WorldWideScience

Sample records for double-detargeted oncolytic adenovirus

  1. Increasing the Efficacy of Oncolytic Adenovirus Vectors

    Directory of Open Access Journals (Sweden)

    William S. M. Wold

    2010-08-01

    Full Text Available Oncolytic adenovirus (Ad vectors present a new modality to treat cancer. These vectors attack tumors via replicating in and killing cancer cells. Upon completion of the vector replication cycle, the infected tumor cell lyses and releases progeny virions that are capable of infecting neighboring tumor cells. Repeated cycles of vector replication and cell lysis can destroy the tumor. Numerous Ad vectors have been generated and tested, some of them reaching human clinical trials. In 2005, the first oncolytic Ad was approved for the treatment of head-and-neck cancer by the Chinese FDA. Oncolytic Ads have been proven to be safe, with no serious adverse effects reported even when high doses of the vector were injected intravenously. The vectors demonstrated modest anti-tumor effect when applied as a single agent; their efficacy improved when they were combined with another modality. The efficacy of oncolytic Ads can be improved using various approaches, including vector design, delivery techniques, and ancillary treatment, which will be discussed in this review.

  2. Oncolytic adenovirus-mediated therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Sweeney K

    2016-07-01

    Full Text Available Katrina Sweeney, Gunnel Halldén Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK Abstract: Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting localized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support

  3. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  4. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    Science.gov (United States)

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  5. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    Directory of Open Access Journals (Sweden)

    Lisa Farzad

    2014-01-01

    Full Text Available Oncolytic adenoviruses (Onc.Ads produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy.

  6. Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope

    Directory of Open Access Journals (Sweden)

    Marc Garcia-Moure

    2017-11-01

    Full Text Available Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted. Keywords: Oncolytic adenovirus, Virotherapy, Osteosarcoma, Bones, Cancer, Tumor

  7. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.

    Science.gov (United States)

    Fernández-Ulibarri, Inés; Hammer, Katharina; Arndt, Michaela A E; Kaufmann, Johanna K; Dorer, Dominik; Engelhardt, Sarah; Kontermann, Roland E; Hess, Jochen; Allgayer, Heike; Krauss, Jürgen; Nettelbeck, Dirk M

    2015-05-01

    Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof. © 2014 UICC.

  8. Comparison of Liver Detargeting Strategies for Systemic Therapy with Oncolytic Adenovirus Serotype 5

    Directory of Open Access Journals (Sweden)

    Tien V. Nguyen

    2017-08-01

    Full Text Available Oncolytic viruses would ideally be of use for systemic therapy to treat disseminated cancer. To do this safely, this may require multiple layers of cancer specificity. The pharmacology and specificity of oncolytic adenoviruses can be modified by (1 physical retargeting, (2 physical detargeting, (3 chemical shielding, or (4 by modifying the ability of viral early gene products to selectively activate in cancer versus normal cells. We explored the utility of these approaches with oncolytic adenovirus serotype 5 (Ad5 in immunocompetent Syrian hamsters bearing subcutaneous HaK tumors. After a single intravenous injection to reach the distant tumors, the physically hepatocyte-detargeted virus Ad5-hexon-BAP was more effective than conditionally replicating Ad5-dl1101/07 with mutations in its E1A protein. When these control or Ad5 treated animals were treated a second time by intratumoral injection, prior exposure to Ad5 did not affect tumor growth, suggesting that anti-Ad immunity neither prevented treatment nor amplified anti-tumor immune responses. Ad5-dl1101/07 was next chemically shielded with polyethylene glycol (PEG. While 5 kDa of PEG blunted pro-inflammatory IL-6 production induced by Ad5-dl1101/07, this shielding reduced Ad oncolytic activity.

  9. Cancer-Targeted Oncolytic Adenoviruses for Modulation of the Immune System.

    Science.gov (United States)

    Cerullo, Vincenzo; Capasso, Cristian; Vaha-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2018-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen- presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)- like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signalingmediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A double-regulated oncolytic adenovirus with improved safety for adenocarcinoma therapy

    International Nuclear Information System (INIS)

    Wei, Na; Fan, Jun Kai; Gu, Jin Fa; He, Ling Feng; Tang, Wen Hao; Cao, Xin; Liu, Xin Yuan

    2009-01-01

    Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lower than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.

  11. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  12. Impact of radiation therapy on the oncolytic adenovirus dl520: Implications on the treatment of glioblastoma

    International Nuclear Information System (INIS)

    Bieler, Alexa; Mantwill, Klaus; Holzmueller, Regina; Juerchott, Karsten; Kaszubiak, Alexander; Staerk, Sybille; Glockzin, Gabriel; Lage, Hermann; Grosu, Anca-Ligia; Gansbacher, Bernd; Holm, Per Sonne

    2008-01-01

    Background and purpose: Viral oncolytic therapy is emerging as a new form of anticancer therapy and has shown promising preclinical results, especially in combination with radio- and chemotherapy. We recently reported that nuclear localization of the human transcription factor YB-1 in multidrug-resistant cells facilitates E1-independent adenoviral replication. The aim of this study was to evaluate the combined treatment of the conditionally-replicating adenovirus dl520 and radiotherapy in glioma cell lines in vitro and in human tumor xenografts. Furthermore, the dependency of YB-1 on dl520 replication was verified by shRNA directed down regulation of YB-1. Methods and material: Localization of YB-1 was determined by immunostaining. Glioma cell lines LN-18, U373 and U87 were infected with dl520. Induction of cytopathic effect (CPE), viral replication, viral yield and viral release were determined after viral infection, radiation therapy and the combination of both treatment modalities. The capacity of treatments alone or combined to induce tumor growth inhibition of subcutaneous U373 tumors was tested also in nude mice. Results: Quantitative real-time PCR demonstrated that the shRNA-mediated down regulation of YB-1 is leading to a dramatic decrease in adenoviral replication of dl520. Immunostaining analysis showed that the YB-1 protein was predominantly located in the cytoplasm in the perinuclear space and less abundant in the nucleus. After irradiation we found an increase of nuclear YB-1. The addition of radiotherapy increased the oncolytic effect of dl520 with enhanced viral replication, viral yield and viral release. The oncolytic activity of dl520 plus radiation inhibited the growth of subcutaneous U373 tumors in a xenograft mouse model. Conclusions: Radiation mediated increase of nuclear YB-1 in glioma cells enhanced the oncolytic potential of adenovirus dl520

  13. Synergistic cytotoxicity against human tumor cell lines by oncolytic adenovirus dl1520 (ONYX-015) and melphalan.

    Science.gov (United States)

    Ferguson, Peter J; Sykelyk, Alexander; Figueredo, Rene; Koropatnick, James

    2016-01-01

    In light of the need for more selective anticancer therapy, much work has been directed at developing compounds or biological agents that target functions specific to cancer cells. To this end, numerous viruses have been engineered to exploit the dependence of cancer cells on particular anomalies that contribute to their rogue proliferative activity, such as dysfunctional p53, overactive mitogenic signaling, or a defective interferon response. The oncolytic human adenovirus dl1520 (ONYX-015) was engineered to propagate specifically in p53-deficient tumors, which comprise over half of all tumors. Based on successes in clinical trials, the full potential of dl1520 and other oncolytic viruses may be even better realized by using them in combination with conventional chemotherapy drugs. As a model system in which to test this potential, representative cell lines from 2 common cancer types, oral squamous cell carcinoma (HN-5a) and colon adenocarcinoma (HT-29), were chosen, as well as platinum-drug-resistant variants of each. Following preliminary screening of virus and drug combinations, dl1520 and melphalan were found to synergistically inhibit proliferation of all the cancer cell lines. Melphalan pretreatment or cotreatment with dl1520 enhanced inhibition of proliferation by dl1520 by up to 60% and increased apoptosis by up to 25%. The tight-junction protein CAR (coxsackie and adenovirus receptor), via which adenovirus enters cells, was not upregulated by treatment with melphalan, suggesting that other mechanisms contribute to synergy. The synergy between melphalan and dl1520 suggests that tumor-selective cell killing by oncolytic viruses may be augmented by combining with cytotoxic drugs.

