WorldWideScience

Sample records for double-layered low-temperature cylindrical

  1. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Yushin, Gleb; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  2. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  3. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  4. Structure of cylindrical electric double layers: Comparison of density functional and modified Poisson-Boltzmann theories with Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    V.Dorvilien

    2013-01-01

    Full Text Available The structure of cylindrical double layers is studied using a modified Poisson Boltzmann theory and the density functional approach. In the model double layer the electrode is a cylindrical polyion that is infinitely long, impenetrable, and uniformly charged. The polyion is immersed in a sea of equi-sized rigid ions embedded in a dielectric continuum. An in-depth comparison of the theoretically predicted zeta potentials, the mean electrostatic potentials, and the electrode-ion singlet density distributions is made with the corresponding Monte Carlo simulation data. The theories are seen to be consistent in their predictions that include variations in ionic diameters, electrolyte concentrations, and electrode surface charge densities, and are also able to reproduce well some new and existing Monte Carlo results.

  5. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  6. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    Science.gov (United States)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the

  7. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-07-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. We briefly discuss the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Author)

  8. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  9. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  10. A double layer review

    International Nuclear Information System (INIS)

    Block, L.P.

    1977-06-01

    A review of the main results on electrostatic double layers (sometimes called space charge layers or sheaths) obtained from theory, and laboratory and space experiments up to the spring of 1977 is given. By means of barium jets and satellite probes, double layers have now been found at the altitudes, earlier predicted theoretically. The general potential distribution above the auroral zone, suggested by inverted V-events and electric field reversals, is corroborated. (author)

  11. Gravitational double layers

    International Nuclear Information System (INIS)

    Senovilla, José M M

    2014-01-01

    I analyze the properties of thin shells through which the scalar curvature R is discontinuous in gravity theories with Lagrangian F(R) = R − 2Λ + αR 2 on the bulk. These shells/domain walls are of a new kind because they possess, in addition to the standard energy–momentum tensor, an external energy flux vector, an external scalar pressure/tension and, most exotic of all, another energy–momentum contribution resembling classical dipole distributions on a shell: a double layer. I prove that all these contributions are necessary to make the entire energy–momentum tensor divergence-free. This is the first known occurrence of such a type of double layer in a gravity theory. I present explicit examples in constant-curvature five-dimensional bulks, with a brief study of their properties: new physical behaviors arise. (fast track communications)

  12. Double layers above the aurora

    International Nuclear Information System (INIS)

    Temerin, M.; Mozer, F.S.

    1987-01-01

    Two different kinds of double layers were found in association with auroral precipitation. One of these is the so-called electrostatic shock, which is oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found at the edges of regions of upflowing ion beams and the direction of the electric fields in the shock points toward the ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfven waves, which may accelerate electrons to produce flickering auroras. The flickering aurora provides evidence that the electrostatic shock may have large temporal fluctuations. The other kind of double layer is the small-amplitude double layer found in regions of upward flowing in beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in these structures are comparable in magnitude. The associated potentials are a few eV. Since many such double layers are found in regions of upward flowing ion beams, the combined potential drop through a set of these double layers can be substantial

  13. Global effects of double layers

    International Nuclear Information System (INIS)

    Raad, M.A.

    1984-12-01

    Locally the formation of an electrostatic double layer in a current carrying plasma leads to a direct acceleration of particles which may penetrate far into the surrounding medium. The potential across the double layer, giving this acceleration, must be maintained by the external system and is a basic parameter for the local to global coupling. The double layer potential is associated with an electric field parallel to the magnetic field. In general this leads to a magnetohydrodynamic relaxation of the surrounding medium providing the influx of energy which is dissipated by the double layer. The double layer potential is limited as is the maximum possible rate of energy influx. If the global response of the external medium can be represented by an external circuit and if an equivalent circuit element can be found to represent the double layer, for example a negative resistance for intermediate time scales, it is possible to give a description of the dynamics and stability of the whole system. (Author)

  14. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  15. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  16. Transition from single to multiple double layers

    International Nuclear Information System (INIS)

    Chan, C.; Hershkowitz, N.

    1982-01-01

    It is shown that laboratory double layers become multiple double layers when the ratio of Debye length to system length is decreased. This result exhibits characteristics described by boundary layer theory

  17. Low-Temperature Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  18. The theory of double layers

    International Nuclear Information System (INIS)

    Schamel, H.

    1982-01-01

    Numerical and in some degree laboratory experiments suggest the existence of at least two different kinds of time-independent double layers: a strictly monotonic transition of the electrostatic potential and a transition accompanied by a negative spike at the low potential side (ion acoustic DL). An interpretation of both is presented in terms of analytic BGK modes. The first class of DLs commonly observed in voltage- or beam-driven plasmas needs for its existence beam-type distributions satisfying a Bohm criterion. The potential drop is at least of the order of Tsub(e), and stability arguments favour currents which satisfy the Langmuir condition. The second class found in current-driven plasma simulations is correlated with ion holes. This latter kind of nonlinear wave-solutions is linearly based on the slow ion-acoustic mode and exists due to a vortex-like distortion of the ion distribution in the thermal range. During the growth of an ion hole which is triggered by ion-acoustic fluctuations, the partial reflection of streaming electrons causes different plasma states on both sides of the potential dip and makes the ion hole asymmetric giving rise to an effective potential drop. This implies that the amplitude of this second type of double layers has an upper limit of 1-2 Tsub(e) and presumes a temperature ratio of Tsub(e)/Tsub(i) > or approximately 3 in coincidence with the numerical results. (Auth.)

  19. Double Layer Dynamics in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens

    and propagation of a double layer. The period of the oscillations is determined by the propagation length of the double layer. The current is limited during the propagation of the double layer by a growing negative potential barrier formed on the low potential tail. Similar phenomena appear when a potential......An experimental investigation of the dynamics of double layers is presented. The experiments are performed in a Q-machine plasma and the double layers are generated by applying a positive step potential to a cold collector plate terminating the plasma column. The double layer is created...... at the grounded plasma source just after the pulse is applied and it propagates towards the collector with a speed around the ion acoustic speed. When the collector is biased positively, large oscillations are obserced in the plasma current. These oscillations are found to be related to a recurring formation...

  20. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  1. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria...

  2. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  3. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  4. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-05-01

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  5. Stationary Double Layers in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Noriyoshi, Sato; Mieno, Tetsu; Hatakeyama, Rikizo

    1983-01-01

    of the plate on the low-potential side, being accompanied with current limitation. This localized potential drop moves along the plasma column, but finally stops and results in the formation of the stationary double layer in the presence of sufficient plasma supply from the plate on the high-potential side.......Stationary double layers are generated in a magnetoplasma by applying potential differences between two heated plates on which the plasma is produced by surface ionization. By measuring the double-layer formation process, a localized potential drop is found to be formed initially in front...

  6. Improved Low Temperature Performance of Supercapacitors

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  7. Double layer dynamics in a collisionless magnetoplasma

    International Nuclear Information System (INIS)

    Iizuka, Satoru; Michelsen, P.; Rasmussen, J.J.; Schrittwieser, R.; Hatakeyama, Rikizo; Saeki, Koichi; Sato, Noriyoshi.

    1985-01-01

    Investigations of double layer dynamics are performed in a Q-machine plasma by applying a positive step potential to a cold end-plate collector. The double layer created at the grounded plasma source just after the pulse is applied propagates towards the collector with the plasma flow speed. Large oscillations occur in the plasma current which is related to a recurring formation and propagation of the double layer. The current is limited during the propagation by a growing negative potential dip formed on the low-potential tail. Similar phenomena appear on the low-potential tail of the stationary double layer formed by applying a potential difference between two plasma sources. (author)

  8. Double layer dynamics in a collisionless magnetoplasma

    DEFF Research Database (Denmark)

    Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens

    1985-01-01

    Investigations of double layer dynamics are performed in a Q-machine plasma by applying a positive step potential to a cold end-plate collector. The double layer created at the grounded plasma source just after the pulse is applied propagates towards the collector with the plasma flow speed. Large...... oscillations occur in the plasma current which is related to a recurring formation and propagation of the double layer. The current is limited during the propagation by a growing negative potential dip formed on the low-potential tail. Similar phenomena appear on the low-potential tail of the stationary double...... layer formed by applying a potential difference between two plasma sources...

  9. Numerical simulations on ion acoustic double layers

    International Nuclear Information System (INIS)

    Sato, T.; Okuda, H.

    1980-07-01

    A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length

  10. Experiments on ion acoustic typed double layers

    International Nuclear Information System (INIS)

    Chan, C.; Cho, M.H.; Intrator, T.; Hershkowitz, N.

    1984-01-01

    The formation of small amplitude double layers with potential drops the order of the electron temperature, was examined experimentally by pulsing a grid and thereby changing the electron drift across the target chamber of a triple plasma device. The rarefactive part of a long wavelength, low frequency ion wave grew in amplitude due to the presence of slowly drifting electrons. The corresponding current limitation led to the formation of the double layers. Depending on the plasma conditions, the asymmetric double layers either transform into a weak monotonic layer, a propagating shock, or a series of rarefactive solitary pulses. The rarefactive pulses propagate with Mach number less than one and resemble solitary plasma holes with density cavities in both the electron and the ion density profiles

  11. Progress in MOSFET double-layer metalization

    Science.gov (United States)

    Gassaway, J. D.; Trotter, J. D.; Wade, T. E.

    1980-01-01

    Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

  12. Double layers are not particle accelerators

    International Nuclear Information System (INIS)

    Bryant, D.A.; Bingham, R.; Angelis, U. de.

    1991-02-01

    It is pointed out that the continuing advocacy of electrostatic double layers as particle accelerators in the aurora and other space and astrophysical plasmas is fundamentally unsound. It is suggested furthermore that there is little reason to invoke static or quasi-static electric fields as the cause of auroral electron acceleration. Stochastic acceleration by electrostatic wave turbulence appears to present a natural explanation for this and for electron acceleration in other space and astrophysical plasmas. (author)

  13. Double layers, waves and particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, D.A.; Perry, C.H.; Bingham, R.; de Angelis, U.

    1993-09-01

    The author's conclusions that static potential differences, including those associated with double layers, could not be the cause of auroral electron acceleration, and that resonance with electrostatic wave turbulence provided a possible mechanism were dismissed in a recent publication as being totally incorrect. In this reply, the author finds the criticism to be built upon a number of misconceptions and factual errors which render it invalid. He is, therefore, able to re-affirm his earlier conclusions.

  14. Numerical double layer solutions with ionization

    International Nuclear Information System (INIS)

    Andersson, D.; Soerensen, J.

    1982-08-01

    Maxwell's equation div D = ro in one dimension is solved numerically, taking ionization into account. Time independent anode sheath and double layer solutions are obtained. By varying voltage, neutral gas pressure, temperature of the trapped ions on the cathode side and density and temperature of the trapped electrones on the anode side, diagrams are constructed that show permissible combinations of these parameters. Results from a recent experiment form a subset. Distribution functions, the Langmuir condition, some scaling laws and a possible application to the lower ionosphere are discussed. (Authors)

  15. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  16. Equilibrium double layers in extended Pierce diodes

    International Nuclear Information System (INIS)

    Ciubotariu-Jassy, C.I.

    1992-01-01

    The extended Pierce diode is similar to the standard (or classical) Pierce diode, but has passive circuit elements in place of the short circuit between the electrodes. This device is important as an approximation to real bounded plasma systems. It consists of two parallel plane electrodes (an emitter located at x=0 and a collector located at x=l) and a collisionless cold electron beam travelling between them. The electrons are neutralized by a background of comoving massive ions. This situation is analysed in this paper and new equilibrium double layer (DL) plasma structures are obtained. (author) 6 refs., 3 figs

  17. Ultrastrong Stationary Double Layers in a Nondischarge Magnetoplasma

    DEFF Research Database (Denmark)

    Sato, N.; Hatakeyama, R.; Iizuka, S.

    1981-01-01

    Ultrastrong stationary double layers are generated in a magnetoplasma by simply applying potential differences between two plasma sources. The potential drop ϕD of the double layer is increased up to eϕD/Te≃2×103 (Te is the electron temperature in eV) with no difficulties caused by gas discharge....... There are always large spiky fluctuations on the low-potential tail of the double layers....

  18. Double layer formed by beam driven ion-acoustic turbulence

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Montes, A.

    1987-08-01

    Small amplitudes steady-state ion-acoustic double layers are observed to form in a plasma transversed by a beam of cold electrons. The importance of turbulence in maintaining the double layer is demonstrated. The measured wave spectrum is in approximate agreement with models deriveted from renornalized turbulence theory. The general features of the double layer are compared with results from particle simulation studies. (author) [pt

  19. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  20. On the negative resistance of double layers

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-08-01

    It is known that large amplitudes oscillations can occur in the current flowing through a plasma diode, typically when a constant potential is applied across the device. Burger (1965) suggested via a computer simulation that the oscillation characteristics was a function of the quantities T sub (e) and T sub (i), namely the respective time for an electron and an ion to cross the electric field region inside the diode. On the rapid time scale T sub (e) the self consistent equilibrium configuration, was unstable. Norris (1964) had previously arrived at the same conclusion using analytical arguments. In that work, it was concluded that the instability occurred since the diode acted as a negative resistance on the T sub (e) scale. A positive feedback effect forced the system away from equilibrium. Silevitch (1981) used the Burger mechanism to suggest an explanation for the flickering aurora phenomenon. He extended the Norris argument and showed by a variational method that a plausible analytic model for a double layer (DL) behaved as a negative resistance on the T sub (e) scale. In this present work we re-examine the negative resistance calculation by taking a more detailed account of the constraints which are imposed on the electron distributions that exist in the DL region. Specifically, we shall focus at the high potential side of the DL. (Authors)

  1. Anomalous dc resistivity and double layers in the auroral ionosphere

    International Nuclear Information System (INIS)

    Kindel, J.M.; Barnes, C.; Forslund, D.W.

    1980-01-01

    There are at least four candidate instabilities which might account for anomalous dc rereresistivity in the auroral ionosphere. These are: the ion-acoustic instability, the Buneman instability, the ion-cyclotron instability and double layers. Results are reported of computer simulations of these four instabilities which suggest that double layers are most likely to be responsible for sistivity in the auroral zone

  2. Ion-acoustic solitary waves near double layers

    International Nuclear Information System (INIS)

    Kuehl, H.H.; Imen, K.

    1985-01-01

    The possibility of ion-acoustic solitary-wave solutions in the uniform plasma on the high-potential side of double layer is investigated. Based on a fluid model of the double layer, it is found that both compressive and rarefactive solitary waves are allowed. Curves are presented which show the regions in parameter space in which these solutions exist

  3. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  4. Thermal stability of Dion-Jacobson mixed-metal-niobate double-layered perovskites

    International Nuclear Information System (INIS)

    Hermann, Andrew T.; Wiley, John B.

    2009-01-01

    The thermal stability and decomposition pathways of six Dion-Jacobson-related double-layered perovskites, ALaNb 2 O 7 (A = H, Li, Na, Ag) and (ACl)LaNb 2 O 7 (A = Fe, Cu), are investigated. These compounds are made by low temperature ( 2 O 7 . All the compounds are low temperature phases with some of them exhibiting decomposition exotherms consistent with metastability. Decomposition temperatures and reactions pathways vary with the identity of A with most decompositions resulting in the formation of a niobate (containing A) and LaNbO 4 . Results from differential scanning calorimetry and high temperature X-ray powder diffraction studies are presented and structural parameters pertinent to compound stability discussed

  5. The electric double layer has a life of its own

    NARCIS (Netherlands)

    Merlet, Céline; Limmer, David T.; Salanne, Mathieu; Van Roij, René; Madden, Paul A.; Chandler, David; Rotenberg, Benjamin

    2014-01-01

    Using molecular dynamics simulations with recently developed importance sampling methods, we show that the differential capacitance of a model ionic liquid based double-layer capacitor exhibits an anomalous dependence on the applied electrical potential. Such behavior is qualitatively incompatible

  6. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  7. Double layers formed by beam driven ion-acoustic turbulence

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Montes, A.

    1987-01-01

    Small amplitude steady-state ion-acoustic layers are observed to form in a plasma traversed by a beam of cold electrons. The importance of turbulence in maintaining the double layer is demonstrated. The measured wave spectrum is in approximate agrreement with models derived from renormalized turbulence theory. The general features of the double layer are compared with results from particle simulation studies. (author) [pt

  8. Generation mechanism and properties of plasma double layers

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.

    1985-01-01

    The generation mechanism of plasma double layers is studied surveying the results of some experiments. The main mechanism is the same in the cases of collisional and collisionless plasmas. Inelastic quantum collision processes taking place between plasma electrons, accelerated in a local field up to near the same oriented velocity and the neutral particles of the background gases create the necessary conditions for double layer formation. (D.Gy.)

  9. WORKSHOP: Low temperature devices

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With extraterrestrial neutrinos (whether from the sun or further afield) continuing to make science news, and with the search for the so far invisible 'dark matter' of the universe a continual preoccupation, physicists from different walks of life (solid state, low temperature, particles, astrophysics) gathered at a workshop on low temperature devices for the detection of neutrinos and dark matter, held from 12-13 March at Ringberg Castle on Lake Tegernsee in the Bavarian Alps, and organized by the Max Planck Institute for Physics and Astrophysics in Munich

  10. WORKSHOP: Low temperature devices

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    With extraterrestrial neutrinos (whether from the sun or further afield) continuing to make science news, and with the search for the so far invisible 'dark matter' of the universe a continual preoccupation, physicists from different walks of life (solid state, low temperature, particles, astrophysics) gathered at a workshop on low temperature devices for the detection of neutrinos and dark matter, held from 12-13 March at Ringberg Castle on Lake Tegernsee in the Bavarian Alps, and organized by the Max Planck Institute for Physics and Astrophysics in Munich.

  11. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    Science.gov (United States)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  12. Low temperatures - hot topic

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Neutrino mass measurements, next-generation double beta experiments, solar neutrino detection, searches for magnetic monopoles and the challenge of discovering what most of the Universe is made of (dark matter), not to mention axions (cosmic and solar), supersymmetric neutral particles and cosmic neutrinos. All this physics could use cryogenic techniques. Thus the second European Workshop on Low Temperature Devices for the Detection of Low Energy Neutrinos and Dark Matter, held at LAPP (Annecy) in May, covered an active and promising field.

  13. Low temperatures - hot topic

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Neutrino mass measurements, next-generation double beta experiments, solar neutrino detection, searches for magnetic monopoles and the challenge of discovering what most of the Universe is made of (dark matter), not to mention axions (cosmic and solar), supersymmetric neutral particles and cosmic neutrinos. All this physics could use cryogenic techniques. Thus the second European Workshop on Low Temperature Devices for the Detection of Low Energy Neutrinos and Dark Matter, held at LAPP (Annecy) in May, covered an active and promising field

  14. Low temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, A A

    1934-01-10

    A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

  15. Sweating at low temperature

    International Nuclear Information System (INIS)

    Chalaye, H.; Launay, J.P.

    1980-11-01

    Tests of penetration liquids normally used between 10 and 40 0 C have shown that the arrangement of operationaal conditions (penetration and revealing times) was not sufficient to maintain their sensitivity below 10 0 C, thereby confirming that this temperature is a limit below which such products cannot be employed. The results achieved with a penetrant and a tracer specially devised for low temperatures (SHERWIN B 305 + D100) are satisfactory between 0 0 C and 15 0 C [fr

  16. Observations of propagating double layers in a high current discharge

    International Nuclear Information System (INIS)

    Lindberg, L.

    1988-01-01

    Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2 x 10 19 m - 3 , highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3-5kV). An initial plasma column is formed in an axial magnetic field (0.1T) by means of a conical theta-pinch plasma gun. When an axial current (max 5kA, 3-5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds. Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1-2 kV above the anode potential during a few μs) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions

  17. Some recent trends in computer simulations of aqueous double layers

    International Nuclear Information System (INIS)

    Spohr, E.

    2003-01-01

    Recent molecular simulations of the electric double layer between an aqueous and a metallic phase are reviewed. Several trends in the field can be identified: (i) the increasing use of ab initio simulation methods, most notably the Car-Parrinello method, allows to combine a statistical mechanical description of the double layer with a description of elementary chemical processes on the electronic structure level; (ii) the application of free-energy methods in one and (recently) two dimensions to describe chemical reactivity within and beyond the framework of the Marcus theory of electron transfer; and (iii) at high concentrations, direct simulations of two-phase systems with an aqueous solution and a charged or uncharged solid phase or surface can model the entire double layer region

  18. A review of molecular modelling of electric double layer capacitors.

    Science.gov (United States)

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  19. Double layer -- a particle accelerator in the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiangrong [Los Alamos National Laboratory

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  20. Double layers do accelerate particles in the auroral zone

    International Nuclear Information System (INIS)

    Borovsky, J.E.

    1992-01-01

    In response to a recent report [D. A. Bryant, R. Bingham, and U. de Angelis, Phys. Rev. Lett. 68, 37 (1991)] that makes the claim that electrostatic fields are weak in the auroral zone and that electrostatic fields cannot accelerate particles, it is pointed out that the evidence for electrostatic fields in the auroral zone is overwhelming and that these electrostatic fields often are accelerating electrons to produce aurora. The literature cited in the article above as evidence against double layers (strong electric fields) is reexamined and is found not to be evidence against double layers

  1. Circuit effects on pierce instabilities, and double-layer formation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-11-01

    The role of the Pierce instability in the formation of double layers is considered and compared with that of the Buneman instability. Pierce instabilities have been identified in a double-layer experiment, where they lead to ion trapping. Here the effects of external circuit elements are considered. In the case of immobile ions the onset criteria are unaffected, but in the unstable range the growth rate is reduced by the external impedance. Required experimental values of the circuit elements are estimated. The possible relevance to computer simulations is noted. (Authors)

  2. Type I intermittency related to the spatiotemporal dynamics of double layers and ion-acoustic instabilities in plasma

    International Nuclear Information System (INIS)

    Chiriac, S.; Dimitriu, D. G.; Sanduloviciu, M.

    2007-01-01

    Anodic double layer instabilities occur in low-temperature diffusion filament-type discharge plasma by applying a certain positive bias with respect to the plasma potential to an additional electrode. Periodic nonlinear regimes, characterized by proper dynamics of double layers, are sustained if excitation and ionization rates in front of the electrode reach the value for which current limitation effects appear in the static current-voltage characteristic. It was experimentally shown that under specific experimental conditions these ordered spatiotemporal phenomena can evolve into chaotic states by type I intermittency. This transition was verified by the evolution of time series, fast Fourier transform amplitude plots, three-dimensional reconstructed state spaces, power laws, and flickering phenomena spectrum, as well as by the return map and tangent bifurcation

  3. Low temperature destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process is given and apparatus is described for the destructive distillation at low temperature of coal, oil shale, and the like by subjection to the action of a stream of hot gases or superhearted steam, flowing in a closed circuit. Subsequent treatment of the distillation residues with a gas stream containing oxygen results in combustion of the carbon-containing material therein brings to a high temperature the solid residue, in which the process comprises subsequently contacting the hot solid residue with the fluid stream effecting the distillation.

  4. Low temperature distillation

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, J N; Postel, C

    1929-04-09

    To recover gas, oil tars, and coked residues by low temperature distillation from bituminous coals, lignites, oil shales, and the like, the raw material is fed from a hopper into a rotary retort which is zonally heated, the temperature being greatest at the discharge end. The material is heated first to a relatively low temperature, thereby removing the moisture and lighter volatiles which are withdrawn through a pipe by the suction of a pump, while the higher boiling point volatiles and fixed gases are withdrawn by suction through an outlet from the higher temperature zone. The vapors withdrawn from the opposite ends of the retort pass through separate vapor lines and condensers, and the suction in each end of the retort, caused by the pumps, is controlled by valves, which also control the location of the neutral point in the retort formed by said suction. Air and inert gas may be introduced into the retort from pipe and stack respectively through a pipe, and steam may be admitted into the high temperature zone through a pipe.

  5. Low-temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Strankmuller, J

    1954-01-01

    The low-temperature carbonization plant at Boehlen in Eastern Germany (the first in which Lurgi type ovens were installed) worked with a throughput of 300 tons of brown-coal briquets per day per oven since 1936, later increased to 365 tons per day. The rising demand for low-temperature tar for hydrogenation purposes led to development of a modified oven of 450 tons throughput. This was achieved by stepping up the flow of the circulating gas and air mixture from 420,000 to 560,000 cubic feet per hour and by additional rows of V-shaped deflectors across the width of the oven chamber, which break up and loosen the charge, thus reducing cooling-gas pressure and allowing a greater flow of scavenging gas. The distance traversed by each briquet is nearly doubled, and the temperature gradient is less. It is claimed that the tar and the coke from modified ovens are of comparable quality. The compressive strength of the briquets was found to have an appreciable effect on the output. Better qts the chemistry, mechanism and thermodynamics of the Fischer-Tropsch reaction and aectromagnetic radiation.

