cornus mas L. and Cornus sanguinea L.Abstract: The pollen morphology of 2 species of the genus Cornus L. distributed in Turkey was studied with light and scanning electron microscope. The pollen of genus Cornus is 3-colporate. Pollen of the Cornus mas is spheroidal and Cornus sanguinea is subprolate. Size varies of Cornus mas pollen with the polar axis ranging from 21.54 to 27.36 μm and equatorial axis from 21.31 to 26.72 μm. Size varies of Cornus sanguinea pollen with po...

  11. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    Monica Ferro

    2017-01-01

    Full Text Available Two different formulations of cyclodextrin nanosponges (CDNS, obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn, were treated with aqueous solutions of ibuprofen sodium salt (IbuNa affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.

  12. MAS2-8 radar and digital control unit

    Science.gov (United States)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  13. KINERJA USAHA TANAMAN HIAS POTONG PT PESONA DAUN MAS ASRI

    Directory of Open Access Journals (Sweden)

    Muhamad Arief Bangun Sanjaya

    2017-01-01

    Full Text Available Pesona Daun Mas Asri is a company in cut flowers  and leaves cultivation. The  achievement is shown by the performance of the company. The overall company’s performance contributes in developing the company’s vision. Balanced score card is a management tool used to observe and maintain the stability between financial indicators (financial perspective and non financial indicators (customer, business internal process, growth and learning.  The objective of the journal is to plan the performance of the company using balanced scorecard approach, analyze and calculate the vision, mission and strategy implemented by Pesona Daun Mas in it business activity..  The result for every strategic target shows that the performance of Pesona Daun Mas is excellent with the achieved score of 78,04%.  However the target for the selling growth level and marketing activities are classified as average which means that it still needs to be developed.   Keywords:  balanced scorecard, performance evaluation, KPI performance index, ornamental plants cutAbstrakPesona Daun Mas Asri merupakan perusahaan yang bergerak dalam bidang budi daya bunga potong dan daun potong. Pencapaian dalam menjalankan sebuah perusahaan dapat dilihat dari kinerja perusahaan tersebut.Kinerja perusahaan Pesona Daun Mas Asri secara keseluruhan dapat berkontribusi untuk mengembangkan perusahaan dalam mencapai visi. Balanced scorecard adalah salah satu alat manajemen yang dapat melihat dan menjaga keseimbangan antara indikator keuangan (perspektif keuangan dan indikator non-keuangan (pelanggan, proses bisnisinternal, pertumbuhan dan pembelajaran. Tujuan dari jurnal ini adalah untuk merancang pengukuran kinerja perusahaan dengan pendekatan Balanced scorecard. Penelitian ini juga bertujuan menganalisis dan mengukur pelaksanaan visi, misi dan strategi yang dijalankan oleh Pesona Daun Mas Asri dalam kegiatan bisnisnya. Selain itu, memberikan saran dan rekomendasi, serta merumuskan implikasi

  14. Concentration profiling in rat tissue by high-resolution magic-angle spinning NMR spectroscopy: investigation of a model drug.

    Science.gov (United States)

    Lucas, Laura H; Wilson, Sarah F; Lunte, Craig E; Larive, Cynthia K

    2005-05-01

    The utility of high-resolution magic-angle spinning (HR-MAS) NMR for studying drug delivery in whole tissues was explored by dosing female Sprague-Dawley rats with topical or injectable benzoic acid (BA). In principle, HR-MAS NMR permits the detection of both intra- and extracellular compounds. This is an advantage over the previous detection of topically applied BA using microdialysis coupled to HPLC/UV as microdialysis samples only the extracellular space. Skin and muscle samples were analyzed by (1)H HR-MAS NMR, and BA levels were determined using an external standard solution added to the sample rotor. One to two percent of the BA topical dose was detected in the muscle, showing that BA penetrated through the dermal and subcutaneous layers. Since BA was not detected in the muscle in the microdialysis studies, the NMR spectra revealed the intracellular localization of BA. The amount of BA detected in muscle after subcutaneous injection correlated with the distance from the dosing site. Overall, the results suggest that HR-MAS NMR can distinguish differences in the local concentration of BA varying with tissue type, dosage method, and tissue proximity to the dosing site. The results illustrate the potential of this technique for quantitative analysis of drug delivery and distribution and the challenges to be addressed as the method is refined.

  15. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  16. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  17. NMR characterization of simulated Hanford low-activity waste glasses and its use in understanding waste form chemical durability

    International Nuclear Information System (INIS)

    Darab, J.G.; Linehan, J.C.; McGrail, B.P.

    1999-01-01

    Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy has been used to characterize the structural and chemical environments of B, Al, and Si in model Hanford low-activity waste glasses. The average 29 Si NMR peak position was found to systematically change with changing glass composition and structure. From an understanding of the structural roles of Al and B obtained from MAS-NMR experiments, the authors first developed a model that reliably predicts the distribution of structural units and the average 29 Si chemical shift value, δ, based purely on glass composition. A product consistency test (PCT) was used to determine the normalized elemental release (NL) from the prepared glasses. Comparison of the NMR and PCT data obtained from sodium boro-aluminosilicate glasses indicates that a rudimentary exponential relationship exists between the 29 Si chemical shift value, and the boron NL value

  18. Effectively doubling the magnetic field in spin-1/2-spin-1, HSQC, HDQC, coupled HSQC, and coupled HDQC in solution NMR.

    Science.gov (United States)

    Shekar, S Chandra; Backer, Jonathan M; Girvin, Mark E

    2008-05-14

    Pulse sequences for spin-1/2-spin-1 pair heteronuclear single quantum correlation (HSQC), heteronuclear double quantum correlation (HDQC), and coupled-HSQC, and coupled-HDQC NMR spectroscopies are outlined, and experimental realization for a (13)C-(2)H pair is demonstrated in solution state. In both the coupled versions, conditions for generation of in-phase and antiphase multiplets in either dimension are arrived at. The patterns and the intensity ratios are explained. The double quantum (2Q) experiments confirm doubling of both the shift frequency and the splitting due to coupling (to spin 1/2) of the 2Q coherence emanating from spin 1. The frequency doubling is equivalent to the corresponding single quantum (1Q) coherence at double the magnetic field strength. The coupling doubling, however, is independent of the magnetic field strength and a signature feature of the 2Q coherence. The ramification of the relative relaxation rates of 1Q and 2Q coherences is discussed.

  19. Effectively doubling the magnetic field in spin-1∕2–spin-1, HSQC, HDQC, coupled HSQC, and coupled HDQC in solution NMR

    Science.gov (United States)

    Chandra Shekar, S.; Backer, Jonathan M.; Girvin, Mark E.

    2008-01-01

    Pulse sequences for spin-1∕2–spin-1 pair heteronuclear single quantum correlation (HSQC), heteronuclear double quantum correlation (HDQC), and coupled-HSQC, and coupled-HDQC NMR spectroscopies are outlined, and experimental realization for a 13C–2H pair is demonstrated in solution state. In both the coupled versions, conditions for generation of in-phase and antiphase multiplets in either dimension are arrived at. The patterns and the intensity ratios are explained. The double quantum (2Q) experiments confirm doubling of both the shift frequency and the splitting due to coupling (to spin 1∕2) of the 2Q coherence emanating from spin 1. The frequency doubling is equivalent to the corresponding single quantum (1Q) coherence at double the magnetic field strength. The coupling doubling, however, is independent of the magnetic field strength and a signature feature of the 2Q coherence. The ramification of the relative relaxation rates of 1Q and 2Q coherences is discussed. PMID:18532820

  20. The evolution of the MasAgro hubs

    NARCIS (Netherlands)

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level ‘hub managers’, to understand how

  1. 48 CFR 538.271 - MAS contract awards.

    Science.gov (United States)

    2010-10-01

    ... price/discount relationship between the Government and the identified commercial customer (or category... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS contract awards. 538... CATEGORIES OF CONTRACTING FEDERAL SUPPLY SCHEDULE CONTRACTING Establishing and Administering Federal Supply...

  2. Meconium aspiration syndrome (MAS) - Where do we go? Research perspectives.

    Science.gov (United States)

    Kääpä, Pekka O

    2009-10-01

    The pathogenetic cascade of meconium aspiration syndrome (MAS) in newborn infants is complex and still incompletely studied. The variable clinical presentation of MAS is basically connected with variation of the amount and consistency of aspirated meconium and also its distribution within the affected lungs. The contributing role of other factors, like intrauterine fetal compromises, lung maturity at the time of insult as well as direct and indirect effects of meconium and its components on the lung alveolar and vascular integrity and development, remains to be studied in further detail. Better understanding of the lung injury processes in MAS, specifically inflammatory injury and non-inflammatory apoptosis and their interplay, may offer new possibilities to treat the severely affected infants, and needs therefore to be explored. Systemic dispersion of intrapulmonary meconium and its components may further induce inflammatory circulatory changes and injurious effects in distant organs, but the mechanisms and clinical significance of these systemic complications are still poorly known. It is thus evident that lung injury processes and potent long-term consequences in various extrapulmonary organs, specifically the brain, as well as development of new approaches to their treatment and prevention form great challenges for future research of MAS.

  3. UC Merced NMR Instrumentation Acquisition

    Science.gov (United States)

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of California - Merced 5200 North Lake Road Merced , CA 95343...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500

  4. Estimation of the average aromatic cluster size based on solid-state NMR; Sekitan no kotai NMR sokutei ni yoru hokozoku kurasuta heikin saizu no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Kidena, K.; Murata, S.; Nomura, M. [Osaka Univ., Osaka (Japan) Department of Molecular Chemistry; Artok, L. [Izmir Inst. of Tech., Imzir (Turkey)

    1999-11-20

    Measurements of solid-state NMR of eight Argonne Premium Coal Samples were conducted to estimate the average aromatic cluster size in these coals. Firstly, the carbon distribution was obtained from SPE/MAS {sup 13}C-NMR. Secondary, {sup 1}H-CRAMPS NMR spectra gave the hydrogen aromaticity of coal. Combination use of the hydrogen aromaticity and elemental analysis data could afford the amount of tertiary aromatic carbon. The parameter of X{sub b}, the mole fraction of aromatic bridgehead carbons in all aromatic carbons, could be derived from above NMR data and elemental analysis of coal. X{sub b} is directly correlated to the number of aromatic carbon atoms per aromatic cluster, C. In this study, the value of C varied from 10 (corresponding to the size of naphthalene) for Beulah-Zap and Wyodak coals to 23 (corresponding to the size of coronene) for Pocahontas No.3 coal. (author)

  5. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    Science.gov (United States)

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Teaching NMR Using Online Textbooks

    Directory of Open Access Journals (Sweden)

    Joseph P. Hornak

    1999-12-01

    Full Text Available Nuclear magnetic resonance (NMR spectroscopy has almost become an essential analytical tool for the chemist. High-resolution one- and multi-dimensional NMR, timedomain NMR, and NMR microscopy are but a few of the NMR techniques at a chemist's disposal to determine chemical structure and dynamics. Consequently, even small chemistry departments are finding it necessary to provide students with NMR training and experience in at least some of these techniques. The hands-on experience is readily provided with access to state-of-the-art commercial spectrometers. Instruction in the principles of NMR is more difficult to achieve as most instructors try to teach NMR using single organic or analytical chemistry book chapters with static figures. This paper describes an online textbook on NMR spectroscopy called The Basics of NMR (http://www.cis.rit.edu/htbooks/nmr/ suitable for use in teaching the principles of NMR spectroscopy. The book utilizes hypertext and animations to present the principles of NMR spectroscopy. The book can be used as a textbook associated with a lecture or as a stand-alone teaching tool. Conference participants are encouraged to review the textbook and evaluate its suitability for us in teaching NMR spectroscopy to undergraduate chemistry majors.

  7. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  8. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  9. Structural NMR assignment

    International Nuclear Information System (INIS)

    Procter, J.B.; Torda, A.E.

    1999-01-01

    Full text: General automated NMR assignment approaches are aimed at full heteronuclear assignment, which is needed for structure determination. Usually, full assignment requires at least as much spectral information as is used for structure generation. For large proteins, obtaining sufficient spectral information may require a number of sample preparations and many spectra, resulting in a significant overhead for the use of NMR in biochemical investigation. For a protein of biochemical interest one may already have an x-ray crystal structure, but spectral assignment is still needed to use NMR as a structural probe for ligand binding studies. In this situation it may be possible to use much less spectral information to make an assignment based purely on the correspondence of structural data to the measurements contained in a few simple spectra. We introduce a framework to accomplish this 'structural assignment', and give some observations on the practical requirements for a structural assignment to succeed

  10. ERP sistēmas ieviešana

    OpenAIRE

    Proskurins, Aleksandrs

    2008-01-01

    Šajā darbā tika apskatīta informācijas sistēmu klasifikācija, uzņēmuma resursu plānošanas sistēmas (ERP) definīcija un tās vieta IS klasifikācijā. Tika apskatīti ERP sistēmu ieviešanas teorētiskie aspekti, izstrādes un pielāgošanas specifika, kā arī tika izanalizēti vairāki ERP sistēmas ieviešanas projekti Latvijas uzņēmumos.

  11. Hexagonal ice in pure water and biological NMR samples

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS, Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2017-01-15

    Ice, in addition to “liquid” water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  12. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    been investigated in detail by 29Si and 27Al MAS NMR where the combination of the results for these spin-nuclei provides important information on the degree of Al-incorporation in the C-S-H structure and of the average chain lengths of tetrahedral SiO4 and AlO4 units. This presentation will illustrate...