  14. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    Science.gov (United States)

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  15. The antitumor effects of oncolytic adenovirus H101 against lung cancer.

    Science.gov (United States)

    Lei, Jie; Li, Qi-Hua; Yang, Ju-Lun; Liu, Feng; Wang, Li; Xu, Wen-Mang; Zhao, Wen-Xing

    2015-08-01

    Lung cancer is the leading cause of cancer mortality in both men and women, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. The new treatment options with completely novel mechanism of therapeutic activity are needed for lung cancer to improve patient outcome. The present study was aimed at testing the efficacy of recombinant adenovirus H101 as an oncolytic agent for killing human lung cancer cell lines in vitro and in vivo. We assessed the coxsackievirus adenovirus receptor (CAR) expression on human lung cancer cell lines by RT-PCR and immunocytochemistry staining. Viral infectivity and viral replication in lung cancer cells was assayed by flow cytometry and real-time fluorescent quantitative PCR. After H101 treatment, cytotoxic effect, cell cycle progression and apoptosis were further examined by lactate dehydrogenase release assay and flow cytometry in vitro, respectively. In vivo, antitumor effects of H101 were assessed on SCID Beige mice xenografted with human lung cancer cells. Receptor characterization confirmed that human lung cancer cell lines expressed CAR receptor for adenovirus type 5. Lung cancer cells were sensitive to infection by the H101 virus. H101 infection and replication resulted in very potent cytotoxicity, G2/M phase arrest and cell lysis. In vivo, we also showed that H101 significantly inhibited tumor growth following intratumoral injection, with virus replication, cell degeneration and necrosis in the tumor tissue. These results have important implications for the treatment of human lung cancer.

  16. Cyclophosphamide enhances antitumor efficacy of oncolytic adenovirus expressing uracil phosphoribosyltransferase (UPRT) in immunocompetent Syrian hamsters.

    Science.gov (United States)

    Hasegawa, Naoyuki; Abei, Masato; Yokoyama, Kazunari K; Fukuda, Kuniaki; Seo, Emiko; Kawashima, Rei; Nakano, Yuri; Yamada, Takeshi; Nakade, Koji; Hamada, Hirofumi; Obata, Yuichi; Hyodo, Ichinosuke

    2013-09-15

    Oncolytic viruses (OVs) are novel cancer therapeutics with great promise, but host antiviral immunity represents the hurdle for their efficacy. Immunosuppression by cyclophosphamide (CP) has thus been shown to enhance the oncolytic efficacy of many OVs, but its effects on OVs armed with therapeutic genes remain unknown. We have previously reported on the efficacy of AxE1CAUP, an oncolytic adenovirus (OAd) expressing uracil phosphoribosyltransferase (UPRT), an enzyme that markedly enhanced the toxicity of 5-fluorouracil (5-FU), in immunodeficient, Ad-nonpermissive nude mice. Here we explored the efficacy and safety of intratumoral (i.t.) AxE1CAUP/5-FU therapy and of its combination with CP for syngenic HaP-T1 pancreatic cancers in immunocompetent, Ad-permissive Syrian hamsters. AxE1CAUP infected, replicated, expressed UPRT, and increased the sensitivity to 5-FU in HaP-T1 cells in vitro. I.t. AxE1CAUP/5-FU treatment inhibited the growth of subcutaneous HaP-T1 allografts. The combination with high-dose CP inhibited serum Ad-neutralizing antibody formation, increased intratumoral AxE1CAUP replication and UPRT expression, and resulted in further enhanced therapeutic effects with 5-FU. Neither body weight nor histology of the liver and lung changed during these treatments. A clinically-approved, intermediate-dose CP also enhanced the efficacy of i.t. AxE1CAUP/5-FU treatment in these hamsters, which was not affected by preexisting immunity to the vector. These data demonstrate the excellent antitumor efficacy and safety of an OAd armed with a suicide gene in combination with CP for treating syngenic tumors in immunocompetent, Ad-permissive animals, indicating the efficacy of CP in overcoming the hurdle of antiviral immunity for effective OV-mediated gene therapy. Copyright © 2013 UICC.

  17. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    International Nuclear Information System (INIS)

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  18. Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01.

    Directory of Open Access Journals (Sweden)

    Beatriz Vera

    Full Text Available Despite the recent advances in the development of antitumor therapies, the prognosis for patients with malignant gliomas remains dismal. Therapy with tumor-selective viruses is emerging as a treatment option for this devastating disease. In this study we characterize the anti-glioma effect of VCN-01, an improved hyaluronidase-armed pRB-pathway-selective oncolytic adenovirus that has proven safe and effective in the treatment of several solid tumors. VCN-01 displayed a significant cytotoxic effect on glioma cells in vitro. In vivo, in two different orthotopic glioma models, a single intra-tumoral administration of VCN-01 increased overall survival significantly and led to long-term survivors free of disease.

  19. Gene therapy targeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirus harboring the focal adhesion kinase shRNA.

    Science.gov (United States)

    Gao, Yang; Zhu, Yayun; Huang, Xinyu; Ai, Kaixing; Zheng, Qi; Yuan, Zhou

    2015-08-01

    Cancer targeting gene-viro-therapy (CTGVT) approach has become a hotspot and a trend in the field of cancer biotherapy and oncolytic adenovirus is an ideal vector to carry the targeting genes. In this study, we used human telomerase reverse transcriptase (hTERT) promoter to control the adenovirus early region 1a (E1A) and the human α-fetoprotein (AFP) promoter integrated with hypoxia response element (HRE) to control the adenovirus early region 1b (E1B). Then the novel double-regulated adenovirus Ad-hTERT-HREAF (named SG505) was engineered. The short-hairpin RNA against focal adhesion kinase (FAK) was inserted into SG505 and thus forming Ad-hTERT-HREAF-shRNA (called SG505‑siFAK). Then various oncolytic adenoviruses were examined to verify whether they could suppress liver cancer cells selectively and efficiently both in vitro and in vivo. Both replicative and replication-defective adenoviruses carrying FAK-shRNA significantly inhibited the expression of FAK in Hep3B and SMMC-7721 cell lines and efficiently suppressed the growth of liver cancer cell lines with minor effect to normal cells. Furthermore, the recombined oncolytic adenoviruses, SG505-siFAK, SG505-EGFP and SG505 were able to selectively propagate in AFP-positive liver cancer cells in vitro and the SG505-siFAK efficiently suppressed the expression of FAK. SG505-siFAK showed the most potent tumor inhibition capability among the three recombined adenovirus with IC50 levels of 0.092±0.009 and 0.424±0.414 pfu/cell in the Hep3B and HepG2 cell line, respectively. Animal experiment further confirmed that SG505-siFAK achieved the most significant tumor inhibition of Hep3B liver cancer xenografted growth by intratumoral injection comparing to the intravenous injection among the three recombined viruses. Immunohistochemical results indicated that FAK expression was downregulated significantly in the tumors treated with SG505-siFAK. The dual-regulated oncolytic adenovirus SG505-siFAK was proven to inhibit the