  6. Double-layer Tablets of Lornoxicam: Validation of Quantification ...

    African Journals Online (AJOL)

    Purpose: To formulate double-layer tablets of lornoxicam (LRX) prepared by direct compression method and ... including direct compression method which is ..... Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci 1983; 72(10): 1189-1191. 17.

  7. Double layer effects in the electroreduction of transition metal ions

    Czech Academy of Sciences Publication Activity Database

    Fawcett, W. R.; Hromadová, Magdaléna

    2008-01-01

    Roč. 12, č. 4 (2008), s. 347-351 ISSN 1432-8488 R&D Projects: GA AV ČR KJB400400603; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : sphere electrode reactions * crystal gold electrodes * diffuse double - layer Subject RIV: CG - Electrochemistry Impact factor: 1.597, year: 2008

  8. Application of Electric Double Layer Capacitor for Solar Car

    OpenAIRE

    中西, 弘一; 岸, 純男; 仲森, 昌也; 荒賀, 浩一

    2016-01-01

    This paper describes a method for efficient work of electrical energy, using DC-DC converter as insulate between battery and Electrical Double Layer Capacitor (EDLC). In case of constant-current charge to the EDLC, the efficiency of the electric power is higher, compared to the constant-voltage charge.

  9. Double-layer Tablets of Lornoxicam: Validation of Quantification ...

    African Journals Online (AJOL)

    Double-layer Tablets of Lornoxicam: Validation of Quantification Method, In vitro Dissolution and Kinetic Modelling. ... Satisfactory results were obtained from all the tablet formulations met compendial requirements. The slowest drug release rate was obtained with tablet cores based on PVP K90 (1.21 mg%.h-1).

  10. On the magnetism of Heisenberg double-layer antiferromagnets

    International Nuclear Information System (INIS)

    Uijen, C.M.J. van.

    1980-01-01

    The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)

  11. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  12. Gastroesophageal anastomosis: single-layer versus double-layer technique

    International Nuclear Information System (INIS)

    Aslam, V.A.; Bilal, A.; Khan, A.; Ahmed, M.

    2008-01-01

    Considerable controversy exists regarding the optimum technique for gastroesophageal anastomosis. Double layer technique has long been considered important for safe healing but there is evidence that single layer technique is also safe and can be performed in much shorter time. The purpose of this study was to compare the outcome of single layer and double layer techniques for gastroesophageal anastomosis. A prospective randomized study was conducted in cardiothoracic unit, Lady Reading Hospital from Jan 2006 to Jan 2008. Fifty patients with oesophageal carcinoma undergoing subtotal oesophagectomy were randomized to have the anastomosis by single layer continuous or double layer continuous technique (group A (n=24) and B (n=26) respectively). The demographic data, operative and anastomosis time, postoperative complications and hospital mortality were recorded on a proforma and analyzed on SPSS 10. There was no significant difference between group A and B in terms of age, gender, postoperative complications and duration of hospital stay. Anastomotic leak occurred in 4.2% patients in group A and 7.7% in group B (p=NS). Mean anastomosis time was 10.04 minutes in group A and 19.2 minutes in group B (p=0.0001). Mean operative time was 163.83 minutes and 170.96 minutes in group A and B respectively. Overall hospital mortality was 2%; no deaths occurred due to anastomotic leak. Single layer continuous technique is equally safe and can be performed in shorter time and at a lower cost than the double layer technique. (author)

  13. Free double layers in mercury-arc discharges

    International Nuclear Information System (INIS)

    Maciel, H.S.; Allen, J.E.

    1989-01-01

    A study has been carried out of free double layers formed within the plasma volume of a low-pressure mercury-arc discharge at high current densities. The free double layer is observed to form as a visible boundary, which drifts slowly from the central section of the discharge. Current-driven instabilities are observed as the discharge current is gradually increased to a critical value, at which current limitation is observed to occur. This process, which is accompanied by high-current spikes, ceases when the free double layer becomes visible as a sharp boundary dividing the discharge column into two regions of different luminosities. The layer is observed to form in the later stages of current limitation, the onset of which occurs for a ratio of drift to thermal speed of electrons of about unity. Electrical energy is converted by the layer into kinetic energy of the changed particles. Accordingly high-energy ions were measured by means of an electrostatic energy analyser. The multiple-sheath character of the free 'double layer'', which is inferred from probe measurements of potential profiles, is discussed and comparisons with other space-charge structures with the same topology are made. (author)

  14. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  15. Water transport and desalination through double-layer graphyne membranes.

    Science.gov (United States)

    Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah

    2018-05-16

    Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

  16. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.

    Science.gov (United States)

    Du, Xuan; Zhao, Wei; Wang, Yi; Wang, Chengyang; Chen, Mingming; Qi, Tao; Hua, Chao; Ma, Mingguo

    2013-12-01

    Activated carbon hollow fibers (ACHFs) with high surface area were prepared from inexpensive, renewable ramie fibers (RFs) by a single-step activation method under lower temperature than that of other reports. The effects of activation conditions on the pore structure and turbostratic structure of ACHFs were investigated systematically. The results show that ACHFs surface area decreased but micropore volume and conductivity increased as the increase of activation temperature and activation time. The electrochemical measurements of supercapacitors fabricated from these ACHFs electrodes reveal that the electrochemical properties improved with the enhancing of activation degree. However, too high activation temperature can make the ion diffusion resistance increase. It suggests that pore structure and conductivity are as important as surface area to decide the electrochemical performances of ACHFs electrode materials. A maximum capacity of 287 F g(-1) at 50 mA g(-1) was obtained for the ACHFs electrode prepared under suitable conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Low Temperature Plasma Medicine

    Science.gov (United States)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  18. Double layers in a modestly collisional electronegative discharge

    CERN Document Server

    Sheridan, T E

    1999-01-01

    The effect of ion-neutral collisions on the structure and ion flux emanating from a steady-state, planar discharge with two negative components is investigated. The positive ion component is modelled as a cold fluid subject to constant-mobility collisions, while the electrons and negative ions obey Boltzmann relations. The model includes the collisionless limit. When the negative ions are sufficiently cold three types of discharge structures are found. For small negative ion concentrations or high collisionality, the discharge is 'stratified', with an electronegative core and an electropositive edge. For the opposite conditions, the discharge is 'uniform' with the negative ion density remaining significant at the edge of the plasma. Between these cases lies the special case of a double-layer-stratified discharge, where quasi-neutrality is violated at the edge of the electronegative core. Double-layer-stratified solutions are robust in that they persist for moderate collisionality. Numerical solutions for fini...

  19. Electrostatic supersolitons and double layers at the acoustic speed

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.

    2015-01-01

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication

  20. Electrostatic supersolitons and double layers at the acoustic speed

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-01-15

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication.

  1. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  2. Double layers in the laboratory and above the aurora

    International Nuclear Information System (INIS)

    Block, L.P.

    1980-11-01

    Recent laboratory double layer experiments have simulated, much better than before, the conditions prevailing on auroral field lines at high altitudes. In particular, magnetic fields strong enough to magnetize the electrons (but not quite the ions) have been used. Particle and wave spectra have been measured. Wave-particle interaction has been shown to play a minor role in the only case that has been quantitatively analyzed. The three-dimensional potential distribution has been mapped. The particle budget requires the radial electric field to be outward in the no magnetic field case but inward with magnetic field, in agreement with what is observed above the aurora. (author)

  3. Patch holography using a double layer microphone array

    DEFF Research Database (Denmark)

    Gomes, Jesper Skovhus

    a closed local element mesh that surrounds the microphone array, and with a part of the mesh coinciding with a patch, the entire source is not needed in the model. Since the array has two layers, sources/reflections behind the array are also allowed. The Equivalent Source Method (ESM) is another technique...... in which the sound field is represented by a set of monopoles placed inside the source. In this paper these monopoles are distributed so that they surround the array, and the reconstruction is compared with the IBEM-based approach. The comparisons are based on computer simulations with a planar double...... layer array and sources with different shapes....

  4. Electrostatic double-layer interaction between stacked charged bilayers

    Science.gov (United States)

    Hishida, Mafumi; Nomura, Yoko; Akiyama, Ryo; Yamamura, Yasuhisa; Saito, Kazuya

    2017-10-01

    The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

  5. Ion acoustic double layers in the presence of plasma source

    International Nuclear Information System (INIS)

    Okuda, H.; Ashour-Abdalla, M.

    1982-01-01

    Steady-state plasma turbulence and the formation of negative potential spikes and double layers in the presence of ion acoustic instabilities have been studied by means of one-dimensional particle simulations in which the velocities of a small fraction of electrons are replaced by the initial drifting Maxwellian at a constant rate. A steady state is found where negative potential spikes appear randomly in space and time giving rise to an anomalous resistivity much greater than previously found. Comparisons of the simulation results with laboratory and space plasmas are discussed

  6. The double layers in the plasma sheet boundary layer during magnetic reconnection

    Science.gov (United States)

    Guo, J.; Yu, B.

    2014-11-01

    We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.

  7. Electrostatic double layers and a plasma evacuation process

    International Nuclear Information System (INIS)

    Raadu, M.A.; Carlqvist, P.

    1979-12-01

    An evacuation process due to the growth of current driven instabilities in a plasma is discussed. The process, which leads to localized extreme density reductions, is related to the formation of electrostatic double layers. The initial linear phase is treated using the superposition of unstable plasma waves. In the long wave length, non-dispersive limit a density dip, which is initially present as a small disturbance, grows rapidly and remains localized in the plasma. The process works for a variety of plasma conditions provided a certain current density is exceeded. For a particular choice of plasma parameters the non-linear development is followed, by solving the coupled Vlasov-Poisson equations by finite difference methods. The evacuation process is found to work even more effectively in the non-linear phase and leads to an extreme density reduction within the dip. It is suggested that the growth of such structures produces weak points within the plasma that can lead to the formation of double layers. (Auth.)

  8. Evolution of plasma double layers in laser-ablation plumes

    International Nuclear Information System (INIS)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.; Ziskind, M.; Focsa, C.

    2005-01-01

    The double layers (DLs) are one of the most complex problems of the plasma physics. These layers are apparently important not only in laboratory plasmas and laser-ablation plasma plumes but also in natural phenomena, e.g. the aurora and fire balls.This work studies the dynamics of the double layers in a laser ablation plume from different targets irradiated by a Nd: YAG 10 ns pulsed laser. The plasma formation was studied by means of both Langmuir probe and mass spectrometry methods using an experimental set-up developed for the study of environmental or technological interest samples. The ionic current distribution in plasma plume formation was recorded in different experimental conditions. We have found that it depends on the laser energy, the pressure of the buffer gas and the probe position. The periodical oscillations recorded in different experimental conditions prove that these plasma formations (DLs) are local physical systems able to accumulate and release energy. Acting as storing and releasing energy elements, the DLs can sustain periodical or non-periodical variations of the current or of the other global parameters of the plasma. (author)

  9. Superionic state in double-layer capacitors with nanoporous electrodes

    International Nuclear Information System (INIS)

    Kondrat, S; Kornyshev, A

    2011-01-01

    In recent experiments (Chmiola et al 2006 Science 313 1760; Largeot et al 2008 J. Am. Chem. Soc. 130 2730) an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state 'superionic' and suggest a simple model to describe it. The model reveals the possibility of a voltage-induced first order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage. (fast track communication)

  10. Superionic state in double-layer capacitors with nanoporous electrodes.

    Science.gov (United States)

    Kondrat, S; Kornyshev, A

    2011-01-19

    In recent experiments (Chmiola et al 2006 Science 313 1760; Largeot et al 2008 J. Am. Chem. Soc. 130 2730) an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state 'superionic' and suggest a simple model to describe it. The model reveals the possibility of a voltage-induced first order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage.

  11. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  12. A review on electrochemical double-layer capacitors

    International Nuclear Information System (INIS)

    Sharma, Pawan; Bhatti, T.S.

    2010-01-01

    Various energy storage technologies have been developed in the market for various applications. Batteries flywheels, fuel cells are a few which are much common, those are being used in several countries and also research is also carrying on these technologies to make much better them. The electrochemical double-layer capacitor (EDLC) is an emerging technology, which really plays a key part in fulfilling the demands of electronic devices and systems, for present and future. This paper presents the historical background, classification, construction, modeling, testing, and voltage balancing of the EDLC technology. The applications of EDLC in electrical vehicles, power quality, and others are also discussed and their advantages over other storages technologies are also discussed.

  13. Drag Effect in Double-Layer Dipolar Fermi Gases

    International Nuclear Information System (INIS)

    Tanatar, B; Renklioglu, B; Oktel, M O

    2014-01-01

    We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system

  14. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  15. Density of states and excitonic condensation in the double layer correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V., E-mail: v.apinyan@int.pan.wroc.pl; Kopeć, T.K.

    2016-01-15

    We consider the single-particle density of states (DOS) in the strongly correlated double layer (DL) system, without applied external fields. We demonstrate an unusual collapse effect in the spectrum of the normal single-particle spectral function at the particular high-symmetry point corresponding to the specific bunching-point solution of the chemical potential in the Frenkel channel. We show that at the low-temperature limit the anomalous spectral function obeys a concave like structure, which is directly related to the interlayer pair formation and condensation. We calculate the normal DOS functions, and we find their temperature dependence for different values of the interlayer Coulomb interaction parameter. We show that the normal electron and hole DOS functions demonstrate typical condensates double peak structures on the background of the excitonic pair formation quasiparticle spectra and we have found the evidence of the hybridization gap in the case of high-temperature limit, and small interlayer coupling parameter. Meanwhile, we show a possible crossover from the excitonic condensate regime into the band insulator state. The structure of the normal DOS spectra, in the Frenkel channel and for the strong interlayer coupling regime, is found gapless for all temperature limits, which clearly indicates the strong coherence effects in the DL structure, and the excitonic condensates therein. We have shown that the excitonic pair formation and pair condensation occur simultaneously in the DL system, in contrast with the purely three-dimensional (3D) or two-dimensional cases (2D), discussed previously.

  16. Diffuse electric double layer in planar nanostructures due to Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Drab, Mitja; Kralj-Iglič, Veronika

    2016-01-01

    A double nanocapacitor modelled by two equally charged planar surfaces that confine oppositely charged quanta subjected to Fermi-Dirac statistics is considered theoretically. A global thermodynamic equilibrium was found by minimization of the Helmholtz free energy satisfying constraints that require electroneutrality and fixed total number of confined quanta. The solution obtained by using the Euler–Lagrange method yields self–consistent quantities: distribution of quanta within the pore, electric potential, equilibrium free energy and differential capacitance. Within real values, a rigorous numerical solution and an approximate analytical solution for electrons in the low temperature limit was found. The Fermi–Dirac constraints on the wave functions in the nanopore induced an effect of a diffuse electrical double layer near both charged surfaces. This effect is comparable to the corresponding effect of entropy at finite temperatures and for classical particles, as described by the acknowledged Poisson–Boltzmann theory. At small distances and small surface charges, the electrons are almost evenly distributed within the pore, while at larger distances they condense to the charged surfaces, shielding the electric field. The force between the charged surfaces is repulsive and monotonously decreases with increasing distance between surfaces. The energies stored in the nanocapacitor are up to ≃ 50 eV/nm"2.

  17. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  18. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  19. Obliquely Propagating Non-Monotonic Double Layer in a Hot Magnetized Plasma

    International Nuclear Information System (INIS)

    Kim, T.H.; Kim, S.S.; Hwang, J.H.; Kim, H.Y.

    2005-01-01

    Obliquely propagating non-monotonic double layer is investigated in a hot magnetized plasma, which consists of a positively charged hot ion fluid and trapped, as well as free electrons. A model equation (modified Korteweg-de Vries equation) is derived by the usual reductive perturbation method from a set of basic hydrodynamic equations. A time stationary obliquely propagating non-monotonic double layer solution is obtained in a hot magnetized-plasma. This solution is an analytic extension of the monotonic double layer and the solitary hole. The effects of obliqueness, external magnetic field and ion temperature on the properties of the non-monotonic double layer are discussed

  20. Electrochemical double-layer capacitors based on functionalized graphene

    Science.gov (United States)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  1. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  2. Synthesis and thermal stability studies of a series of metastable Dion-Jacobson double-layered neodymium-niobate perovskites

    Science.gov (United States)

    Josepha, Elisha A.; Farooq, Sara; Mitchell, Cinnamon M.; Wiley, John B.

    2014-08-01

    The Dion-Jacobson double-layered perovskite, RbNdNb2O7, is used as a precursor to synthesize the series ANdNb2O7 (A=H, Li, Na, K, NH4, Ag), and (MCl)NdNb2O7 (M=Mn, Fe, Cu) through ion-exchange reactions ≤400 °C. Thermal stability studies indicated that most of these compounds are metastable. A combination of X-ray powder diffraction and differential thermal analysis were used to determine various low temperature decomposition pathways; these pathways were very dependent on the interlayer species. Overall the ANdNb2O7 series was found to be less stable than the corresponding lanthanides, ALaNb2O7.

  3. Vol. 5: Low Temperature Physics

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceeding are published in 6 volumes. The papers presented in this volume refer to low-temperature physics

  4. Certification testing at low temperatures

    International Nuclear Information System (INIS)

    Noss, P.W.; Ammerman, D.J.

    2004-01-01

    Regulations governing the transport of radioactive materials require that most hypothetical accident condition tests or analyses consider the effects of the environmental temperature that most challenges package performance. For many packages, the most challenging temperature environment is the cold condition (-29 C according to U.S. regulations), primarily because the low temperature causes the highest free drop impact forces due to the higher strength of many energy-absorbing materials at this temperature. If it is decided to perform low temperature testing, it is only necessary that the relevant parts of the package have the required temperature prior to the drop. However, the details of performing a drop at low temperature can have a large influence on testing cost and technical effectiveness. The selection of the test site, the chamber and type of chilling equipment, instrumentation, and even the time of year are all important. Control of seemingly minor details such as the effect on internal pressure, placement of monitoring thermocouples, the thermal time constant of the test article, and icing of equipment are necessary to ensure a successful low temperature test. This paper will discuss these issues and offer suggestions based on recent experience

  5. Science with low temperature detectors

    International Nuclear Information System (INIS)

    Sadoulet, B.; Lawrence Berkeley National Lab., CA; California Univ., Berkeley

    1996-01-01

    The novel technique of particle detection with low temperature detectors opens a number of new scientific opportunities. We review some of these, focusing on three generic applications: far infrared bolometry taking as an example the cosmic microwave background, X-ray spectroscopy for astrophysics and biological applications, and massive calorimeters for dark matter searches and neutrino physics. (orig.)

  6. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    Science.gov (United States)

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  7. Plasmons in spatially separated double-layer graphene nanoribbons

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-01-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons

  8. Ray-theory approach to electrical-double-layer interactions.

    Science.gov (United States)

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  9. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  10. Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation

    International Nuclear Information System (INIS)

    Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2013-01-01

    Graphical abstract: - Highlights: • Diffuse double layers overlap with each other in the micropore. • The overlapping of the diffuse double layer affects the double layer capacitance. • The electric field becomes weak in the micropore. • The electroneutrality is unsatisfactory in the micropore. - Abstract: The structure of the diffuse double layer around a nm-sized micropore on porous electrodes has been studied by numerical simulation using the Poisson–Boltzmann equation. The double layer capacitance of the microporous electrode strongly depends on the electrode potential, the electrolyte concentration, and the size of the micropore. The potential and the electrolyte concentration dependence of the capacitance is different from that of the planner electrode based on the Gouy's theory. The overlapping of the diffuse double layer becomes conspicuous in the micropore. The overlapped diffuse double layer provides the mild electric field. The intensified electric field exists at the rim of the orifice of the micropore because of the expansion of the diffuse double layers. The characteristic features of microporous electrodes are caused by the heterogeneity of the electric field around the micropores

  11. The electric double layer put to work : thermal physics at electrochemical interfaces

    NARCIS (Netherlands)

    Janssen, M.A.

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance

  12. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  13. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  14. Experimental validation of sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2013-01-01

    This paper is concerned with experimental validation of a recently proposed method of controlling sound fields with a circular double-layer array of loudspeakers [Chang and Jacobsen, J. Acoust. Soc. Am. 131(6), 4518-4525 (2012)]. The double-layer of loudspeakers is realized with 20 pairs of closed...

  15. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NARCIS (Netherlands)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar Gelepordsari, M.; Salavati-Fard, T.

    2016-01-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned

  16. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  17. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  18. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  19. An investigation of the double layers caused by space vehicles moving through the ionosphere

    International Nuclear Information System (INIS)

    Liu Sanqiu; Liao Jingjing

    2010-01-01

    On the basis of non-steady-state nonlinear coupling equations of high-frequency field, density disturbance and potential, the evolution of double layers in the wake region of space vehicles moving through the ionosphere is numerically simulated in the non-static limit case. The results show that the interactions among plasmas, the vehicle and high-frequency electromagnetic waves radiated from the antenna system of the vehicle can lead to the formation of double layers. It is shown that the double layer is a nonlinear entity-caviton. Potential disturbance far away from the vehicle and the peak value of potential near the vehicle in the double layer are obvious. This is very important for detecting space vehicles with a stealth characteristic and preventing space vehicles from being harmed by double layers.

  20. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  1. Relative permittivity in the electrical double layer from nonlinear optics

    Science.gov (United States)

    Boamah, Mavis D.; Ohno, Paul E.; Geiger, Franz M.; Eisenthal, Kenneth B.

    2018-06-01

    Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11 ¯ 02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.

  2. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Sabry, R.

    2009-01-01

    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  3. Influence of the charge double layer on solid oxide fuel cell stack behavior

    Science.gov (United States)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  4. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    Science.gov (United States)

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  6. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  7. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  8. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics.......Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex...

  9. Wolte 5. low temperature electronics

    International Nuclear Information System (INIS)

    Balestra, F.; Dieudonne, F.; Jomaah, J.

    2002-01-01

    This book present the latest research and development results in advanced materials, technologies, devices, circuits and systems for low temperature electronics. The main themes of the papers are ranging from physics and fundamental aspects, modeling and simulation, to device and circuit design. The topics include advanced process and characterization, novel devices and cryogenic instrumentation. The papers are divided into nine sections, reflecting the main research efforts in different areas: i) deep submicron silicon MOSFETs, ii) alternative MOSFETs (SOI, innovating device architectures), iii) III-V devices, iv) other semiconductor devices (Ge devices, p-n junctions, IR sensors, semiconductor microcrystals), v) emerging devices and phenomena (nano Si-based devices, conduction and fluctuations mechanisms), vi) superconducting materials, vii) superconducting detectors, viii) superconducting devices and circuits (RSFQ, SIS mixers, metal-superconducting-semiconductor structures), ix) low temperature electronics for space applications. Six invited papers presented by internationally recognized authors, and 39 contributed papers are presented. The invited papers provide an excellent overview of today's status and progress, as well as tomorrow's challenges and trends in this important discipline for many cryogenic applications. (authors)

  10. Electron emission from a double-layer metal under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuchang; Li, Suyu; Jiang, Yuanfei; Chen, Anmin, E-mail: amchen@jlu.edu.cn; Ding, Dajun; Jin, Mingxing, E-mail: mxjin@jlu.edu.cn

    2015-01-01

    In this paper we theoretically investigate electron emission during femtosecond laser ablation of single-layer metal (copper) and double-layer structures. The double-layer structure is composed of a surface layer (copper) and a substrate layer (gold or chromium). The calculated results indicate that the double-layer structure brings a change to the electron emission from the copper surface. Compared with the ablation of a single-layer, a double-layer structure may be helpful to decrease the relaxation time of the electron temperature, and optimize the electron emission by diminishing the tailing phenomenon under the same absorbed laser fluence. With the increase of the absorbed laser fluence, the effect of optimization becomes significant. This study provides a way to optimize the electron emission which can be beneficial to generate laser induced ultrafast electron pulse sources.

  11. Synthesis and charge storage properties of double-layered NiSi nanocrystals

    International Nuclear Information System (INIS)

    Yoon, Jong-Hwan

    2010-01-01

    Based on bidirectional diffusion of Ni atoms, double-layered nickel silicide (NiSi) nanocrystals (NCs) for multilevel charge storage were fabricated, and their charge storage properties were examined. The double layer was produced by long-term thermal annealing (for 4 h at 900 o C) of a sandwich structure comprised of a thin Ni film of 0.3 nm sandwiched between two silicon-rich oxide (SiO 1.36 ) layers. Transmission electron microscopic image clearly exhibits a distinct NiSi nanocrystal double layer with a gap of about 7 nm between the mean positions of particle distribution in each NC layer. Capacitance-voltage measurements on the metal/oxide/semiconductor (MOS) capacitors with the double-layered NiSi nanocrystals are shown to have the apparent two plateaus of charge storage, the large memory window of about 9 V and the improved charge retention stability.