  13. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  14. The MicroMAS CubeSat Mission

    Science.gov (United States)

    Cahoy, K.; Blackwell, W. J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; Scarito, M.; Shields, M.; Toher, D.; Wight, K.; Miller, D.; Marinan, A.; Paek, S.; Peters, E.; Schmidt, F. H.; Alvisio, B.; Wise, E.; Masterson, R.; Franzim Miranda, D.; Crail, C.; Kingsbury, R.; Souffrant, A.; Orrego, L.; Eslinger, G.; Nicholas, A.; Pong, C.

    2012-12-01

    The recently published Midterm Assessment of NASA's Implementation of the Decadal Survey finds that, "The nation's Earth observing system is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled. The projected loss of observing capability could have significant adverse consequences for science and society." In this presentation, we explore low-cost, mission-flexible, and rapidly deployable spaceborne sensors that can meet stringent performance requirements pervading the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of CubeSat radiometers. The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (30x10x10 cm, ~4kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch to be provided by NASA. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 25-km diameter footprint from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth's limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front

  15. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. NMR, water and plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  17. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... out' response to environmental changes with structural complexity ... of 3D structure at atomic resolution of folded proteins ...... 5.14 HIV-1 protease. NMR identification of local structural preferences in. HIV-1 protease in the 'unfolded state' at 6 M gua- nidine hydrochloride has been reported.49 Analyses.

  18. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  19. PROPAGANDA POLITIK PARTAI GERINDRA DALAM GAME MAS GARUDA PADA PEMILU 2014 (Analisis Deskriptif Game Online Mas Garuda

    Directory of Open Access Journals (Sweden)

    Angga Satrya Putra

    2016-03-01

    Full Text Available The purpose of this study was to determine how the meaning of the look and content of the online game “Garuda Mas”. This game contains aspects of politically charged designations so that it can become a propaganda technique. The subject of this study is the game “Garuda Mas” which has been input on social media Facebook.Methods of data collection using documentary and literature. Data analysis using descriptive techniques. Data validity checking techniques using triangulation source.The results showed that the game “MAS GARUDA” can form the perspective of the players against Mas Garuda as a superhero figure hopes the Indonesian people who are able to overcome all the problems that exist in Indonesia. This game is a form of creative campaigns using propaganda techniques inserted in the game that has the power to change the mindset of every player. Change of mindset occurs because the player did not have an opportunity to think critically on aspects marking contained in the game. By indirectly the players will feel the emotional of this game and assume characterizations “Garuda Mas” in this game is a truth that can be believed.Keywords: Descriptive, Online Games, Mas Garuda, Partai Gerindra

  20. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  1. NMR in rotating magnetic fields: Magic angle field spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  2. Perancangan Dan Pembuatan Sistem Informasi Administrasi Pada Toko Jamur Mas

    OpenAIRE

    -, Yosep; Setiawan, Alexander; Rostianingsih, Silvia

    2013-01-01

    Jamur Mas is a store which sell and buy goods of daily needs. This store has some problems, which are counting of profit and loss, inventory and account receivable and account payable list. Problems that occur are in the recording, where all the recording is still done manually, this recording has a big risk.To answer these problems, then made an application, this application is developed and made with Microsoft Visual Studio 2005.Net and Microsoft SQL Server 2005 as a data storage. This appl...

  3. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  4. Structural characterisation of aluminium layered double hydroxides by (27)Al solid-state NMR.

    Science.gov (United States)

    Vyalikh, Anastasia; Massiot, Dominique; Scheler, Ulrich

    2009-09-01

    (27)Al solid-state NMR has been applied to study the local structure of pristine and chemically modified aluminium layered double hydroxides (LDH). The pristine LDH only shows six-fold coordinated, octahedral, aluminium, while the calcined and subsequently surfactant treated LDH sample shows a significant fraction of four-fold coordinated tetrahedral aluminium. The co-existence of two types of octahedral sites with different quadrupolar parameters is clearly observed in both samples. Quadrupolar coupling constants and isotropic chemical shifts have been measured from the (27)Al triple-quantum MAS NMR allowing to fit the (27)Al MAS spectra and quantify the different species in the samples. The quantitative analysis reveals that 30% of the aluminium is in four-fold coordination in the surfactant-modified LDH. We show that this chemical modification retains the two types of AlO(6) sites with a decreased intensity of the site showing the lowest quadrupolar coupling constant.

  5. Solid state NMR studies for a new carbonization process with high temperature preheating

    Science.gov (United States)

    Saito, Koji; Hatakeyama, Moriaki; Komaki, Ikuo; Katoh, Kenji

    2002-01-01

    A new carbonization process with rapid preheating and coke discharging at medium temperature has been developed in Japan. The result of this process shows that even when no or slightly coking coal is by 50 wt% the coking property is improved and a coking coke with cold strength usable at blast furnace can be manufactured with the new carbonization process. The mechanism of the coking property improvement was examined by coal properties using mainly solid state NMR ( 1H CRAMPS and 13C SPE/MAS, CP/MAS) and NMR imaging (single point imaging, in-situ imaging). It has been clarified that the molecular structure of coal is relaxed by the rapid heating treatment and, in addition, there is a close relation between hydrogen bonding and relaxation of the molecular structure of coal.

  6. NMR Studies of Peroxidases.

    Science.gov (United States)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  7. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  8. Molecular Mobility of the Interface in a Model Composite: A NMR Study

    Science.gov (United States)

    1992-07-15

    phenylene ) bismaleimide (BMI), was obtained from Aldrich and used as received. Curing reactions were carried out in a crucible by heating at 185 ’C for...coupling agents onto silica surfaces and the interaction of these functional silanes with a bismaleimide resin was studied. Carbon-13 CP/MAS NMR was used to...confirm the bonding between the silane and bismaleimide (BMI) resin and elucidate the nature of the crosslinking reaction of BMI. Deuterated coupling

  9. High resolution MAS 1H NMR spectroscopic analysis of rabbit cornea after treatment with dexamethasone and exposure to UVB radiation

    Czech Academy of Sciences Publication Activity Database

    Seather, O.; Krane, J.; Risa, O.; Čejková, Jitka; Midelfart, A.

    2005-01-01

    Roč. 30, - (2005), s. 1041-1049 ISSN 0271-3683 R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : aqueous humour * cornea Subject RIV: FF - HEENT, Dentistry Impact factor: 1.116, year: 2005

  10. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  11. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy.

    Science.gov (United States)

    Asakura, Tetsuo; Horiguchi, Kumiko; Aoki, Akihiro; Tasei, Yugo; Naito, Akira

    2016-09-01

    The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations.

  12. Nuclear Magnetic Resonance spectroscopy of marine microalgae: Metabolic profiling and species discrimination from High-Resolution Magic Angle Spinning NMR analysis of whole-cell samples

    OpenAIRE

    Chauton, Matilde Skogen

    2005-01-01

    Based on what is said about the background and structure, this thesis presents a discussion of the use of NMR spectroscopy as a tool for species discrimination and metabolic profiling of microalgae. The results of various analyses including NMR and statistics are evaluated from what is known from already established identification methods such as pigment chromatography and chemotaxonomy, and the chemical composition of microalgal cells. The main focus is on the application of HR MAS on whole ...

  13. NMR spectroscopic study and DFT calculations of GIAO NMR ...

    African Journals Online (AJOL)

    1H, proton coupled and decoupled 13C, DEPT, HETCOR NMR spectra, the magnitude of one bond 1JCH coupling constants and 13C NMR spin-lattice relaxation time (T1) of 1,9-diaminononane (danon, C9H22N2) have been reported for the first time. 1H, 13C NMR chemical shifts and 1JCH coupling constants of danon ...

  14. Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR

    Science.gov (United States)

    Uezono, Takiko; Toraya, Shuichi; Obata, Maki; Nishimura, Katsuyuki; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2005-07-01

    Secondary structure and orientation of dynorphin bound to dimyristoylphosphatidylcholine (DMPC) bilayer were investigated by solid-state 13C NMR spectroscopy. For this purpose, 13C NMR spectra of the site-specifically 13C-labeled dynorphin were measured in the membrane-bound state under static, magic angle spinning (MAS), and slow MAS conditions. In the static experiment, magnetically oriented vesicle system (MOVS) induced by dynorphin was successfully used to investigate the orientation of dynorphin bound to the lipid bilayers. It was found that dynorphin adopts an α-helical structure in the N-terminus from Gly 2 to Leu 5 by analyses of the isotropic chemical shifts obtained from the MAS experiments. In contrast, it adopts disordered conformations from the center to the C-terminus and is located on the membrane surface. The static 13C NMR spectra indicated that MOVS-bound dynorphin was oriented to the magnetic field and rotated rapidly about the bilayer normal. Subsequently, we analyzed the 13C chemical shift tensors of carbonyl carbons in the peptide backbone by considering the rotational motion of the N-terminal α-helix. It was revealed that the N-terminal α-helix is inserted into the membrane with the tilt angle of 21° to the bilayer normal. This structure suggests a possibility that dynorphin interacts with the extracellular loop II of the κ-receptor through a helix-helix interaction.

  15. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy.

    Science.gov (United States)

    Sideris, Paul J; Nielsen, Ulla Gro; Gan, Zhehong; Grey, Clare P

    2008-07-04

    The anion-exchange ability of layered double hydroxides (LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite-like LDHs, of general formula Mg2+(1-x)Al3+(x)OH2(Anion(n-)(x/n)).yH2O, have, however, remained elusive, and their elucidation could enhance the functional optimization of these materials. We applied rapid (60 kilohertz) magic angle spinning (MAS) to obtain high-resolution hydrogen-1 nuclear magnetic resonance (1H NMR) spectra and characterize the magnesium and aluminum distribution. These data, in combination with 1H-27Al double-resonance and 25Mg triple-quantum MAS NMR data, show that the cations are fully ordered for magnesium:aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close contacts. The application of rapid MAS NMR methods to investigate proton distributions in a wide range of materials is readily envisaged.

  16. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  17. NMR imaging of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.S. (Case Western Reserve Univ. School of Medicine, Cleveland, OH); Kaufman, B.; El Yousef, S.J.; Benson, J.E.; Bonstelle, C.T.; Alfidi, R.J.; Haaga, J.R.; Yeung, H.; Huss, R.G.

    1983-12-01

    The usefulness of nuclear magnetic resonance (NMR) images in the evaluation of spinal disorders below the craniocervical junction was studied. Six normal subjects and 41 patients with various spinal abnormalities were examined. NMR proved capable of demonstrating important normal and pathologic anatomic structures; it was useful in the evaluation of syringohydromyelia and cystic spinal cord tumors, and the bright signal intensity of lipoma was quite impressive. In the evaluation of herniated disk, NMR images offered a new perspective by visualizing abnormal degradation of the signal intensity of the nucleus pulposus itself. NMR images were least valuable in the evaluation of spondylosis and spinal stenosis. Although NMR imaging of the spine is still in a very early developmental stage, the absence of both ionizing radiation and risks associated with contrast material makes it especially attractive as a new diagnostic method. This limited experience with currently available equipment suggests that, with technical refinement, the efficacy of NMR of the spine will increase.

  18. Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies.

    Science.gov (United States)

    Burghi, Valeria; Fernández, Natalia Cristina; Gándola, Yamila Belén; Piazza, Verónica Gabriela; Quiroga, Diego Tomás; Guilhen Mario, Érica; Felix Braga, Janaína; Bader, Michael; Santos, Robson Augusto Souza; Dominici, Fernando Pablo; Muñoz, Marina Cecilia

    2017-01-01

    Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1-7) protective axis of renin-angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking.

  19. TOKSISITAS LETAL MOLUSKISIDA NIKLOSAMIDA PADA BENIH IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Yosmaniar Yosmaniar

    2009-04-01

    Full Text Available Penggunaan moluskisida untuk menanggulangi hama dalam budidaya tanaman padi yang semakin meningkat berpotensi mencemari lingkungan perairan, karena mengandung residu dari bahan aktifnya. Moluskisida niklosamida (C13H8Cl2N2O4 merupakan bahan aktif pestisida yang digunakan untuk memberantas hama keong mas atau siput murbei (Pomacea sp. di sawah. Dengan demikian, bahan tersebut memiliki potensi untuk mencemari lahan tempat usaha budidaya ikan. Penelitian ini bertujuan untuk mengetahui potensi toksisitas akut niklosamida terhadap benih ikan mas (Cyprinus carpio yang ditunjukkan oleh nilai Median Lethal Concentration (LC50 24, 48, dan 96 jam. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi, Cibalagung-Bogor. Menggunakan ikan mas dengan bobot individu 2,47 ± 0,13 g. Moluskisida yang digunakan mengandung bahan aktif niklosamida 250g/L. Wadah pengujian berupa 21 unit akuarium kaca berukuran 40 cm x 20 cm x 20 cm yang dilengkapi aerasi serta saluran pemasukan dan pengeluaran. Jumlah ikan uji setiap wadah 10 ekor dengan peubah yang diukur adalah mortalitas ikan. Selama penelitian ikan tidak diberi makan. Tahapan penelitian terdiri atas penentuan nilai ambang atas-bawah, nilai lethal time dan LC50 -24, 48, 72, dan 96 jam. Data diolah dengan analisis probit program LC50. Hasil penelitian menunjukkan bahwa nilai LC50-24, 48, 72, dan 96 jam terhadap benih ikan mas adalah 0,8012 (0,7140—0,8990; 0,5999 (0,5356—0,6719; 0,4511 (0,4067—0,5004; dan 0,3849 mg/L (0,3684—0,4061. Hal ini menunjukkan niklosamida termasuk pestisida yang memiliki toksisitas sangat tinggi (golongan A. The use of molluscicide in aquatic as well as in terresterial agro ecosystem without properly controlled may produce detrimental effects on freshwater fisheries. Molluscicide utilization for golden apple snail (Pomacea sp. control in rice field has increased. The ingredient potencially has a possibility to pollute aquaculture water. The

  20. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    Science.gov (United States)

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Processing DOSY NMR Data by Chemometric Methods

    NARCIS (Netherlands)

    Huo, R.