  20. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Merron, Andrew; McNeish, Iain A. [Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology, Institute of Cancer, London (United Kingdom); Baril, Patrick; Tran, Lucile; Vassaux, Georges [CHU Hotel Dieu, INSERM, Nantes (France); CHU de Nantes, Institut des Maladies de l' Appareil Digestif, Nantes (France); Martin-Duque, Pilar [Instituto Aragones de Ciencias de la Salud, Zaragoza (Spain); Vieja, Antonio de la [Instituto de Investigaciones Biomedicas, Madrid (Spain); Briat, Arnaud [INSERM U877, Grenoble (France); Harrington, Kevin J. [Chester Beatty Laboratories, Institute of Cancer Research, London (United Kingdom)

    2010-07-15

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  1. Assessment of the Na/I symporter as a reporter gene to visualize oncolytic adenovirus propagation in peritoneal tumours

    International Nuclear Information System (INIS)

    Merron, Andrew; McNeish, Iain A.; Baril, Patrick; Tran, Lucile; Vassaux, Georges; Martin-Duque, Pilar; Vieja, Antonio de la; Briat, Arnaud; Harrington, Kevin J.

    2010-01-01

    In vivo imaging of the spread of oncolytic viruses using the Na/I symporter (NIS) has been proposed. Here, we assessed whether the presence of NIS in the viral genome affects the therapeutic efficacy of the oncolytic adenovirus dl922-947 following intraperitoneal administration, in a mouse model of peritoneal ovarian carcinoma. We generated AdAM7, a dl922-947 oncolytic adenovirus encoding the NIS coding sequence. Iodide uptake, NIS expression, infectivity and cell-killing activity of AdAM7, as well as that of relevant controls, were determined in vitro. In vivo, the propagation of this virus in the peritoneal cavity of tumour-bearing mice was determined using SPECT/CT imaging and its therapeutic efficacy was evaluated. In vitro infection of ovarian carcinoma IGROV-1 cells with ADAM7 led to functional expression of NIS. However, the insertion of NIS into the viral genome resulted in a loss of efficacy of the virus in terms of replication and cytotoxicity. In vivo, on SPECT/CT imaging AdAM7 was only detectable in the peritoneal cavity of animals bearing peritoneal ovarian tumours for up to 5 days after intraperitoneal administration. Therapeutic experiments in vivo demonstrated that AdAM7 is as potent as its NIS-negative counterpart. This study demonstrated that despite the detrimental effect observed in vitro, insertion of the reporter gene NIS in an oncolytic adenovirus did not affect its therapeutic efficacy in vivo. We conclude that NIS is a highly relevant reporter gene to monitor the fate of oncolytic adenovectors in live subjects. (orig.)

  2. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    OpenAIRE

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.; Nettelbeck, Dirk M.

    2010-01-01

    Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show t...

  3. Preclinical Safety Studies of Enadenotucirev, a Chimeric Group B Human-Specific Oncolytic Adenovirus

    Directory of Open Access Journals (Sweden)

    Sam Illingworth

    2017-06-01

    Full Text Available Enadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies. In this manuscript, we describe our tailored preclinical strategy designed to evaluate the key biological properties of enadenotucirev. As enadenotucirev does not replicate in animal cells, a panel of primary human cells was used to evaluate enadenotucirev replication selectivity in vitro, demonstrating that virus genome levels were >100-fold lower in normal cells relative to tumor cells. Acute intravenous tolerability in mice was used to assess virus particle-mediated toxicology and effects on innate immunity. These studies showed that particle toxicity could be ameliorated by dose fractionation, using an initial dose of virus to condition the host such that cytokine responses to subsequent doses were significantly attenuated. This, in turn, supported the initiation of a phase I intravenous clinical trial with a starting dose of 1 × 1010 virus particles given on days 1, 3, and 5.

  4. Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Machitani

    2017-12-01

    Full Text Available Telomerase-specific replication-competent adenoviruses (Ads, i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver. We reported that inhibition of nuclear factor-κB (NF-κB leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα expression cassette (TRAD-DNIκBα. Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.

  5. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model.

    Science.gov (United States)

    Puig-Saus, C; Laborda, E; Rodríguez-García, A; Cascalló, M; Moreno, R; Alemany, R

    2014-02-01

    Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.

  6. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity.

    Directory of Open Access Journals (Sweden)

    Anne Kleijn

    Full Text Available The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide angles to future improvements on Delta24-RGD therapy.

  7. Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection.

    Science.gov (United States)

    Wunder, T; Schmid, K; Wicklein, D; Groitl, P; Dobner, T; Lange, T; Anders, M; Schumacher, U

    2013-01-01

    Coxsackie adenovirus receptor (CAR) is the primary receptor to which oncolytic adenoviruses have to bind for internalization and viral replication. A total of 171 neuroendocrine lung tumors in form of multitissue arrays have been analyzed resulting in a positivity of 112 cases (65.5%). Immunostaining correlated statistically significant with histopathology and development of recurrence. The subtype small cell lung cancer (SCLC) showed the highest CAR expression (77.6%), moreover the CAR level was correlated to the disease-free survival. Further, high CAR expression level in SCLC cell lines was found in vitro and in vivo when cell lines had been transplanted into immunodeficient mice. A correlation between CAR expression in the primary tumors and metastases development in the tumor model underlined the clinical relevance. Cell lines with high CAR level showed a high infectivity when infected with a replication-deficient adenovirus. Low levels of CAR expression in SCLC could be upregulated with Trichostatin A, a histone deacetylase inhibitor. As a result of the unaltered poor prognosis of SCLC and its high CAR expression it seems to be the perfect candidate for oncolytic therapy. With our clinically relevant tumor model, we show that xenograft experiments are warrant to test the efficiency of oncolytic adenoviral therapy.

  8. Oncolytic adenoviruses targeted to Human Papilloma Virus-positive head and neck squamous cell carcinomas.

    Science.gov (United States)

    LaRocca, Christopher J; Han, Joohee; Salzwedel, Amanda O; Davydova, Julia; Herzberg, Mark C; Gopalakrishnan, Rajaram; Yamamoto, Masato

    2016-05-01

    In recent years, the incidence of Human Papilloma Virus (HPV)-positive head and neck squamous cell carcinomas (HNSCC) has markedly increased. Our aim was to design a novel therapeutic agent through the use of conditionally replicative adenoviruses (CRAds) that are targeted to the HPV E6 and E7 oncoproteins. Each adenovirus included small deletion(s) in the E1a region of the genome (Δ24 or CB016) intended to allow for selective replication in HPV-positive cells. In vitro assays were performed to analyze the transduction efficiency of the vectors and the cell viability following viral infection. Then, the UPCI SCC090 cell line (HPV-positive) was used to establish subcutaneous tumors in the flanks of nude mice. The tumors were then treated with either one dose of the virus or four doses (injected every fourth day). The transduction analysis with luciferase-expressing viruses demonstrated that the 5/3 fiber modification maximized virus infectivity. In vitro, both viruses (5/3Δ24 and 5/3CB016) demonstrated profound oncolytic effects. The 5/3CB016 virus was more selective for HPV-positive HNSCC cells, whereas the 5/3Δ24 virus killed HNSCC cells regardless of HPV status. In vivo, single injections of both viruses demonstrated anti-tumor effects for only a few days following viral inoculation. However, after four viral injections, there was statistically significant reductions in tumor growth when compared to the control group (p<0.05). CRAds targeted to HPV-positive HNSCCs demonstrated excellent in vitro and in vivo therapeutic effects, and they have the potential to be clinically translated as a novel treatment modality for this emerging disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tumor associated stromal cells play a critical role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses.