  12. Studies on electrical double layer capacitor with a low-viscosity ionic ...

    Indian Academy of Sciences (India)

    The performance of an electrical double layer capacitor (EDLC) composed of high surface area acti- vated carbon ... Since the electric energy stored in EDLCs are raised by the ..... capacitance value, observed by us with the present system, is.

  13. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1987-01-01

    Double layers (i.e., electric fields parallel to B) form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with DEL.E not= O. Features which govern the formation of the double layers are: 1) the divergence of E; 2) the conductivity of the ionosphere; and 3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where DEL.E not= O is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with DEL.E not= O can be generated within, or along field lines connected to, the conducting plasma. In addition to DEL.E, shear neutral flow in the conducting plasma can also form double layers. (author)

  14. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1987-01-01

    Double layers form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with nabla x E is not equal to 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where nabla x E is not equal to 0 is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with nabla x E is not equal to 0 can be generated within, or along field lines connected to, the conducting plasma. In addition to nabla x E, shear neutral flow in the conducting plasma can also form double layers

  15. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers

    International Nuclear Information System (INIS)

    Lu, Bin; Meng, W J; Mei, Fanghua

    2013-01-01

    Cu-based, single- and double-layered, microchannel heat exchangers (MHEs) were fabricated and assembled. Comparative measurements on liquid flow characteristics and heat transfer performance were conducted on these devices. Results were compared at the individual microchannel level as well as at the device level. The present results demonstrate that double-layered MHEs exhibit similar heat transfer performance while suffering a much lower pressure drop penalty compared to single-layered MHEs. Another Cu-based, double-layered, liquid–liquid counter-flow MHE was fabricated, assembled and tested. Results show that a low-volume, multilayered, high-performance, liquid-to-liquid MHE is achievable following the manufacturing protocols of the present double-layered, liquid–liquid counter-flow MHE. (paper)

  16. The Low temperature CFB gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Fock, Martin W.

    2003-01-01

    %) particle separation by the hot secondary cyclone. The next LT-CFB experiment, currently under preparation, is expected to be on either municipal/industrial waste or animal manure. Eventually a 500 kW LT-CFB test plant scheduled for commission during summer 2003, and the anticipated primary LT......The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process aims at avoiding problems due to ash deposition and agglomeration when using difficult fuels such as agricultural biomass and many waste materials. This, as well as very simple gas cleaning, is achieved by pyrolysing...... the fuel at around 650?C in a CFB reaction chamber and subsequently gasifying the char at around 730oC in a slowly fluidised bubbling bed chamber located in the CFB particle recirculation path. In this paper the novel LT-CFB concept is further described together with the latest test results from the 50 k...

  17. Low Temperature Hydrogen Antihydrogen Interactions

    International Nuclear Information System (INIS)

    Armour, E. A. G.; Chamberlain, C. W.

    2001-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at low temperatures, we have carried out a full four-body variational calculation to determine s-wave elastic phase shifts for hydrogen antihydrogen scattering, using the Kohn Variational Principle. Terms outside the Born-Oppenheimer approximation have been taken into account using the formalism of Kolos and Wolniewicz. As far as we are aware, this is the first time that these terms have been included in an H H-bar scattering calculation. This is a continuation of earlier work on H-H-bar interactions. Preliminary results differ substantially from those calculated using the Born-Oppenheimer approximation. A method is outlined for reducing this discrepancy and taking the rearrangement channel into account.

  18. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  19. Long-term stability of a one-dimensional current-driven double layer

    International Nuclear Information System (INIS)

    Hori, N.; Yamamoto, T.

    1988-01-01

    Long-term (>an electron transit time over the system) stability of a one-dimensional current-driven double layer is studied by numerical experiments using particles. In these experiments, the potential difference across the system is self-consistently determined by the space charge distributions inside the system. Each boundary of the system supplies a nondrifting half-Maxwellian plasma. The current density is increased by increasing the number density of the source plasma at the injection (right) boundary. A double layer can be developed by injection of a sufficiently high current density. For a fixed level of current injection, plasmas carrying no current with various densities (n/sup ts/ 0 ) are loaded on the left side of the system. Whether or not the generated double layer can maintain its potential drop for a long period depends on the density (n/sup ts/ 0 ) relative to the initial density (n/sup */ 0 ) near the injection boundary: (1) the double layer is found to grow when n/sup ts/ 0 = n/sup */ 0 ; (2) the steady double layer is seen for a long period when n/sup ts/ 0 approx. >n/sup */ 0 ; (3) the double layer is found to decay when n/sup ts/ 0 is even higher than n/sup */ 0 . A new concept of the current polarizability P/sub c/ = J/n/sup number/ is introduced for understanding these results, where J is the current density flowing through the double layer and n/sup number/ is the plasma density at the injection front, i.e., the low-potential edge of the double layer

  20. Large-amplitude ion-acoustic double layers in a plasma with warm ions

    International Nuclear Information System (INIS)

    Roychoudury, R.K.; Bhattacharyya, S.; Varshni, Y.P.

    1990-01-01

    The conditions for the existence of an ion-acoustic double layer in a plasma with warm ions and two distinct groups of hot electrons have been studied using the Sagdeev potential method. A comparison is made with the published results of Bharuthram and Shukla for cold ions and a two temperature electron population. Numerical studies have been made to find out the effect of a finite ion temperature on the Mach number of the double layers

  1. Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment

    Science.gov (United States)

    Yamada, Takatoshi; Ishihara, Masatou; Hasegawa, Masataka

    2013-11-01

    A graphene film having low sheet resistance (600 Ω/sq.) was synthesized at low temperatures of 280 °C. Utilizing microwave plasma treatment, graphene films were synthesized from a solid phase on a copper surface. The full width at half maximum of the 2D-band in the Raman spectrum indicated that a high quality graphene film was formed. Cross-sectional transmission electron microscopy observation revealed that the deposited graphene films consisted of single- or double-layer graphene flakes of nanometer order on the Cu surface, which agrees with the estimated number of layers from an average optical transmittance of 96%.

  2. Ion-acoustic double layers in multi-species plasmas maintained by negative ions

    International Nuclear Information System (INIS)

    Verheest, F.

    1989-01-01

    A study is made of ion-acoustic double layers in a plasma consisting of any number of cold positive and negative ion (and cold electron) species in addition to one isothermal electron population. The Sagdeev potential is obtained in general, together with limits on both compressive and rarefactive solutions for ion-acoustic double layers and/or solitons. Weak ion-acoustic double layers are described by a modified Korteweg-de Vries equation. Such double layers are not possible in plasmas with only positive ion species and one electron population. When one or more negative ion and/or cold electron species are included above a certain threshold density, rarefactive ion-acoustic double layers occur, but no compressive ones. The double-layer form of the potential is given, together with an application to a plasma with one positive and one negative ion component. It is shown that there is indeed such a threshold density for the negative ion density, depending on the charge-to-mass ratios of both types of ions. The threshold density is determined numerically for a range of such ratios and discussed in view of possible relevance to auroral and experimental plasmas. In the discussion, cold electrons can play the role of the negative ion species. (author)

  3. Double-layer appearance after evacuation of a chronic subdural hematoma.

    Science.gov (United States)

    Sucu, Hasan Kamil; Akar, Ömer

    2014-01-01

    To investigate the reason for and the course of the double-layer appearance in the postoperative computed tomographies (CTs) of chronic subdural hematoma (CSDHs). We reviewed CSDH cases that were operated on during the last 3 years, between January 2008 and December 2010. We checked the preoperative, early postoperative, and late postoperative CTs of these patients. We investigated the relationship between the formation of a double-layer appearance and the prognoses and demographic characteristics of the patients. Our database included 119 cases. A double-layer appearance was found in the postoperative CTs of 34 cases. The mean age of double-layer cases was older (72.5 ± 12.1) than that of the remaining 85 cases (63.1 ± 17.8). We did not find any relationship between the double-layer appearance and the reoperation/recurrence/death rates. The double-layer appearance after evacuation of a CSDH might be caused by enlargement of the subarachnoid space and is not related to the presence of any residual hematoma. This appearance is not considered as a reason for reoperation.

  4. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-02-01

    Full Text Available Double-layer structures in polar mesospheric clouds (PMCs are observed by using Solar Occultation for Ice Experiment (SOFIE data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH and Southern Hemisphere (SH respectively. Double-layer PMCs almost always have less mean ice water content (IWC than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs' potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  5. Ion acoustic waves and double-layers in electronegative expanding plasmas

    International Nuclear Information System (INIS)

    Plihon, Nicolas; Chabert, Pascal

    2011-01-01

    Ion acoustic waves and double-layers are observed in expanding plasmas in electronegative gases, i.e., plasmas containing an appreciable fraction of negative ions. The reported experiments are performed in argon gas with a variable amount of SF 6 . When varying the amount of SF 6 , the negative ion fraction increases and three main regimes were identified previously: (i) the plasma smoothly expands at low negative ion fraction, (ii) a static double-layer (associated with an abrupt potential drop and ion acceleration) forms at intermediate negative ion fraction, (iii) double-layers periodically form and propagate (in the plasma expansion direction) at high negative ion fraction. In this paper, we show that transition phases exist in between these regimes, where fluctuations are observed. These fluctuations are unstable slow ion acoustic waves, propagating in the direction opposite to the plasma expansion. These fluctuations are excited by the most unstable eigenmodes and display turbulent features. It is suggested that the static double layer forms when the ion acoustic fluctuations become non-linearly unstable: the double layer regime being a bifurcated state of the smoothly expanding regime. For the highest negative ion fraction, a coexistence of (upstream propagating) slow ion acoustic fluctuations and (downstream) propagating double layers was observed.

  6. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  7. The Low Temperature CFB Gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Richardt, K.

    2004-01-01

    straw, animal manure and waste and for co-firing the product gas in existing, e.g. coal fired power plant boilers. The aim is to prevent fouling, agglomeration and high temperature corrosion caused by potassium and chlorine and other fuel components when producing electricity. So far 92 hours......The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process is described together with the 50 kW and the 500 kW test plants and latest test results. The LT-CFB process is especially developed for medium and large scale (few to >100 MW) gasification of problematic bio-fuels like...... of experiments with the 50 kW test plant with two extremely difficult types of straw has shown low char losses and high retentions of ash including e.g. potassium. Latest 27 hours of experiments with dried, high ash pig- and hen manure has further indicated the concepts high fuel flexibility. The new 500 kW test...

  8. Low-temperature nuclear orientation

    International Nuclear Information System (INIS)

    Stone, N.J.; Postma, H.

    1986-01-01

    This book comprehensively surveys the many aspects of the low temperature nuclear orientation method. The angular distribution of radioactive emissions from nuclei oriented by hyperfine interactions in solids, is treated experimentally and theoretically. A general introductory chapter is followed by formal development of the theory of the orientation process and the anisotropic emission of decay products from oriented nuclei, applied to radioactive decay and to reactions. Five chapters on applications to nuclear physics cover experimental studies of alpha, beta and gamma emission, nuclear moment measurement and level structure information. Nuclear orientation studies of parity non-conservation and time reversal asymmetry are fully described. Seven chapters cover aspects of hyperfine interactions, magnetic and electric, in metals, alloys and insulating crystals, including ordered systems. Relaxation phenomena and the combined technique of NMR detection using oriented nuclei are treated at length. Chapters on the major recent development of on-line facilities, giving access to short lived nuclei far from stability, on the use of nuclear orientation for thermometry below 1 Kelvin and on technical aspects of the method complete the main text. Extensive appendices, table of relevant parameters and over 1000 references are included to assist the design of future experiments. (Auth.)

  9. A COMPARATIVE STUDY OF SINGLE VERSUS DOUBLE LAYER CLOSURE ON LOWER SEGMENT CAESAREAN SCAR

    Directory of Open Access Journals (Sweden)

    Kirtirekha Mohapatra

    2016-10-01

    Full Text Available BACKGROUND There are few issues in modern obstetrics that have been as controversial as management of a woman with a prior caesarean delivery. Hence, it is required to have evidence based correct practice of this surgical procedure. Healing of the uterine incision and the strength of the scar should be the most important consideration. The aim of the study is to compare the effect of technique of uterine closure (Single Layer vs. Double Layer on subsequent pregnancies and to find out, which technique has a better maternal and neonatal outcome by strengthening the scar. MATERIALS AND METHODS 500 cases of previous caesarean section pregnancies were taken, 250 from single layer closure group and 250 from double layer closure group. The mode of delivery during present pregnancy was noted. Integrity of scar, thickness of scar, presence of adhesion were documented. The neonates were observed. Results were compared so as to draw an inference about the better method. RESULTS Mean age between the two groups were similar. Majority did not have history of premature rupture of membrane during previous pregnancy. Postoperative complications were more when double layer closure of uterine scar was done in index surgery. Interpregnancy gap of <3 years was more commonly present in double layer closure group (52.8% in double layer versus 34.8% in single layer. Single layer had more scar tenderness (21.2%, thinned out scars (34.6%, incomplete ruptures (7.1% and complete ruptures (2.8% than double layer closure group. Neonatal outcomes were not statistically different in both the groups. CONCLUSION Double layer uterine closure seems to have better impact on scar integrity as compared to single layer uterine closure.

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  11. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    International Nuclear Information System (INIS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-01-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO_2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate. - Highlights: • The double-layer coating has a great influence on both thermal and aesthetic aspects. • The double-layer coating performs better than the uniform one with single particles. • The volume fraction, particle diameter and substrate conditions are optimized.

  12. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  13. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  14. Density functional theory of the electrical double layer: the RFD functional

    International Nuclear Information System (INIS)

    Gillespie, Dirk; Valisko, Monika; Boda, Dezso

    2005-01-01

    Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions

  15. XPS and TEM study of W-DLC/DLC double-layered film

    International Nuclear Information System (INIS)

    Takeno, Takanori; Komiyama, Takao; Miki, Hiroyuki; Takagi, Toshiyuki; Aoyama, Takashi

    2009-01-01

    A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 μm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.

  16. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Bharuthram, R. [Office of the Deputy Vice Chancellor (Academic), University of the Western Cape, Bellville (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India); School of Chemistry and Physics, University of Kwa-Zulu Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218 (India)

    2012-12-15

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  17. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    International Nuclear Information System (INIS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-01-01

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  18. Synthesis and thermal stability studies of a series of metastable Dion–Jacobson double-layered neodymium-niobate perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Josepha, Elisha A.; Farooq, Sara; Mitchell, Cinnamon M.; Wiley, John B., E-mail: jwiley@uno.edu

    2014-08-15

    The Dion–Jacobson double-layered perovskite, RbNdNb{sub 2}O{sub 7}, is used as a precursor to synthesize the series ANdNb{sub 2}O{sub 7} (A=H, Li, Na, K, NH{sub 4}, Ag), and (MCl)NdNb{sub 2}O{sub 7} (M=Mn, Fe, Cu) through ion-exchange reactions ≤400 °C. Thermal stability studies indicated that most of these compounds are metastable. A combination of X-ray powder diffraction and differential thermal analysis were used to determine various low temperature decomposition pathways; these pathways were very dependent on the interlayer species. Overall the ANdNb{sub 2}O{sub 7} series was found to be less stable than the corresponding lanthanides, ALaNb{sub 2}O{sub 7}. - Graphical abstract: A new series of topochemically-prepared metastable neodymium-containing layered perovskites are studied. - Highlights: • A series of new layered neodymium containing perovskites were synthesized by ion exchange. • Products were studied by variable temperature X-ray diffraction and thermal analysis. • Most of the series are metastable showing exothermic transitions on decomposition. • The Nd compounds are less stable due to the smaller size of the Nd relative to La.

  19. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  20. Experiment and simulation of double-layered RC plates under impact loadings. Part 1: Impact tests for double-layered RC plates

    International Nuclear Information System (INIS)

    Shirai, T.; Ueda, M.; Taniguchi, H.; Kambayashi, A.; Ohno, T.; Ishikawa, N.

    1993-01-01

    At a nuclear power plant facility, it should be of interest and important problem to ensure structures against impact loads induced by projectile impacts or plant-internal accidents. It has been well known that local damage consists of spalling of concrete from the impacted area and scabbing of concrete from the back face of the target together with projectile penetration into the target. There are several techniques for improving the impact resistance of RC slabs, that is, lining with a steel plate on the impacted and/or rear face of the slab, making the slab a double-layered composite slab with an elastic absorber and employing a fiber reinforced concrete or a high-strength concrete as the slab materials. Of the many measures available for withstanding impact loads, the use of a double-layered reinforced concrete (RC) slab with absorber is expected to have the higher resistance in reducing or preventing local damage. This paper presents the results of an experimental investigation on the impact resistance of double-layered RC plates subjected to the impact of projectile. In the experiment, the effects of two parameters; the combination of two RC plates having different thicknesses and the existence of an absorber in the middle layer, are mainly investigated. And, the effects of the concrete thickness (7,9 and 11 cm) and the concrete strength (a normal-:35MPa, a lightweight-:40MPa and a high-strength:57MPa) of target were also examined. RC plates, 0.6m-square, were used for test specimens. The projectile has a mass of 0.43kg, made of steel with a flat nose. An average projectile velocity was about 170m/sec. A rubber plate shaped into a square with the same size of RC plate was used for a double-layered specimen as an absorber which was put between two RC plates. It could be concluded that double-layering and presence of an absorber had a considerable effect on the increase of impact resistance of RC plate. In order to reduce local damage, it is more effective to

  1. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  2. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  3. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  4. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  5. Plasmon resonance in single- and double-layer CVD graphene nanoribbons

    DEFF Research Database (Denmark)

    Wang, Di; Emani, Naresh K.; Chung, Ting Fung

    2015-01-01

    Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015.......Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015....

  6. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    Science.gov (United States)

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  8. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rios, L. A. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Galvão, R. M. O. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo (Brazil)

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  9. Arrangements of a pair of loudspeakers for sound field control with double-layer arrays

    DEFF Research Database (Denmark)

    Chang, Jiho; Agerkvist, Finn T.; Olsen, Martin

    2013-01-01

    Recent studies have attempted to control sound fields, and also to reduce room reflections with a circular or spherical array of loudspeakers. One of the attempts was to suppress sound waves propagating to the walls outside the array with a circular double-layer array of loudspeakers. The double-layer...... array represents a set of a monopole and a dipole in the Kirchhoff-Helmholtz integral equation, and thus the distance between these layers should be short compared with the wavelength. In practice, however, this condition is occasionally hard to satisfy because of the sizes of loudspeaker cabinets...

  10. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-01-01

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  11. Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

    OpenAIRE

    Araki, Susumu; Kubo, Mitsuhiko; Kumagai, Kosuke; Imai, Shinji

    2016-01-01

    Reports of congenital abnormalities of the lateral meniscus include discoid meniscus, accessory meniscus, double-layered meniscus, and ring-shaped meniscus. Particularly, only a few cases of double-layered meniscus have been reported. We report a case of double-layered lateral meniscus, in which an additional semicircular meniscus was observed under the normal lateral meniscus. The accessory hemimeniscus was resected by means of arthroscopic surgery. This case demonstrates an interesting and ...

  12. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  13. Low-temperature plasma modelling and simulation

    NARCIS (Netherlands)

    Dijk, van J.

    2011-01-01

    Since its inception in the beginning of the twentieth century, low-temperature plasma science has become a major ¿eld of science. Low-temperature plasma sources and gas discharges are found in domestic, industrial, atmospheric and extra-terrestrial settings. Examples of domestic discharges are those

  14. Thermal conductivity at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, M [CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service des Basses Temperatures

    1976-06-01

    The interest of low and very low temperatures in solid physics and especially that of thermal measurements is briefly mentioned. Some notes on the thermal conductivity of dielectrics, the method and apparatus used to measure this property at very low temperatures (T<1.5K) and some recent results of fundamental and applied research are then presented.

  15. Some dynamical properties of very strong double layers in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, T.; Torven, S.

    1987-01-01

    Experimental results on three dynamic properties of very strong double layers observed in a triple plasma device are presented. First, it is observed that when an inductance of sufficient size is inserted in series with the external bias supply used to produce the double layer, disruptions in the plasma current occur accompanied by disruptions in the double layer potential. Second, it is observed that with all external reactances reduced as much as possible, a sort of jitter-motion occurs in the position of the double layer around its equilibrium position. Third, when the external bias supply is pulsed, the initial potential distribution is observed to have an essentially uniform slope, as in the case of a vacuum capacitor. The disruption phenomenon may be explained in terms of the behavior of the potential structure as a function of the bias voltage and this explanation is discussed along with the experimental evidence for its validity. A comparable understanding of the other two phenomena has not been achieved, but in both cases there are qualitative difference between the behavior reported here and what has been observed in Q-machines and these difference are discussed. (author)

  16. Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale

    NARCIS (Netherlands)

    Moonen, P.F.; Yakimets, I.; Peter, M.; Meinders, E.R.; Huskens, J.

    2011-01-01

    In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and

  17. High-frequency permeability in double-layered structure of amorphous Co-Ta-Zr films

    International Nuclear Information System (INIS)

    Ochiai, Y.; Hayakawa, M.; Hayashi, K.; Aso, K.

    1988-01-01

    The high-frequency permeability of amorphous Co-Ta-Zr films was studied and the frequency dependence was described in terms of the eddy-current-loss formula. For the double-layered structure intervened with SiO 2 film, the degradation of the permeability became apparent with the decrease of SiO 2 thickness

  18. The recording characteristics of particulate double layers with hard-magnetic and soft-magnetic underlayers

    NARCIS (Netherlands)

    Lalbahadoersing, S.; Groenland, J.P.J.; Luitjens, S.B.; Lodder, J.C.

    2002-01-01

    Particulate double-layer tape samples with magnetic underlayers have been investigated by performing magnetic recording measurements and by computer simulation.The presence of soft-magnetic underlayers resulted in decreased signal output and better overwrite behavior. Hard-magnetic underlayers

  19. Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore

    Science.gov (United States)

    Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.

    2018-04-01

    Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.

  20. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  1. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2009-01-01

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  2. Ionic diffusion in the double layer at model electrode/molten salt interfaces

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Tosi, M.P.

    1991-08-01

    The anisotropic ionic diffusion coefficients in model electrochemical cells in the molten-salt regime for the electrolyte are evaluated from the ionic density profiles reported in simulation work of Grout and coworkers. A local description of the diffusion processes for counterions and coions in the electrical double layer is obtained from the data. (author). 10 refs, 1 fig., 1 tab

  3. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  4. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  5. Application of electric double layer capacitor to pulse coil power supply

    International Nuclear Information System (INIS)

    Abe, Keita; Inomoto, Michiaki; Yamada, Takuma; Kamio, Shuji; Sakumura, Morio; Cao, Qinghong; Ono, Yasushi; Kuwahata, Akihiro; Imazawa, Ryota

    2011-01-01

    We developed a new application of the electric double layer capacitor (EDLC) as a sec-order quasi-DC power supply like flying-wheel motor-generators. We constructed the power supply using IGBT switching circuit and successfully demonstrated its initial operation whose current and duration time are 100 A and 3 sec, respectively, indicating a new potential of EDLC. (author)

  6. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    Science.gov (United States)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  7. The electric double layer at high surface potentials: The influence of excess ion polarizability

    NARCIS (Netherlands)

    Hatlo, M. M.; van Roij, R.H.H.G.; Lue, L.

    2012-01-01

    By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability

  8. Electrical double layer at various electrode potentials: A modification by vibration

    Czech Academy of Sciences Publication Activity Database

    Zhan, H.; Červenka, Jiří; Prawer, S.; Garrett, D.J.

    2017-01-01

    Roč. 121, č. 8 (2017), s. 4760-4764 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : electrical double layer * vibration * high concentration * model Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.536, year: 2016

  9. Electric double layer transistors with ferroelectric BaTiO3 channels

    NARCIS (Netherlands)

    Ito, M.; Matsubara, Y.; Kozuka, Y.; Takahashi, K. S.; Kagawa, F.; Ye, J. T.; Iwasa, Y.; Ueno, K.; Tokura, Y.; Kawasaki, M.

    2014-01-01

    We report the surface conduction of a BaTiO3 thin film using electric double layer transistor (EDLT) structure. A transistor operation was observed at 220 K with an on/off ratio exceeding 10(5), demonstrating that ionic liquid gating is effective to induce carriers at the surface of ferroelectric

  10. Control of sound fields with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    by the Kirchhoff-Helmholtz integral theorem a double-layer array of loudspeakers is used. Several solution methods are suggested and examined with computer simulations: pure contrast control, pure pressure matching, and a weighted combination. In order to compare the performance of the methods two performance...