    2006-01-01

    DOSY NMR can be used as a non-invasive separation method for complex mixtures. It is more and more attractive for industrial laboratories, for the main advantage DOSY NMR over routine separation methods such as LC-NMR is easy and economical implementation. With NMR instruments, DOSY NMR data can be

  2. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    NMR is a sensitive and versatile probe of molecular-scale structure and dynamics in solids and liquids. It has been widely used in chemistry, materials and geochemistry [21-23] and it enables one to get faster and easier structural information. The standard 1D and 2D hetero and homonuclear NMR experiments are enough ...

  3. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory.

    Science.gov (United States)

    Lazaroni, Thiago L N; Raslan, Ana Cláudia S; Fontes, Walkiria R P; de Oliveira, Marilene L; Bader, Michael; Alenina, Natalia; Moraes, Márcio F D; Dos Santos, Robson A; Pereira, Grace S

    2012-01-01

    It has been shown that the brain has its own intrinsic renin-angiotensin system (RAS) and angiotensin-(1-7) (Ang-(1-7)) is particularly interesting, because it appears to counterbalance most of the Ang II effects. Ang-(1-7) exerts its biological function through activation of the G-protein-coupled receptor Mas. Interestingly, hippocampus is one of the regions with higher expression of Mas. However, the role of Ang-(1-7)/Mas axis in hippocampus-dependent memories is still poorly understood. Here we demonstrated that Mas ablation, as well as the blockade of Mas in the CA1-hippocampus, impaired object recognition memory (ORM). We also demonstrated that the blockade of Ang II receptors AT1, but not AT2, recovers ORM impairment of Mas-deficient mice. Considering that high concentrations of Ang-(1-7) may activate AT1 receptors, nonspecifically, we evaluate the levels of Ang-(1-7) and its main precursors Ang I and Ang II in the hippocampus of Mas-deficient mice. The Ang I and Ang II levels are unaltered in the whole hipocampus of MasKo. However, Ang-(1-7) concentration is increased in the whole hippocampus of MasKo mice, as well as in the CA1 area. Taken together, our findings suggest that the functionality of the Ang-(1-7)/Mas axis is essential for normal ORM processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Evaluation of thermoplastic starch/MMT nanocomposites by nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    Schlemmer, D.; Rodrigues, Tiago C.A.F.; Resck, I.S.; Sales, M.J.A.

    2010-01-01

    Starch has been studied for replace petrochemical plastics for short shelf life. However, the starch films have limitations: sensitivity to moisture and poor mechanical strength. This can be improved by incorporating loads such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using vegetable oils of Brazilian Cerrado as plasticizers. The NMR spectra of oils are similar, but the intensities of the signals varying with the proportion of fatty acids. The molar mass of the oils was also calculated by NMR. The spectrum of CP/MAS 13 C NMR for starch presented a duplet in 97 and 98 ppm, on the amorphous domains of C-1, indicating a crystal type A. The spectra of the nanocomposites are similar to those of starch and oils. No new peaks appear, suggesting that there are no strong chemical bonds between components. (author)

  5. 31P and 29Si NMR investigations of the structure of NASICON-compounds

    International Nuclear Information System (INIS)

    Jaeger, C.; Scheler, G.; Barth, S.; Feltz, A.

    1988-01-01

    First systematic NMR investigations of several NASICON compounds are described. In the original NASICON Na 1+x Zr 2 (SiO 4 ) x (PO 4 ) 3-x the observed down-field shift (for increasing x) of both 31 P and 29 Si MAS NMR lines is explained by a change of the net atomic charge of the zirconium atoms caused by the substitution of the lattice positions of phosphorus by silicon atoms. The 'von Alpen' compound Na 4 ZrSi 3 O 10 consists of two phases; the crystalline Na 4 Zr 2 (SiO 4 ) 3 and the glassy phase 2 Na 2 O · 3 SiO 2 . Moreover, it is shown that NMR can be used to investigate the statistical substitution of lattice positions of the zirconium atoms by magnesium atoms in the mixed crystals Na 1+2x Mg x Zr 2-x (PO 4 ) 3 . (author)

  6. THz Dynamic Nuclear Polarization NMR.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology.

  7. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  8. NMR imaging of osteoarticular pathology

    Energy Technology Data Exchange (ETDEWEB)

    Frocrain, L.; Duvauferrier, R.; Gagey, N. and others

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states.

  9. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  10. Quantum Information Processing by NMR

    Indian Academy of Sciences (India)

    Keywords. NMR; quantum information processing; quantum computing; qubits; pseudopure states; quantum; pseudopure states; quantum gates; quantum simulations; decoherence. ... T S Mahesh1. Department of Physics and NMR Research Center, Indian Institute of Science Education and Research, Pune 411 008, India ...

  11. Resistive NMR of intracranial hematomas

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.A.; Bilaniuk, L.T.; Grossman, R.I.; Levine, R.S.; Lynch, R.; Goldberg, H.I.; Samuel, L.; Edelstein, W.; Bottomley, P.; Redington, R.W.

    1985-01-01

    Comparison between computed tomography and nuclear magnetic resonance imaging in 17 patients with intracranial hematomas indicate a distinct role for NMR in evaluating the stable patient with hematoma. NMR is useful for delineating the extent of the hematoma, the relationship of the hematoma to brain anatomy, and the presence of hematoma at a time when the hematoma is isodense on CT.

  12. Why does meconium cause meconium aspiration syndrome? Current concepts of MAS pathophysiology.

    Science.gov (United States)

    van Ierland, Y; de Beaufort, A J

    2009-10-01

    One in every 7 pregnancies ends with meconium-stained amniotic fluid and approximately 5% of these infants develop the meconium aspiration syndrome (MAS). MAS is a severe disease of the (mainly) term neonate, characterized by respiratory distress, pulmonary inflammation, persistent pulmonary hypertension and chronic hypoxia. The pathophysiology of MAS is multifactorial and complex. In this article, we discuss the mechanical and chemical effects of meconium on a newborn's airway, meconium-induced inflammation, mediated by proinflammatory cytokines and chemokines, the complement system and the proinflammatory enzyme phospholipase A2. Furthermore, we focus on MAS-related apoptotic cell death, causing severe acute lung injury due to damage and detachment of lung airway and alveolar cells. Finally, risk factors for MAS development to identify those newborns that develop MAS and those who do not are discussed.

  13. High-resolution magic angle spinning (1)H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure

    Czech Academy of Sciences Publication Activity Database

    Seather, O.; Risa, O.; Čejková, Jitka; Krane, J.; Midelfart, A.

    2004-01-01

    Roč. 242, - (2004), s. 1000-1007 ISSN 0721-832X R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : HR-MAS 1H NMR Subject RIV: FF - HEENT, Dentistry Impact factor: 1.513, year: 2004

  14. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  15. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  16. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  17. Optimized Distribution of Beijing Population Based on CA-MAS

    Directory of Open Access Journals (Sweden)

    Haoguang Liang

    2017-01-01

    Full Text Available In recent years rapid expansion of populations, disruption of ecological environments, and power shortages to areas of high population density in undeveloped areas have appeared in major cities in China. Well-planned population distribution in a city has become one of the key development strategies of urbanization in the country. Taking Beijing as a case-study and using 2010 as the base period, this study simulates city population size and distribution during 2011–2030 using the CA-MAS model. The results showed that (1 the unplanned layout of Beijing’s population is inefficient and will result in the slow agglomeration of populations into surrounding small towns, (2 the suburbanization of the population (while employment opportunities remain centralized increases the stress of the city commuters, (3 the current policy guiding the distribution of residential and commercial areas is effective, accelerating the formation of small town clusters, which play a role in the city’s radiation and diffusion, contributing to reducing urban commuter stress, and (4 promoting the homogenization of public resources, planning the development of a multicenter urban area, and promoting mixed use (commercial and residential zoning are the main measures recommended to strengthen the sustainability of Beijing’s urban development and to optimize spatial layout.

  18. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  19. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  20. Solid state NMR studies of materials for energy technology

    Science.gov (United States)

    Nambukara Kodiweera Arachchilage, Chandana K.

    Presented in this dissertation are NMR investigations of the dynamical and structural properties of materials for energy conversion and storage devices. 1H and 2H NMR was used to study water and methanol transportation in sulfonated poly(arylene ether ketone) based membranes for direct methanol fuel cells (DMFC). These results are presented in chapter 3. The amount of liquid in the membrane and ion exchange capacity (IEC) are two main factors that govern the dynamics in these membranes. Water and methanol diffusion coefficients also are comparable. Chapters 4 and 5 are concerned with 31P and 1H NMR in phosphoric acid doped PBI membranes (para-PBI and 2OH-PBI) as well as PBI membranes containing ionic liquids (H3PO4/PMIH2PO4/PBI). These membranes are designed for higher-temperature fuel cell operation. In general, stronger short and long range interactions were observed in the 2OH-PBI matrix, yielding reduced proton transport compared to that of para-PBI. In the case of H3PO4/PMIH2PO 4/PBI, both conductivity and diffusion are higher for the sample with molar ratio 2/4/1. Finally, chapter 6 is devoted to the 31P NMR MAS study of phosphorus-containing structural groups on the surfaces of micro/mesoporous activated carbons. Two spectral features were observed and the narrow feature identifies surface phosphates while the broad component identifies heterogeneous subsurface phosphorus environments including phosphate and more complex structure multiple P-C, P-N and P=N bonds.

  1. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  2. Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta).

    Science.gov (United States)

    Lahaye, Marc; Rondeau-Mouro, Corinne; Deniaud, Estelle; Buléon, Alain

    2003-07-22

    The chemical structure and interactions of the cell wall polysaccharides from the red edible seaweed Palmaria palmata were studied by liquid-like magic-angle-spinning (MAS) and cross-polarization MAS (CPMAS) solid-state 13C NMR spectroscopy. The liquid-like MAS and CPMAS 13C NMR spectra of the rehydrated algal powder revealed the presence of beta-(1-->4)/beta-(1-->3)-linked D-xylan with chemical shifts close to those observed in the solution 13C NMR spectrum of the polysaccharide. Observation of mix-linked xylan in the liquid-like MAS 13C NMR spectrum indicated that part of this cell wall polysaccharide is loosely held in the alga. The CPMAS NMR spectrum of the dry algal powder alcohol insoluble residue (AIR) showed broad peaks most of which corresponded to the mix-linked xylan. Hydration of AIR induced a marked increase in the signal resolution also in the CPMAS NMR spectra together with a shift of the C-3 and C-4 signals of the (1-->3)- and (1-->4)-linked xylose, respectively. Such modifications were present in the spectrum of hydrated (1-->3)-linked xylan from the green seaweed Caulerpa taxifolia and absent in that of (1-->4)-linked xylan from P. palmata. This result emphasizes the important role of (1-->3) linkages on the mix-linked xylan hydration-induced conformational rearrangement. The mix-linked xylan signals were observed in the CPMAS NMR spectrum of hydrated residues obtained after extensive extractions by NaOH or strong chaotropic solutions indicating strong hydrogen bonds or covalent linkages. T(1 rho) relaxations were measured close or above 10 ms for the mix-linked xylan in the dry and hydrated state in AIR and indicated that the overall xylan chains likely remain rigid. Rehydration of the mix-linked xylan lead to a decrease in the motion of protons bounded to the C-1 and C-4 carbons of the (1-->4)-linked xylose supporting the re-organization of the xylan chains under hydration involving junction-zones held by hydrogen bonds between adjacent (1

  3. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    Science.gov (United States)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  4. Determination and Quantification of the Local Environments in Stoichiometric and Defect Jarosite by Solid-State 2H NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Majzlan, Juraj

    2008-01-01

    illustrate that 2H MAS NMR spectroscopy is an excellent probe of the local environments and defects, on the atomic/molecular level, providing information that is complementary to diffraction techniques and that will help to rationalize the magnetic properties of these materials.......The nature and concentrations of the local environments in a series of deuterated jarosite (nominally AFe3(SO4)2(OD)6 with A = K, Na, and D3O) samples with different levels of iron and cation vacancies have been determined by 2H MAS NMR spectroscopy at ambient temperatures. Three different local...... deuteron environments, Fe2OD, FeOD2, and D2O/D3O+, can be separated based on their very different Fermi contact shifts of delta approximate to 237, 70, and 0 ppm, respectively. The FeOD2 group arises from the charge, compensation of the Fe3+ vacancies, allowing the concentrations of the vacancies...

  5. E/Z MAS: An easy-to-use computerized materials control and accountability system

    International Nuclear Information System (INIS)

    Anderson, L.K.; Boor, M.G.; Hurford, J.M.; Landry, R.P.; Martinez, B.J.; Solem, A.M.; Whiteson, R.; Zardecki, A.