    Directory of Open Access Journals (Sweden)

    M Verónica Lopez

    Full Text Available The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I-F512-TK, respectively exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses.

  10. Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah Al-Zaher

    2018-03-01

    Full Text Available To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect. Keywords: oncolytic adenovirus, iRGD tumor-penetrating peptide, immune response

  11. Novel Infectivity-Enhanced Oncolytic Adenovirus with a Capsid-Incorporated Dual-Imaging Moiety for Monitoring Virotherapy in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kristopher J. Kimball

    2009-09-01

    Full Text Available We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for non-invasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk and monomeric red fluorescent protein 1 (mRFP1 into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  12. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

    Science.gov (United States)

    Zhang, Jian; Lai, Weijie; Li, Qiang; Yu, Yang; Jin, Jin; Guo, Wan; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2017-09-16

    Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model.

    Science.gov (United States)

    Young, B A; Spencer, J F; Ying, B; Toth, K; Wold, W S M

    2013-09-01

    We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared with those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either 1 week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.

  14. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  15. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhou, Ling [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhang, Yan-ling [School of Biotechnology, Southern Medical University, Guangzhou 510515 (China); Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Li, Li-xia [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Fu, Xiang; Wu, Jiang-xue [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Huang, Wenlin, E-mail: hwenl@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Guangdong Provincial Key Laboratory of Tumor-Targeted Drug, Doublle Bioproducts Inc., Guangzhou 510663 (China)

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  16. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    Science.gov (United States)

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma. © 2015 UICC.

  17. Therapeutic efficacy of an oncolytic adenovirus containing RGD ligand in minor capsid protein IX and Fiber, Δ24DoubleRGD, in an ovarian cancer model

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    2012-02-01

    Full Text Available Ovarian cancer is the leading cause of gynecological disease death despite advances in medicine. Therefore, novel strategies are required for ovarian cancer therapy. Conditionally replicative adenoviruses (CRAds, genetically modified as anti-cancer therapeutics, are one of the most attractive candidate agents for cancer therapy. However, a paucity of coxsackie B virus and adenovirus receptor (CAR expression on the surface of ovarian cancer cells has impeded treatment of ovarian cancer using this approach.This study sought to engineer a CRAd with enhanced oncolytic ability in ovarian cancer cells, “Δ24DoubleRGD.” Δ24DoubleRGD carries an arginine-glycine-aspartate (RGD motif incorporated into both fiber and capsid protein IX (pIX and its oncolytic efficacy was evaluated in ovarian cancer. In vitro analysis of cell viability showed that infection of ovarian cancer cells with Δ24DoubleRGD leads to increased cell killing relative to the control CRAds. Data from this study suggested that not only an increase in number of RGD motifs on the CRAd capsid, but also a change in the repertoir of targeted integrins could lead to enhanced oncolytic potency of Δ24DoubleRGD in ovarian cancer cells in vitro. In an intraperitoneal model of ovarian cancer, mice injected with Δ24DoubleRGD showed, however, a similar survival rate as mice treated with control CRAds.

  18. Oncolytic virotherapy of meningiomas in vitro with replication-competent adenovirus

    NARCIS (Netherlands)

    Grill, Jacques; Lamfers, Martine L. M.; van Beusechem, Victor W.; van der Valk, Paul; Huisman, Anne; Sminia, Peter; Alemany, Ramon; Curiel, David T.; Vandertop, W. Peter; Gerritsen, Winald R.; Dirven, Clemens M. F.

    2005-01-01

    OBJECTIVE: To evaluate the efficacy of the conditionally replicating adenovirus (Ad) Ad.d24 for oncolysis of benign and malignant meningiomas. METHODS: Primary meningioma cells and organotypic spheroids were cultured from tumor biopsies of 12 consecutive unselected patients. Four different Ads were

  19. Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy.

    Science.gov (United States)

    Seth, Prem; Wang, Zhen-Guo; Pister, Amanda; Zafar, M Behzad; Kim, Sung; Guise, Theresa; Wakefield, Lalage

    2006-11-01

    We have developed an approach to cancer gene therapy in which the oncolytic effects of an adenoviral vector have been combined with selective expression of a soluble form of transforming growth factor (TGF)-beta receptor II fused with Fc (sTGFbetaRIIFc). We chose to use adenoviral dl01/07 mutant because it can replicate in all cancer cells regardless of their genetic defects. An oncolytic adenovirus expressing sTGFbetaRIIFc (Ad.sT- betaRFc) was constructed by homologous recombination. Infection of MDA-MB-231 and MCF-7 human breast cancer cells with Ad.sTbetaRFc produced sTGFbetaRIIFc, which was released into the media. The conditioned media containing sTGFbetaRIIFc could bind with TGF-beta 1 and inhibited TGF-beta-dependent transcription in target cells. Infection of MDA-MB-231, MCF-7, and 76NE human breast cancer cells with Ad.sTbetaRFc resulted in high levels of viral replication, comparable to that of a wild-type dl309 virus. Although some viral replication was observed in actively dividing normal human lung fibroblasts, there was no replication in nonproliferating normal cells. Direct injection of Ad.sTbetaRFc into MDA-MB-231 human breast xenograft tumors grown in nude mice resulted in a significant inhibition of tumor growth, causing tumor regression in more than 85% of the animals. These results indicate that it is possible to construct an oncolytic virus expressing sTGFbetaRIIFc in which both viral replication and transgene expression remain intact, and the recombinant adenovirus is oncolytic in a human tumor xenograft model. On the basis of these results we believe that it may be feasible to develop a cancer gene therapy approach using Ad.sTbetaRFc as an antitumor agent.

  20. Establishment of a mouse melanoma model system for the efficient infection and replication of human adenovirus type 5-based oncolytic virus.

    Science.gov (United States)

    Kang, Sujin; Kim, Joo-Hang; Kim, So Young; Kang, Dongxu; Je, Suyeon; Song, Jae J

    2014-10-24

    Due to poor adenoviral infectivity and replication in mouse tumor cell types compared with human tumor cell types, use of human-type adenoviral vectors in mouse animal model systems was limited. Here, we demonstrate enhanced infectivity and productive replication of adenovirus in mouse melanoma cells following introduction of both the Coxsackievirus and adenovirus receptor (CAR) and E1B-55K genes. Introduction of CAR into B16BL6 or B16F10 cells increased the infectivity of GFP-expressing adenovirus; however, viral replication was unaffected. We demonstrated a dramatic increase of adenoviral replication (up to 100-fold) in mouse cells via E1B-55K expression and subsequent viral spreading in mouse tissue. These results reveal for the first time that human adenovirus type 5 (Ad5)-based oncolytic virus can be applied to immunocompetent mouse with the introduction of CAR and E1B-55K to syngenic mouse cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus.