  11. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  12. Large acoustic solitons and double layers in plasmas with two positive ion species

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Saini, Nareshpal Singh; Kourakis, Ioannis

    2011-01-01

    Large nonlinear acoustic waves are discussed in a plasma made up of cold supersonic and adiabatic subsonic positive ions, in the presence of hot isothermal electrons, with the help of Sagdeev pseudopotential theory. In this model, no solitons are found at the acoustic speed, and no compositional parameter ranges exist where solutions of opposite polarities can coexist. All nonlinear modes are thus super-acoustic, but polarity changes are possible. The upper limits on admissible structure velocities come from different physical arguments, in a strict order when the fractional cool ion density is increased: infinite cold ion compression, warm ion sonic point, positive double layers, negative double layers, and finally, positive double layers again. However, not all ranges exist for all mass and temperature ratios. Whereas the cold and warm ion sonic point limitations are always present over a wide range of mass and temperature ratios, and thus positive polarity solutions can easily be obtained, double layers have a more restricted existence range, specially if polarity changes are sought.

  13. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  14. Does electrical double layer formation lead to salt exclusion or to uptake?

    NARCIS (Netherlands)

    Lyklema, J.

    2005-01-01

    When electric double layers are formed, cases have been reported where this formation nvolves expulsion of electrolyte into the solution and cases in which electrolyte is absorbed from the solution. Both situations are experimentally and theoretically documented, but they cannot be simultaneously

  15. Ion acoustic solitons/double layers in two-ion plasma revisited

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Singh, S. V.; Kakad, A. P.

    2014-01-01

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge

  16. Single Layered Versus Double Layered Intestinal Anastomosis: A Randomized Controlled Trial

    Science.gov (United States)

    Mohapatra, Vandana; Singh, Surendra; Rath, Pratap Kumar; Behera, Tapas Ranjan

    2017-01-01

    Introduction Gastrointestinal anastomosis is one of the most common procedures being performed in oesophagogastric, hepatobiliary, bariatric, small bowel and colorectal surgery; however, the safety and efficacy of single layer or double layer anastomotic technique is still unclear. Aim To assess and compare the efficacy, safety and cost effectiveness of single layered versus double layered intestinal anastomosis. Materials and Methods This prospective, double-blind, randomized controlled comparative study comprised of patients who underwent intestinal resection and anastomosis. They were randomly assigned to undergo either single layered extra-mucosal anastomosis (Group-A) or double layered intestinal anastomosis (Group-B). Primary outcome measures included average time taken for anastomosis, postoperative complications, mean duration of hospital stay and cost of suture material used; secondary outcome measures assessed the postoperative return of bowel function. Statistical analysis was done by Chi-square test and student t-test. Results A total of 97 participants were randomized. Fifty patients were allocated to single layered extramucosal continuous anastomosis (Group-A) and 47 patients to double layered anastomosis (Group-B). The patients in each group were well matched for age, sex and diagnosis. The mean time taken for anastomosis (15.12±2.27 minutes in Group-A versus 24.38±2.26 minutes in Group-B) and the length of hospital stay (5.90±1.43 days in Group-A versus 7.29±1.89 days in Group-B) was significantly shorter in Group-A {p-value anastomosis. However, there was no significant difference in the complication rates between the two groups. Conclusion It can be concluded that single layered extramucosal continuous intestinal anastomosis is equally safe and perhaps more cost effective than the conventional double layered method and may represent the optimal choice for routine surgical practice. PMID:28764239

  17. Extremely low temperature properties of epoxy GFRP

    International Nuclear Information System (INIS)

    Kadotani, Kenzo; Nagai, Matao; Aki, Fumitake.

    1983-01-01

    The examination of fiber-reinforced plastics, that is, plastics such as epoxy, polyester and polyimide reinforced with high strength fibers such as glass, carbon, boron and steel, for extremely low temperature use began from the fuel tanks of rockets. Therafter, the trial manufacture of superconducting generators and extremely low temperature transformers and the manufacture of superconducting magnets for nuclear fusion experimental setups became active, and high performance FRPs have been adopted, of which the extremely low temperature properties have been sufficiently grasped. Recently, the cryostats made of FRPs have been developed, fully utilizing such features of FRPs as high strength, high rigidity, non-magnetic material, insulation, low heat conductivity, light weight and the freedom of molding. In this paper, the mechanical properties at extremely low temperature of the plastic composite materials used as insulators and structural materials for extremely low temperature superconducting equipment is outlined, and in particular, glass fiber-reinforced epoxy laminates are described somewhat in detail. The fracture strain of GFRP at extremely low temperature is about 1.3 times as large as that at room temperature, but at extremely low temperature, clear cracking occurred at 40% of the fracture strain. The linear thermal contraction of GFRP showed remarkable anisotropy. (Kako, I.)

  18. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  19. Analysis of low-temperature tar fractions

    Energy Technology Data Exchange (ETDEWEB)

    Kikkawa, S; Yamada, F

    1952-01-01

    A preliminary comparative study was made on the applicability of the methods commonly used for the type analysis of petroleum products to the low-temperature tar fractions. The usability of chromatography was also studied.

  20. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  1. First steps towards the realization of a double layer perceptron based on organic memristive devices

    Directory of Open Access Journals (Sweden)

    A. V. Emelyanov

    2016-11-01

    Full Text Available Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.

  2. Strategy for improved frequency response of electric double-layer capacitors

    Science.gov (United States)

    Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi

    2015-10-01

    We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.

  3. First steps towards the realization of a double layer perceptron based on organic memristive devices

    Science.gov (United States)

    Emelyanov, A. V.; Lapkin, D. A.; Demin, V. A.; Erokhin, V. V.; Battistoni, S.; Baldi, G.; Dimonte, A.; Korovin, A. N.; Iannotta, S.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs) since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron) based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task) using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.

  4. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    International Nuclear Information System (INIS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-01-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  5. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  6. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  7. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  8. Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    In a study of the adsorption behavior of cations onto quartz, the distribution coefficient of a variety of cations was determined using the batch method, and using the titration method, the surface charge densities of quartz in a number of electrolyte solutions. The two values thus determined were analyzed applying the electrical double-layer model, from which optimum parameter values were derived for double-layer electrostatics and intrinsic adsorption equilibrium constants. Based on these parameter values, the mechanism of cation adsorption is discussed: A key factor governing this mechanism proved to be the hydration behavior of cations. Consideration of the Coulomb interaction between the adsorbate ions and adsorbent surface led to the finding of a simple rule governing in common the adsorption equilibrium constants of different metal ions. (author)

  9. Observation of a current-limited double layer in a linear turbulent-heating device

    International Nuclear Information System (INIS)

    Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.

    1985-01-01

    Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL

  10. Novel electric double-layer capacitor with a coaxial fiber structure.

    Science.gov (United States)

    Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng

    2013-11-26

    A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    OpenAIRE

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  12. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    OpenAIRE

    Yoshiyuki Show

    2012-01-01

    Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nanotube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the...

  13. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  14. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    Science.gov (United States)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  15. Preparation of Fe-Pt perpendicular double-layered media with high electric resistivity backlayer

    International Nuclear Information System (INIS)

    Uchida, Masaru; Suzuki, Toshio; Ouchi, Kazuhiro

    2001-01-01

    High electric resistivity materials, oxide-added Fe-Si, were investigated as a soft-magnetic backlayer for Fe-Pt perpendicular double-layered media. It was found that there is a possibility of using (Fe-Si)-MgO as a backlayer. To promote a hetero-epitaxial growth of ordered Fe-Pt FCT(0 0 1), the backlayer needed a BCC(2 0 0) crystal orientation, in a situation where surface topology also played an important role

  16. Mesoporous Carbon Design for Ionic Liquid-Based, Double-Layer Supercapacitors

    OpenAIRE

    2010-01-01

    Abstract The use of pyrrolidinium-based ionic liquids (ILs) in asymmetric electric double-layer capacitors (AEDLC) with positive and negative carbon electrodes of different weight is a powerful strategy for developing safe, high specific-energy supercapacitors operating at > 3.5 V. The preparation and characterization of ordered (OTC) and disordered (DTC) template carbons, the latter obtained by a fast and low-cost method, are reported. The porosity and capacitance features of the ...

  17. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  18. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  19. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  20. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S

    2009-01-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  1. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    International Nuclear Information System (INIS)

    Smith, R.A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to change the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism. (author)

  2. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    Science.gov (United States)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  3. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    International Nuclear Information System (INIS)

    Smith, R.A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism

  4. Ionic double layer of atomically flat gold formed on mica templates

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Wong, Elicia L.S.; Coster, Hans G.L.; Coster, Adelle C.F.; James, Michael

    2009-01-01

    Electrical impedance spectroscopy characterisations of gold surfaces formed on mica templates in contact with potassium chloride electrolytes were performed at the electric potential of zero charge over a frequency range of 6 x 10 -3 to 100 x 10 3 Hz. They revealed constant-phase-angle (CPA) behaviour with a frequency exponent value of 0.96 for surfaces that were also characterised as atomically flat using atomic force microscopy (AFM). As the frequency exponent value was only marginally less than unity, the CPA behaviour yielded a realistic estimate for the capacitance of the ionic double layer. The retention of the CPA behaviour was attributed to specific adsorption of chloride ions which was detected as an adsorption conductance element in parallel with the CPA impedance element. Significant variations in the ionic double layer capacitance as well as the adsorption conductance were observed for electrolyte concentrations ranging from 33 μM to 100 mM, but neither of these variations correlated with concentration. This is consistent with the electrical properties of the interface deriving principally from the inner or Stern region of the double layer.

  5. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: asclab@asclab.cn

    2009-05-15

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  6. Time resolved measurements of plasma potential across an anode double layer

    International Nuclear Information System (INIS)

    Pohoata, V.; Popa, Gh.; Schrittwieser, R.; Ionita, Codrina

    2002-01-01

    Experimental results are presented on self-sustained oscillations produced by the dynamics of an anode double layer or fireball in a DP-machine. By additional ionisation processes the fireball is formed in front of an additional small plane anode inserted in the diffusive plasma. An annular (ring) electrode surrounds the anode. The thickness of the ion sheath in front of this ring affects the anode current by controlling its effective diameter during the fireball oscillations. The ring potential controls first the oscillation frequency of the anode current, but also other characteristics of the instability. The ring potential was chosen as a pulsed one so that only single anode double layer instability can be excited. The ring signal was used for triggering the data acquisition system. The spatial distribution of the plasma potential in front of the anode is presented as a time resolved measurement one. A negative drop potential was found that controls the charge flux particle across the double layer. Also the plasma density inside the fireball relaxes during the disrupting time controlled by ambipolar diffusion and also by the negative potential drop. (authors)

  7. The electric double layer at a metal electrode in pure water

    Science.gov (United States)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  8. An alternative design method for the double-layer combined die using autofrettage theory

    Directory of Open Access Journals (Sweden)

    C. Hu

    2017-08-01

    Full Text Available The double-layer combined die is used for its longer life in forging. Autofrettage is a well-known elastic–plastic technology that increases the durability of thick-walled cylinders. This study explores an alternative design method of the double-layer combined die using autofrettage theory. An analytical solution for the autofrettage process of the double-layer combined die is obtained based on Lamé's equation. The relationship between the autofrettage pressure and the yield radius of the die insert is obtained, and expressions of residual stresses and displacements, which are directly related to geometric parameters, material properties and internal pressure, are derived. The finite-element simulation of a specific case is performed, and good agreement between theoretical calculations and simulation results is found. Furthermore, the effects of important parameters, including the ratio of the plastic area and yield strength of the die insert and the outer diameters of the die insert and stress ring, on the autofrettage effect are investigated. Compared with the conventional combined die, the autofrettaged die can bear larger working pressure, as expected. The use of the autofrettaged die can reduce the amount of expensive material required for the die insert and the working space of the die set, which would benefit the practical forging process.

  9. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  10. Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2014-04-15

    The method of matched asymptotic expansions is applied to the problem of a collisionless plasma generated by UV illumination localized in a central part of the plasma in the limiting case of small Debye length λ{sub D}. A second-approximation asymptotic solution is found for the double layer positioned at the boundary of the illuminated region and for the un-illuminated plasma for the plane geometry. Numerical calculations for different values of λ{sub D} are reported and found to confirm the asymptotic results. The net integral space charge of the double layer is asymptotically small, although in the plane geometry it is just sufficient to shield the ambipolar electric field existing in the illuminated region and thus to prevent it from penetrating into the un-illuminated region. The double layer has the same mathematical nature as the intermediate transition layer separating an active plasma and a collisionless sheath, and the underlying physics is also the same. In essence, the two layers represent the same physical object: a transonic layer.

  11. The performance of double layer structure membrane prepared from flowing coagulant

    Science.gov (United States)

    Mieow Kee, Chan; Xeng, Anthony Leong Chan; Regal, Sasiskala; Singh, Balvinder; Raoo, Preeshaath; Koon Eu, Yap; Sok Choo, Ng

    2017-12-01

    Membrane with double layer structure is favourable as it exhibits smooth surface and macrovoids free structure. However, its’ performance in terms of permeability, porosity and strength has not been studied thoroughly. Additionally, the effect of flowing coagulant on the formation of double layer membrane has not been reported. Thus, the objective of this study is to investigate the performance of double layer membranes, which were prepared using flowing coagulant. Results showed that when the coagulant flow changed from laminar to turbulent, the pure water permeation of the membrane increased. It was due to the higher porosity in the membrane, which prepared by turbulent flow (CA-Turbulent) compared to the membrane which fabricated under laminar condition (CA-Laminar). This can be explained by the rapid solvent-coagulant exchange rate between the polymer solution and the turbulent coagulant. In term of strength, the tensile strength of the CA-Turbulent was ~32 MPa, which was 100% higher compared to CA-Laminar. This may due to the presence of large amount of nodules on its surface, which reduced the surface integrity. In conclusion, flowing coagulant altered the membrane properties and adopting turbulent coagulant flow in membrane fabrication would improve the porosity, surface roughness and the strength of the membrane.

  12. The electron-electron instability in a spherical plasma structure with an intermediate double layer

    International Nuclear Information System (INIS)

    Lapuerta, V.; Ahedo, E.

    2003-01-01

    A linear dynamic model of a spherical plasma structure with an intermediate double layer is analyzed in the high-frequency range. The two ion populations tend to stay frozen in their stationary response and this prevents the displacement of the double layer. Different electron modes dominate the plasma dynamics in each quasineutral region. The electrostatic potential and the electron current are the magnitudes most perturbed. The structure develops a reactive electron-electron instability, which is made up of a countable family of eigenmodes. Space-charge effects must be included in the quasineutral regions to determine the eigenmode carrying the maximum growth rate. Except for very small Debye lengths, the fundamental eigenmode governs the instability. The growth rate for the higher harmonics approaches that of an infinite plasma. The instability modes develop mainly on the plasma at the high-potential side of the double layer. The influence of the parameters defining the stationary solution on the instability growth rate is investigated, and the parametric regions of stability are found. The comparison with a couple of experiments on plasma contactors is satisfactory

  13. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  14. Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization

    International Nuclear Information System (INIS)

    Zhou, Y.M.; He, M.Z.; Xie, Z.

    2014-01-01

    Highlights: • Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum. • The Ti/TaN double layers improved the adhesion with Cu thin films and showed good diffusion barrier between Cu and SiO 2 /Si up to the annealing condition. • The failure mechanism of Ti/TaN bi-layer is similar with the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si. - Abstract: Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum better than 1 × 10 −3 Pa. Ti/TaN double layers were formed on SiO 2 /Si substrates by DC magnetron sputtering and then the properties of Cu/Ti/TaN/SiO 2 /Si film stacks were studied. It was found that the Ti/TaN double layers provide good diffusion barrier between Cu and SiO 2 /Si up to 750 °C for 30 min. The XRD, Auger and EDS results show that the Cu–Si compounds like Cu 3 Si were formed by Cu diffusion through Ti/TaN barrier for the 800 °C annealed samples. It seems that the improved diffusion barrier property of Cu/Ti/TaN/SiO 2 /Si stack is due to the diffusion of nitrogen along the grain boundaries in Ti layer, which would decrease the defects in Ti film and block the diffusion path for Cu diffusion with increasing annealing temperature. The failure mechanism of Ti/TaN bi-layer is similar to the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si

  15. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  16. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  17. Basics of Low-temperature Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A [Linde AG, Munich (Germany)

    2014-07-01

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  18. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  19. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  20. Low-temperature carbonization plant for lignite

    Energy Technology Data Exchange (ETDEWEB)

    Shiotsuki, Y

    1949-01-01

    The design and operational data of a low-temperature carbonization plant for Japanese lignite are described. The retort had a vertical cylinder with a capacity of about 10 tons per day. By continuous operation, in which a part of the gas produced was circulated and burned in the lignite zone, about 40 percent semicoke and 3 to 4 percent tar were obtained. From the tar the following products were separated: Low-temperature carbonization cresol, 18.3; motor fuel, 1.00; solvent, 9.97; cresol for medical uses, 11.85; and creosote oil, 32 percent.

  1. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    Science.gov (United States)

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  2. Low temperature thermophysical properties of lunar soil

    Science.gov (United States)

    Cremers, C. J.

    1973-01-01

    The thermal conductivity and thermal diffusivity of lunar fines samples from the Apollo 11 and Apollo 12 missions, determined at low temperatures as a function of temperature and various densities, are reviewed. It is shown that the thermal conductivity of lunar soil is nearly the same as that of terrestrial basaltic rock under the same temperature and pressure conditions.

  3. Neutrinos, dark matter and low temperature detectors

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-01-01

    The present status of cryogenic detector developments for particle physics is discussed, with emphasis on applications at the cross-disciplinary frontier between particle physics and astrophysics, where low temperature devices appear to be particularly well suited. The overwiew of results is completed by a sketch of new ideas and possible ways for further improvements. Neutrino role importance is particularly shown

  4. Low Temperature Cure Powder Coatings (LTCPC)

    Science.gov (United States)

    2010-10-01

    Dr. Glen Merfeld, General Electric Global Research evaluated and optimized the formulation, and cure and performance parameters of candidate LTCPC...Unacceptable test result = Marginal test result = Acceptable test result 80 therefore suffer from brittleness at extremely low temperatures. NASA’s

  5. Industrial Applications of Low Temperature Plasmas

    International Nuclear Information System (INIS)

    Bardsley, J N

    2001-01-01

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed

  6. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  7. Arc generators of low-temperature plasma

    International Nuclear Information System (INIS)

    Krolikowski, Cz.; Niewiedzial, R.; Siwiec, J.

    1979-01-01

    This paper is a review of works concerning investigation and use of low-temperature plasma in arc plasma generators made in Electric Power Institute of PP. There are discussed: analytical approach to a problem of volt-current and operational characteristics of DC arc plasma generators, determination of limits of their stable work and possibilities of their use to technological aims. (author)

  8. [Clinical research of arthroscopic separate double-layer suture bridge technique for delaminated rotator cuff tear].

    Science.gov (United States)

    Ren, Jiangtao; Xu, Cong; Liu, Xianglin; Wang, Jiansong; Li, Zhihuai; Lü, Yongming

    2017-10-01

    To explore the effectiveness of the arthroscopic separate double-layer suture bridge technique in treatment of the delaminated rotator cuff tear. Between May 2013 and May 2015, 54 patients with the delaminated rotator cuff tears were recruited in the study. They were randomly allocated into 2 groups to receive repair either using arthroscopic separate double-layer suture bridge technique (trial group, n =28) or using arthroscopic whole-layer suture bridge technique (control group, n =26). There was no significant difference in gender, age, injured side, tear type, and preoperative visual analogue scale (VAS) score, Constants score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) score, and the range of motion of shoulder joint between 2 groups ( P >0.05). Postoperative functional scores, range of motion, and recurrence rate of tear in 2 groups were observed and compared. The operation time was significant longer in trial group than in control group ( t =8.383, P =0.000). All incisions healed at stage Ⅰ without postoperative complication. All the patients were followed up 12 months. At 12 months postoperatively, the UCLA score, ASES score, VAS score, Constant score, and the range of motion were significantly improved when compared with the preoperative values in 2 groups ( P 0.05). Four cases (14.3%) of rotator cuff tear recurred in trial group while 5 cases (19.2%) in control group, showing no significant difference ( χ 2 =0.237, P =0.626). Compared with the arthroscopic whole-layer suture bridge technique, arthroscopic separate double-layer suture bridge technique presents no significant difference in the shoulder function score, the range of motion, and recurrence of rotator cuff tear, while having a longer operation time.

  9. Modeling Electric Double-Layer Capacitors Using Charge Variation Methodology in Gibbs Ensemble

    Directory of Open Access Journals (Sweden)

    Ganeshprasad Pavaskar

    2018-01-01

    Full Text Available Supercapacitors deliver higher power than batteries and find applications in grid integration and electric vehicles. Recent work by Chmiola et al. (2006 has revealed unexpected increase in the capacitance of porous carbon electrodes using ionic liquids as electrolytes. The work has generated curiosity among both experimentalists and theoreticians. Here, we have performed molecular simulations using a recently developed technique (Punnathanam, 2014 for simulating supercapacitor system. In this technique, the two electrodes (containing electrolyte in slit pore are simulated in two different boxes using the Gibbs ensemble methodology. This reduces the number of particles required and interfacial interactions, which helps in reducing computational load. The method simulates an electric double-layer capacitor (EDLC with macroscopic electrodes with much smaller system sizes. In addition, the charges on individual electrode atoms are allowed to vary in response to movement of electrolyte ions (i.e., electrode is polarizable while ensuring these atoms are at the same electric potential. We also present the application of our technique on EDLCs with the electrodes modeled as slit pores and as complex three-dimensional pore networks for different electrolyte geometries. The smallest pore geometry showed an increase in capacitance toward the potential of 0 charge. This is in agreement with the new understanding of the electrical double layer in regions of dense ionic packing, as noted by Kornyshev’s theoretical model (Kornyshev, 2007, which also showed a similar trend. This is not addressed by the classical Gouy–Chapman theory for the electric double layer. Furthermore, the electrode polarizability simulated in the model improved the accuracy of the calculated capacitance. However, its addition did not significantly alter the capacitance values in the voltage range considered.

  10. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the

  11. The time-dependent development of electric double-layers in saline solutions

    International Nuclear Information System (INIS)

    Morrow, R; McKenzie, D R; Bilek, M M M

    2006-01-01

    We have studied the time-dependent development of electric double-layers (ionic sheaths) in saline solutions by simultaneously solving the sodium and chlorine ion continuity equations coupled with Poisson's equation in one dimension. The study of the effects of time-varying electric fields in solution is relevant to the possible health effect of radio-frequency electric fields on cells in the human body and to assessing the potential of using external electric fields to orient proteins for attachment to surfaces for biosensing applications. Our calculations, for applied voltages of 10-175 mV between the electrode and the solution, predict time scales of ∼0.1-110 μs for the formation of double-layers in solutions of concentration between 0.001 and 1.0 M. We develop an empirical equation that can predict the double-layer formation time to within 10% over this wide parameter range. The method has been validated by comparing the solutions obtained, once the program has run to a steady state, with the standard non-linear Poisson-Boltzmann equations. Excellent agreement is found with the Gouy-Chapman solution of the non-linear Poisson-Boltzmann equation. Thus the method is not restricted in accuracy and applicability as is the case for the linear Poisson-Boltzmann equation. The method can also provide solutions for cases where there are orders of magnitude changes in the ion densities; this has not been the case for previous studies where small perturbation analysis has been employed. The method developed here can readily be extended to two and three dimensions using time-splitting methods

  12. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  13. Double-layered collagen graft to the radial forearm free flap donor sites without skin graft.

    Science.gov (United States)

    Park, Tae-Jun; Kim, Hong-Joon; Ahn, Kang-Min

    2015-12-01

    Radial forearm free flap is the most reliable flap for intraoral soft tissue reconstruction after cancer ablation surgery. However, unesthetic scar of the donor site and the need for a second donor site for skin graft are major disadvantages of the forearm flap. The purpose of this study was to report the clinical results of double-layered collagen graft to the donor site of the forearm free flap without skin graft. Twenty-two consecutive patients who underwent oral cancer ablation and forearm reconstruction between April 2010 and November 2013 were included in this study. Male to female ratio was 12:10, and average age was 61.0 years old (27-84). Double-layered collagen was grafted to the donor site of the forearm free flap and healed for secondary intention. Upper silicone had been trimmed at the periphery during secondary intention, and dry dressing was used. Postoperative scar healing and esthetic results and function were evaluated. An average follow-up period was 34.9 months. The scar area was decreased to 63.9 % in average. The complete healing was obtained between 1.5 and 3 months according to the defect size. There was no functional defect or impairment 3 months after operation. All patients were satisfied with the esthetic results. Three patients died of recurred cancer. Double-layered collagen graft was successfully performed in this study. Without the thigh skin graft, patients had experienced less painful postoperative healing periods and discomfort.