    1998-01-01

    Nuclear facilities that handle and process nuclear materials are required to track their nuclear holdings and to keep adequate records that manage and control the inventory of those holdings. The complexity of a system that does this job is directly proportional to the complexity of the facility's operations. This paper describes an approach to computerized materials protection, control, and accountability (MPC and A) that was introduced by Los Alamos National Laboratory (LANL) in the fall of 1997. This new system, E/Z MAS, is the latest addition to the LANL suite of computerized MPC and A tools, which also includes the CoreMAS system. E/Z MAS was initially designed to address the needs of those facilities that have small to modest MPC and A needs but has been expanded to provide full functionality for any facility. The system name, E/Z MAS, reflects the system's easy-to-use characteristics, which include ease of installation and ease of software maintenance. Both CoreMAS and E/Z MAS have been provided to facilities in the Former Soviet Union to assist them in implementing a computerized MPC and A system that meets their needs. In this paper the authors will address the functionality of CoreMAS and E/Z MAS, and an argument in favor of intranet-based material control and accountability will be advanced

  6. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  7. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  8. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  9. Molecular and electron-spin structures of a ring-shaped mixed-valence polyoxovanadate (IV, V) studied by (11)B and (23)Na solid-state NMR spectroscopy and DFT calculations.

    Science.gov (United States)

    Iijima, Takahiro; Yamase, Toshihiro; Nishimura, Katsuyuki

    2016-01-01

    (11)B and (23)Na solid-state nuclear magnetic resonance (NMR) spectra of ring-shaped paramagnetic crystals of H15[V7(IV)V5(V)B32O84Na4]·13H2O containing seven d(1) electrons from V(IV) were studied. Magic-angle-spinning (MAS) and multiple-quantum MAS NMR experiments were performed at moderate (9.4T) and ultrahigh magnetic fields (21.6T). The NMR parameters for quadrupole and isotropic chemical shift interactions were estimated by simulation of the NMR spectra and from relativistic density functional theory (DFT) calculations. Four Na ions incorporated into the framework were found to occupy four distinct sites with different populations. The DFT calculation showed that d(1) electrons with effectively one up-spin caused by strong antiferromagnetic interactions were delocalized over the 12V ions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  11. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  12. Absolute Quantification of Water in Microporous Solids with1H Magic Angle Spinning NMR and Standard Addition.

    Science.gov (United States)

    Houlleberghs, Maarten; Hoffmann, Andreas; Dom, Dirk; Kirschhock, Christine E A; Taulelle, Francis; Martens, Johan A; Breynaert, Eric

    2017-07-05

    Zeolites are microporous materials driving industrial scale adsorption, ion exchange, and catalytic processes. Their water content dramatically impacts their properties, but its quantification with Karl Fisher titration or thermal gravimetric analysis is problematic. When standard addition of water is combined with 1 H magic angle spinning (MAS) NMR detection, absolute quantification of water in microporous materials becomes possible. The method was demonstrated on five different, commercially available zeolites.

  13. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation.

    Science.gov (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N

    2008-10-23

    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  14. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates.

    Science.gov (United States)

    Taylor, Jennifer L; Wu, Chin-Lee; Cory, David; Gonzalez, R Gilberto; Bielecki, Anthony; Cheng, Leo L

    2003-09-01

    The development of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for intact tissue analysis and the correlations between the measured tissue metabolites and disease pathologies have inspired investigations of slow-spinning methodologies to maximize the protection of tissue pathology structures from HR-MAS centrifuging damage. Spinning sidebands produced by slow-rate spinning must be suppressed to prevent their complicating the spectral region of metabolites. Twenty-two human prostatectomy samples were analyzed on a 14.1T spectrometer, with HR-MAS spinning rates of 600 Hz, 700 Hz, and 3.0 kHz, a repetition time of 5 sec, and employing various rotor-synchronized suppression methods, including DANTE, WATERGATE, TOSS, and PASS pulse sequences. Among them, DANTE, as the simplest scheme, has shown the most potential in suppression of tissue water signals and spinning sidebands, as well as in quantifying metabolic concentrations. Copyright 2003 Wiley-Liss, Inc.

  15. NMR imaging in theory and in practice

    International Nuclear Information System (INIS)

    Taylor, D.G.; Inamdar, R.; Bushell, M.-C.

    1988-01-01

    This review, completed in 1988, covers basic theory, NMR imaging (selective excitation, image acquisition and reconstruction, spatial localisation of NMR parameters, factors affecting accuracy of NMR parameters, image quality considerations), and NMR imaging in clinical practice. The authors conclude that current NMR technology enables one to image the human body with a clarity matching x-ray CT, in terms of contrast differentiation in soft tissues being superior. (U.K.)

  16. Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

    Science.gov (United States)

    Coutinho, Isabel D; Moraes, Tiago Bueno; Mertz-Henning, Liliane Marcia; Nepomuceno, Alexandre Lima; Giordani, Willian; Marcolino-Gomes, Juliana; Santagneli, Silvia; Colnago, Luiz Alberto

    2017-11-01

    Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR. In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions. Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis. The 1 H HR-MAS and CP-MAS 13 C{ 1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by 1 H HR-MAS. The integration of the 1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  18. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  19. Sequence-specific H NMR assignments and secondary structure in the sea anemone polypeptide Stichodactyla helianthus neurotoxin I

    International Nuclear Information System (INIS)

    Fogh, R.H.; Mabbutt, B.C.; Kem, W.R.; Norton, R.S.

    1989-01-01

    Sequence-specific assignments are reported for the 500-MHz H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure of Sh I was defined on the basis of the pattern of sequential NOE connectivities. NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel β-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a β-bulge at residues 17 and 18 and a reverse turn, probably a type II β-turn, involving residues 27-30. No evidence of α-helical structure was found

  20. 1H Solid-State NMR Imaging by TREV-CRAMPS

    Science.gov (United States)

    Buszko, M. L.; Maciel, G. E.

    A proton NMR imaging experiment based on line narrowing by TREV-CRAMPS with a time-dependent magnetic field gradient has been demonstrated on a solid adamantane phantom. With the magnetic field gradient applied as 16 μs pulses in the windows of the RF pulse sequence, a spatial resolution of about 100 μm is experimentally achieved (based on linewidth and gradient strength), with a digital resolution of 40 μm, qualitatively similar to what is achieved in liquid-sample NMR imaging. The technique benefits from a favorable time average of the magnetic field gradient, relatively wide windows between the magic-echo sandwiches, and the good off-resonance line-narrowing characteristics of the TREV technique. High-resolution chemical-shift information is retained and hence potentially attainable. The low MAS rate, compared to what is used in imaging experiments in which MAS is the only line-narrowing procedure used, may be of importance if one wishes to apply 1H NMR imaging to certain types of samples, e.g., biological tissue.

  1. A low-E magic angle spinning probe for biological solid state NMR at 750 MHz

    Science.gov (United States)

    McNeill, Seth A.; Gor'kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-04-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as "low-E," was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane-embedded peptides.

  2. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  3. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  4. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may......, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked...

  5. NMR study of a rare-earth alumino-borosilicate glass with varying CaO-to-Na{sub 2}O ratio

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, A.; Majerus, O.; Caurant, D. [Ecole Natl Super Chim Paris, Lab Chim Mat Condensee Paris, F-75231 Paris 05 (France); Quintas, A.; Dussossoy, J.L. [Commissariat Energie Atom Marcoule, Lab Etudes Base Verres, Bagnols Sur Ceze (France); Charpentier, T. [Commissariat Energie Atom Saclay, Lab Struct and Dynam Responance Magnet, Gif Sur Yvette (France); Vermaut, P. [Ecole Natl Super Chim Paris, Lab Met Struct, F-75231 Paris, (France)

    2007-12-15

    The effect of substituting two Na{sup +} by one Ca{sup 2+} in a rare-earth alumino-borosilicate glass is investigated by multinuclear magic-angle spinning (MAS) and multiple-quantum (MQ)MAS nuclear magnetic resonance (NMR) spectroscopy. Quantitative analysis of the {sup 23}Na and {sup 27}Al MAS/MQMAS data along with the {sup 11}B MAS NMR data provides complementary information enabling to cast light on different structural key points. A strong decrease of the N{sub 4} = BO{sub 4}/(BO{sub 3} + BO{sub 4}) ratio is observed consecutively to this substitution, indicating that sodium is more favorable than calcium to the formation of BO{sub 4} units. The experimental N{sub 4} ratio is compared to the Dell and Bray model prediction and it is shown that several adjustments, due to the presence in our glass of Nd and Zr, are necessary to obtain acceptable agreement with experimental data. {sup 29}Si MAS NMR data also put in evidence an effect of the substitution on the polymerization degree. Glass in glass phase separation is clearly detected when the ratio of CaO to Na{sub 2}O is greater than 1 and a different evolution of NMR parameters is observed for the ratio of CaO to Na{sub 2}O being less than or equal to 1. Concerning aluminum charge compensation, it is demonstrated that, as long as no phase separation is detected, the negative charge of AlO{sub 4}{sup -} entities is almost exclusively balanced by sodium cations. Finally, changes of the sodium ions organization within the glass network are also evidenced by spin-lattice relaxation and spin echo decay measurements. (authors)

  6. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  7. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  8. Further development of deuterium NMR

    International Nuclear Information System (INIS)

    Al-azzawi, N.A.Y.

    1983-01-01

    In this work dichlorotris (triphenylphosphine) ruthenium (11) (RuCl 2 (PPh 3 ) 3 ) coupled with the deuterium source D 2 O was used as a catalyst for the study of the isotopic exchange reaction in alcohols and amines deuterium labelling of several primary and secondary alcohols have been made, and the position of labelling in the molecule was established by comparison of the 1 H NMR and 2 H NMR spectra while the relative distribution of deuterium was obtained from 2 H NMR spectrum. An oxidation-reduction mechanism was proposed for the hydrogen-deuterium exchange process, since in case of secondary alcohol the anticipated intermediate product (Ketone) was separated and identified. The relative distribution of deuterium was found to be time-dependent. Moreover the labelling in the B. Position was found to increase up on the addition of sodium hydroxide to the reaction mixture. 80 tabs.; 290 figs.; 124 refs

  9. Flow NMR of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Scheler, U.; Bagusat, F. [Leibniz-Inst. fuer Polymerforschung Dresden e.V., Dresden (Germany)

    2007-07-01

    A combination of NMR imaging and pulsed field gradient (PFG) NMR is applied to investigate flow. NMR longitudinal relaxation is used to generate contrast in a binary system of oil and water. The spatial distribution of each component and its flow pattern are measured separately. As a model a Couette cell with an additional area of high shear is used as model geometry. While a flat smooth interface is found at rest, the interface become bent under rotation, finally emulgation starts because of the velocity differences between the components. Flow from a submillimeter tube into a wide box and out of the box is investigated as well to understand shear-induced mixing and demixing. (orig.)

  10. Inactivation Of ACC Oxidase Acco During Modified Atmosphere Storage MAS Of Mango

    Directory of Open Access Journals (Sweden)

    E. Basuki

    2017-02-01

    Full Text Available Inactivation ACC Oxidase ACCO during Modified Atmosphere Storage MAS of Mango were carried out at Food Technology Laboratory University of Mataram from by using Completely Randomized Design and continued with Least Significant Different at five percent significance level. Mangoes were stored at Polyethylene PE bags PE KMnO4 Polypropylene bags PP PP KMnO4 and unpacked Control for three weeks. The physical properties of fruit such as weight loss and decay percentage were determined while physiological properties such as the rate of respiration ethylene production including ACCO activity. Inactivation of ACCO occurred to almost half-time of its activity in mango stored at MAS as compared to unpacked mango. Therefore paralleled the rate of respiration and production of ethylene at MAS leads to extend the storage life of mangoes. Weight loss and decay percentage of mango kept in MAS for 3 weeks were lower than unpacked.

  11. NMR spectroscopic study and DFT calculations of GIAO NMR ...

    African Journals Online (AJOL)

    1H, 13C NMR chemical shifts and 1JCH coupling constants of danon have been calculated by means of B3LYP density functional method with 6-311++G(d,p) basis set. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for ...

  12. Preliminary studies concerning chromosome constitution of some Cornus mas L. genotypes (Bacau district)

    OpenAIRE

    Elena Truta; Gabriela Capraru; Craita-Maria Rosu; Stefania Surdu; Gogu Giorghita; Viorel Ionel Rati

    2009-01-01

    : The cytogenetic characterization is necessary to decipher the controversies on biogeography, taxonomy and evolution of the genus, evolution of chromosome number. Some of Cornus species have the following diploid chromosome numbers: Cornus suecica L. 2n=22, Cornus mas L. 2n=18, 54, Cornus sanguinea L. 2n=22, Cornus sericea L. 2n=22, Cornus alba 2n=22. Our preliminary observations performed on Cornus mas genotypes (Bacau district) confirmed the existence of 2n=18 chromosomes. Kary...

  13. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  14. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...... and aluminum distribution. These data, in combination with H-1-Al-27 double- resonance and Mg-25 triple- quantum MAS NMR data, show that the cations are fully ordered for magnesium: aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close...

  15. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    OpenAIRE

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-01-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates...

  16. The flexibility of SIMPSON and SIMMOL for numerical simulations in solid-and liquid-state NMR spectroscopy

    CERN Document Server

    Vosegaard, T; Nielsen, N C

    2002-01-01

    Addressing the need for numerical simulations in the design and interpretation of advanced solid- and liquid-state NMR experiments, we present a number of novel features for numerical simulations based on the SIMPSON and SIMMOL open source software packages. Major attention is devoted to the flexibility of these Tcl-interfaced programs for numerical simulation of NMR experiments being complicated by demands for efficient powder averaging, large spin systems, and multiple-pulse rf irradiation. These features are exemplified by fast simulation of second-order quadrupolar powder patterns using crystallite interpolation, analysis of rotary resonance triple-quantum excitation for quadrupolar nuclei, iterative fitting of MQ-MAS spectra by combination of SIMIPSON and MINUIT, simulation of multiple-dimensional PISEMA-type correlation experiments for macroscopically oriented membrane proteins, simulation of Hartman-Hahn polarization transfers in liquid-state NMR, and visualization of the spin evolution under complex c...