    Science.gov (United States)

    Del Bufalo, Francesca; Manzo, Teresa; Hoyos, Valentina; Yagyu, Shigeki; Caruana, Ignazio; Jacot, Jeffrey; Benavides, Omar; Rosen, Daniel; Brenner, Malcolm K

    2016-04-01

    Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jim Silver

    Full Text Available Replication-competent adenovirus type 5 (Ad5 vectors promise to be more efficient gene delivery vehicles than their replication-deficient counterparts, and chimeric Ad5 vectors that are capable of targeting CD46 are more effective than Ad5 vectors with native fibers. Although several strategies have been used to improve gene transduction and oncolysis, either by modifying their tropism or enhancing their replication capacity, some tumor cells are still relatively refractory to infection by chimeric Ad5. The oncolytic effects of the vectors are apparent in certain tumors but not in others. Here, we report the biological and oncolytic profiles of a replication-competent adenovirus 11p vector (RCAd11pGFP in colon carcinoma cells. CD46 was abundantly expressed in all cells studied; however, the transduction efficiency of RCAd11pGFP varied. RCAd11pGFP efficiently transduced HT-29, HCT-8, and LS174T cells, but it transduced T84 cells, derived from a colon cancer metastasis in the lung, less efficiently. Interestingly, RCAd11p replicated more rapidly in the T84 cells than in HCT-8 and LS174T cells and as rapidly as in HT-29 cells. Cell toxicity and proliferation assays indicated that RCAd11pGFP had the highest cell-killing activities in HT29 and T84 cells, the latter of which also expressed the highest levels of glycoproteins of the carcinoma embryonic antigen (CEA family. In vivo experiments showed significant growth inhibition of T84 and HT-29 tumors in xenograft mice treated with either RCAd11pGFP or Ad11pwt compared to untreated controls. Thus, RCAd11pGFP has a potent cytotoxic effect on colon carcinoma cells.

  3. Synergistic suppression effect on tumor growth of ovarian cancer by combining cisplatin with a manganese superoxide dismutase-armed oncolytic adenovirus

    Directory of Open Access Journals (Sweden)

    Wang S

    2016-10-01

    Full Text Available Shibing Wang,1,2,* Jing Shu,3,* Li Chen,4 Xiaopan Chen,3 Jianhong Zhao,4 Shuangshuang Li,1,2 Xiaozhou Mou,1,2 Xiangmin Tong1,2 1Clinical Research Institute, Zhejiang Provincial People’s Hospital, 2Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, 3Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, 4Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Gene therapy on the basis of oncolytic adenovirus is a novel approach for human cancer therapeutics. We aim to investigate whether it will synergistically reinforce their antiovarian cancer activities when the combined use of ZD55-manganese superoxide dismutase (MnSOD and cisplatin was performed. The experiments in vitro showed that ZD55-MnSOD enhances cisplatin-induced apoptosis and causes remarkable ovarian cancer cell death. Apoptosis induction by treatment with ZD55-MnSOD and/or cisplatin was detected in SKOV-3 by apoptotic cell staining, flow cytometry, and western blot analysis. In addition, the cytotoxicity caused by ZD55-MnSOD to normal cells was examined by the 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide assay and western blot analysis. Animal experiment further confirmed that combination of ZD55-MnSOD and cisplatin achieved significant inhibition of SKOV-3 ovarian tumor xenografted growth. In summary, we have demonstrated that ZD55-MnSOD can sensitize human ovarian cancer cells to cisplatin-induced cell death and apoptosis in vitro and in vivo. These findings indicate that the combined treatment with ZD55-MnSOD and cisplatin could represent a rational approach for antiovarian cancer therapy. Keywords: oncolytic adenovirus, MnSOD, cisplatin, ovarian cancer

  4. Synergistic antitumor effects of CDK inhibitor SNS-032 and an oncolytic adenovirus co-expressing TRAIL and Smac in pancreatic cancer

    Science.gov (United States)

    Ge, Yun; Lei, Wen; Ma, Yingyu; Wang, Yigang; Wei, Buyun; Chen, Xiaoyi; Ru, Guoqing; He, Xianglei; Mou, Xiaozhou; Wang, Shibing

    2017-01-01

    Gene therapy using oncolytic adenoviruses is a novel approach for human cancer therapeutics. The current study aimed to investigate whether the combined use of an adenovirus expressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and second mitochondria-derived activator of caspase (Smac) upon caspase activation (ZD55-TRAIL-IETD-Smac) and cyclin-dependent kinase (CDK) inhibitor SNS-032 will synergistically reinforce their anti-pancreatic cancer activities. The experiments in vitro demonstrated that SNS-032 enhances ZD55-TRAIL-IETD-Smac-induced apoptosis and causes marked pancreatic cancer cell death. Western blot assays suggested that the SNS-032 intensified ZD55-TRAIL-IETD-Smac-induced apoptosis of pancreatic cancer cells by affecting anti-apoptotic signaling elements, including CDK-2, CDK-9, Mcl-1 and XIAP. Additionally, animal experiments further confirmed that the combination of SNS-032 and ZD55-TRAIL-IETD-Smac significantly inhibited the growth of BxPC-3 pancreatic tumor xenografts. In conclusion, the present study demonstrated that SNS-032 sensitizes human pancreatic cancer cells to ZD55-TRAIL-IETD-Smac-induced cell death in vitro and in vivo. These findings indicate that combined treatment with SNS-032 and ZD55-TRAIL-IETD-Smac could represent a rational approach for anti-pancreatic cancer therapy. PMID:28440486

  5. Anti-Tumor Effects of an Oncolytic Adenovirus Expressing Hemagglutinin-Neuraminidase of Newcastle Disease Virus in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Dongyun He

    2014-02-01

    Full Text Available Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT promoter (Ad-hTERTp-E1a-HN, to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining, increase reactive oxygen species (ROS, reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials.

  6. Synergistic suppression effect on tumor growth of ovarian cancer by combining cisplatin with a manganese superoxide dismutase-armed oncolytic adenovirus.

    Science.gov (United States)

    Wang, Shibing; Shu, Jing; Chen, Li; Chen, Xiaopan; Zhao, Jianhong; Li, Shuangshuang; Mou, Xiaozhou; Tong, Xiangmin

    2016-01-01

    Gene therapy on the basis of oncolytic adenovirus is a novel approach for human cancer therapeutics. We aim to investigate whether it will synergistically reinforce their antiovarian cancer activities when the combined use of ZD55-manganese superoxide dismutase (MnSOD) and cisplatin was performed. The experiments in vitro showed that ZD55-MnSOD enhances cisplatin-induced apoptosis and causes remarkable ovarian cancer cell death. Apoptosis induction by treatment with ZD55-MnSOD and/or cisplatin was detected in SKOV-3 by apoptotic cell staining, flow cytometry, and western blot analysis. In addition, the cytotoxicity caused by ZD55-MnSOD to normal cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and western blot analysis. Animal experiment further confirmed that combination of ZD55-MnSOD and cisplatin achieved significant inhibition of SKOV-3 ovarian tumor xenografted growth. In summary, we have demonstrated that ZD55-MnSOD can sensitize human ovarian cancer cells to cisplatin-induced cell death and apoptosis in vitro and in vivo. These findings indicate that the combined treatment with ZD55-MnSOD and cisplatin could represent a rational approach for antiovarian cancer therapy.

  7. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts.