  14. Towards understanding the structure and capacitance of electrical double layer in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Maxim V. [Max Planck Institute for Mathematics in the Sciences, D 04103 Leipzig (Germany); Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kornyshev, Alexei A. [Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London (United Kingdom)

    2008-10-01

    In order to understand basic principles of the double layer formation in room temperature ionic liquids, we have performed Molecular Dynamic simulations for a simplified system: dense assembly of charged Lennard-Jones spheres between charged walls. For simplicity, in this first investigation we have considered the cations and anions of the same size. We have calculated the corresponding values of the double layer capacitance as a function of the electrode potential and compared the results with existing theories. We have found that the capacitance curve does not follow the U-shape of the Gouy-Chapman theory, but has a bell-shape in agreement with the mean-field theory that takes into account the effect of limited maximum packing of ions. The wings of capacitance decrease inversely proportional to the square root of the electrode potential, as prescribed by the mean-field theory and the charge conservation law at large electrode polarizations. We have found, however, that the mean-field theory does not quantitatively reproduce the simulation results at small electrode potentials, having detected their remarkable overscreening effects (ionic correlations). The plots for the distributions of ions near the electrode at different electrode charges show that for the considered system, unlike it is often assumed, the double layer is not one layer thick. The overscreening effects, dominating near the potential of zero charge (p.z.c.), are suppressed by the high electrode polarizations, following the onset of the so-called 'lattice saturation effect'. The maximum of the capacitance coincides with the p.z.c., but it is true only for this 'symmetric' system. If sizes of cations and anions are different the maximum will be shifted away from the p.z.c., and generally the shape of the capacitance curve could be more complicated. (author)

  15. Kinetics of the electric double layer formation modelled by the finite difference method

    Science.gov (United States)

    Valent, Ivan

    2017-11-01

    Dynamics of the elctric double layer formation in 100 mM NaCl solution for sudden potentail steps of 10 and 20 mV was simulated using the Poisson-Nernst-Planck theory and VLUGR2 solver for partial differential equations. The used approach was verified by comparing the obtained steady-state solution with the available exact solution. The simulations allowed for detailed analysis of the relaxation processes of the individual ions and the electric potential. Some computational aspects of the problem were discussed.

  16. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  17. About potential of double layer and boundary value problems for Laplace equation

    International Nuclear Information System (INIS)

    Aleshin, M.V.

    1991-01-01

    An integral operator raisen by a kernel of the double layer's potential is investigated. The kernel is defined on S (S - two-digit variety of C 2 class presented by a boundary of the finite domain in R 3 ). The operator is considered on C(S). Following results are received: the operator's spectrum belongs to [-1,1]; it's eigenvalues and eigenfunctions may be found by Kellog's method; knowledge of the operator's spectrum is enough to construct it's resolvent. These properties permit to point out the determined interation processes, solving boundary value problems for Laplace equation. One of such processes - solving of Roben problem - is generalized on electrostatic problems. 6 refs

  18. Effects of ion concentration on thermally-chargeable double-layer supercapacitors

    Science.gov (United States)

    Lim, Hyuck; Lu, Weiyi; Chen, Xi; Qiao, Yu

    2013-11-01

    The concept of thermally-chargeable supercapacitor was discussed and validated experimentally. As two double-layer supercapacitor-type devices were placed at different temperatures and connected, due to the thermal dependence of surface charge structures, the electrode potentials became different, and thermal energy could be harvested and stored as electric energy. The important effect of ion concentration was investigated. The results were quite different from the prediction of conventional surface theory, which should be attributed to the unique behaviors of the ions confined in the nanoporous electrodes.

  19. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    Science.gov (United States)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  20. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    International Nuclear Information System (INIS)

    Yoshiyuki, S.

    2012-01-01

    Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nano tube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the CNT addition is discussed

  1. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2012-01-01

    Full Text Available Electrical double-layer capacitor (EDLC was fabricated with addition of carbon nanotube (CNT to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the CNT addition is discussed.

  2. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  3. Electric Double Layer at Metal Oxide Surfaces: Static Properties of the Cassiterite-Water Interface

    Czech Academy of Sciences Publication Activity Database

    Vlček, Lukáš; Zhang, Z.; Machesky, M.L.; Fenter, P.; Rosenqvist, J.; Wesolowski, D.J.; Anovitz, L. M.; Předota, Milan; Cummings, P.T.

    2007-01-01

    Roč. 23, č. 9 (2007), s. 4925-4937 ISSN 0743-7463 Grant - others:OBES(US) DE-AC05-00OR22727; OBES(US) DE-AC02-05CH11231; OBES(US) DE-AC02-06CH11357 Institutional research plan: CEZ:AV0Z40720504 Source of funding: N - neverejné zdroje ; N - neverejné zdroje ; N - neverejné zdroje Keywords : electric double layer * cassiterite * water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.009, year: 2007

  4. Transport of energetic electrons in a magnetically expanding helicon double layer plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Cox, Wes; Hatakeyama, Rikizo

    2009-01-01

    Peripheral magnetic field lines extending from the plasma source into the diffusion chamber are found to separate two regions of Maxwellian electron energy probability functions: the central, ion-beam containing region with an electron temperature of 5 eV, and region near the chamber walls with electrons at 3 eV. Along the peripheral field lines a bi-Maxwellian population with a hot tail at 9 eV is shown to both originate from electrons in the source traveling downstream across the double layer and correspond to a local maximum in ion and electron densities.

  5. Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons

    Science.gov (United States)

    Gao, D.-N.; Zhang, J.; Yang, Y.; Duan, W.-S.

    2017-08-01

    Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.

  6. Spontaneous transfer of magnetically stored energy to Kinetic energy by electric double layers

    International Nuclear Information System (INIS)

    Lindberg, L.; Torven, S.

    1983-05-01

    Current disruptions are investigated in a magnetized plasma column with an inductive external electric circuit. It is found that they persist in spite of the fact that each disruption gives rise to a large inductive over-voltage. This drops off at an electric double layer formed in the plasma where most of the magnetic energy, initially stored in the circuit inductance, is released as particle energy. Simultanously as the current disrupts, the potential level at a local potential minimum in the plasma decreases. This is expected to cause the disruption by reflection of electrons. (authors)

  7. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    Science.gov (United States)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  8. Ion-acoustic double layers in the presence of plasma source

    International Nuclear Information System (INIS)

    Okuda, H.; Ashour-Abdalla, M.

    1981-11-01

    Steady-state plasma turbulence and formation of negative potential spikes and double layers in the presence of ion acoustic instabilities have been studied by means of one-dimensional particle simulations in which velocities of a small fraction of electrons are replaced by the initial drifting Maxwellian at a constant rate. A steady state is found where negative potential spikes appear randomly in space and time giving rise to an anomalous resistivity much greater than previously found. Comparisons of the simulation results with laboratory and space plasmas are discussed

  9. The double-layer of penetrable ions: an alternative route to charge reversal.

    Science.gov (United States)

    Frydel, Derek; Levin, Yan

    2013-05-07

    We investigate a double-layer of penetrable ions near a charged wall. We find a new mechanism for charge reversal that occurs in the weak-coupling regime and, accordingly, the system is suitable for the mean-field analysis. The penetrability is achieved by smearing-out the ionic charge inside a sphere, so there is no need to introduce non-electrostatic forces and the system in the low coupling limit can be described by a modified version of the Poisson-Boltzmann equation. The predictions of the theory are compared with the Monte Carlo simulations.

  10. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  11. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  12. Low temperature experiments in radiation biophysics

    International Nuclear Information System (INIS)

    Moan, J.

    1977-01-01

    The reasons for performing experiments in radiation biophysics at low temperatures, whereby electron spectra may be studied, are explained. The phenomenon of phosphorescence spectra observed in frozen aqueous solutions of tryptophan and adenosine is also described. Free radicals play an important part in biological radiation effects and may be studied by ESR spectroscopy. An ESR spectrum of T 1 bacteriophages irradiated dry at 130K is illustrated and discussed. Hydrogen atoms, which give lines on the spectrum, are believed to be those radiation products causing most biological damage in a dry system. Low temperature experiments are of great help in explaining the significance of direct and indirect effects. This is illustrated for the case of trypsin. (JIW)

  13. Dehydration of hydrated low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T

    1949-01-01

    Yoshida examined the mechanism of the dehydration of hydrated low-temperature tar with a microscope. The tar containing free carbon and coal dust is so stable that the removal of the above substances and water by a physical method is very difficult. Addition of light oil produced by fractionation of low-temperature tar facilitates the operations. Yoshida tried using the separate acid, neutral, and basic components of the light oil; the acid oil proved to be most effective. For many reasons it is convenient to use light oil as it is. In this method the quantity of light oil required is 2 to 3 times that of tar. But in supplementing the centrifugal method, the quantity of light oil needed might be only half the amount of tar.

  14. Technological uses of low temperature plasmas

    International Nuclear Information System (INIS)

    Lawton, J.

    1975-01-01

    Types of low temperature plasma sources considered include; arc discharge, high pressure discharge, low pressure discharge and flame. The problems of uniform heating of a gas are discussed and it is considered that the most reliable technique is the magnetically rotated arc, but expanded discharges of one kind or another are likely to be serious competitors in the future. The uses of low temperature plasma in chemistry and combustion are considered. The potential for plasma chemistry lies with processes in which the reactions occur in the plasma itself or its neighbouring gas phase, including those which require the vaporization of liquefaction of a refractory material and also highly endothermic reactions. The production of thixotropic silica and acetylene are discussed as examples of such reactions. The field of plasma and combustion including; ignition, flame ionization and soot formation, and the MHD generator, is considered. (U.K.)

  15. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  16. Behaviour of polar crystals at low temperatures

    International Nuclear Information System (INIS)

    Drozhdin, S.N.; Novik, V.K.; Gavrilova, N.D.; Koptsik, V.A.; Popova, T.V.

    1975-01-01

    Temperature dependencies of pyrocoefficient for a wide class of various pyroactive crystals in the temperature range from 4,2 to 300 deg K were investigated. The problems to be solved were: to confirm a conclusion on the pyrocoefficient γsup(sigma) tending to zero at T → 0; to compare experimental data with conclusions of existing theories; to reveal specific features in the behaviour of both linear pyroelectrics and segnetoelectrics at low temperatures. The behaviour of the total pyrocoefficient for all crystals obeys the regularity γsup(sigma) → 0 at T → O. In the range of low temperatures the pyrocoefficient varies by the power law: γsup(sigma) approximately Tsup(α). For the majority of crystals studied α is close to 3. CdS, BeO, ZiNbO 3 and other crystals were studied

  17. Low-temperature conductivity of gadolinium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S. N., E-mail: solmust@gmail.com [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan); Asadov, S. M., E-mail: mirasadov@gmail.com [Azerbaijan National Academy of Sciences, Institute of Catalysis and Inorganic Chemistry (Azerbaijan)

    2016-09-15

    In samples of GdS{sub x} (x = 1.475–2) of various compositions, the conductivity temperature dependences are investigated for the case of direct current in the low-temperature region (4.2–225 K). The presence of the activation and activationless hopping mechanisms of charge transport over the band gap of the samples of GdS{sub x} phases is established. The parameters of localized states in GdS{sub x} are determined.

  18. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  19. Crystal growth from low-temperature solutions

    International Nuclear Information System (INIS)

    Sangwal, K.

    1994-01-01

    The state of the art in crystal growth from solutions at low-temperatures has been done. The thermodynamic and kinetic parameters have been discussed in respect to different systems. The methods of crystal growth from water and organic solutions and different variants of their technical realizations have been reviewed. Also the growth by chemical reactions and gel growth have been described. The large number of examples have been shown. 21 refs, 30 figs, 3 tabs

  20. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  1. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam

    2015-03-30

    Cycloalkanes are significant constituents of conventional fossil fuels, but little is known concerning their combustion chemistry and kinetics, particularly at low temperatures. This study investigates the pressure dependent kinetics of several reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  2. Neutron moderation at very low temperatures (1691)

    International Nuclear Information System (INIS)

    Lacaze, A.

    1961-04-01

    Starting from Harwell experiment carried out inside a low-power reactor, we intended to maintain a liquid hydrogen cell in a channel of the EL3 reactor (at Saclay) whose thermal neutrons flux is 10 14 neutrons/cm 2 /s. We tried to work out a device giving off an important beam of cold neutrons and able to operate in a way as automatic as possible during many consecutive day without a stop. Several circuits have already been achieved at very low temperatures but they brought out volumes and fluxes much lower than those we used this time. The difficulties we have met in carrying out such a device arose on the one hand from the very high energy release to which any kind of experiment is inevitably submitted when placed near the core of the reactor, on the other, hand from the very little room which is available in experimental channels of reactors. In such condition, it is necessary to use a moderator as effective as possible. This study is divided into three parts ; in the first part, we try to determine: a) conditions in which moderation takes place, hence the volume of the cell; b) materials likely to be used at low temperature and in pile; c) cooling system; hence we had to study fluid flow conditions at very low temperatures in very long ducts. The second part is devoted to the description of the device. The third part ventilates the results we have obtained. (author) [fr

  3. Low temperature surface chemistry and nanostructures

    Science.gov (United States)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  4. A model for the electrical double layer combining integral equation techniques with quantum density functional theory

    International Nuclear Information System (INIS)

    Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.

    2011-01-01

    Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.

  5. Numerical simulation of current-free double layers created in a helicon plasma device

    Science.gov (United States)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  6. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.

    2013-01-25

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  7. Effect of nuclear radiation on the electrical properties of chemical double layer capacitors

    International Nuclear Information System (INIS)

    Laghari, J.R.; Hammoud, A.N.

    1990-01-01

    The effects of nuclear radiation on the electrical properties of chemical double layer capacitors are determined. The capacitors were irradiated in a 2-MW nuclear reactor to different fluence levels. The exposure rate was 2.2 x 10 10 n/cm 2 · s of thermal neutrons, 9.52 x 10 8 n/cm 2 · s of fast neutrons (> 2 MeV), and 1.47 x 10 6 rad/h of gamma radiation. The properties measured during and after irradiation included the capacitance, equivalent series resistance, and open-circuit voltage. The post-irradiation effect on the leakage current was also determined. It was found that while the capacitance increased during irradiation, the equivalent series resistance and the open-circuit voltage decreased slightly during irradiation. Changes in these properties were not permanent s was evident from post-irradiation measurements. The leakage current did not show any significant change with radiation. The results indicate that chemical double layer capacitors can be suitably used as backup power source in electronic equipment operating in a radiation environment with total fluences up to 4.05 x 10 14 n/cm 2

  8. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  9. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Javad Tavakoli

    2018-03-01

    Full Text Available Although poly vinyl alcohol-poly acrylic acid (PVA-PAA composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035 and its water vapour permeability significantly decreased (p = 0.04. Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04. The mechanical properties—including ultimate tensile strength, modulus, and elongation at break—remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016. A higher release rate for tetracycline was found at pH = 8 compared to neutral pH.

  10. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  11. Relation between the ion size and pore size for an electric double-layer capacitor.

    Science.gov (United States)

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-05

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  12. Nonlinear electron acoustic structures generated on the high-potential side of a double layer

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2009-04-01

    Full Text Available High-time resolution measurements of the electron distribution function performed in the auroral upward current region reveals a large asymmetry between the low- and high-potential sides of a double-layer. The latter side is characterized by a large enhancement of a locally trapped electron population which corresponds to a significant part (~up to 30% of the total electron density. As compared to the background hot electron population, this trapped component has a very cold temperature in the direction parallel to the static magnetic field. Accordingly, the differential drift between the trapped and background hot electron populations generates high frequency electron acoustic waves in a direction quasi-parallel to the magnetic field. The density of the trapped electron population can be deduced from the frequency where the electron acoustic spectrum maximizes. In the auroral midcavity region, the electron acoustic waves may be modulated by an additional turbulence generated in the ion acoustic range thanks to the presence of a pre-accelerated ion beam located on the high-potential side of the double layer. Electron holes characterized by bipolar pulses in the electric field are sometimes detected in correlation with these electron acoustic wave packets.

  13. Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays

    International Nuclear Information System (INIS)

    Liu Zhifeng; Jin Guojun

    2010-01-01

    We present a theoretical study of acoustic waves passing through double-layer subwavelength hole arrays. The acoustic transmission resonance and suppression are observed. There are three mechanisms responsible for the transmission resonance: the excitation of geometrically induced acoustic surface waves, the Fabry-Perot resonance in a hole cavity (I-FP resonance) and the Fabry-Perot resonance between two plates (II-FP resonance). We can differentiate these mechanisms via the dispersion relation of acoustic modes supported by the double-layer structure. It is confirmed that the coupling between two single-layer perforated plates, associated with longitudinal interval and lateral displacement, plays a crucial role in modulating the transmission properties. The strong coupling between two plates can induce the splitting of the transmission peak, while the decoupling between plates leads to the appearance of transmission suppression. By analyzing the criterion derived for transmission suppression, we conclude that it is the destructive interference between the diffracted waves and the direct transmission waves assisted by the I-FP resonance of the first plate that leads to the decoupling between plates and then the transmission suppression.

  14. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  15. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  16. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  17. Mesoporous carbon design for ionic liquid-based, double-layer supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.; Soavi, F.; Mastragostino, M. [Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna (Italy)

    2010-10-15

    The use of pyrrolidinium-based ionic liquids (ILs) in asymmetric electric double-layer capacitors (AEDLC) with positive and negative carbon electrodes of different weight is a powerful strategy for developing safe, high specific-energy supercapacitors operating at >3.5 V. The preparation and characterisation of ordered (OTC) and disordered (DTC) template carbons, the latter obtained by a fast and low-cost method, are reported. The porosity and capacitance features of the template carbons are discussed in view of their application in IL-based AEDLCs and compared with the properties of aero/cryo/xerogel carbons and a commercial activated carbon. The performance of an N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide-based AEDLC assembled with DTC carbon electrodes operating at 3.9 V featuring high specific energy of 47 Wh kg{sup -1} is then reported. The impact of porosity and surface chemistry of carbons on the electrode capacitive response in IL and on the performance of the IL-based AEDLC in terms of energy, power and weight distribution of module components is discussed. The effect of IL nature and carbon porosity on the time constant of the double-layer charging process was also investigated by voltammetric and impedance studies. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  19. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.; Schotting, R.; Leijnse, A.

    2013-01-01

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  20. Fabrication of dye sensitized solar cells with a double layer photoanode

    Directory of Open Access Journals (Sweden)

    M. Pirhadi

    2016-01-01

    Full Text Available Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs were synthesized by sacrificed template method with Carbon Spheres as template and TTIP as precursor. Then these template scarified and the hollow structures found. Since the HSs paste was prepared as same method of prepared TiO2 nano particles and this paste was deposited on last layer by Dr. Blade method. The prepared photoanodes was soaped in N-719 dye after sintering in 500 ÚC. The dye sensitized solar cells  were fabricated with the finalized double layer photoanodes. The best photovoltaic characteristics of the optimized cell were 734 mV, 13.16 mA/cm2, 62% and 5.96% for Voc, Jsc, F.F. and efficiency respectively.

  1. A polygonal double-layer coil design for high-efficiency wireless power transfer

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

  2. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  3. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2014-01-01

    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  4. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2015-10-01

    Full Text Available The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam–plasma interaction. The double layer is disrupted when reaching altitudes of 1–2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  5. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  6. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  7. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    International Nuclear Information System (INIS)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G.

    2014-01-01

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems

  8. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  9. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  11. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  12. Low-temperature preparation of pyrolytic carbon

    International Nuclear Information System (INIS)

    Kidd, R.W.; Seifert, D.A.; Browning, M.F.

    1984-01-01

    Previous studies have demonstrated that nuclear waste forms coated with chemical vapor deposited pyrolytic carbon (PyC) at about 1273 K can provide ground water leach protection. To minimize the release during coating of volatile material from the waste forms and permit the coating of waste forms with a low softening point, a study was initiated to develop parameters for the catalytic deposition of PyC at low temperatures. The parameters surveyed in a fluidized-bed coater were deposition temperatures, carbon precursors, catalyst, diluent gas, concentration, and pressure

  13. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  14. Ionometric determination of fluorides at low temperatures

    International Nuclear Information System (INIS)

    Kostyukova, I.S.; Ennan, A.A.; Dzerzhko, E.K.; Leivikova, A.A.

    1995-01-01

    A method for determining fluoride ions in solution at low temperatures using a solid-contact fluorine-selective electrode (FSE) has been developed. The effect of temperature (60 to -15 degrees C) on the calibration slope, potential equilibrium time, and operational stability is studied; the effect of an organic additive (cryoprotector) on the calibration slope is also studied. The temperature relationships obtained for the solid-contact FSEs allow appropriate corrections to be applied to the operational algorithm of the open-quotes Ftoringclose quotes hand-held semiautomatic HF gas analyzer for the operational temperature range of -16 to 60 degrees C

  15. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  16. Influence of low temperature on kinetics of magnesium alloy fatigue fracture

    International Nuclear Information System (INIS)

    Serdyuk, V.A.; Grinberg, N.M.; Malinkina, T.I.; Kamyshkov, A.S.

    1980-01-01

    Studied is the effect of low temperature on kinetics of fatigue fracture in a number of magnesium alloys (MA2-1, MA15, IMV6, MA21, MA12). Cylindrical samples have been tested in vacuum at 20 deg C and at -120 deg C using cyclic symmetric tension-compression. Presented is a dependence of residual durability of alloys at low temperature on the number of preliminary deformation reversals at room temperature. It is shown that for the MA15, MA 12 alloys the durability increases at low temperature due to increasing crack initiation duration, and the out-of-grain crack growth rate is higher at low temperature than at room temperature; whereas for the second group alloys (IMV6, MA21, MA2-1) an increase in the crack initiation stage and a decrease in the crack growth at temperature decreasing are characteristic. A conclusion is made that different behavior of Mg alloys at low temperature is conditioned by their different structural states

  17. Sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    , and their performance is examined using computer simulations. Two performance indices are used in this work, (a) the level difference between the average sound energy density in the listening zone and that in the quiet zone (sometimes called “the acoustic contrast”), and (b) a normalized measure of the deviations...... between the desired and the generated sound field in the listening zone. It is concluded that the best compromise is obtained with a method that combines pure contrast maximization with a pressure matching technique.......This paper describes a method of generating a controlled sound field for listeners inside a circular array of loudspeakers without disturbing people outside the array appreciably. To achieve this objective, a double-layer array of loudspeakers is used. Several solution methods are suggested...

  18. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  19. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  20. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  1. The Comparison of Engineering Properties Between Single and Double Layer Porous Asphalt made of Packing Gradation

    Directory of Open Access Journals (Sweden)

    Hardiman M. Y

    2008-01-01

    Full Text Available is paper presents the comparison of engineering properties between single and double layer porous asphalt (SLPA and DLPA made of packing gradation. Three nominal maximum aggregate sizes (NMAS were tested each made up of 10, 14, and 20 mm for SLPA. While for the DLPA with 30, 20, and 15 mm top layer are made of 10 and 14 mm NMAS, with a base layer of 20 mm NMAS. Total thickness of all mixes is 70 mm. Binders used are 60/70 penetration base bitumen and polymer binder styrene-butadiene-styrene (SBS. The result shows that the properties of SLPA mix namely permeability and resistance to abrasion loss decreases when the NMAS in SLPA decreases. The abrasion loss of DLPA mixes increases when the porous asphalt top layer thickness decreases, while drainage time value decreases. However, SLPA with 20 mm NMAS exhibits higher abrasion loss compared to all DLPA mixes.

  2. Enhancement of proton acceleration field in laser double-layer target interaction

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-01-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations

  3. Switching LPV Control with Double-Layer LPV Model for Aero-Engines

    Science.gov (United States)

    Tang, Lili; Huang, Jinquan; Pan, Muxuan

    2017-11-01

    To cover the whole range of operating conditions of aero-engine, a double-layer LPV model is built so as to take into account of the variability due to the flight altitude, Mach number and the rotational speed. With this framework, the problem of designing LPV state-feedback robust controller that guarantees desired bounds on both H_∞ and H_2 performances is considered. Besides this, to reduce the conservativeness caused by a single LPV controller of the whole flight envelope and the common Lyapunov function method, a new method is proposed to design a family of LPV switching controllers. The switching LPV controllers can ensure that the closed-loop system remains stable in the sense of Lyapunov under arbitrary switching logic. Meanwhile, the switching LPV controllers can ensure the parameters change smoothly. The validity and performance of the theoretical results are demonstrated through a numerical example.

  4. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    Science.gov (United States)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  5. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma; Pu, Jiang; Li, Ming Yang; Li, Lain-Jong; Iwasa, Yoshihiro; Takenobu, Taishi

    2015-01-01

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  6. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  7. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    Science.gov (United States)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  8. Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Seo, Min Kang; Park, Soo Jin

    2012-01-01

    In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process

  9. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    International Nuclear Information System (INIS)

    Laszczyk, Karolina U; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-01-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit. (paper)

  10. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    Science.gov (United States)

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  11. Graphene electric double layer capacitor with ultra-high-power performance

    International Nuclear Information System (INIS)

    Miller, John R.; Outlaw, R.A.; Holloway, B.C.