  17. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    Directory of Open Access Journals (Sweden)

    Degao Liu

    Full Text Available Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L. Lam. line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19 plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  18. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    Science.gov (United States)

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  19. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  20. Developments in Solid-State NMR

    Indian Academy of Sciences (India)

    reso/020/11/1040-1052. Keywords. NMR; solid state; anisotropy; magic angle spinning dipolar coupling; quadrupolar coupling; chemical shift. Author Affiliations. K V Ramanathan1. NMR Research Center, Indian Institute of Science, Bengaluru ...

  1. Understanding NMR: self-learning manual

    International Nuclear Information System (INIS)

    Kastler, B.

    2000-01-01

    This initiation to the principles of nuclear magnetic resonance (NMR) imaging allows to understand the essential basic physical principles for the realization and the interpretation of an NMR examination. (J.S.)

  2. Intergrowth and interfacial structure of biomimetic fluorapatite-gelatin nanocomposite: a solid-state NMR study.

    Science.gov (United States)

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Kniep, Rüdiger; Scheler, Ulrich

    2014-01-23

    The model system fluorapatite-gelatin allows mimicking the formation conditions on a lower level of complexity compared to natural dental and bone tissues. Here, we report on solid-state NMR investigations to examine the structure of fluorapatite-gelatin nanocomposites on a molecular level with particular focus on organic-inorganic interactions. Using (31)P, (19)F, and (1)H MAS NMR and heteronuclear correlations, we found the nanocomposite to consist of crystalline apatite-like regions (fluorapatite and hydroxyfluorapatite) in close contact with a more dissolved (amorphous) layer containing first motifs of the apatite crystal structure as well as the organic component. A scheme of the intergrowth region in the fluorapatite-gelatin nanocomposite, where mineral domains interact with organic matrix, is presented.

  3. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  4. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  5. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    Science.gov (United States)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  6. NMR Studies of Thermo-responsive Behavior of an Amphiphilic Poly(asparagine) Derivative in Water

    Science.gov (United States)

    Watanabe, Eiji; Boutis, Gregory S.; Sato, Hiroko; Sekine, Sokei; Asakura, Tetsuo

    2014-01-01

    The thermo-responsive behavior of a unique biocompatible polymer, poly(N-substituted α/β-asparagine) derivative (PAD), has been studied with several NMR methods. The 1H and 13C solution NMR measurements of the PAD in DMSO-d6 were used to investigate the isolated polymer and perform spectral assignments. By systematic addition of D2O we have tracked structural changes due to aggregation and observed contraction of hydrophilic side chains. Solution and cross polarization / magic angle spinning (CP/MAS) 13C NMR approaches were implemented to investigate the aggregates of the PAD aqueous solution during the liquid to gel transition as the temperature was increased. At temperatures near 20 °C, all of the peaks from the PAD were observed in the 13C CP/MAS and 13C solution NMR spectra, indicating the presence of polymer chain nodes. Increasing the temperature to 40 °C resulted in a partial disentanglement of the nodes due to thermal agitation and further heating resulted in little to no additional structural changes. Deuterium T1–T2 and T2–T2 two-dimensional relaxation spectroscopies using an inverse Laplace transform, were also implemented to monitor the water–PAD interaction during the phase transition. At temperatures near 20 °C the dynamical characteristics of water were manifested into one peak in the deuterium T1–T2 map. Increasing the temperature to 40 °C resulted in several distinguishable reservoirs of water with different dynamical characteristics. The observation of several reservoirs of water at the temperature of gel formation at 40 °C is consistent with a physical picture of a gel involving a network of interconnected polymer chains trapping a fluid. Further increase in temperature to 70 °C resulted in two non-exchanging water reservoirs probed by deuterium T2–T2 measurements. PMID:25614708

  7. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    solution makes NMR more suitable for studying the dynamic behavior of macromolecules. The first high resolution protein structure by NMR spectroscopy was carried out in mid-1980s [3]. Before the beginning of this millennium, NMR spectroscopy was limited to solving 3D struc- tures of proteins with molecular masses less ...

  8. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    IAS Admin

    The development of Fourier transform NMR in the mid. 1960's, did parallel processing of the collection of NMR data, increased the signal/noise ratio by two orders of magnitude and made it possible to record the proton NMR spectra of small proteins which contain hundreds of resonances. The assignment of these ...

  9. Characterization of new materials in chromatography and fuel cell development by modern NMR techniques; Charakterisierung neuer Materialien in der Chromatographie und Brennstoffzellen-Forschung mit Hilfe moderner NMR-Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Schauff, S.

    2007-12-28

    New materials, suitable for the application in reversed phase liquid chromatography and fuel cell membranes, were characterized regarding their structure and dynamic properties using solid-state and suspended-state NMR spectroscopy. Both methods were found to be suitable to study the dynamic behaviour, the first to observe intrinsic mobilities of phosphonic acids, the second to monitor interaction processes taking place in a chromatography-like system. Several phosphonic acids, which are promising materials for high temperature fuel cell membranes, were investigated with respect to proton mobility and transport applying various solid-state NMR methods. In addition, water uptake and its effects on anhydride formation were studied on samples that were equilibrated with saturated salt solutions. For PVPA substantial, reversible anhydride formation was found, while MePA did not show condensation. These results show that the relation between hydrogen bond strength and proton mobility is complex. In particular, this work demonstrates that the application of simple 1D 1H and 2H NMR experiments provides easy access to information about proton/deuteron mobility on short time scales, needed for an identification of materials with high intrinsic proton conductivities. Stationary phases for reversed phase liquid chomatography were characterized by solid-state NMR spectroscopy, and their influence on different analytes was studied using suspendedstate HR-MAS NMR spectroscopy. Suspended-state HR-MAS NMR spectroscopy showed to be suitable to model the separation process of analytes on chromatographic sorbents. For this, the stationary phase was suspended in a solution of analyte dissolved in mobile phase. MePhSucc showed a peak doubling of the CH2 group in presence of monomeric C18 phase, leading to the coexistence of a narrow and a broadened peak. Thus, the dynamic interactions of MePhSucc towards the stationary phase, and under the influence of the mobile phase, could be

  10. Phenyl galactopyranosides – {sup 13}C CPMAS NMR and conformational analysis using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wałejko, Piotr, E-mail: pwalejko@uwb.edu.pl [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Paradowska, Katarzyna, E-mail: katarzyna.paradowska@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Bukowicki, Jarosław [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Witkowski, Stanisław [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Wawer, Iwona [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland)

    2015-08-18

    Highlights: • The structures of phenyl galactosides were studied by {sup 13}C CPMAS NMR. • The GAAGS method was used in conformational analysis of phenyl galactosides. • The rotation of the aglycone was investigated. • {sup 13}C CPMAS NMR supported by GIAO DFT calculations was used as a verification method. - Abstract: Structural analyses of four compounds (phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1), phenyl β-D-galactopyranoside (2), phenyl 2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside (3) and phenyl α-D-galactopyranoside (4)) have been performed using solid-state {sup 13}C MAS NMR spectroscopy and theoretical methods. Conformational analysis involved grid search and genetic algorithm (GAAGS). Low-energy conformers found by GAAGS were further optimized by DFT and chemical shifts were calculated using GIAO/DFT approach. {sup 13}C CPMAS NMR chemical shift of carbon C2 is indicative of the glycoside torsional angle. Separated or merged resonances of C2 and C6 suggest free rotation of phenyl ring in the solid phase.

  11. Polymers under mechanical stress- an NMR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany); Xu, Bo; Leisen, Johannes; Beckham, Haskell W. [Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-07-01

    Low-field NMR using permanent magnets in Halbach arrangements permit NMR investigation without the limits present in high-field NMR. The lower field in conjunction with confined stray field permit the application of NMR, in particular relaxation NMR in a stretching apparatus and a rheometer. Crystalline and amorphous fraction of semi-crystalline polymers are distinguished by their transverse relaxation times. Upon mechanical load the relaxation times of the amorphous fraction changes as seen in in-situ measurements on polypropylene rods. During the formation of a neck the crystalline fraction becomes more prominent.

  12. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  13. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that desc......The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  14. Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene

    Directory of Open Access Journals (Sweden)

    T. Walther

    2000-01-01

    Full Text Available Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.

  15. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  16. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  17. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Science.gov (United States)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  18. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  19. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  20. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    Science.gov (United States)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  1. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    Science.gov (United States)

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  2. DRAMAtic transforms in magic angle spinning recoupling NMR: The Bessel function pathway.

    Science.gov (United States)

    Goodman, Russell; Hancock, Jason; Siemens, Mark; Jarrell, Harold; Siminovitch, David

    2005-07-01

    In magic angle spinning (MAS) NMR recoupling experiments, the extraction of multiple couplings or a coupling distribution from the observed dephasing signals remains a challenging problem. At least for REDOR experiments, the REDOR transform solves this problem, enabling the simultaneous measurement of multiple dipolar couplings. Focusing on the quadrupolar dephasing observed in QUADRAMA experiments as a representative example, we demonstrate that the same analytical form used for the mathematical description of REDOR dephasing also describes the dephasing observed in a wide variety of MAS NMR recoupling experiments. This fact immediately extends REDOR transform techniques to a much broader suite of recoupling experiments than had previously been realized, including those of DRAMA, MELODRAMA and QUADRAMA. As an illustration, we use the DRAMAtic transform to provide the first inversion of a QUADRAMA dephasing signal to extract the quadrupole coupling distribution. Using a complete elliptic integral of the first kind, we further develop a novel expression for the Pake-spun powder patterns of the corresponding recoupled lineshapes. Our methods and results reinforce the central role that Bessel functions can play in simplifying the integrals that define both the dephasing signals in the time domain, and their Fourier transforms in the frequency domain.

  3. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution Al-27 NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5

    Czech Academy of Sciences Publication Activity Database

    Sklenák, Štěpán; Dědeček, Jiří; Li, Chengbin; Wichterlová, Blanka; Gábová, Vendula; Sierka, M.; Sauer, J.

    2007-01-01

    Roč. 46, č. 38 (2007), s. 7286-7289 ISSN 1433-7851 R&D Projects: GA AV ČR 1ET400400413; GA ČR GA203/06/1449; GA AV ČR IAA4040308 Institutional research plan: CEZ:AV0Z40400503 Keywords : MQ MAS NMR * chemical-shifts * ab-initio * catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 10.031, year: 2007

  4. Muscle attachment site (MAS) patterns for species determination in European species of Lucilia (Diptera: Calliphoridae).

    Science.gov (United States)

    Niederegger, Senta; Szpila, Krzysztof; Mall, Gita

    2015-03-01

    Species identification is generally assessed to be more difficult in larval stages than in adult forms. Especially closely related species such as Lucilia caesar and Lucilia illustris are difficult to identify. The aim of this study was to simplify species determination in Lucilia larvae for entomological and forensic purposes. Muscle attachment site (MAS) patterns were previously found to be a good tool for species determination in blowfly larvae. Here, distinctive MAS patterns are presented for European Lucilia ampullacea, L. caesar, L. illustris, L. richardsi, L. sericata, and L. silvarum. A joint pattern for the genus Lucilia is provided for a quick classification of a larva to the genus.

  5. Development of a generic, computerized nuclear material accountability system: NucMAS

    International Nuclear Information System (INIS)

    Cornell, M.D.; O'Leary, J.M.

    1987-01-01

    The application NucMAS provides basic computerized accountability functions for the Savannah River Plant (SRP) Separations Department Material Balance Areas (MBA's). These functions include data entry, data management, calculations, and report generation. NucMAS can be used both for routine reporting to the SRP central Material Control and Accounting (MC and A) system and for rapid ad hoc queries in emergency situations. The system is designed to work with any process handling one or more of the 17 accountable nuclear materials specified by the Department of Energy (DOE). It relies on user-supplied configuration data to drive data prompts, report headings, data validations, and calculations

  6. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney.

    Science.gov (United States)

    Pinheiro, Sérgio Veloso Brant; Simões e Silva, Ana Cristina; Sampaio, Walkyria Oliveira; de Paula, Renata Dutra; Mendes, Elizabeth Pereira; Bontempo, Elizabete Dias; Pesquero, João Bosco; Walther, Thomas; Alenina, Natalia; Bader, Michael; Bleich, Markus; Santos, Robson Augusto Souza

    2004-10-01

    It has been described recently that the nonpeptide AVE 0991 (AVE) mimics the effects of angiotensin-(1-7) [Ang-(1-7)] in bovine endothelial cells. In this study, we tested the possibility that AVE is an agonist of the Ang-(1-7) receptor Mas, in vitro and in vivo. In water-loaded C57BL/6 mice, AVE (0.58 nmol/g body weight) produced a significant reduction in urinary volume (0.06+/-0.03 mL/60 min [n=9] versus 0.27+/-0.05 [n=9]; PAVE. As observed previously for Ang-(1-7), the antidiuretic effect of AVE after water load was blunted in Mas-knockout mice (0.37+/-0.10 mL/60 min [n=9] versus 0.27+/-0.03 mL/60 min [n=11] AVE-treated mice). In vitro receptor autoradiography in C57BL/6 mice showed that the specific binding of 125I-Ang-(1-7) to mouse kidney slices was displaced by AVE, whereas no effects were observed in the binding of 125I-angiotensin II or 125I-angiotensin IV. Furthermore, AVE displaced the binding of 125I-Ang-(1-7) in Mas-transfected monkey kidney cells (COS) cells (IC50=4.75x10(-8) mol/L) and of rhodamine-Ang-(1-7) in Mas-transfected Chinese hamster ovary (CHO) cells. It also produced NO release in Mas-transfected CHO cells blocked by A-779 but not by angiotensin II type-1 (AT1) and AT2 antagonists. Contrasting with these data, the antidiuretic effect of AVE was totally blocked by AT2 antagonists and partially blocked (approximately 60%) by AT1 antagonists. The binding data, the results obtained in Mas-knockout mice and in Mas-transfected cells, show that AVE is a Mas receptor agonist. Our data also suggest the involvement of AT2/AT1-related mechanisms, including functional antagonism, oligomerization or cross-talk, in the renal responses to AVE.