    NARCIS (Netherlands)

    Geoerger, B; Grill, J; Opolon, P; Morizet, J; Aubert, G; Lecluse, Y; Beusechem-Kaptein, van V.W.; Gerritsen, W.R.; Kirn, DH; Vassal, G

    2003-01-01

    In spite of aggressive surgery, irradiation and/or chemotherapy, treatment of malignant gliomas remains a major challenge in adults and children due to high treatment failure. We have demonstrated significant cell lysis and antitumour activity of the E1B-55 kDa-gene-deleted adenovirus ONYX-015

  8. Tropism ablation and stealthing of oncolytic adenovirus enhances systemic delivery to tumors and improves virotherapy of cancer

    Czech Academy of Sciences Publication Activity Database

    Green, N. K.; Hale, A.; Cawood, R.; Illingworth, S.; Herbert, C.; Hermiston, T.; Šubr, Vladimír; Ulbrich, Karel; van Rooijen, N.; Seymour, L. W.; Fisher, K. D.

    2012-01-01

    Roč. 7, č. 11 (2012), s. 1683-1695 ISSN 1743-5889 R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : clodronate liposomes * polymer-coated adenovirus * predosing strategy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.260, year: 2012

  9. Complete Eradication of Xenograft Hepatoma by Oncolytic Adenovirus ZD55 Harboring TRAIL-IETD-Smac Gene with Broad Antitumor Effect

    Science.gov (United States)

    Wang, Shi-bing; Tan, Yuan; Lei, Wen; Wang, Yi-gang; Zhou, Xiu-mei; Jia, Xiao-yuan; Zhang, Kang-jian; Chu, Liang

    2012-01-01

    Abstract Cancer-targeting dual-gene virotherapy (CTGVT-DG) is an important modification of CTGVT, in which two suitable genes are used to obtain an excellent antitumor effect. A key problem is to join the two genes to form one fused gene, and then to clone it into the oncolytic viral vector so that only one investigational new drug application, instead of two, is required for clinical use. Many linkers (e.g., internal ribosome entry site) are used to join two genes together, but they are not all equally efficacious. Here, we describe finding the best linker, that is, sequence encoding the four amino acids IETD, to join the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene and the second mitochondria-derived activator of caspase (Smac) gene to form TRAIL-IETD-Smac and inserting it into oncolytic viral vector ZD55 to construct ZD55-TRAIL-IETD-Smac, which matched ZD55-TRAIL plus ZD55-Smac in completely eliminating xenograft hepatoma. ZD55-TRAIL-IETD-Smac works by quantitative cleavage at IETD↓by inducing caspase-8; activation or inhibition of caspase-8 could up- or downregulate cleavage, respectively. The cleaved product, TRAIL-IETD, does not affect the function of TRAIL. Numerous experiments have shown that the combined use of ZD55-TRAIL plus ZD55-X could completely eradicate many xenograft tumors, and therefore the IETD is potentially a useful linker to construct many antitumor drugs, for example, ZD55-TRAIL-IETD-X, where X has a compensative or synergetic effect on TRAIL. We found that the antitumor effect of ZD55-IL-24-IETD-TRAIL also has an equivalent antitumor effect compared with the combined use of ZD55-IL-24 plus ZD55-TRAIL, because ZD55-IL-24 could also induce caspase-8. This means that IETD, as a two-gene linker, may have broad use. PMID:22530834

  10. Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells

    Directory of Open Access Journals (Sweden)

    Pittet Anne-Laure

    2006-10-01

    Full Text Available Abstract Background The Wnt signaling pathway is activated by mutations in the APC and β-catenin genes in many types of human cancer. β-catenin is stabilized by these mutations and activates transcription in part by acting as a bridge between Tcf/LEF proteins and the HD2 domain of the BCL9 coactivator. We have previously described oncolytic adenoviruses with binding sites for Tcf/LEF transcription factors inserted into the early viral promoters. These viruses replicate selectively in cells with activation of the Wnt pathway. To increase the activity of these viruses we have fused the viral transactivator E1A to the BCL9 HD2 domain. Methods Luciferase assays, co-immunoprecipitation and Western blotting, immunofluorescent cell staining and cytopathic effect assays were used to characterize the E1A-HD2 fusion protein and virus in vitro. Growth curves of subcutaneous SW620 colon cancer xenografts were used to characterize the virus in vivo. Results The E1A-HD2 fusion protein binds to β-catenin in vivo and activates a Tcf-regulated luciferase reporter better than wild-type E1A in cells with activated Wnt signaling. Expression of the E1A-HD2 protein promotes nuclear import of β-catenin, mediated by the strong nuclear localization signal in E1A. Tcf-regulated viruses expressing the fusion protein show increased expression of viral proteins and a five-fold increase in cytopathic effect (CPE in colorectal cancer cell lines. There was no change in viral protein expression or CPE in HeLa cells, indicating that E1A-HD2 viruses retain selectivity for cells with activation of the Wnt signaling pathway. Despite increasing the cytopathic effect of the virus in vitro, fusion of the HD2 domain to E1A did not increase the burst size of the virus in vitro or the anti-tumor effect of the virus in an SW620 xenograft model in vivo. Conclusion Despite an increase in the nuclear pool of β-catenin, the effects on viral activity in colon cancer cells were small

  11. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Arthur Dyer

    2017-03-01

    Full Text Available Enadenotucirev (EnAd is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.

  12. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, Svend O., E-mail: sfreyta1@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Stricker, Hans [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Lu, Mei [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Peabody, James [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Oja-Tebbe, Nancy; Bourgeois, Renee [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Gupta, Nilesh; Lane, Zhaoli [Pathology, Henry Ford Health System, Detroit, Michigan (United States); Rodriguez, Ron [Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  13. Preclinical pharmacology and toxicology study of Ad-hTERT-E1a-Apoptin, a novel dual cancer-specific oncolytic adenovirus

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yanxin [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); Guo, Huanhuan [Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); Changchun Brother Biotech Co., Ltd., Changchun, 130000 (China); Hu, Ningning; He, Dongyun [Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122 (China); Zhang, Shi [Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); School of Clinical Medicine, Jilin University, Changchun 130001 (China); Chu, Yunjie [Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021 (China); Huang, Yubin [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Li, Xiao, E-mail: lixiao06@mails.jlu.edu.cn [Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122 (China); Sun, LiLi, E-mail: linjiaxiaoya@163.com [Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun 130012 (China); Jin, Ningyi, E-mail: ningyij@126.com [Institute of Military Veterinary, Academy of Military Medical Sciences of PLA, Changchun 130122 (China); The Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122 (China)

    2014-10-15

    Clinical studies have demonstrated that conditionally replicating adenovirus is safe. We constructed an oncolytic adenovirus, Ad-hTERT-E1a-Apoptin, using a cancer-specific promoter (human telomerase reverse transcriptase promoter, hTERTp) and a cancer cell-selective apoptosis-inducing gene (Apoptin). Ad-hTERT-E1a-Apoptin was proven effective both in vitro and in vivo in our previous study. In this study, the preclinical safety profiles of Ad-hTERT-E1a-Apoptin in animal models were investigated. At doses of 5.0 × 10{sup 8}, 2.5 × 10{sup 9}, and 1.25 × 10{sup 10} viral particles (VP)/kg, Ad-hTERT-E1a-Apoptin had no adverse effects on mouse behavior, muscle cooperation, sedative effect, digestive system, and nervous systems, or on beagle cardiovascular and respiratory systems at 5.0 × 10{sup 8}, 2.5 × 10{sup 9}, and 1.25 × 10{sup 10} VP/kg doses. In acute toxicity tests in mice, the maximum tolerated dose > 5 × 10{sup 10} VP/kg. There was no inflammation or ulceration at the injection sites within two weeks. In repeat-dose toxicological studies, the no observable adverse effect levels of Ad-hTERT-E1a-Apoptin in rats (1.25 × 10{sup 10} VP/kg) and beagles (2.5 × 10{sup 9} VP/kg) were 62.5- and 12.5-fold of the proposed clinical dose, respectively. The anti-virus antibody was produced in animal sera. Bone marrow examination revealed no histopathological changes. Guinea pigs sensitized by three repeated intraperitoneal injections of 1.35 × 10{sup 10} VP/mL Ad-hTERT-E1a-Apoptin each and challenged by one intravenous injection of 1.67 × 10{sup 8} VP/kg Ad-hTERT-E1a-Apoptin did not exhibit any sign of systemic anaphylaxis. Our data from different animal models suggest that Ad-hTERT-E1a-Apoptin is a safe anti-tumor therapeutic agent. - Highlights: • We use the rodents and non-rodents animal models to evaluation Ad-hTERT-E1a-Apoptin. • Ad-hTERT-E1a-Apoptin is a safe anti-tumor therapeutic agent. • Demonstrate the safety and feasibility dose of injected Ad