    2011-01-01

    We have demonstrated, for the first time, efficient 120 Hz filtering by an electric double layer capacitor (EDLC). The key to this ultra-high-power performance is electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized both electronic and ionic resistance and produced capacitors having RC time-constants of less than 200 μs. Significantly, graphene nanosheets have a preponderance of exposed edge planes that greatly increase stored charge over designs relying on basal plane surfaces. Collectively these factors make vertically oriented graphene nanosheet electrodes ideally suited for producing high-frequency EDLCs. Capacitors constructed with these electrodes are predicted to be significantly smaller than aluminum electrolyte capacitors that they could functionally replace plus be manufactured using standard semiconductor process equipment, creating interesting commercial opportunities.

  12. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    International Nuclear Information System (INIS)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Hara, Motoaki; Kuwano, Hiroki; Yanazawa, Hiroshi

    2014-01-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm 2 , which is about 530 times larger than that of an EDLC consisting of flat Au electrodes

  13. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  14. Graphene double-layer capacitor with ac line-filtering performance.

    Science.gov (United States)

    Miller, John R; Outlaw, R A; Holloway, B C

    2010-09-24

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  15. Formation of double layers: shocklike solutions of an mKdV-equation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Chanteur, G.

    1985-10-01

    Small amplitude double layers (DLs) in a plasma with a suitable electron distribution may be identified with shocklike solutions of a modified Korteweg-deVries (mKdV) equation. A thought experiment for the formation of such DLs is specified to clarify the physical constraints and to demonstrate the emergence of a DL from an initial disturbance. A scattering formulation of the mKdV initial value problem may be diagonalised to give a pair of Schroedinger equations with a scattering potential satisfying the ordinary KdV equation. The initial value problem can then be treated using Khruslov's generalisation of the inverse scattering method which allows a difference in the asymptotic values of the potential. A necessary and sufficient condition for the emergence of a shocklike soliton (wave) train and of a finite number of isolated solitons may also be determined from the scattering properties of the initial potential. With 26 refs and 5 figures. (Author)

  16. Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves

    Science.gov (United States)

    Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.

    We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.

  17. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    Science.gov (United States)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  18. Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors

    Science.gov (United States)

    Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj

    2010-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.

  19. Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces

    Science.gov (United States)

    Divya, Velpula; Sangaranarayanan, M. V.

    2018-04-01

    Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.

  20. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    Science.gov (United States)

    Laszczyk, Karolina U.; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2015-12-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit.

  1. Double-layer capacitors with a higher energy density; Doppelschichtkondensatoren mit hoeherem Energieinhalt

    Energy Technology Data Exchange (ETDEWEB)

    Presser, Volker [Leibniz-Institut fuer Neue Materialien (INM) gGmbH, Saarbruecken (Germany). Juniorforschungs-Gruppe Energie-Materialien; Universitaet des Saarlandes, Saarbruecken (Germany)

    2013-05-15

    Electrical double-layer capacitors, also known as supercapacitors (SC) are devices for electrical energy storage used for fast acceleration of hybrid cars or for the energy recovery during breaking operations. In contrast, lithium-ion batteries (LIB) are used as energy storage devices to provide an extended travel distance for plug-in hybrid cars and electric vehicles. Current research aims to overcome the major limitations of both technologies (SC: low energy density/LIB: slow recharge and limited service life) and hybrid cells are considered a promising solution. The goal is to improve the performance and energy density of storage devices which can be achieved, as shown by the Leibniz-Institute for New Materials (INM), with the use of nanotechnology. (orig.)

  2. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.

    Science.gov (United States)

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V; Poklonski, Nikolai A; Siahlo, Andrei I; Vyrko, Sergey A

    2013-10-21

    Structural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed.

  3. Graphene Double-Layer Capacitor with ac Line-Filtering Performance

    Science.gov (United States)

    Miller, John R.; Outlaw, R. A.; Holloway, B. C.

    2010-09-01

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  4. Luminescence spectra of CdSe/ZnSe double layers of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Reznitsky, Alexander; Permogorov, Sergei; Korenev, Vladimir V.; Sedova, Irina; Sorokin, Sergey; Sitnikova, Alla; Ivanov, Sergei [A.F. Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Klochikhin, Albert [B.P. Konstantinov Nuclear Physics Institute, St. Petersburg (Russian Federation)

    2009-12-15

    We have studied the emission spectra and structural properties of double CdSe/ZnSe quantum dot (QD) sheet structures grown by molecular beam epitaxy in order to elucidate the mechanisms of the electronic and strain field interaction between the QD planes. The thickness of the ZnSe barrier separating the CdSe sheets was in the range of 10-60 monolayers (ML) in the set of samples studied. We have found that coupling between dots in adjacent layers becomes relatively strong in CdSe/ZnSe double layers structures with 25-27 ML barrier, while it is rather weak when the barrier thickness exceeds 30 ML. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Nanographene derived from carbon nanofiber and its application to electric double-layer capacitors

    International Nuclear Information System (INIS)

    Mitani, Satoshi; Sathish, Marappan; Rangappa, Dinesh; Unemoto, Atsushi; Tomai, Takaaki; Honma, Itaru

    2012-01-01

    The fascinating properties of graphene are attracting considerable attention in engineering fields such as electronics, optics, and energy engineering. These properties can be controlled by controlling graphene's structure, e.g., the number of layers and the sheet size. In this study, we synthesized nanosized graphene from a platelet-type carbon nanofiber. The thickness and size of nanographene oxide are around 1 nm and 60 nm and we obtained nanographene by hydrazine reduction of nanographene oxide. We applied the nanographene to an ionic-liquid electric double-layer capacitor (EDLC), which exhibited a much larger capacitance per specific surface area than an EDLC using conventional activated carbon. Furthermore, the capacitance increased significantly with increasing cycle time. After 30th cycle, the capacitance was achieved 130 F g −1 , though the surface area was only 240 m 2 g −1 . These results suggest that nanographene structure induce the capacitance enhancement.

  6. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  7. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  8. Comparison of density functional and modified Poisson-Boltzmann structural properties for a spherical double layer

    Directory of Open Access Journals (Sweden)

    L.B.Bhuiyan

    2005-01-01

    Full Text Available The density functional and modified Poisson-Boltzmann descriptions of a spherical (electric double layer are compared and contrasted vis-a-vis existing Monte Carlo simulation data (for small ion diameter 4.25·10-10 m from the literature for a range of physical parameters such as macroion surface charge, macroion radius, valencies of the small ions, and electrolyte concentration. Overall, the theoretical predictions are seen to be remarkably consistent between themselves, being also in very good agreement with the simulations. Some modified Poisson-Boltzmann results for the zeta potential at small ion diameters of 3 and 2·10-10 m are also reported.

  9. Application of a recently proposed test to the hypernettedchain approximation for the electric double layer

    Directory of Open Access Journals (Sweden)

    D.Henderson

    2007-09-01

    Full Text Available Bhuiyan, Outhwaite, and Henderson, J. Electroanal. Chem., 2007, 607, 54, have studied the electric double layer formed by a symmetric electrolyte in the restricted primitive model and suggested that an examination of the product of the coion and counter ion profiles, normalized to the one when the distance of an ion from the electrode is large, is an interesting and useful test of a theory. This product is identically one in the Poisson-Boltzmann theory but simulation results show that, at contact, this product can be greater or smaller than one at small electrode charge but always seems to tend to zero at large electrode charge. In this study we report the results of the hypernetted chain approximation (HNC/MSA version for this product and find that, at contact, for this theory this product is always greater than the one at small electrode charge but tends to zero at large electrode charge.

  10. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    Science.gov (United States)

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  11. Meissner effect in clean proximity-contact N-S double layer

    International Nuclear Information System (INIS)

    Higashitani, S.; Nagai, K.

    1994-01-01

    The Meissner effect in proximity-contact normal-superconducting (N-S) double layers is discussed in the clean limit. We obtain the quasi-classical Green's function linear in the vector potential such that satisfies the boundary conditions at the layer ends and also at the N-S interface with a finite reflection coefficient R. We find that, when there is no pairing interaction in the normal layer, the diamagnetic current in the normal layer is constant in space, consequently the magnetic field decreases linearly in the normal layer. To compare our theory with experiments, we calculate the screening length and find a good agreement in the temperature dependence with the experiments in the Au-Nb system. (orig.)

  12. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma

    2015-04-27

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  13. Double-layered metal grating for high-performance refractive index sensing.

    Science.gov (United States)

    Li, Guozhen; Shen, Yang; Xiao, Guohui; Jin, Chongjun

    2015-04-06

    The detection of minuscule changes in the local refractive index by localized surface plasmon resonances (LSPRs), carried by metal nanostructures, has been used successfully in applications such as real-time and label-free detection of molecular binding events. However, localized plasmons demonstrate 1-2 orders of magnitude lower figure of merit (FOM) compared with their propagating counterparts. Here, we propose and experimentally demonstrate a high-performance refractive index sensor based on a structure of double-layered metal grating (DMG) with an FOM and FOM* reaching 38 and 40 respectively under normal incidence. Such a high FOM and FOM* arise from a result of a sharp fano resonance, which is caused by the coherent interference between the LSPR from the individual top gold stripes and Wood's anomaly (WA). Moreover, a small conformal decay length of ~68 nm is determined in DMG, indicating that the DMG is a promising candidate for label-free biomedical sensing.

  14. Nitrous oxide emissions at low temperatures

    International Nuclear Information System (INIS)

    Martikainen, P.J.

    2002-01-01

    Microbial processes in soil are generally stimulated by temperature, but at low temperatures there are anomalies in the response of microbial activities. Soil physical-chemical characteristics allow existence of unfrozen water in soil also at temperatures below zero. Therefore, some microbial activities, including those responsible for nitrous oxide (N 2 0) production, can take place even in 'frozen' soil. Nitrous oxide emissions during winter are important even in boreal regions where they can account for more than 50% of the annual emissions. Snow pack therefore has great importance for N 2 0 emissions, as it insulates soil from the air allowing higher temperatures in soil than in air, and possible changes in snoav cover as a result of global warming would thus affect the N 2 0 emission from northern soils. Freezing-thawing cycles highly enhance N 2 0 emissions from soil, probably because microbial nutrients, released from disturbed soil aggregates and lysed microbial cells, support microbial N 2 0 production. However, the overall interactions between soil physics, chemistry, microbiology and N 2 0 production at low temperatures, including effects of freezing-thawing cycles, are still poorly known. (au)

  15. Efficient prepreg recycling at low temperatures

    Science.gov (United States)

    Pannkoke, Kord; Oethe, Marcus; Busse, Jürgen

    When manufacturing fibre reinforced plastics engineers are still confronted with a lack of experience concerning efficient recycling methods for prepreg cutting waste. Normally, the prepregs are cured and subsequently milled to use them as a filler material for polymers. However, this method is expensive and it is difficult to find applications for the milled FRP. An alternative method to recycle CFRP prepregs will be presented in this paper. Cutting the uncured prepreg waste was done by means of a saw mill which was cooled down to low temperatures. Working temperatures of -30°C are sufficient to harden the uncured resin and to achieve cuttable prepregs. Furthermore, post-curing during the cutting process is avoided with this technique. The result is a `cotton'-like matted structure with random fibre orientation and fibre length distribution. Subsequent curing was done by means of a press and an autoclave, respectively. It will be shown by means of tension and bending tests that low-temperature cutting of uncured prepregs is a way to partly conserve the high valuation of FRP during recycling. Furthermore, it offers possibilities for various applications.

  16. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  17. Extreme low temperature tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    George Richard Strimbeck

    2015-10-01

    Full Text Available Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40˚C and minimum temperatures below -60˚C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196˚C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature. Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at extreme low temperature: 1. Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to 30˚C, preventing phase changes that result in irreversible injury. 2. High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. 3. Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

  18. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam; Zá dor, Judit; Sarathy, Mani

    2015-01-01

    reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  19. Ion Acceleration by Ultra-intense Laser Pulse Interacting with Double-layer Near-critical Density Plasma

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Nagashima, T.; Takano, M.; Barada, D.; Ma, Y. Y.

    2016-01-01

    A collimated ion beam is generated through the interaction between ultra-intense laser pulse and a double layer plasma. The maximum energy is above 1 GeV and the total charge of high energy protons is about several tens of nC/μm. The double layer plasma is combined with an underdense plasma and a thin overdense one. The wakefield traps and accelerates a bunch of electrons to high energy in the first underdense slab. When the well collimated electron beam accelerated by the wakefield penetrates through the second overdense slab, it enhances target normal sheath acceleration (TNSA) and breakout after-burner (BOA) regimes. The mechanism is simulated and analyzed by 2.5 dimensional Particle-in-cell code. Compared with single target TNSA or BOA, both the acceleration gradient and energy transfer efficiency are higher in the double layer regime. (paper)

  20. Evaluation of electric double layer capacitor using Ketjenblack as conductive nanofiller

    International Nuclear Information System (INIS)

    Tashima, Daisuke; Yoshitama, Hiromu; Otsubo, Masahisa; Maeno, Seiji; Nagasawa, Yoshinobu

    2011-01-01

    Highlights: → The capacitances of electric double layer capacitors (EDLCs) with nanocomposite electrodes were examined. → It was found that the Ketjenblack-containing EDLCs showed fairly high capacitance (150-210 F/g) compared to EDLCs containing acetylene black with the aqueous electrolyte. → A maximum specific capacitance of 252 F/g was obtained in EDLCs containing 20 wt.% KB with a large amount of the surface functional group. → Reduction-oxidation reactions were thought to occur at the interface between the electrolyte and surface functional group, which increased the specific capacitance of the EDLCs. - Abstract: In this study, the capacitances of electric double layer capacitors (EDLCs) with nanocomposite electrodes were examined by analyzing their charge-discharge characteristics and cyclic voltammograms. In addition, the internal resistance of these EDLCs was evaluated using two kinds of conductive nanofillers: acetylene black (AB) and Ketjenblack (KB). Usually, KB exhibits higher electronic conductivity than AB. The temperature dependence of the capacitance and internal resistance of the prepared EDLCs at 0-50 deg. C using an aqueous electrolyte, organic electrolyte, and two kinds of ionic liquids was evaluated. Moreover, the influence on the capacitance and internal resistance when KB containing a surface functional group is used as the conductive nanofiller of the polarized electrode was examined. It was found that the KB-containing EDLCs showed fairly high capacitance (150-210 F/g) compared to EDLCs containing AB with the aqueous electrolyte. In addition, a maximum specific capacitance of 252 F/g was obtained in EDLCs containing 20 wt.% KB with a large amount of the surface functional group. Reduction-oxidation reactions were thought to occur at the interface between the electrolyte and surface functional group, which increased the specific capacitance of the EDLCs.

  1. On the physical mechanism at the origin of multiple double layers appearance in plasma

    International Nuclear Information System (INIS)

    Dimitriu, D.G.; Gurlui, S.; Aflori, M.; Ivan, L.M.

    2005-01-01

    Double layers (DLs) in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charge, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a DL structure is to positively bias an electrode immersed in asymptotic stable plasma. In this way, a complex space charge structure (CSCS) in form of a positive 'nucleus' surrounded by a nearly spherical DL is obtained. Under certain experimental conditions (gas nature and pressure, plasma density, electron temperature) a more complex structure in form of two or more subsequent DLs was observed, which was called multiple double layers (MDL). It appears as several bright and concentric plasma shells attached to the electrode. The successive DLs are located at the abrupt changes of luminosity between two adjacent plasma shells. Probe measurements emphasized that the axial profile of the plasma potential has a stair steps shape, with potential jumps close to the ionization potential of the used gas. Experimental results clarify the essential role of excitation and ionization electron-neutral collisions for the generation and dynamics of MDL structures. However, if the electrode is large, the MDL structure appears non-concentrically, as a network of plasma spheres, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is a CSCS as described above. Here, we will present experimental result on concentric and non-concentric MDL, which prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism the electron-neutral impact excitations and ionizations play the key role. A simultaneously generation of both types of MDL was recorded. The dynamics of the MDL structures was analyzed by using the modern methods provided by the nonlinear dynamics. In this way, a scenario of transition to chaos by torus breakdown was emphasized, related with the

  2. Particle dynamics and current-free double layers in an expanding, collisionless, two-electron-population plasma

    International Nuclear Information System (INIS)

    Hairapetian, G.; Stenzel, R.L.

    1991-01-01

    The expansion of a two-electron-population, collisionless plasma into vacuum is investigated experimentally. Detailed in situ measurements of plasma density, plasma potential, electric field, and particle distribution functions are performed. At the source, the electron population consists of a high-density, cold (kT e congruent 4 eV) Maxwellian, and a sparse, energetic ( (1)/(2) mv 2 e congruent 80 eV) tail. During the expansion of plasma, space-charge effects self-consistently produce an ambipolar electric field whose amplitude is controlled by the energy of tail electrons. The ambipolar electric field accelerates a small number (∼1%) of ions to streaming energies which exceed and scale linearly with the energy of tail electrons. As the expansion proceeds, the energetic tail electrons electrostatically trap the colder Maxwellian electrons and prevent them from reaching the expansion front. A potential double layer develops at the position of the cold electron front. Upstream of the double layer both electron populations exist; but downstream, only the tail electrons do. Hence, the expansion front is dominated by retarded tail electrons. Initially, the double layer propagates away from the source with a speed approximately equal to the ion sound speed in the cold electron population. The propagation speed is independent of the tail electron energy. At later times, the propagating double layer slows down and eventually stagnates. The final position and amplitude of the double layer are controlled by the relative densities of the two electron populations in the source. The steady-state double layer persists till the end of the discharge (Δt congruent 1 msec), much longer than the ion transit time through the device (t congruent 150 μsec)

  3. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  4. Radically Different Kinetics at Low Temperatures

    Science.gov (United States)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  5. Low temperature distillation of coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-12

    A process is disclosed for the low temperature distillation of solid carbonaceous fuels, such as coal, lignite, shale or the like, which comprises feeding or supplying the comminuted fuel in the form of a layer of shallow depth to drying and distilling zones in succession moving the fuel forward through the zones, submitting it to progressively increasing nonuniform heating therein by combustion gases supplied to the distillation zone and traveling thence to the drying zone, the gases heating the distillation zone indirectly and the drying zone both indirectly and then directly such that the fuel retains its solid discrete form during substantially the whole of its travel through the drying and distillation zones, subjecting the fuel for a portion of its travel to a zigzag ploughing and propelling movement on a heated sole, and increasing the heating so as to cause fusion of the fuel immediately prior to its discharge from the distillation zone.

  6. On Low-temperature Polyamorphous transformations

    International Nuclear Information System (INIS)

    Bakay, A.S.

    2006-01-01

    A theory of polyamorphous transformations in glasses is constructed in the framework of a model of heterophase fluctuations with allowance for the fact that a glass inherits the short- and intermediate-range order from the liquid. A multicomponent order parameter describing the concentration of fluctuons with different types of short-range order is introduced, along with the concepts of isoconfigurational and non-isoconfigurational transitions in the glass. Taking the nonergodicity, nonequilibrium, and multiplicity of structural states of a glass into account leads to a kinetic criterion of observability of polyamorphism of a glass. As an example, a theory is constructed for the low-temperature first-order phase transition in an orientational glass based on doped fullerite. The relaxation processes of this system are described, including the subsystem of tunneling states. The possibility of a hierarchy of polyamorphous transformations in a glass is discussed

  7. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  8. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  9. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  10. Desalination by very low temperature nuclear heat

    International Nuclear Information System (INIS)

    Saari, Risto

    1977-01-01

    A new sea water desalination method has been developed: Nord-Aqua Vacuum Evaporation, which utilizes waste heat at a very low temperature. The requisite vacuum is obtained by the aid of a barometric column and siphon, and the dissolved air is removed from the vacuum by means of water flows. According to test results from a pilot plant, the process is operable if the waste heat exists at a temperature 7degC higher than ambient. The pumping energy which is then required is 9 kcal/kg, or 1.5% of the heat of vaporization of water. Calculations reveal that the method is economically considerably superior to conventional distilling methods. (author)

  11. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  12. Low temperature distillation of powdered materials

    Energy Technology Data Exchange (ETDEWEB)

    1929-04-11

    In the low temperature distillation of powdered material such as coal, brown coal, or oil shale, dust carried by the gases and vapors is precipitated by supplying liquid hydrocarbons to the effluent gases, for example, to a dust remover through which the distillates pass. The material is supplied through a hopper and moved through a retort by a worm feed, and is discharged into a sump. Scavenging gases such as steam may be introduced through a pipe. Two conveyor worms moving in opposite directions are provided in an outlet conduit which may be surrounded by a cooling jacket. Heavy hydrocarbons condense on the walls of the conduit and on the conveyor worms and serve as dust catchers for the distillates, the lighted volatiles escaping through an outlet. The high boiling point oils flow back to and are cracked in the retort. Oils such as tar oils may be sprayed into the conduit or directly adjacent the entry of the material from feeding hopper.

  13. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  14. Biomedical applications using low temperature plasma technology

    International Nuclear Information System (INIS)

    Dai Xiujuan; Jiang Nan

    2006-01-01

    Low temperature plasma technology and biomedicine are two different subjects, but the combination of the two may play a critical role in modern science and technology. The 21 st century is believed to be a biotechnology century. Plasma technology is becoming a widely used platform for the fabrication of biomaterials and biomedical devices. In this paper some of the technologies used for material surface modification are briefly introduced. Some biomedical applications using plasma technology are described, followed by suggestions as to how a bridge between plasma technology and biomedicine can be built. A pulsed plasma technique that is used for surface functionalization is discussed in detail as an example of this kind of bridge or combination. Finally, it is pointed out that the combination of biomedical and plasma technology will be an important development for revolutionary 21st century technologies that requires different experts from different fields to work together. (authors)

  15. Low-temperature geothermal resources of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, J.E. [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources; Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  16. Low-temperature glycerolysis of avocado oil

    Science.gov (United States)

    Satriana, Arpi, Normalina; Supardan, Muhammad Dani; Gustina, Rizka Try; Mustapha, Wan Aida Wan

    2018-04-01

    Glycerolysis can be a useful technique for production of mono- and diacylglycerols from triacylglycerols present in avocado oil. In the present work, the effect of catalyst and co-solvent concentration on low-temperature glycerolysis of avocado oil was investigated at 40oC of reaction temperature. A hydrodynamic cavitation system was used to enhance the miscibility of the oil and glycerol phases. NaOH and acetone were used as catalyst and co-solvent, respectively. The experimental results showed that the catalyst and co-solvent concentration affected the glycerolysis reaction rate. The catalyst concentration of 1.5% and co-solvent concentration of 300% were the optimised conditions. A suitable amount of NaOH and acetone must be added to achieve an optimum of triacylglycerol conversion.

  17. Low Temperature Waste Immobilization Testing Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  18. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    International Nuclear Information System (INIS)

    Green, Michael A.

    2000-01-01

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given

  19. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  20. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  1. Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors

    NARCIS (Netherlands)

    Yuan, Hongtao; Shimotani, Hidekazu; Ye, Jianting; Yoon, Sungjae; Aliah, Hasniah; Tsukazaki, Atsushi; Kawasaki, Masashi; Iwasa, Yoshihiro

    2010-01-01

    The electric-double-layer (EDL) formed at liquid/solid interfaces provides a broad and interdisciplinary attraction in terms of electrochemistry, photochemistry, catalysts, energy storage, and electronics because of the large interfacial capacitance coupling and its ability for high-density charge

  2. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    Science.gov (United States)

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  3. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  4. Double-layered buffer to enhance the thermal performance in a high-level radioactive waste disposal system

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Choi, Jongwon

    2008-01-01

    A thermal performance is one of the most important factors in the design of a geological disposal system for high-level radioactive wastes. According to the conceptual design of the Korean Reference disposal System, the maximum temperature of its buffer with a domestic Ca-bentonite is close to the thermal criterion, 100 deg. C. In order to improve the thermal conductivity of its buffer, several kinds of additives are compared. Among the additives, graphite shows the best result in that the thermal conductivity of the bentonite block is more than 2.0 W/m deg. C. We introduced the concept of a double-layered buffer instead of a traditional bentonite block in order to use the applied additive more effectively. The thermal analysis, based upon the three-dimensional finite element method, shows that a double-layered buffer could reduce the maximum temperature on a canister's surface by 7 deg. C under identical conditions when compared with a single-layered buffer. An analytical solution was derived to efficiently analyze the effects of a double-layered buffer. The illustrative cases show that the temperature differences due to a double-layered buffer depend on the thickness of the buffer

  5. Clinical Results and Mechanical Properties of the Carotid CGUARD Double-Layered Embolic Prevention Stent.

    Science.gov (United States)

    Wissgott, Christian; Schmidt, Wolfram; Brandt-Wunderlich, Christoph; Behrens, Peter; Andresen, Reimer

    2017-02-01

    To report early clinical outcomes with a novel double-layer stent for the internal carotid artery (ICA) and the in vitro investigation of the stent's mechanical properties. A prospective single-center study enrolled 30 consecutive patients (mean age 73.1±6.3 years; 21 men) with symptomatic (n=25) or high-grade (n=5) ICA stenosis treated with the new double-layer carotid CGUARD Embolic Prevention System (EPS) stent, which has an inner open-cell nitinol design with an outer closed-cell polyethylene terephthalate layer. The average stenosis of the treated arteries was 84.1%±7.9% with a mean lesion length of 16.6±2.1 mm. In the laboratory, 8×40-mm stents where tested in vitro with respect to their radial force during expansion, the bending stiffness of the stent system and the expanded stent, as well as the collapse pressure in a thin and flexible sheath. The wall adaptation was assessed using fluoroscopy after stent release in step and curved vessel models. The stent was successfully implanted in all patients. No peri- or postprocedural complications occurred; no minor or major stroke was observed in the 6-month follow-up. The bending stiffness of the expanded stent was 63.1 N·mm 2 and (not unexpectedly) was clearly lower than that of the stent system (601.5 N·mm 2 ). The normalized radial force during expansion of the stent to 7.0 mm, consistent with in vivo sizing, was relatively high (0.056 N/mm), which correlates well with the collapse pressure of 0.17 bars. Vessel wall adaptation was harmonic and caused no straightening of the vessel after clinical application. Because of its structure, the novel CGUARD EPS stent is characterized by a high flexibility combined with a high radial force and very good plaque coverage. These first clinical results demonstrate a very safe implantation behavior without any stroke up to 6 months after the procedure.