  7. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  8. High-resolution proton CRAMPS NMR using narrowband analog filters and postponed data acquisition

    Science.gov (United States)

    Wang, Liying; Zhou, Donghua H.

    2013-09-01

    Proton linewidths decrease with increasing magic-angle spinning (MAS) rates. However, without spin dilution by deuteration, even with the fastest MAS rates available today, the narrowest proton linewidths are obtained by using the combined rotation and multiple pulse spectroscopy (CRAMPS) method. Direct observation under windowed CRAMPS typically introduces several tens of times more noise, partly because wideband analog filters (e.g. 5 MHz) must be used or sometimes even bypassed. Here we report that it is possible to keep using narrowband analog filters (about 50 kHz cutoff frequency) in CRAMPS by taking advantage of the time delay caused by the filters, which is inversely proportional to the cutoff frequency. This delay coincides with typical CRAMPS cycle times, enabling acquisition of the data point in the next detection window. The noise of such CRAMPS spectra is only about 5 times larger than MAS-only spectra. This new method allows CRAMPS to be performed on systems that lack wideline hardware (wideband filters and fast ADCs), for example, older spectrometers originally intended for solution NMR.

  9. Chemical vs. electrochemical extraction of lithium from the Li-excess Li(1.10)Mn(1.90)O4 spinel followed by NMR and DRX techniques.

    Science.gov (United States)

    Martinez, S; Sobrados, I; Tonti, D; Amarilla, J M; Sanz, J

    2014-02-21

    Lithium extraction from the Li-excess Li1.10Mn1.90O4 spinel has been performed by chemical and electrochemical methods in aqueous and in organic media, respectively. De-lithiated samples have been investigated by XRD, SEM, TG, (7)Li and (1)H MAS-NMR techniques. The comparative study has allowed demonstrating that the intermediate de-intercalated samples prepared during the chemical extraction by acid titration are similar to those prepared by the electrochemical way in a non-aqueous electrolyte. LiMn2O4 based spinel with a tailored de-lithiation degree can be prepared as a single phase by controlling the pH used in chemical extraction. (7)Li MAS-NMR spectroscopy has been used to follow the influence of the manganese oxidation state on tetra and octahedral Li-signals detected in Li-extracted samples. The oxidation of Mn(III) ions goes parallel to the partial dissolution of the spinel, following Hunter's mechanism. Based on this mechanism, a generalized chemical reaction has been proposed to explain the formation of intermediate Li(+) de-intercalated samples during acid treatment in aqueous media. By the (1)H MAS NMR study, no evidence of Li-H topotactic exchange in the bulk of the acid treated material was found.

  10. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  11. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Science.gov (United States)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  12. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    Science.gov (United States)

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  13. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    Science.gov (United States)

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    Science.gov (United States)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  15. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  16. Marker-assisted-selection (MAS): A fast track to increase genetic ...

    African Journals Online (AJOL)

    Mapping and tagging of agriculturally important genes have been greatly facilitated by an array of molecular markers in crop plants. Marker-assisted selection (MAS) is gaining considerable importance as it would improve the efficiency of plant breeding through precise transfer of genomic regions of interest (foreground ...

  17. Who bears the burden of international taxation? Evidence from cross-border M&As

    NARCIS (Netherlands)

    Huizinga, H.P.; Voget, J.; Wagner, W.B.

    2012-01-01

    Cross-border M&As can trigger additional taxation of the target's income in the form of non-resident dividend withholding taxes and acquirer-country corporate income taxation. This paper finds that this additional international taxation is fully capitalized into lower takeover premiums. In contrast,

  18. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma.

    Science.gov (United States)

    Bernardi, Stella; Zennaro, Cristina; Palmisano, Silvia; Velkoska, Elena; Sabato, Nicoletta; Toffoli, Barbara; Giacomel, Greta; Buri, Luigi; Zanconati, Fabrizio; Bellini, Giuseppe; Burrell, Louise M; De Manzini, Nicolò; Fabris, Bruno

    2012-03-01

    A new arm of the renin-angiotensin system (RAS) has been recently characterized; this includes angiotensin converting enzyme (ACE)2 and angiotensin (Ang)1-7, a heptapeptide acting through the Mas receptor (MasR). Recent studies show that Ang1-7 has an antiproliferative action on lung adenocarcinoma cells. The aim of this study was to characterize RAS expression in human colon adenocarcinoma and to investigate whether Ang1-7 exerts an antiproliferative effect on human colon adenocarcinoma cells. Gene, protein expression and enzymatic activity of the main components of the RAS were determined on non-neoplastic colon mucosa as well as on the tumor mass and the mucosa taken 5 cm distant from it, both collected from patients with colon adenocarcinoma. Two different human colon cancer cell lines were treated with AngII and Ang1-7. The novel finding of this study was that MasR was significantly upregulated in colon adenocarcinoma compared with non-neoplastic colon mucosa, which showed little or no expression of it. ACE gene expression and enzymatic activity were also increased in the tumors. However, AngII and Ang1-7 did not have any pro-/antiproliferative effects in the cell lines studied. The data suggest that upregulation of the MasR could be used as a diagnostic marker of colon adenocarcinoma.

  19. An Analysis of the Rise and Fall of the AA-MAS Policy

    Science.gov (United States)

    Lazarus, Sheryl S.; Thurlow, Martha L.; Ysseldyke, James E.; Edwards, Lynn M.

    2015-01-01

    In 2005, to address concerns about students who might fall in the "gap" between the regular assessment and the alternate assessment based on alternate achievement standards (AA-AAS), the U.S. Department of Education announced that states could develop alternate assessments based on modified achievement standards (AA-MAS). This article…

  20. Successfully Transitioning from the AA-MAS to the General Assessment. NCEO Policy Directions. Number 22

    Science.gov (United States)

    Lazarus, Sheryl; Thurlow, Martha; Christensen, Laurene; Shyyan, Vitaliy

    2014-01-01

    Federal policy initiatives such as the flexibility waivers for accountability are requiring that states transition away from the use of an alternate assessment based on modified achievement standards (AA-MAS). It is expected that those students who had participated in that assessment will instead participate in the state's general assessment (or a…

  1. Considerations for Consortia as States Transition Away from AA-MAS. NCEO Brief. Number 7

    Science.gov (United States)

    National Center on Educational Outcomes, 2014

    2014-01-01

    States with an alternate assessment based on modified achievement standards (AA-MAS) that received a flexibility waiver from some of the requirements of No Child Left Behind are required to phase out their use of this assessment. And, on August 23, 2013, the U.S. Department of Education published a proposed rollback of regulation that allowed the…

  2. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...

  3. Acceptance Test Report for the Modular Automation System (MAS) Manufactured by Honeywell Inc.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, D.L.

    2000-02-01

    This document details the performance of the acceptance test of the Honeywell MAS Control System for equipment to be installed in gloveboxes HA-20MB and HA-211 at a later date. Equipment that was anticipated included 6 stabilization furnaces, only three and their associated equipment were installed.

  4. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  5. HUBUNGAN ANTARA PERTUMBUHAN DENGAN KEBERADAAN GEN TAHAN PENYAKIT MAJOR HISTOCOMPATIBILITY COMPLEX (MHC PADA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Erma Primanita Hayuningtyas

    2016-04-01

    Full Text Available Wabah penyakit koi herpes virus (KHV di Indonesia yang terjadi sejak tahun 2002 merupakan salah satu faktor yang memicu kemerosotan produksi ikan mas budidaya. Pembentukan strain unggul ikan mas tahan KHV dapat menjadi solusi bagi permasalahan tersebut. Pemilihan genotip ikan mas tahan KHV dengan marka molekuler gen major histocompatibility complex class II (MHC-II, khususnya pada alel Cyca DAB 1*05 akan membantu dalam kegiatan seleksi. Penelitian ini bertujuan untuk mengetahui keberadaan gen MHC-II pada populasi dasar G0 ikan mas strain Rajadanu dan hubungannya dengan pertumbuhan (bobot. Metode deteksi keberadaan gen MHC-II pada dua kelompok ikan dengan ukuran berbeda dilakukan dengan teknik PCR. Hubungan antara pertumbuhan ikan mas dengan persentase kemunculan gen MHC-II dianalisis dengan menggunakan program SPSS (Statistical Package for the Social Sciences, sehingga diperoleh korelasi di antara keduanya. Hasil penelitian menunjukkan bahwa hubungan antara pertumbuhan dengan persentase keberadaan gen MHC-II berkorelasi negatif dengan nilai R = -0,742. Hal ini mengindikasikan bahwa semakin cepat pertumbuhan populasi ikan mas maka semakin sedikit persentase individu yang mempunyai gen MHC-II pada setiap populasi ikan mas. Sehingga populasi ikan mas yang pertumbuhannya lambat memiliki tingkat persentase positif MHC-II lebih tinggi (85,71%-100% dibandingkan populasi ikan mas yang pertumbuhannya cepat (42,86%-85,71%.

  6. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    Science.gov (United States)

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  7. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  8. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  9. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  10. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  11. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. NMR characterization of pituitary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions

  13. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  15. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    Science.gov (United States)

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  16. NMR studies of oriented molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  17. Solid-State 13C NMR Spectroscopy Applied to the Study of Carbon Blacks and Carbon Deposits Obtained by Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Jair C. C. Freitas

    2016-01-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was used in this work to analyze the physical and chemical properties of plasma blacks and carbon deposits produced by thermal cracking of natural gas using different types of plasma reactors. In a typical configuration with a double-chamber reactor, N2 or Ar was injected as plasma working gas in the first chamber and natural gas was injected in the second chamber, inside the arc column. The solid residue was collected at different points throughout the plasma apparatus and analyzed by 13C solid-state NMR spectroscopy, using either cross polarization (CP or direct polarization (DP, combined with magic angle spinning (MAS. The 13C CP/MAS NMR spectra of a number of plasma blacks produced in the N2 plasma reactor showed two resonance bands, broadly identified as associated with aromatic and aliphatic groups, with indication of the presence of oxygen- and nitrogen-containing groups in the aliphatic region of the spectrum. In contrast to DP experiments, only a small fraction of 13C nuclei in the plasma blacks are effectively cross-polarized from nearby 1H nuclei and are thus observed in spectra recorded with CP. 13C NMR spectra are thus useful to distinguish between different types of carbon species in plasma blacks and allow a selective study of groups spatially close to hydrogen in the material.

  18. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    Science.gov (United States)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  19. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  20. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    Science.gov (United States)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  1. Fluorine dynamics in BaF{sub 2} superionic conductors investigated by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Gumann, Patryk

    2008-07-01

    In this work the dynamics of fluorine in solid-state electrolytes having BaF{sub 2}-structure was investigated using three different NMR-methods: field cycling relaxometry, lineshape analysis, and static field gradient NMR. For this purpose a pure BaF{sub 2} crystal, as well as crystals doped with trivalent impurities (LaF{sub 3}), were studied as a function of temperature. Using MAS NMR it was possible to identify two lines in Ba{sub 0.9}La{sub 0.1}F{sub 2.1} having different chemical shift, and to refer them to the modified crystal structure. On this basis a model for the fluorine lineshape has been developed, taking into account three motional processes characterized by their correlation times. It includes jump diffusion of the fluorine ions among equivalent sites within two crystallographically distinct sublattices, and inter-lattice exchange processes. By measuring frequency and temperature-dependent spin lattice relaxation times, it was possible to gain information about fluorine dynamics on microscopic length scales. An attempt was also made to analyze the data for pure BaF{sub 2} and low admixture concentration samples with a non-exponential correlation function. (orig.)

  2. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  3. Angiotensin-(1-7 attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    Directory of Open Access Journals (Sweden)

    María Gabriela Morales

    2016-04-01

    Full Text Available Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7 [Ang-(1-7], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7 in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7 and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT and Mas-knockout (Mas KO mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7 immobilization-induced muscle atrophy. Our results found that Ang-(1-7 prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7 increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7 were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7 via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.