  14. Dendritic cells serve as a "Trojan horse" for oncolytic adenovirus delivery in the treatment of mouse prostate cancer.

    Science.gov (United States)

    Li, Zhao-Lun; Liang, Xuan; Li, He-Cheng; Wang, Zi-Ming; Chong, Tie

    2016-08-01

    Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. DCs may be an effective vector for the delivery of CRAds in the treatment of PCa.

  15. Adenovirus DNA Replication

    Science.gov (United States)

    Hoeben, Rob C.; Uil, Taco G.

    2013-01-01

    Adenoviruses have attracted much attention as probes to study biological processes such as DNA replication, transcription, splicing, and cellular transformation. More recently these viruses have been used as gene-transfer vectors and oncolytic agents. On the other hand, adenoviruses are notorious pathogens in people with compromised immune functions. This article will briefly summarize the basic replication strategy of adenoviruses and the key proteins involved and will deal with the new developments since 2006. In addition, we will cover the development of antivirals that interfere with human adenovirus (HAdV) replication and the impact of HAdV on human disease. PMID:23388625

  16. Potent anti-tumor activity of telomerase-dependent and HSV-TK armed oncolytic adenovirus for non-small cell lung cancer in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ren Peng-Kang

    2010-05-01

    Full Text Available Abstract Background Non-small cell lung cancer (NSCLC is the leading cause of cancer related mortality, any improvements in therapeutic strategies are urgently required. In this study we generated a novel 'suicide gene' armed oncolytic adenoviral vector and investigated its antitumor effect both in vitro and in vivo. Methods Since the up-regulated expression of human telomerase reverse transcriptase (hTERT is a hallmark of alltypes of NSCLC, we chose hTERT promoter to transcriptionally control E1A gene expression to obtain adenoviral replication in NSCLC. In order to further enhance anti-tumor effect of this oncolytic adenoviral vector, we inserted a 'suicide gene' i.e. Herpes Simplex Virus Thymidine Kinase (HSV-TK into oncolytic adenoviral vector to engineer a novel armed oncolytic adenoviral vector 'Ad.hTERT-E1A-TK'. Results Ad.hTERT-E1A-TK efficiently killed different types of tumor cells including two types of NSCLC cells in vitro, causing no damage to normal primary fibroblasts. Furthermore, Ad.hTERT-E1A-TK infection combined with administration of prodrug gancyclovir (GCV resulted in more potent cytotoxicity on NSCLC cells, and synergistically suppressed human NSCLC tumor growth in nude mice. Conclusion The results from this study showed that Ad.hTERT-E1A-TK/GCV could be a potent but safe anti-tumor strategy for NSCLC biotherapy.

  17. Oncolytic virus therapy for cancer

    Directory of Open Access Journals (Sweden)

    Goldufsky J

    2013-09-01

    Full Text Available Joe Goldufsky,1 Shanthi Sivendran,3 Sara Harcharik,4 Michael Pan,4 Sebastian Bernardo,4 Richard H Stern,5 Philip Friedlander,4 Carl E Ruby,1,2 Yvonne Saenger,4 Howard L Kaufman1,2 Departments of 1Immunology & Microbiology and 2Surgery, Rush University Medical Center, Chicago IL, USA 3Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA, and Departments of 4Medical Oncology and 5Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA Abstract: The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers. Keywords: cancer, gene therapy, oncolytic therapy, virus, treatment

  18. Anti-cancer effect of oncolytic adenovirus-armed shRNA targeting MYCN gene on doxorubicin-resistant neuroblastoma cells.

    Science.gov (United States)

    Li, Yuan; Zhuo, Baobiao; Yin, Yiyu; Han, Tao; Li, Shixian; Li, Zhengwei; Wang, Jian

    2017-09-09

    Chemotherapy is one of the few effective choices for patients with neuroblastoma. However, the development of muti-drug resistance (MDR) to chemotherapy is a major obstacle to the effective treatment of advanced or recurrent neuroblastoma. The muti-drug resistance-associated protein (MRP), which encodes a transmembrane glycoprotein, is a key regulator of MDR. The expression of MRP is a close correlation with MYCN oncogene in neuroblastoma. We have recently shown ZD55-shMYCN (oncolytic virus armed with shRNA against MYCN) can down-regulate MYCN to inhibit tumor cells proliferation and induce apoptosis in neuroblastoma. Here we further report ZD55-shMYCN re-sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and inhibited cell migration), and reduced the in vivo growth rate of neuroblastoma xenografts by down-regulation of MRP expression. Sequential therapy with doxorubicin did not affect the replication of ZD55-shMYCN in doxorubicin-resistant neuroblastoma cells, but decreased the expression of Bcl-2, Bcl-X L , MMP-1. Thus, this synergistic effect of ZD55-shMYCN in combination with doxorubicin provides a novel therapy strategy for doxorubicin-resistant neuroblastoma, and is a promising approach for further clinical development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    Directory of Open Access Journals (Sweden)

    Lundstrom K

    2018-02-01

    Full Text Available Kenneth Lundstrom PanTherapeutics, Lutry, Switzerland Abstract: Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. Keywords: immunotherapy, viral vectors, clinical trials, drug approval

  20. Noninvasive Monitoring of mRFP1- and mCherry-Labeled Oncolytic Adenoviruses in an Orthotopic Breast Cancer Model by Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Anton V. Borovjagin

    2010-03-01

    Full Text Available Genetic capsid labeling of conditionally replicative adenoviruses (CRAds with fluorescent tags offers a potentially more accurate monitoring of those virotherapy agents in vivo. The capsid of an infectivity-enhanced CRAd, Ad5/3, delta 24, was genetically labeled with monomeric red fluorescent protein 1 (mRFP1 or its advanced derivative, “mCherry,” to evaluate the utility of each red fluorescent reporter and the benefit of CRAd capsid labeling for noninvasive virus tracking in animal tumor models by a new spectral imaging approach. Either reporter was incorporated into the CRAd particles by genetic fusion to the viral capsid protein IX. Following intratumoral injection, localization and replication of each virus in orthotopic breast cancer xenografts were analyzed by spectral imaging and verified by quantitative polymerase chain reaction. Fluorescence in tumors increased up to 2,000-fold by day 4 and persisted for 5 to 7 weeks, showing oscillatory dynamics reflective of CRAd replication cycles. Capsid labeling in conjunction with spectral imaging thus enables direct visualization and quantification of CRAd particles in tumors prior to the reporter transgene expression. This allows for noninvasive control of CRAd delivery and distribution in tumors and facilitates quantitative assessment of viral replication. Although mCherry appeared to be superior to mRFP1 as an imaging tag, both reporters showed utility for CRAd imaging applications.