  6. On the theory of electric double layer with explicit account of a polarizable co-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig (Germany); Kiselev, M. G. [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation)

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  7. On the theory of electric double layer with explicit account of a polarizable co-solvent

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2016-01-01

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  8. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Bayer, E.

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm 3 to 0.52 g.cm 3 . Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g -1 ), while O. martiana contained the highest lignin content (40.7 g.100g -1 ). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V micro ) was between 0.33cm 3 .g -1 - 0.40cm 3 .g -1 , while the mesopore volume(V meso ) was between 0.05 cm 3 .g -1 - 0.07 cm 3 .g -1 . The BET specific surface exceeds 1000 m 2 .g -1 . All these values compared favourably with high grade commercial active carbons. (author)

  9. Low Temperature Catalyst for NH3 Removal

    Science.gov (United States)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  10. Pyrocatechol from low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstein-Lom, W

    1950-01-01

    A method for production and purification of pyrocatechol (I) from low-temperature carbonization effluents was described. Phenosolvan, a mixture of isobutyl, butyl, and amyl acetates, was used for extraction of I from the effluent. After removing most of the solvent by distillation, the separation was completed by batch vacuum distillation at 25 to 50 millimeter Hg. The 4th fraction, containing I 49.2, I homologues 31.1, o-cresol 6.8, xylenols 7.3, and higher boiling material and residue 5.6 percent, was treated in a purification pilot plant, which was described. This fraction was dissolved in an equal weight of C/sub 6/H/sub 6/, then cooled. I was crystallized out in a vacuum crystallizer, centrifuged, and washed with C/sub 6/H/sub 6/, dried in a rotating-plate drier and taken to storage. The purified I melted 100/sup 0/ to 102/sup 0/ and contained 4 to 8 percent homologues or other impurities. A further recrystallization raised its purity to 99.2 percent. Plant capacities and production costs are given.

  11. Enhanced Design Alternative I: Low Temperature Design

    International Nuclear Information System (INIS)

    MacNeil, K.

    1999-01-01

    The purpose of this document is to evaluate Enhanced Design Alternative (EDA) 1, the low temperature repository design concept (CRWMS M and O 1999a). This technical document will provide supporting information for Site Recommendation (SR) and License Application (LA). Preparation of this evaluation will be in accordance with the technical document preparation plan (TDPP), (CRWMS M and O 1999b). EDA 1, one of five EDAs, was evolved from evaluation of a series of design features and alternatives developed during the first phase of the License Application Design Selection (LADS) process. Low, medium, and high temperature concepts were developed from the design features and alternatives prepared during Phase 1 of the LADS effort (CRWMS M and O 1999a). EDA 1 will first be evaluated against a single Screening Criterion, outlined in CRWMS M and O 1999a, which addresses post-closure performance of the repository. The performance of the repository is defined quantitatively as the peak radiological dose rate to an average individual of a critical group at a distance of 20 km from the repository site within 10,000 years. To satisfy this criterion the peak dose rate must not exceed the anticipated regulatory level of 25 mrem/yr within 10,000 years. If the EDA meets the screening criterion, the EDA will be further evaluated against the LADS Phase 2 Evaluation Criteria contained in CRWMS M and O 1999a

  12. Low temperature nitrogen chemistry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Dam-Johansen, K.; Kristensen, P.G.; Alzueta, M.; Roejel, H.

    1997-04-01

    The results of a two tasks program on Natural Gas Reburning are reported. The work involved an experimental and theoretical study of the reburning and hybrid reburning/SNCR chemistry in the 1000-1500 K range. The interactions between hydrocarbon and nitrogen chemistry under fuel-rich conditions were investigated in order to assess the NO{sub x} reduction potential of low temperature reburning. The effect of reburn fuel(carbon monoxide, methane, acetylene, ethylene, ethane, and methane/ethane mixture), temperature, stoichiometry, reactant dilution, reaction time, and inlet NO level were studied. The results indicate a significant NO reduction potential even below 1400 K, but extrapolation to practical conditions are complicated by inadequate knowledge of the detailed chemistry as well as of the effect of mixing. The possibilities of enhancing the conversion to N{sub 2} instead of NO by adding selective reducing agents (hybrid reburning/SNCR) were evaluated. Our results indicate little synergistic effect between reburn and SNCR. The most simple configuration, where the selective reducing agent is injected together with the burnout air, is not expected to be effective, unless the N-agent is injected in form of an aqueous solution. A chemical kinetic model for reburning and reburn/SNCR is listed and can be obtained by e-mail from pgl(commerical at)kt.dtu.dk.(au) 145 refs.

  13. Active carbons from low temperature conversion chars

    Energy Technology Data Exchange (ETDEWEB)

    Adebowale, K O [Department of Chemistry, University of lbadan, lbadan (Nigeria); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Bayer, E [Universitaet Tuebingen, Institut fuer Organische Chemie, Forschungstelle Nukleinsaeure- und Peptidchemie, Tuebingen (Germany)

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm{sup 3} to 0.52 g.cm{sup 3}. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g{sup -1}), while O. martiana contained the highest lignin content (40.7 g.100g{sup -1}). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V{sub micro}) was between 0.33cm{sup 3}.g{sup -1} - 0.40cm{sup 3}.g{sup -1}, while the mesopore volume(V{sub meso}) was between 0.05 cm{sup 3}.g{sup -1} - 0.07 cm{sup 3}.g{sup -1}. The BET specific surface exceeds 1000 m{sup 2}.g{sup -1}. All these values compared favourably with high grade commercial active carbons. (author)

  14. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  15. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, V. [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia); Pandolfo, A.G., E-mail: tony.pandolfo@csiro.a [CSIRO Division of Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia)

    2010-10-30

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m{sup 2} g{sup -1}, and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et{sub 4}NBF{sub 4}/ACN) is investigated. Carbon materials with a low average pore size (<{approx}0.6 nm) exhibited electrolyte accessibility issues and an associated decrease in capacitance at high charging rates. PFA carbons with larger average pore sizes exhibited greatly improved performance, with specific electrode capacitances of 150 F g{sup -1} at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg{sup -1} and 38 kW kg{sup -1} on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g{sup -1} at current densities as high as 250 A g{sup -1}. The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  17. Polyfurfuryl alcohol derived activated carbons for high power electrical double layer capacitors

    International Nuclear Information System (INIS)

    Ruiz, V.; Pandolfo, A.G.

    2010-01-01

    Polyfurfuryl alcohol (PFA) derived activated carbons were prepared by the acid catalysed polymerization of furfuryl alcohol, followed by potassium hydroxide activation. Activated carbons with apparent BET surface areas ranging from 1070 to 2600 m 2 g -1 , and corresponding average micropore sizes between 0.6 and 1.6 nm were obtained. The porosity of these carbons can be carefully controlled during activation and their performance as electrode materials in electric double layer capacitors (EDLCs) in a non-aqueous electrolyte (1 M Et 4 NBF 4 /ACN) is investigated. Carbon materials with a low average pore size ( -1 at an operating voltage window of 0-2.5 V; which corresponds to 32 Wh kg -1 and 38 kW kg -1 on an active material basis. These carbons also displayed an outstanding performance at high current densities delivering up to 100 F g -1 at current densities as high as 250 A g -1 . The exceptionally high capacitance and power of this electrode material is attributed to its good electronic conductivity and a highly effective combination of micro- and fine mesoporosity.

  18. Evaluation of the constant potential method in simulating electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenxing; Laird, Brian B., E-mail: blaird@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States); Yang, Yang; Olmsted, David L.; Asta, Mark [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2014-11-14

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO{sub 4}-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of “inner-sphere adsorbed” Li{sup +} ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li{sup +} ions to the electrode surface.

  19. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    Science.gov (United States)

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  1. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  2. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    Science.gov (United States)

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  4. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Abu-Lebdeh, Yaser A., E-mail: yaser.abu-lebdeh@nrc.gc.ca [Energy, Mining and Environment Portfolio and Automotive and Surface Transportation Portfolio, National Research Council of Canada, Ottawa, ON (Canada)

    2015-08-18

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C{sub 4}H{sub 9}){sub 4}-NPF{sub 6}, (10 molar %) with succinonitrile, SCN, (N≡C−CH{sub 2}−CH{sub 2}−C≡N), [SCN-10%TBA-PF{sub 6}]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10{sup -5} S/cm in the plastic crystal phase (15°C) and ~ 3 × 10{sup -3} S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  5. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  6. Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon

    International Nuclear Information System (INIS)

    Thomberg, T.; Jaenes, A.; Lust, E.

    2010-01-01

    Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for electric double-layer capacitor (EDLC) consisting of the 1 M (C 2 H 5 ) 3 CH 3 NBF 4 electrolyte in acetonitrile and micro/mesoporous carbon electrodes prepared from Mo 2 C, noted as C(Mo 2 C). The N 2 sorption (total BET specific surface area (S BET ≤ 1855 m 2 g -1 ), micropore area (S micro ≤ 1823 m 2 g -1 ), total pore volume (V tot ≤ 1.399 m 3 g -1 ) and pore size distribution (average NLDFT pore width d NLDFT ≥ 0.89 nm) values obtained have been correlated with the electrochemical characteristics for EDLCs (region of ideal polarizability (ΔV = 3.0 V), characteristic time constant (τ R = 1.05 s), gravimetric capacitance (C m ≤ 143 F g -1 )) dependent strongly on the C(Mo 2 C) synthesis temperature. High gravimetric energy (35 Wh kg -1 ) and gravimetric power (237 kW kg -1 ) values, normalised to the total active mass of both C(Mo 2 C) electrodes, synthesised at T synt = 800 deg. C, have been demonstrated at cell voltage 3.0 V and T = 20 deg. C.

  7. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    Science.gov (United States)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  8. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    International Nuclear Information System (INIS)

    Abouimrane, Ali; Belharouak, Ilias; Abu-Lebdeh, Yaser A.

    2015-01-01

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C 4 H 9 ) 4 -NPF 6 , (10 molar %) with succinonitrile, SCN, (N≡C−CH 2 −CH 2 −C≡N), [SCN-10%TBA-PF 6 ]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10 -5 S/cm in the plastic crystal phase (15°C) and ~ 3 × 10 -3 S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  9. Electric double-layer capacitor based on an ionic clathrate hydrate.

    Science.gov (United States)

    Lee, Wonhee; Kwon, Minchul; Park, Seongmin; Lim, Dongwook; Cha, Jong-Ho; Lee, Huen

    2013-07-01

    Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me4NOH⋅5 H2O show a high specific capacitance, reversible charge-discharge behavior, and a long cycle life. The ionic-hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1) The ICH does not cause leakage problems under normal EDLC operating conditions. 2) The hydrate material can be utilized itself, without requiring any pre-treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3) The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4) The hydrate solid electrolyte exhibits more-favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electric potential calculation in molecular simulation of electric double layer capacitors

    International Nuclear Information System (INIS)

    Wang, Zhenxing; Laird, Brian B; Olmsted, David L; Asta, Mark

    2016-01-01

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO 4 -acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys . 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions. (paper)

  11. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  12. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    Science.gov (United States)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  13. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors

    Science.gov (United States)

    Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi

    2015-04-01

    An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.

  14. Evaluation of the constant potential method in simulating electric double-layer capacitors

    International Nuclear Information System (INIS)

    Wang, Zhenxing; Laird, Brian B.; Yang, Yang; Olmsted, David L.; Asta, Mark

    2014-01-01

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO 4 -acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of “inner-sphere adsorbed” Li + ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li + ions to the electrode surface

  15. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J.R.; Gerbaldi, C. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bruna, M.; Borini, S. [Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino (Italy); Daghero, D. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Gonnelli, R.S., E-mail: renato.gonnelli@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy)

    2017-02-15

    Highlights: • We fabricated few-layer graphene FETs by mechanical exfoliation and standard microfabrication techniques. • We employed a Li-TFSI based ion gel to induce carrier densities as high as ≈6e14 e{sup −}/cm{sup 2} in the devices' channel. • We found a strong asymmetry in the sheet conductance and mobility doping dependences between electron and hole doping. • We combined the experimental results with ab initio DFT calculations to obtain the average scattering lifetime of the charge carriers. • We found that the increase in the carrier density and an unexpected increase in the density of charged scattering centers compete in determining the scattering lifetime. - Abstract: We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  16. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests

    Energy Technology Data Exchange (ETDEWEB)

    Koetz, R.; Ruch, P.W.; Cericola, D. [General Energy Research Department, Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2010-02-01

    Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 C). (author)

  17. Electric double layer and electrokinetic potential of pectic macromolecules in sugar beet

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2008-01-01

    Full Text Available Electrokinetic potential is an important property of colloidal particles and, regarding the fact that it is a well defined and easily measurable property, it is considered to be a permanent characteristic of a particular colloidal system. In fact, it is a measure of electrokinetic charge that surrounds the colloidal particle in a solution and is in direct proportion with the mobility of particles in an electric field. Gouy-Chapman-Stern-Graham's model of electric double layer was adopted and it was proven experimentally that the addition of Cu++ ions to sugar beet pectin caused a reduction in the negative electrokinetic potential proportional to the increase of Cu++ concentration. Higher Cu++ concentrations increased the proportion of cation specific adsorption (Cu++ and H+ with regard to electrostatic Coulombic forces. Consequently, there is a shift in the shear plane between the fixed and diffuse layers directed towards the diffuse layer, i.e. towards its compression and decrease in the electrokinetic potential or even charge inversion of pectin macromolecules.

  18. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    Directory of Open Access Journals (Sweden)

    Hsiang-Chun Wei

    2011-10-01

    Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  19. A Hybrid Double-Layer Master-Slave Model For Multicore-Node Clusters

    International Nuclear Information System (INIS)

    Liu Gang; Schmider, Hartmut; Edgecombe, Kenneth E

    2012-01-01

    The Double-Layer Master-Slave Model (DMSM) is a suitable hybrid model for executing a workload that consists of multiple independent tasks of varying length on a cluster consisting of multicore nodes. In this model, groups of individual tasks are first deployed to the cluster nodes through an MPI based Master-Slave model. Then, each group is processed by multiple threads on the node through an OpenMP based All-Slave approach. The lack of thread safety of most MPI libraries has to be addressed by a judicious use of OpenMP critical regions and locks. The HPCVL DMSM Library implements this model in Fortran and C. It requires a minimum of user input to set up the framework for the model and to define the individual tasks. Optionally, it supports the dynamic distribution of task-related data and the collection of results at runtime. This library is freely available as source code. Here, we outline the working principles of the library and on a few examples demonstrate its capability to efficiently distribute a workload on a distributed-memory cluster with shared-memory nodes.

  20. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors

    International Nuclear Information System (INIS)

    Liu, Dong; Shen, Jun; Liu, Nianping; Yang, Huiyu; Du, Ai

    2013-01-01

    Activated carbon aerogels (ACAs) with hierarchically porous structures and high specific surface area have been prepared via CO 2 and KOH activation processes. The pore structures of ACAs are characterized by N 2 adsorption/desorption and scanning electron microscopy. The experimental results show that the ACAs contain three types of pores: micropores with diameters below 2 nm, small mesopores with diameters from 2 to 4 nm and large pores or channels with diameters over 30 nm. The typical sample ACAs-4, which possess pore volume of 2.73 cm 3 g −1 and specific surface area of 2119 m 2 g −1 , exhibits high specific capacitances of 250 F g −1 and 198 F g −1 at the current densities of 0.5 A g −1 and 20 A g −1 respectively in 6 M KOH aqueous solution. Furthermore, the resultant ACAs electrode materials also exhibit high power density, good cycling stability and long lifetime. With these features, ACAs are expected to be promising electrode materials for electrical double layer capacitors

  1. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    Science.gov (United States)

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  2. Transparent Thin-Film Transistors Based on Sputtered Electric Double Layer.

    Science.gov (United States)

    Cai, Wensi; Ma, Xiaochen; Zhang, Jiawei; Song, Aimin

    2017-04-20

    Electric-double-layer (EDL) thin-film transistors (TFTs) have attracted much attention due to their low operation voltages. Recently, EDL TFTs gated with radio frequency (RF) magnetron sputtered SiO₂ have been developed which is compatible to large-area electronics fabrication. In this work, fully transparent Indium-Gallium-Zinc-Oxide-based EDL TFTs on glass substrates have been fabricated at room temperature for the first time. A maximum transmittance of about 80% has been achieved in the visible light range. The transparent TFTs show a low operation voltage of 1.5 V due to the large EDL capacitance (0.3 µF/cm² at 20 Hz). The devices exhibit a good performance with a low subthreshold swing of 130 mV/dec and a high on-off ratio > 10⁵. Several tests have also been done to investigate the influences of light irradiation and bias stress. Our results suggest that such transistors might have potential applications in battery-powered transparent electron devices.

  3. Development of energy storage system for DC electric rolling stock applying electric double layer capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Sekijima, Y.; Kudo, Y.; Inui, M. [Central Japan Railway Co., Aichi (Japan); Monden, Y.; Toda, S.; Aoyama, I. [Toshiba Corp., Tokyo (Japan)

    2006-07-01

    This paper provided details of an energy storage system designed for use with DC electric rolling stock through the application of an electric double layer capacitor (EDLC). The EDLC was selected due to its long life-span and its low operational costs. Testing was conducted to assess the system's basic control function, acceleration using stored energy, and behaviour during regenerative brake failure. A control circuit chip was used in the DC electric rolling stock on an inverter of the energy storage system. Tests confirmed that the control method was effective for actual rolling stocks. A full-scale energy storage system for installation on series 313 locomotives was then constructed. Braking energy was generated only from a regenerative brake. In case of brake failure, braking energy was generated from an air brake was well as an electric brake. Data from a field test conducted at the Tokaido and Chuo railway lines showed a capacity of 0.6 kWh. The EDLC was used to reduce peak air brake energy. It was concluded that storing 0.28 kW of brake energy in the EDLC can reduce peaks of air brake energy in high speed ranges. Experimental equipment was used to confirm use of the system with 0.56 kWh of EDLC, the average energy of air brake used in regenerative energy failure. 1 tab., 10 figs.

  4. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  5. Optical properties of single-layer, double-layer, and bulk MoS2

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Sanchez, Alejandro; Wirtz, Ludger [University of Luxembourg (Luxembourg); Hummer, Kerstin [University of Vienna, Vienna (Austria)

    2013-07-01

    The rise of graphene has brought attention also to other layered materials that can complement graphene or that can be an alternative in applications as transistors. Single-layer MoS{sub 2} has shown interesting electronic and optical properties such as as high electron mobility at room temperature and an optical bandgap of 1.8 eV. This makes the material suitable for transistors or optoelectronic devices. We present a theoretical study of the optical absorption and photoluminescence spectra of single-layer, double-layer and bulk MoS{sub 2}. The excitonic states have been calculated in the framework of the Bethe-Salpeter equation, taking into account the electron-hole interaction via the screened Coulomb potential. In addition to the step-function like behaviour that is typical for the joint-density of states of 2D materials with parabolic band dispersion, we find a bound excitonic peak that is dominating the luminescence spectra. The peak is split due to spin-orbit coupling for the single-layer and split due to layer-layer interaction for few-layer and bulk MoS{sub 2}. We discuss the changes of the optical bandgap and of the exciton binding energy with the number of layers, comparing our results with the reported experimental data.

  6. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications

    International Nuclear Information System (INIS)

    Sato, Takaya; Masuda, Gen; Takagi, Kentaro

    2004-01-01

    An aliphatic quaternary ammonium salt which has a methoxyethyl group on the nitrogen atom formed an ionic liquid (room temperature molten salt) when combined with the tetrafluoroborate (BF 4 - ) and bis(trifluoromethylsulfonyl)imide [TFSI; (CF 3 SO 2 ) 2 N - ] anions. The limiting oxidation and reduction potentials, specific conductivity, and some other physicochemical properties of the novel ionic liquids, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF 4 ) and DEME-TFSI have been evaluated and compared with those of 1-ethyl-3-methylimidazolium tetrafluoroborate. DEME-BF 4 is a practically useful ionic liquid for electrochemical capacitors as it has a quite wide potential window (6.0 V) and high ionic conductivity (4.8 mS cm -1 at 25 deg. C). We prepared an electric double layer capacitor (EDLC) composed of a pair of activated carbon electrodes and DEME-BF 4 as the electrolyte. This EDLC (working voltage ∼2.5 V) has both, a higher capacity above room temperature and a better charge-discharge cycle durability at 100 deg. C when compared to a conventional EDLC using an organic liquid electrolyte such as a tetraethylammonium tetrafluoroborate in propylene carbonate

  7. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  8. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Some experiments in low-temperature thermometry

    International Nuclear Information System (INIS)

    Fogle, W.E.

    1982-11-01

    A powdered cerous magnesium nitrate (CMN) temperature scale has been developed in the 0.016 to 3.8 K region which represents an interpolation between the 3 He/ 4 He (T 62 /T 58 ) vapor pressure scale and absolute temperatures in the millikelvin region as determined with a 60 Co in hcp Co nuclear orientation thermometer (NOT). Both ac and dc susceptibility thermometers were used in these experiments. The ac susceptibility of a 13 mg CMN-oil slurry was measured with a mutual inductance bridge employing a SQUID null detector while the dc susceptibility of a 3 mg slurry was measured with a SQUID/flux transformer combination. To check the internal consistency of the NOT, γ-ray intensities were measured both parallel and perpendicular to the Co crystal c-axis. The independent temperatures determined in this fashion were found to agree to within experimental error. For the CMN thermometers employed in these experiments, the susceptibility was found to obey a Curie-Weiss law with a Weiss constant of Δ = 1.05 +- 0.1 mK. The powdered CMN scale in the 0.05 to 1.0 K region was transferred to two germanium resistance thermometers for use in low-temperature specific heat measurements. The integrity of the scale was checked by examining the temperature dependence of the specific heat of high purity copper in the 0.1 to 1 K region. In more recent experiments in this laboratory, the scale was also checked by a comparison with the National Bureau of Standards cryogenic temperature scale (NBS-CTS-1). The agreement between the two scales in the 99 to 206 mK region was found to be on the order of the stated accuracy of the NBS scale

  10. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels

    Science.gov (United States)

    Wang, Jie; Ran, Ran; Sunarso, Jaka; Yin, Chao; Zou, Honggang; Feng, Yi; Li, Xiaobao; Zheng, Xu; Yao, Jianfeng

    2017-04-01

    Here, we have synthesized reduced graphene oxide (rGO) aerogels using a nanocellulose-assisted low temperature (less than 500 °C) thermal treatment route where nanocelluloses promote the gelation of graphene oxide (GO) solution that benefits the fabrication of GO aerogels from low concentration dispersion (2.85 mg mL-1), and after their thermal decomposition the residual nanofibers act as spacer both prevent the re-stacking of graphene sheets and integrate with rGO sheets to give a particular kind of carbon-based aerogel along with numerous defects (holes). Thermal decomposition of nanocellulose appears to be complete beyond 350 °C thus its presence in form of amorphous carbon nanofibers in rGO sheets. The rGO aerogels synthesized at 350 °C provide the best balance in terms of wide interlayer spacing, high content of CO-type functional groups, and high defects content. This translates into a high discharge capacitance of 270 F g-1 at a current rate of 1 A g-1 for compressed rGO aerogels without any binder or conductive additive. Detailed electrochemical tests using 6 M KOH electrolyte establish the fact that pseudocapacitance component has substantial contribution towards the overall capacitance; closely approaching the contribution of the double layer capacitance that is the most dominant capacitance component.

  11. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  12. The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics

    KAUST Repository

    Li, Yuan

    2018-04-13

    The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.

  13. The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics

    KAUST Repository

    Li, Yuan; Samtaney, Ravi; Wheatley, Vincent

    2018-01-01

    The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.