  4. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas

    Science.gov (United States)

    Morales, María Gabriela; Abrigo, Johanna; Acuña, María José; Santos, Robson A.; Bader, Michael; Brandan, Enrique; Simon, Felipe; Olguin, Hugo; Cabrera, Daniel; Cabello-Verrugio, Claudio

    2016-01-01

    ABSTRACT Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy. PMID:26851244

  5. Evaluation of thermoplastic starch/MMT nanocomposites by nuclear magnetic resonance (NMR); Avaliacao de nanocompositos de amido termoplastico e argila por RMN

    Energy Technology Data Exchange (ETDEWEB)

    Schlemmer, D.; Rodrigues, Tiago C.A.F.; Resck, I.S.; Sales, M.J.A., E-mail: danielas@unb.b [Universidade de Brasilia (LabPol/UnB), DF (Brazil). Inst. de Quimica. Lab. de Pesquisa em Polimeros

    2010-07-01

    Starch has been studied for replace petrochemical plastics for short shelf life. However, the starch films have limitations: sensitivity to moisture and poor mechanical strength. This can be improved by incorporating loads such as montmorillonite, forming nanocomposites. Nanocomposites were prepared with 1, 3, 5 and 10% of montmorillonite, using vegetable oils of Brazilian Cerrado as plasticizers. The NMR spectra of oils are similar, but the intensities of the signals varying with the proportion of fatty acids. The molar mass of the oils was also calculated by NMR. The spectrum of CP/MAS {sup 13}C NMR for starch presented a duplet in 97 and 98 ppm, on the amorphous domains of C-1, indicating a crystal type A. The spectra of the nanocomposites are similar to those of starch and oils. No new peaks appear, suggesting that there are no strong chemical bonds between components. (author)

  6. NMR Analysis of Some Pentacycloundecanedione Derivatives

    African Journals Online (AJOL)

    NJD

    was used to assist with the elucidation of the asymmetric ketal structure. KEYWORDS. NMR elucidation, pentacycloundecane, 2D NMR. 1. Introduction. The chemistry ... intermediate for the diol 413,14 which is used in the synthesis of various crown ethers13,15–17 and macrocycles.11,18. 2. Experimental. The four products ...

  7. A Guided Inquiry Approach to NMR Spectroscopy

    Science.gov (United States)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  8. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  9. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  10. Using Cloud Storage for NMR Data Distribution

    Science.gov (United States)

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  11. Participation and Performance Reporting for the Alternate Assessment Based on Modified Achievement Standards (AA-MAS). Technical Report 58

    Science.gov (United States)

    Albus, Deb; Thurlow, Martha L.; Lazarus, Sheryl S.

    2011-01-01

    This report examines publicly reported participation and performance data for the alternate assessment based on modified achievement standards (AA-MAS). The authors' analysis of these data included all states publicly reporting AA-MAS data, regardless of whether they had received approval to use the results for Title I accountability calculations.…

  12. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  13. Parallelizing acquisitions of solid-state NMR spectra with multi-channel probe and multi-receivers: applications to nanoporous solids.

    Science.gov (United States)

    Martineau, Charlotte; Decker, Frank; Engelke, Frank; Taulelle, Francis

    2013-01-01

    A five-channel ((1)H, (19)F, (31)P, (27)Al, (13)C) 2.5 mm magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is used in combination with three separate receivers for the parallel acquisitions of one (1D) and two-dimensional (2D) NMR spectra in model fluorinated aluminophosphate and porous Al-based metal-organic framework (MOF). Possible combinations to record simultaneously spectra using this set-up are presented, including (i) parallel acquisitions of quantitative 1D NMR spectra of solids containing nuclei with contrasted T1 relaxation rates and (ii) parallel acquisitions of 2D heteronuclear NMR spectra. In solids containing numerous different NMR-accessible nuclei, the number of NMR experiments that have to be acquired to get accurate structural information is high. The strategy we present here, i.e. the multiplication of both the number of irradiation channels in the probe and the number of parallel receivers, offers one possibility to optimize this measurement time. © 2013 Elsevier Inc. All rights reserved.

  14. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  15. El Proyecto Sismico "LARSE" - Trabajando Hacia un Futuro con Mas Seguridad para Los Angeles

    Science.gov (United States)

    Henyey, Thomas L.; Fuis, Gary S.; Benthien, Mark L.; Burdette, Thomas R.; Christofferson, Shari A.; Clayton, Robert W.; Criley, Edward E.; Davis, Paul M.; Hendley, James W.; Kohler, Monica D.; Lutter, William J.; McRaney, John K.; Murphy, Janice M.; Okaya, David A.; Ryberg, Trond; Simila, Gerald W.; Stauffer, Peter H.

    1999-01-01

    La region de Los Angeles contiene una red de fallas activas, incluyendo muchas fallas por empuje que son profundas y no rompen la superficie de la tierra. Estas fallas ocultas incluyen la falla anteriormente desconocida que fue responsable por la devastacion que ocurrio durante el terremoto de Northridge en enero de 1994, el terremoto mas costoso en la historia de los Estados Unidos. El Experimento Sismico en la Region de Los Angeles (Los Angeles Region Seismic Experiment, LARSE), esta localizando los peligros ocultos de los terremotos debajo de la region de Los Angeles para mejorar la construccion de las estructuras que pueden apoyar terremotos que son inevitables en el futuro, y que ayudaran a los cientificos determinar donde occurira el sacudimento mas fuerte y poderoso.

  16. Porfirio Díaz en la historiografía masónica mexicana

    Directory of Open Access Journals (Sweden)

    Marco Antonio Flores Zavala

    2015-01-01

    Full Text Available En este artículo se analiza la presencia del general Porfirio Díaz en la historiografía masónica mexicana. Parala redacción de este texto se recurrió a las obras de José María Mateos (Historia de la masonería en Méxicodesde 1806 hasta 1884, Richard Chism (Una contribución a la historia masónica de México y Luis J. Zalce(Apuntes para la historia de la masonería en México, de mis lecturas y mis recuerdos. El cuestionario esbásico: ¿Qué fuentes documentales utilizaron los autores para redactar sus textos? ¿Cómo examinan laactuación del general Díaz, como actor de un régimen o un hermano masón? Pese a lo elemental de laspreguntas, éstas colaboran para situar parte de los tópicos y de las formas en que fueron redactadas lashistorias de la masonería en México. El artículo está integrado con dos secciones. En la primera se esboza unabiografía del general Díaz y se presentan las obras que se definen como historiografía masónica mexicana. Lasegunda sección presenta la descripción de las obras y cómo examinaron la presencia de Díaz en lamasonería.

  17. The Influence of Store Atmosphere on Consumer Purchase Decision at Kawan Baru Restaurant Mega Mas Manado

    OpenAIRE

    Waloejan, Nia Anggreini

    2016-01-01

    Culinary business is a business type that€™s growing rapidly in the city of Manado. Nowadays, a taste of food, price, services and quality of the foods no longer being a major consideration for the culinary connoisseur. The store atmosphere becomes an important factor for consumers to choosing a place for dine. The research aim to analyzing the influence of store atmosphere on Kawan Baru Restaurant Mega Mas Manado. The analytical methods of analysis used by multiple linear regression analysi...

  18. Analisa Internal dan Eksternal pada CV. Gading Mas Surya Sidoarjo dalam Rangka Strategi Bersaing

    OpenAIRE

    Lesal, Indriani

    2015-01-01

    Strategi merupakan faktor internal yang penting untuk dipertimbangkan dalam perencanaan dan pengambilan keputusan. Setiap Perusahaan, baik yang bergerak di bidang jasa maupun non jasa, dalam melakukan kegiatan bisnis memerlukan strategi yang mampu menempatkan Perusahaan pada posisi yang terbaik, mampu bersaing serta terus berkembang dengan mengoptimalkan semua potensi sumber daya yang dimiliki. Tujuan penelitian ini adalah merumuskan strategi bersaing yang sesuai digunakan oleh CV. Gading Mas...

  19. Solid state P-31 MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    DEFF Research Database (Denmark)

    Risskov Sørensen, Daniel; Nielsen, U. G.; Skou, E. M.

    2014-01-01

    A systematic study of composite powders of niobium oxide phosphate (NbOPO4) and phosphoric acid (H3PO4) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H3PO4 contents between 13...

  20. 119Sn MAS NMR Study of Probe Molecules Interaction with Sn-BEA: The Origin of Penta- and Hexacoordinated Tin Formation

    DEFF Research Database (Denmark)

    Yakimov, Alexander V.; G. Kolyagin, Yury; Tolborg, Søren

    2016-01-01

    and weak Lewis acidity, respectively. The adsorption of acetonitrile and methanol resulted in observation of pentacoordinated tin species, due to the formation of 1:1 adsorption complexes over both Sn-sites. Water adsorption led first to formation of pentacoordinated tin species, which were further...... converted into hexacoordinated species at longer reaction times. The latter transformation was found to be kinetically limited and was attributed to chemical interaction of tin sites with water, such as hydrolysis of Si-O-Sn bonds. The adsorption of isopropanol and isobutanol was accompanied...... by the formation of pentacoordinated Sn species in the case of weak sites and hexacoordinated Sn over sites with strong Lewis acidity, pointing to the possibility of dissociative adsorption of secondary alcohols over strong Sn-sites....

  1. Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS H NMR spectroscopy.

    Czech Academy of Sciences Publication Activity Database

    Tessem, MB.; Midelfart, A.; Čejková, Jitka; Bathen, T. F.

    2006-01-01

    Roč. 38, č. 2 (2006), s. 105-114 ISSN 0030-3747 R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : cornea Subject RIV: FF - HEENT, Dentistry Impact factor: 1.010, year: 2006

  2. Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.

    Science.gov (United States)

    Whittaker, Christopher A P; Patching, Simon G; Esmann, Mikael; Middleton, David A

    2015-03-07

    NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has recently been utilized in several NMR structural investigations of proteins in the solid-state. Here we utilize paramagnetic relaxation enhancement (PRE) by Mn(2+) with cross-polarization magic-angle spinning (CP-MAS) solid-state NMR to investigate the interaction of a membrane-embedded protein the Na,K-ATPase (NKA) with a cardiotonic steroid inhibitor. The inhibitor, a diacetonide derivate of the cardiac glycoside ouabain, with (13)C labelled acetonide groups in the rhamnose sugar and steroid moieties ([(13)C2]ODA), is 1000-fold less potent than the parent compound. It is shown that the (13)C CP-MAS solid-state NMR spectra of the NKA-[(13)C2]ODA complex exhibit distinct signals for the two (13)C labels of the inhibitor when bound to the ouabain site of membrane-embedded NKA. Recent crystal structures of NKA indicate that the catalytic α-subunit binds a single Mn(2+) in a transmembrane site close to the high-affinity ouabain site. Here, complexation of NKA with Mn(2+) broadens the resonance line from the rhamnose group substantially more than the steroid peak, indicating that the rhamnose group is closer to the Mn(2+) site than is the steroid group. These observations agree with computational molecular docking simulations and are consistent with ODA adopting an inverted orientation compared to ouabain in the cardiac glycoside site, with the modified rhamnose group drawn toward the transmembrane centre of the protein. This work demonstrates that PRE can provide unique information on the positions and orientations of ligands within their binding pockets of transmembrane proteins.

  3. Advances in studying order and dynamics in condensed matter by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Voda, M.A.

    2006-07-13

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  4. Advances in studying order and dynamics in condensed matter by NMR

    International Nuclear Information System (INIS)

    Voda, M.A.

    2006-01-01

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  5. Fusion of Multi-Vision of Industrial Robot in MAS-Based Smart Space

    Directory of Open Access Journals (Sweden)

    Li Hexi

    2015-01-01

    Full Text Available The paper presents a fusion method of muti-vision of industrial robot in a smart space based on multi-agent system(MAS, the robotic multi-vision consists of top-view, side-view, front-view and hand-eye cameras, the moving hand-eye provide vision guidance and give the estimation of robot position, other three cameras are used for target recognition and positioning. Each camera is connected to an agent based on an image-processing computer that aims at analyzing image rapidly and satisfying the real-time requirement of data processing. As a learning strategy of robotic vision, a back-propagation neural network(BPNN with 3-layer-architecture is first constructed for each agent and is independently trained as a classifier of target recognition using batch gradient descent method based on the region features extracted from the images of target samples(typical mechanical parts, and then the outputs of trained BPNNs in MAS-based smart space are fused with Dempster-Shafer evidence theory to form a final recognition decision, the experimental results of typical mechanical parts show that fusion of multi-vision can improve the robotic vision accuracy and MAS-based smart space will contribute to the parallel processing of immense image data in robotic multi-vision system.

  6. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.

    Science.gov (United States)

    Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte

    2015-12-01

    Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. UPLC-TOF-MS Characterization and Identification of Bioactive Iridoids in Cornus mas Fruit

    Directory of Open Access Journals (Sweden)

    Shixin Deng

    2013-01-01

    Full Text Available Cornus mas L. is indigenous to Europe and parts of Asia. Although Cornus is widely considered to be an iridoid rich genera, only two iridoids have been previously found in this plant. The lack of information on taxonomically and biologically active iridoids prompted us to develop and optimize an analytical method for characterization of additional phytochemicals in C. mas fruit. An ultra performance liquid chromatography (UPLC coupled with photodiode array spectrophotometry (PDA and electrospray time-of-flight mass spectrometry (ESI-TOF-MS was employed and mass parameters were optimized. Identification was made by elucidating the mass spectral data and further confirmed by comparing retention times and UV spectra of target peaks with those of reference compounds. Primary DNA damage and antigenotoxicity tests in E. coli PQ37 were used to screen the iridoids for biological activity. As a result, ten phytochemicals were identified, including iridoids loganic acid, loganin, sweroside, and cornuside. Nine of these were reported for the first time from C. mas fruit. The iridoids did not induce SOS repair of DNA, indicating a lack of genotoxic activity in E. coli PQ37. However, loganin, sweroside, and cornuside did reduce the amount of DNA damage caused by 4-nitroquinoline 1-oxide, suggesting potential antigenotoxic activity.

  8. Stanowisko badawcze do oceny efektów utwardzania mas ze szkłem wodnym

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2012-12-01

    Full Text Available W pracy przedstawiono wyniki badań nad możliwością zastosowania nowego stanowiska badawczego do oceny, na podstawie końcowejzawartości wody, finalnego efektu utwardzania wybranymi metodami mas ze szkłem wodnym. Badania wykonano na innowacyjnym,mobilnym stanowisku mikrofalowej linii szczelinowej wykorzystującej zjawisko występowania fali stojącej w falowodzie. Badaniompoddano pięć mas sporządzonych z dostępnymi w handlu gatunkami szkła wodnego, które utwardzano trzema, wybranymi metodami:mikrofalową, klasyczną oraz w procesie CO2. Wykazano, na przykładzie mas ze szkłem wodnym, że prezentowane, mobilne stanowiskopomiarowe może, na podstawie określenia końcowej zawartości wody, służyć z powodzeniem do oceny ostatecznego efektu utwardzaniamas formierskich i rdzeniowych.

  9. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  10. Pengaruh Penyimpanan Atmosfer Termodifikasi (Modified Atmosphere Storage/ MAS terhadap Karakteristik Jamur Tiram Putih (Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Bambang Susilo

    2017-02-01

    Full Text Available The food storing technology is growing fast. Since the optimal storage could increase the value of the material being stored. A proposed solution to overcome counter this issue is the use of modified atmosphere storage (MAS technology. White oyster mushroom (Pleurotus ostreatus is one of vegetables that is highly perishable that makes this mushroom has a short shelf life. Therefore, appropriate postharvest handling is needed to maintain the quality of oyster mushrooms by expanding its shelf life. The aims of this research were to assess the effect of the use of MAS technology and to characterize the white oyster mushroom. Based on the research conducted at the Laboratory of Agricultural Processing and Postharvest Engineering, Department of Agricultural Engineering, Brawijaya University showed that the modified atmosphere storage of white oyster mushroom affected the respiration rate and shelf life of the studied commodities. On the basis of the observations on each parameter (respiration rate and storage time, the normal storage time for white oyster mushrooms is 1 day. While iby applying MAS, the white oyster mushrooms could last for 3 days using treatment A (21 % O and B (12,4 – 12,5 %   O, and could last for 4 days using treatment C (9,2– 9,3 % O2 , D (5,9 – 6,1 % O2, and E (3,5 – 3,7 % O. Therefore, It can be concluded that by using MAS storage at low O2 concentrations, the shelf life of mushrooms could be longer. ABSTRAK Teknologi penyimpanan saat ini berkembang cukup pesat. Hal ini dikarenakan penyimpanan yang optimal akan meningkatkan nilai dari bahan yang disimpan. Salah satu upaya yang dapat dilakukan untuk hal tersebut yaitu penyimpanan menggunakan metode atmosfer termodifikasi (Modified Atmosphere Storage/MAS. Jamur tiram putih (Pleurotus ostreatus merupakan salah satu komoditas sayuran yang bersifat mudah rusak, hal ini membuat jenis jamur ini memiliki umur simpan yang terbilang singkat. Oleh karena itu, penanganan pasca

  11. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Michael P. [Department; US DOE Ames Laboratory, Ames, Iowa 50011, United States; Fought, Ellie L. [Department; Windus, Theresa L. [Department; Wheeler, Lance M. [Chemistry; Anderson, Nicholas C. [Chemistry; Neale, Nathan R. [Chemistry; Rossini, Aaron J. [Department; US DOE Ames Laboratory, Ames, Iowa 50011, United States

    2017-11-17

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1H-29Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1H-29Si HETCOR and dipolar 2D 1H-1H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1H and 29Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1H-29Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH3), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1H and 29Si chemical shifts. The approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  12. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  13. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  14. Graphical programming for pulse automated NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.B. [Universidade do Estado, Rio de Janeiro, RJ (Brazil); Oliveira, I.S.; Guimaraes, A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T{sub 2}), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  15. Genotype evaluation of cowpea seeds (Vigna unguiculata) using 1H qNMR combined with exploratory tools and solid-state NMR.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-01-01

    The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-treatment. In general, both exploratory tools show that Tvu 233, CE-584, and Setentão genotypes presented higher amount mainly of raffinose and Tvu 382 presented the highest content of choline and least content of raffinose. The evaluation of the aromatic region showed the Setentão genotype with highest content of niacin/vitamin B3 whereas Tvu 382 with lowest amount. To investigate rigid and mobile components in the seeds cotyledon, 13 C CP and SP/MAS solid-state NMR experiments were performed. The cotyledon of the cowpea comprised a rigid part consisting of starch as well as a soft portion made of starch, fatty acids, and protein. The variable contact time experiment suggests the presence of lipid-amylose complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Magic-angle-spinning NMR spectroscopy. January 1978-May 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1978-May 1988

    International Nuclear Information System (INIS)

    1988-05-01

    This bibliography contains citations concerning the principles and applications of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) in high-resolution spectra analysis of solids. Magic-angle spinning NMR is a very powerful spectrographic technique for the study of structures, dynamics, and reactivity of solids, and polcrystalline and amorphous solids. Studies of various materials are presented, including zeolites, organic compounds and polymers, liquid crystals, silicate and borate glasses, and alumina and oxide films. Applications in conductive polymers, biological systems, and organic matrixes of composite materials are presented. (Contains 89 citations fully indexed and including a title list.)

  17. Solid-state NMR of polymers

    International Nuclear Information System (INIS)

    Mirau, P.

    2001-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (T g ). This was recognised as being related to a change in chain dynamics above and below the T g . NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility in

  18. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    International Nuclear Information System (INIS)

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-01-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement

  19. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment.

    Science.gov (United States)

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-08-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  20. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  1. Simultaneous acquisition of three NMR spectra in a single ...

    Indian Academy of Sciences (India)

    reduce the acquisition time of high-dimensional NMR spectra for metabolomics.8 The different fast NMR methods and their combinations developed during the past decade for proteins and nucleic acids such as single-scan NMR spectroscopy (ultrafast NMR),9–13. HADMARD encoding,14 reduced dimensional (RD). 1091 ...

  2. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  3. Cultural Heritage Studies with Mobile NMR.

    Science.gov (United States)

    Rehorn, Christian; Blümich, Bernhard

    2018-03-30

    Nuclear Magnetic Resonance (NMR) provides in-situ information about selected isotope densities in samples and objects, while also providing contrast through rotational and translational molecular dynamics. These parameters are probed not only in magnetic resonance spectroscopy and imaging but also in nondestructive materials testing by mobile stray-field NMR whose unique perks are valuable in cultural heritage studies. We present recent progress in the analysis of cultural heritage with mobile 1H NMR stray-field sensors, for which the detection zone is outside of the NMR magnet. Prominent applications include the analysis of stratigraphies in paintings and frescoes, and the assessment of material states changing under the impact of aging, conservation and restoration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  5. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  6. NMR analysis of compositional heterogeneity in polysaccharides

    Science.gov (United States)

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  7. Bayesian Peak Picking for NMR Spectra

    Directory of Open Access Journals (Sweden)

    Yichen Cheng

    2014-02-01

    Full Text Available Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  8. Relaxation time estimation in surface NMR

    Science.gov (United States)

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  9. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  10. Dose reduction in dynamic CT stress myocardial perfusion imaging: comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols.

    Science.gov (United States)

    Fujita, Makiko; Kitagawa, Kakuya; Ito, Tatsuro; Shiraishi, Yasuyuki; Kurobe, Yusuke; Nagata, Motonori; Ishida, Masaki; Sakuma, Hajime

    2014-03-01

    To determine the effect of reduced 80-kV tube voltage with increased 370-mAs tube current on radiation dose, image quality and estimated myocardial blood flow (MBF) of dynamic CT stress myocardial perfusion imaging (CTP) in patients with a normal body mass index (BMI) compared with a 100-kV and 300-mAs protocol. Thirty patients with a normal BMI (stress dual-source dynamic CTP. Patients were randomised to 80-kV/370-mAs (n = 15) or 100-kV/300-mAs (n = 15) imaging. Maximal enhancement and noise of the left ventricular (LV) cavity, contrast-to-noise ratio (CNR) and MBF of the two groups were compared. Imaging with 80-kV/370-mAs instead of 100-kV/300-mAs was associated with 40% lower radiation dose (mean dose-length product, 359 ± 66 vs 628 ± 112 mGy[Symbol: see text]cm; P noise (22.7 ± 3.5 vs 17.4 ± 2.6; P stress perfusion imaging (CTP) is increasingly used to assess myocardial function. • Dynamic CTP is feasible at 80-kV in patients with normal BMI. • An 80-kV/370-mAs protocol allows 40% dose reduction compared with 100-kV/300-mAs. • Contrast-to-noise ratio and myocardial blood flow of the two protocols were comparable.

  11. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  12. NMR spectroscopy in the characterization of asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, P.W.; Desando, M.A.; Raub, M.F.; Hoberg, J.O.; Moats, R.; Stewart, F.F. (Montana State Univ., Bozeman (United States))

    1990-07-01

    NMR spectrometry represents a probe which can provide many details regarding the structure and functionality of asphalts. This is particularly true if it is combined with chromatography and/or chemical modifications. In this project {sup 1}H, {sup 2}H, {sup 13}C, {sup 19}F, {sup 29}Si, {sup 31}P nuclei and a variety of NMR techniques (1D, 2D, DEPT) have been used to describe a few chemical characteristics of the asphalts and chromatographic fractions therefrom.

  13. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  14. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    International Nuclear Information System (INIS)

    Trapote-Barreira, Ana; Porcar, Lionel; Cama, Jordi; Soler, Josep M.; Allen, Andrew J.

    2015-01-01

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10 − 14 to 6.7 × 10 − 12 ) mol m − 2 s − 1 . The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and 29 Si magic-angle-spinning nuclear magnetic resonance ( 29 Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The 29 Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution

  15. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR

    Science.gov (United States)

    Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun

    2017-12-01

    In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.

  16. TOKSISITAS SUBLETAL MOLUSKISIDA NIKLOSAMIDA TERHADAP PERTUMBUHAN DAN KONDISI HEMATOLOGI YUWANA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Yosmaniar Yosmaniar

    2016-11-01

    Full Text Available Niklosamida digunakan secara intensif sebagai pestisida di sawah untuk membunuh keong mas (Pomacea sp.. Tujuan penelitian ini adalah untuk menentukan pengaruh toksisitas subletal moluskisida niklosamida terhadap pertumbuhan dan kondisi hematologi yuwana ikan mas (Cyprinus carpio. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi Cibalagung Balai Riset Perikanan Budidaya Air Tawar Bogor. Penelitian menggunakan rancangan acak lengkap dengan 4 perlakuan dan 4 ulangan. Waktu penelitian 12 minggu. Perlakuan adalah konsentrasi moluskisida niklosamida, yaitu: 0,00 (kontrol; 0,01; 0,03; dan 0,05 mg/L. Menggunakan 16 akuarium ukuran 70 cm x 50 cm x 60 cm. Benih ikan mas yang digunakan berkisar 2,5-3,0 gram dipelihara dengan kepadatan 20 ekor dalam volume air 40 L. Selama pemaparan ikan uji diberi pakan secara at satiation serta dilakukan pergantian air setiap 48 jam dengan konsentrasi bahan uji yang sama. Peubah yang diukur adalah laju pertumbuhan dan kondisi hematologi. Hasil penelitian menunjukkan bahwa konsentrasi subletal moluskisida niklosamida berpengaruh nyata terhadap penurunan pertumbuhan terjadi mulai pada konsentrasi 0,03 mg/L sedangkan terhadap kondisi hematologi, yaitu peningkatan hematokrit dan hemoglobin pada konsentrasi 0,01 mg/L dan peningkatan jumlah eritrosit pada konsentrasi 0,03 mg/L, dan penurunan leukosit pada konsentrasi 0,03 mg/L. Niklosamida digunakan secara intensif sebagai pestisida di sawah untuk membunuh keong mas (Pomacea sp.. Tujuan penelitian ini adalah untuk menentukan pengaruh toksisitas subletal moluskisida niklosamida terhadap pertumbuhan dan kondisi hematologi yuwana ikan mas (Cyprinus carpio. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi Cibalagung Balai Riset Perikanan Budidaya Air Tawar Bogor. Penelitian menggunakan rancangan acak lengkap dengan 4 perlakuan dan 4 ulangan. Waktu penelitian 12 minggu. Perlakuan adalah konsentrasi moluskisida

  17. NMRbox: A Resource for Biomolecular NMR Computation.

    Science.gov (United States)

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  18. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  19. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  20. Muscle attachment site (MAS) patterns for species determination in five species of Sarcophaga (Diptera: Sarcophagidae).

    Science.gov (United States)

    Niederegger, Senta; Szpila, Krzysztof; Mall, Gita

    2016-01-01

    To further establish species determination using the muscle attachment site (MAS) pattern method, third instar larvae of five forensically important species of Sarcophaga Meigen were investigated: Sarcophaga argyrostoma (Robineau-Desvoidy), Sarcophaga caerulescens Zetterstedt, Sarcophaga melanura Meigen, Sarcophaga albiceps Meigen and Sarcophaga similis Meade. As in the previously investigated Calliphoridae, patterns were found to be species specific. The main feature of the Sarcophaga patterns is the divided central horizontal row of segment four. A genus pattern was established to be used as base for comparison in further species determination.