  14. Effect of double-layer application on bond quality of adhesive systems.

    Science.gov (United States)

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures.

    Science.gov (United States)

    Imaizumi, Satoru; Kato, Yuichi; Kokubo, Hisashi; Watanabe, Masayoshi

    2012-04-26

    Two solid polymer electrolytes, composed of a polyether-segmented polyurethaneurea (PEUU) and either a lithium salt (lithium bis(trifluoromethanesulfonyl)amide: Li[NTf2]) or a nonvolatile ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [C2mim][NTf2]), were prepared in order to utilize them as ionic polymer actuators. These salts were preferentially dissolved in the polyether phases. The ionic transport mechanism of the polyethers was discussed in terms of the diffusion coefficients and ionic transference numbers of the incorporated ions, which were estimated by means of pulsed-field gradient spin-echo (PGSE) NMR. There was a distinct difference in the ionic transport properties of each polymer electrolyte owing to the difference in the magnitude of interactions between the cations and the polyether. The anionic diffusion coefficient was much faster than that of the cation in the polyether/Li[NTf2] electrolyte, whereas the cation diffused faster than the anion in the polyether/[C2mim][NTf2] electrolyte. Ionic polymer actuators, which have a solid-state electric-double-layer-capacitor (EDLC) structure, were prepared using these polymer electrolyte membranes and ubiquitous carbon materials such as activated carbon and acetylene black. On the basis of the difference in the motional direction of each actuator against applied voltages, a simple model of the actuation mechanisms was proposed by taking the difference in ionic transport properties into consideration. This model discriminated the behavior of the actuators in terms of the products of transference numbers and ionic volumes. The experimentally observed behavior of the actuators was successfully explained by this model.

  16. Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2017-09-01

    Full Text Available Molecular dynamics simulations are carried out to investigate the structure and capacitance of the electrical double layers (EDLs at the interface of vertically oriented graphene and ionic liquids [EMIM]+/[BF4]−. The distribution and migration of the ions in the EDL on the rough and non-rough electrode surfaces with different charge densities are compared and analyzed, and the effect of the electrode surface morphology on the capacitance of the EDL is clarified. The results suggest that alternate distributions of anions and cations in several consecutive layers are formed in the EDL on the electrode surface. When the electrode is charged, the layers of [BF4]− anions experience more significant migration than those of [EMIM]+ cations. These ion layers can be extended deeper into the bulk electrolyte solution by the stronger interaction of the rough electrode, compared to those on the non-rough electrode surface. The potential energy valley of ions on the neutral electrode surface establishes a potential energy difference to compensate the energy cost of the ion accumulation, and is capable of producing a potential drop across the EDL on the uncharged electrode surface. Due to the greater effective contact area between the ions and electrode, the rough electrode possesses a larger capacitance than the non-rough one. In addition, it is harder for the larger-sized [EMIM]+ cations to accumulate in the narrow grooves on the rough electrode, when compared with the smaller [BF4]−. Consequently, the double-hump-shaped C–V curve (which demonstrates the relationship between differential capacitance and potential drop across the EDL for the rough electrode is asymmetric, where the capacitance increases more significantly when the electrode is positively charged.

  17. Electrokinetic transport of rigid macroions in the thin double layer limit: a boundary element approach.

    Science.gov (United States)

    Allison, Stuart A; Xin, Yao

    2005-08-15

    A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.

  18. Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.

    Science.gov (United States)

    Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing

    2018-01-10

    Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation

  19. Characteristics of powdered activated carbon treated with dielectric barrier discharge for electric double-layer capacitors

    International Nuclear Information System (INIS)

    Tashima, Daisuke; Yoshitama, Hiromu; Sakoda, Tatsuya; Okazaki, Akihito; Kawaji, Takayuki

    2012-01-01

    Highlights: ► The specific capacitance of the EDLCs could be improved by oxygen plasma treatment. ► 15 s treated EDLCs showed a 20% increase in capacitance relative to untreated EDLCs. ► The plasma treatment yields EDLCs that are suitable for high-energy applications. - Abstract: The electrochemical properties of electric double-layer capacitors (EDLCs) made with plasma-treated powdered activated carbon (treated using a dielectric barrier discharge) were examined using cyclic voltammetry (CV), Cole–Cole plots, and X-ray photoelectron spectroscopy (XPS). The dielectric barrier discharge method, which operates at atmospheric pressure, dramatically reduces the processing time and does not require vacuum equipment, making it a more practical alternative than low-pressure plasma treatment. The experimental data indicate that the specific capacitance of the EDLCs could be improved by oxygen plasma treatment. Capacitance of EDLCs made with activated carbon treated for 15 s showed 193.5 F/g that 20% increase in the specific capacitance relative to untreated EDLCs. This result indicates that the plasma treatment yields EDLCs that are suitable for high-energy applications. The enhancement of capacitance was mainly attributed to an increase in the BET surface area of the activated carbon and the creation of carboxyl groups on the surface of the carbon. The carboxyl groups induced oxidation–reduction reactions in the presence of O 2 which was included in the operation gas. In addition, the carboxyl groups improved the penetration of the electrolyte solution into the carbon electrodes.

  20. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  1. Double-Layer Low-Density Parity-Check Codes over Multiple-Input Multiple-Output Channels

    Directory of Open Access Journals (Sweden)

    Yun Mao

    2012-01-01

    Full Text Available We introduce a double-layer code based on the combination of a low-density parity-check (LDPC code with the multiple-input multiple-output (MIMO system, where the decoding can be done in both inner-iteration and outer-iteration manners. The present code, called low-density MIMO code (LDMC, has a double-layer structure, that is, one layer defines subcodes that are embedded in each transmission vector and another glues these subcodes together. It supports inner iterations inside the LDPC decoder and outeriterations between detectors and decoders, simultaneously. It can also achieve the desired design rates due to the full rank of the deployed parity-check matrix. Simulations show that the LDMC performs favorably over the MIMO systems.

  2. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    Science.gov (United States)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  3. On the contact values of the density profiles in an electric double layer using density functional theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2012-06-01

    Full Text Available A recently proposed, local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, Vol. 582, 16] for the charge profile of an electric double layer is used in conjunction with existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall the theoretical results satisfy the second contact value theorem reasonably well the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

  4. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    Science.gov (United States)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  5. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the

  6. Cyclotron resonance study of the two-dimensional electron layers and double layers in tilted magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Kučera, Jan

    2004-01-01

    Roč. 22, - (2004), s. 590-593 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : single layer * double layer * two-dimensional electron system * cyclotron resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  7. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications.

    Science.gov (United States)

    Requicha, João F; Viegas, Carlos A; Hede, Shantesh; Leonor, Isabel B; Reis, Rui L; Gomes, Manuela E

    2016-05-01

    The inefficacy of the currently used therapies in achieving the regeneration ad integrum of the periodontium stimulates the search for alternative approaches, such as tissue-engineering strategies. Therefore, the core objective of this study was to develop a biodegradable double-layer scaffold for periodontal tissue engineering. The design philosophy was based on a double-layered construct obtained from a blend of starch and poly-ε-caprolactone (30:70 wt%; SPCL). A SPCL fibre mesh functionalized with silanol groups to promote osteogenesis was combined with a SPCL solvent casting membrane aiming at acting as a barrier against the migration of gingival epithelium into the periodontal defect. Each layer of the double-layer scaffolds was characterized in terms of morphology, surface chemical composition, degradation behaviour and mechanical properties. Moreover, the behaviour of seeded/cultured canine adipose-derived stem cells (cASCs) was assessed. In general, the developed double-layered scaffolds demonstrated adequate degradation and mechanical behaviour for the target application. Furthermore, the biological assays revealed that both layers of the scaffold allow adhesion and proliferation of the seeded undifferentiated cASCs, and the incorporation of silanol groups into the fibre-mesh layer enhance the expression of a typical osteogenic marker. This study allowed an innovative construct to be developed, combining a three-dimensional (3D) scaffold with osteoconductive properties and with potential to assist periodontal regeneration, carrying new possible solutions to current clinical needs. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  8. A systematic comparison of different approaches of density functional theory for the study of electrical double layers

    International Nuclear Information System (INIS)

    Yang, Guomin; Liu, Longcheng

    2015-01-01

    Based on the best available knowledge of density functional theory (DFT), the reference-fluid perturbation method is here extended to yield different approaches that well account for the cross correlations between the Columbic interaction and the hard-sphere exclusion in an inhomogeneous ionic hard-sphere fluid. In order to quantitatively evaluate the advantage and disadvantage of different approaches in describing the interfacial properties of electrical double layers, this study makes a systematic comparison against Monte Carlo simulations over a wide range of conditions. The results suggest that the accuracy of the DFT approaches is well correlated to a coupling parameter that describes the coupling strength of electrical double layers by accounting for the steric effect and that can be used to classify the systems into two regimes. In the weak-coupling regime, the approaches based on the bulk-fluid perturbation method are shown to be more accurate than the counterparts based on the reference-fluid perturbation method, whereas they exhibit the opposite behavior in the strong-coupling regime. More importantly, the analysis indicates that, with a suitable choice of the reference fluid, the weighted correlation approximation (WCA) to DFT gives the best account of the coupling effect of the electrostatic-excluded volume correlations. As a result, a piecewise WCA approach can be developed that is robust enough to describe the structural and thermodynamic properties of electrical double layers over both weak- and strong-coupling regimes

  9. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  10. Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hongsith, Kritsada [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); Hongsith, Niyom [Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); School of Science, University of Phayao, Phayao 56000 (Thailand); Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand); Singjai, Pisith [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Choopun, Supab, E-mail: supab99@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP center), CHE, Bangkok 10400 (Thailand)

    2013-07-31

    The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with J{sub sc} of 4.71 mA/cm{sup 2} and 5.56 mA/cm{sup 2} and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. - Highlights: • Effect of under-layer thickness is investigated. • Simple and cost-effective sparking technique is used for ZnO nanoparticles. • Efficiency enhancement can be explained by both electron and light scattering. • Modified equation of short circuit current density was developed for enhancement.

  11. Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Hongsith, Kritsada; Hongsith, Niyom; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Singjai, Pisith; Choopun, Supab

    2013-01-01

    The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with J sc of 4.71 mA/cm 2 and 5.56 mA/cm 2 and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. - Highlights: • Effect of under-layer thickness is investigated. • Simple and cost-effective sparking technique is used for ZnO nanoparticles. • Efficiency enhancement can be explained by both electron and light scattering. • Modified equation of short circuit current density was developed for enhancement

  12. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Science.gov (United States)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  13. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  14. Influence of boundary on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids.

    Science.gov (United States)

    Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn

    2011-12-01

    The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Directory of Open Access Journals (Sweden)

    Yanling Ji

    2018-02-01

    Full Text Available An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  16. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  17. Containment test in area of high latitude and low temperature

    International Nuclear Information System (INIS)

    Cai Jiantao; Ni Yongsheng; Jia Wutong

    2014-01-01

    The effects of high latitude and low temperature on containment test are detailed analyzed from the view of design, equipment, construct and start-up, and the solution is put forward. The major problems resolved is as below: the effects of low temperature and high wind on defect inspection of the containment surface, the effects of test load on the affiliated equipment of containment in the condition of low temperature, and the effects of low temperature on the containment leak rate measurement. Application in Hongyanhe Unit 1 showed that the proposed scheme can effectively overcome the influence of adverse weather on the containment test. (authors)

  18. Low Temperature Regolith Bricks for In-Situ Structural Material

    Science.gov (United States)

    Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta

    2016-01-01

    Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith

  19. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Directory of Open Access Journals (Sweden)

    Hassiba AJ

    2017-03-01

    Full Text Available Alaa J Hassiba,1 Mohamed E El Zowalaty,2 Thomas J Webster,3–5 Aboubakr M Abdullah,6 Gheyath K Nasrallah,7 Khalil Abdelrazek Khalil,8 Adriaan S Luyt,6 Ahmed A Elzatahry1 1Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar; 2School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 3Department of Chemical Engineering, 4Department of Bioengineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 6Center for Advanced Materials, 7Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar; 8Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates Abstract: Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol and chitosan loaded with silver nanoparticles (AgNPs and a lower layer of polyethylene oxide (PEO or polyvinylpyrrolidone (PVP nanofibers loaded with chlorhexidine (as an antiseptic. The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber

  20. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-04-11

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  1. Optical and photoelectrochemical studies on Ag{sub 2}O/TiO{sub 2} double-layer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan, Taiwan 32001 (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan 24301 (China); Cheng, J.C. [Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan 10608 (China); Huang, C.C. [Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan 11221 (China)

    2014-11-03

    When two different oxides films stacked together, if the absorption (upper) layer has both its conduction and valence bands more negatively lower than that of the layer underneath, then the photo-excited electrons can be forwarded to the underneath layer to become an effect of energy storage. Recent studies discovered that the double-layers of Cu{sub 2}O/TiO{sub 2} films possess such capacity. In order to investigate this specific phenomenon, we use a DC magnetron reactive sputtering to deposit a double-layer of Ag{sub 2}O/TiO{sub 2} films on glass substrate. The film thicknesses of the double-layer are 300 nm and 200 nm respectively. X-Ray diffraction (XRD), scanning electron microscope (SEM) and UV–VIS–NIR photospectrometer and photoluminance tests were used to study the structure, morphology, optical absorption and band gaps of the stacked films. From XRD and SEM, we can confirm the microstructures of each layer. The UV–VIS–NIR spectrum revealed that the optical absorption of Ag{sub 2}O/TiO{sub 2} fell in between the single film of Ag{sub 2}O and TiO{sub 2}. Further, two band gaps were estimated for Ag{sub 2}O/TiO{sub 2} films based on the Beer-Lambert law and Tauc plot. Photoluminance and photoelectrochemical tests indicated that delayed emission by electron-hole recombination and photoelectrical current was effectively support the mechanism of electrons transfer from Ag{sub 2}O to TiO{sub 2} at Ag{sub 2}O/TiO{sub 2} interface in the double-layer films. - Highlights: • A double-layer of Ag{sub 2}O/TiO{sub 2} films was deposited on glass substrate by sputtering. • XRD confirms the nanocrystalline structures of the stack deposited films. • UV–VIS–NIR spectroscopy shows the enhanced of optical absorption in Ag{sub 2}O/TiO{sub 2}. • Photoluminance and photoelectrochemical tests show electron-hole separation effect.

  2. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    Science.gov (United States)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  3. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  4. Low temperature barrier wellbores formed using water flushing

    Science.gov (United States)

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  5. Effects of low temperature and drought on the physiological and ...

    African Journals Online (AJOL)

    To find out how oil palm adapts to the environmental conditions, the dynamics of a series of important physiological components derived from the leaves of potted oil palm seedlings under drought stress (DS) (water with holding) and low temperature stress (LTS) (10°C) were studied. The results showed that low temperature ...

  6. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  7. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  8. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  9. Low temperature electrochemistry at normal conductor/frozen electrolyte interface

    International Nuclear Information System (INIS)

    Borkowska, Z.; Stimming, U.

    1991-01-01

    The frozen electrolyte technique (FREECE = FRozen Electrolyte ElectroChEmistry) is based on the experimental result that frozen electrolytes are suitable for electrochemical studies. This technique has been used in our laboratory and also by others to investigate interfacial electrochemical behavior. An argument will be given as to why the FREECE technique is advantageous in a number of respects and what kind of electrolyte systems can be used. Reference is made to electrochemical results such as interfacial reactions and double layer properties. 26 refs

  10. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  11. Evolution of low-temperature phases in a low-temperature structural transition of a La cuprate

    International Nuclear Information System (INIS)

    Inoue, Y.; Horibe, Y.; Koyama, Y.

    1997-01-01

    The microstructure produced by a low-temperature structural phase transition in La 1.5 Nd 0.4 Sr 0.1 CuO 4 has been examined by transmission electron microscopy with the help of imaging plates. The low-temperature transition was found to be proceeded not only by the growth of the Pccn/low-temperature-tetragonal phases nucleated along the twin boundary but also by the nucleation and growth of the phases in the interior of the low-temperature-orthorhombic domain. In addition, because the map of the octahedron tilt as an order parameter is not identical to that of the spontaneous strain accompanied by the transition, the microstructure below the transition is understood to be a very complex mixture of the low-temperature phases. copyright 1997 The American Physical Society

  12. On the Validity of the “Thin” and “Thick” Double-Layer Assumptions When Calculating Streaming Currents in Porous Media

    Directory of Open Access Journals (Sweden)

    Matthew D. Jackson

    2012-01-01

    Full Text Available We find that the thin double layer assumption, in which the thickness of the electrical diffuse layer is assumed small compared to the radius of curvature of a pore or throat, is valid in a capillary tubes model so long as the capillary radius is >200 times the double layer thickness, while the thick double layer assumption, in which the diffuse layer is assumed to extend across the entire pore or throat, is valid so long as the capillary radius is >6 times smaller than the double layer thickness. At low surface charge density (0.5 M the validity criteria are less stringent. Our results suggest that the thin double layer assumption is valid in sandstones at low specific surface charge (<10 mC⋅m−2, but may not be valid in sandstones of moderate- to small pore-throat size at higher surface charge if the brine concentration is low (<0.001 M. The thick double layer assumption is likely to be valid in mudstones at low brine concentration (<0.1 M and surface charge (<10 mC⋅m−2, but at higher surface charge, it is likely to be valid only at low brine concentration (<0.003 M. Consequently, neither assumption may be valid in mudstones saturated with natural brines.

  13. Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers

    Science.gov (United States)

    Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.

    2018-05-01

    The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.

  14. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

    Science.gov (United States)

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu

    2018-05-01

    Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

  15. General access to metal oxide (Metal = Mn, Co, Ni) double-layer nanospheres for application in lithium ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Xia, Yuan; Wang, Gang; Zhang, Xing; Wang, Beibei; Wang, Hui

    2016-01-01

    Highlights: • A series of metal oxide double layer nanospheres were prepared. • The obtained materials show excellent performances in lithium ion batteries and supercapacitors. • The unique structure of double layers is beneficial for superior electrochemical performances. - Abstract: In this work, a series of metal oxide double-layer nanospheres (DLNs), such as Mn 2 O 3 , Co 3 O 4 , NiO, NiCo 2 O 4 , and MnCo 2 O 4 have been successfully synthesized through a general template method. The layers of nanospheres were assembled by different nanostructure units and the removing of the SiO 2 template formed a void of several ten nanometers between the double layers, resulting large specific surface areas for them. The energy storage performances of the as-prepared double-layer nanospheres were further investigated in lithium ion battery and supercapacitor systems. Based on their unique nanostructures, the double-layer nanospheres exhibit excellent electrochemical performance with long cycle stability and high specific capacities or capacitances. The best of these, DLNs-NiCo 2 O 4 can deliver a reversible capacity of 1107 mAh g −1 at 0.25C after 200 cycles in lithium ion battery system, and shows a capacitance of 1088 F g −1 with capacitance loss of less than 3% at 5 A g −1 after 5000 cycles in supercapacitors.

  16. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    International Nuclear Information System (INIS)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-01-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10 −10  Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10 −10  Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment. (paper)

  17. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  18. Development of a model for the aging of double-layer capacitors; Entwicklung eines Modells zur Alterung von Doppelschichtkondensatoren

    Energy Technology Data Exchange (ETDEWEB)

    Melzer, Michael [TU Dresden (Germany). Professur Elektrische Bahnen

    2012-05-15

    In past years, energy stores based on double-layer capacitors have been increasingly tested and used on rolling stock. The reasons for using energy stores are the recuperation of the braking work, the reduction of emissions related therewith, and the possibility of doing without overhead line installations in sensitive areas. In order to be able to assess the efficiency of such a system, it is necessary to estimate its expected service life, which is the subject matter of this paper. Examined is the dynamic influence of temperature and cell voltage on the ageing process. (orig.)

  19. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  20. Detection of extremely high bit density signals with a narrow track width GMR head in double layered perpendicular recording media

    International Nuclear Information System (INIS)

    Kiya, T.; Honda, N.; Ariake, J.; Ouchi, K.; Iwasaki, S.

    2001-01-01

    Recording resolution, medium noise and thermal stability have been investigated for double layered perpendicular magnetic recording media. The recording performance was improved by introducing a stacked intermediate layer between a soft magnetic backlayer and a storage layer due to increased crystal orientation with a small magnetic domain size and suppressed initial growing layer of the storage layer. The reproduced output at an extremely high linear density of 950 kFRPI was detected by using a contact-type CF-SPT head for write and a GMR head with a narrow read track width of 0.4 μm

  1. Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations

    International Nuclear Information System (INIS)

    Goodwin, Zachary A.H.; Feng, Guang; Kornyshev, Alexei A.

    2017-01-01

    We develop the theory of the electrical double layer in ionic liquids as proposed earlier by Kornyshev (2007). In the free energy function we keep the so called ‘short-range correlation terms’ which were omitted there. With some simplifying assumptions, we arrive at a modified expression for differential capacitance, which makes differential capacitance curves less sharply depending on electrode potential and having smaller values at extrema than in the previous theory. This brings the results closer to typical experimental observations, and makes it appealing to use this formalism for treatment of experimental data. Implications on Debye length and the extent of ion paring in ionic liquids are then briefly discussed.

  2. The effect of scattering on sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    A recent study has shown that a circular double-layer array of loudspeakers makes it possible to achieve a sound field control that can generate a controlled field inside the array and reduce sound waves propagating outside the array. This is useful if it is desirable not to disturb people outside...... the array or to prevent the effect of reflections from the room. The study assumed free field condition, however in practice a listener will be located inside the array. The listener scatters sound waves, which propagate outward. Consequently, the scattering effect can be expected to degrade the performance...

  3. Preliminary study on piezoresistive and piezoelectric properties of a double-layer soft material for tactile sensing

    Directory of Open Access Journals (Sweden)

    Dan He

    2015-06-01

    Full Text Available This paper describes a double-layer simplified sensor unit based on the interesting electromechanical properties of MWNT mixed by polymer composite and PVDF films, which is envisaged to imitate the distributed tactile receptors of human hands so as to help the disabled to recover the basic tactile perception. This paper shows the fabrication and performance research of such a new piezoelectric-piezoresistive composite material which indicates a promising .application in prosthtic hand.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6454

  4. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  5. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  6. Low temperature safety of lithium-thionyl chloride cells

    Science.gov (United States)

    Subbarao, S.; Deligiannis, F.; Shen, D. H.; Dawson, S.; Halpert, G.

    The use of lithium thionyl chloride cells for low-temperature applications is presently restricted because of their unsafe behavior. An attempt is made in the present investigation to identify the safe/unsafe low temperature operating conditions and to understand the low temperature cell chemistry responsible for the unsafe behavior. Cells subjected to extended reversal at low rate and -40 C were found to explode upon warm-up. Lithium was found to deposit on the carbon cathodes during reversal. Warming up to room temperature may be accelerating the lithium corrosion in the electrolyte. This may be one of the reasons for the cell thermal runaway.

  7. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Low-temperature localization in the transport properties of self ...

    Indian Academy of Sciences (India)

    Transport properties; scattering mechanisms; low temperature localization. 1. Introduction ... Mn4+ appears in these compounds due to the La defi- ciency, leading ... microscopy (SEM) image in figure 1 shows the size and mor- phology of the ...

  9. Detection of dark matter particles with low temperature phonon sensors

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1988-03-01

    Taking as an example the development effort in Berkeley, the author discusses for nonspecialists (Astronomers and Particle Physicists) the promises of phonon sensing at low temperature for the detection of dark matter particles and the difficulties faced. 31 refs

  10. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  11. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  12. Automation of low temperature positron annihilation spectroscopy system

    International Nuclear Information System (INIS)

    Chaturvedi, T.P.; Venkiteswaran, S.; Pujari, P.K.

    1997-01-01

    This paper describes the automation implemented in the low temperature measurements in positron annihilation spectroscopic studies. This has not only widened the scope of the positron research, but also helps achieve result with better precision. (author). 3 refs., 1 fig

  13. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-09

    Nov 9, 2011 ... Levels of electrolyte leak and MDA were lower than in UD189 or UD191. Poplar hybrid clones ... humidity, exposure, and water status and health conditions of ... consecutive low temperature treatment; and to detect variation ...

  14. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  15. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    able for comparison with theory, the resistivity data in α-Ga at low temperature strongly support this anisotropic ... renormalized free-atom (RFA) model [3], band model [5–7] and quantum Monte Carlo ... probability distribution function.

  16. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  17. Evaluation Method for Low-Temperature Performance of Lithium Battery

    Science.gov (United States)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  18. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  19. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  20. INFLUENCE OF A LOW TEMPERATURE AGEING ON THE ...

    African Journals Online (AJOL)

    The effect of a low temperature ageing treatment on the hardness, tensile and corrosion characteristics of sand cast Al-6.5%Si-0.35%Mg alloy was studied. The temper conditions are low temperature ageing at 90oC, 95oC, 100oCand 105oC respectively followed by ageing to 180oC for 2 hrs. This was compared with the ...