  1. Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles

    Directory of Open Access Journals (Sweden)

    Yaohe Wang

    2010-01-01

    Full Text Available Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.

  2. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  3. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    Science.gov (United States)

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients

    Directory of Open Access Journals (Sweden)

    Patil Sandeep S

    2012-01-01

    Full Text Available Abstract Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.

  5. Promising oncolytic agents for metastatic breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Cody JJ

    2015-06-01

    Full Text Available James J Cody,1 Douglas R Hurst2 1ImQuest BioSciences, Frederick, MD, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer. Keywords: oncolytic virus, virotherapy, breast cancer, metastasis 

  6. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art

    Directory of Open Access Journals (Sweden)

    Nande R

    2015-11-01

    Full Text Available Rounak Nande,1 Candace M Howard,2 Pier Paolo Claudio,3,4 1Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, 2Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 3Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, 4Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: The field of ultrasound (US has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.Keywords: microbubbles, ultrasound

  7. Promising oncolytic agents for metastatic breast cancer treatment

    Science.gov (United States)

    Cody, James J; Hurst, Douglas R

    2015-01-01

    New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer. PMID:27512671

  8. Novel oncolytic viral therapies in patients with thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Ahmad Z

    2016-12-01

    Full Text Available Zeeshan Ahmad, Robert A Kratzke Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA Abstract: Oncolytic virotherapy is the use of replication-competent viruses to treat malignancies. The potential of oncolytic virotherapy as an approach to cancer therapy is based on historical evidence that certain viral infections can cause spontaneous remission of both hematologic and solid tumor malignancies. Oncolytic virotherapy may eliminate cancer cells through either direct oncolysis of infected tumor cells or indirect immune-mediated oncolysis of uninfected tumor cells. Recent advances in oncolytic virotherapy include the development of a wide variety of genetically attenuated RNA viruses with precise cellular tropism and the identification of cell-surface receptors that facilitate viral transfer to the tissue of interest. Current research is also focused on targeting metastatic disease by sustaining the release of progeny viruses from infected tumor cells and understanding indirect tumor cell killing through immune-mediated mechanisms of virotherapy. The purpose of this review is to critically evaluate recent evidence on the clinical development of tissue-specific viruses capable of targeting tumor cells and eliciting secondary immune responses in lung cancers and mesothelioma. Keywords: lung cancer, mesothelioma, VSV, adenovirus, measles

  9. Adenovirus coxsackie adenovirus receptor-mediated binding to human erythrocytes does not preclude systemic transduction.

    Science.gov (United States)

    Rojas, L A; Moreno, R; Calderón, H; Alemany, R

    2016-12-01

    There is great skepticism in the capability of adenovirus vectors and oncolytic adenoviruses to reach specific organs or tumors upon systemic administration. Besides antibodies, the presence of CAR (coxsackie and adenovirus receptor) in human erythrocytes has been postulated to sequester CAR-binding adenoviruses, commonly used in gene therapy and oncolytic applications. The use of non-CAR-binding fibers or serotypes has been postulated to solve this limitation. Given the lack of integrins in erythrocytes and therefore of internalization of the CAR-bound virus, we hypothesized that the interaction of adenovirus type 5 (Ad5) with CAR in human erythrocytes could be reversible. In this work, we have studied the effects of Ad5 interaction with human erythrocytes via CAR. Although erythrocyte binding was observed, it did not reduce viral transduction of tumor cells in vitro after long-term incubations. Transplantation of human erythrocytes into nude mice did not reduce Ad5 extravasation and transduction of liver and human xenograft tumors after systemic administration. These findings indicate that despite human erythrocytes are able to bind to Ad5, this binding is reversible and does not prevent extravasation and organ transduction after systemic delivery. Thus, the poor bioavailability of systemically delivered CAR-binding adenoviruses in humans is likely due to other factors such as liver sequestration or neutralizing antibodies.

  10. Truncating the i-leader open reading frame enhances release of human adenovirus type 5 in glioma cells

    NARCIS (Netherlands)

    S.K. van den Hengel (Sanne); J. Vrij (Jeroen); T.G. Uil (Taco); M.L.M. Lamfers (Martine); P.A.E. Sillevis Smitt (Peter); R.C. Hoeben (Rob)

    2011-01-01

    textabstractBackground: The survival of glioma patients with the current treatments is poor. Early clinical trails with replicating adenoviruses demonstrated the feasibility and safety of the use of adenoviruses as oncolytic agents. Antitumor efficacy has been moderate due to inefficient virus

  11. Waterborne adenovirus.

    Science.gov (United States)

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    Adenoviruses are associated with numerous disease outbreaks, particularly those involving d-cares, schools, children's camps, hospitals and other health care centers, and military settings. In addition, adenoviruses have been responsible for many recreational water outbreaks, including a great number of swimming pool outbreaks than any other waterborne virus (Gerba and Enriquez 1997). Two drinking water outbreaks have been documented for adenovirus (Divizia et al. 2004; Kukkula et al. 1997) but none for food. Of the 51 known adenovirus serotypes, one third are associated with human disease, while other infections are asymptomatic. Human disease associated with adenovirus infections include gastroenteritis, respiratory infections, eye infections, acute hemorrhagic cystitis, and meningoencephalitis (Table 2). Children and the immunocompromised are more severely impacted by adenovirus infections. Subsequently, adenovirus is included in the EPA's Drinking Water Contaminant Candidate List (CCL), which is a list of unregulated contaminants found in public water systems that may pose a risk to public health (National Research Council 1999). Adenoviruses have been detected in various waters worldwide including wastewater, river water, oceans, and swimming pools (Hurst et al. 1988; Irving and Smith 1981; Pina et al. 1998). Adenoviruses typically outnumber the enteroviruses, when both are detected in surface waters. Chapron et al. (2000) found that 38% of 29 surface water samples were positive for infectious Ad40 and Ad41. Data are lacking regarding the occurrence of adenovirus in water in the US, particularly for groundwater and drinking water. Studies have shown, however, that adenoviruses survive longer in water than enteroviruses and hepatitis A virus (Enriquez et al. 1995), which may be due to their double-stranded DNA. Risk assessments have been conducted on waterborne adenovirus (Crabtree et al. 1997; van Heerden et al. 2005c). Using dose-response data for inhalation

  12. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  13. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications

    Directory of Open Access Journals (Sweden)

    Tsang JJ

    2015-01-01

    Full Text Available Jovian J Tsang,1,2 Harold L Atkins2,3 1Department of Biochemistry, University of Ottawa, 2Cancer Therapeutics, Ottawa Hospital Research Institute, 3Blood and Marrow Transplant Program, The Ottawa Hospital, Ottawa, ON, Canada Abstract: Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC transplantation (HSCT to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT. Keywords: hematopoietic stem cells, oncolytic virus, hematopoietic stem cell transplantation, stem cell graft purging, hematopoietic malignancy, graft vs host disease

  14. Designing herpes viruses as oncolytics

    Science.gov (United States)

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  15. E1B-attenuated onco lytic adenovirus enhances antitumor effect of radionuclide therapy by P53-independent way: cellular basic for radionuclide-viral therapy

    International Nuclear Information System (INIS)

    Zhang Zhenwei; Wu Hua; Zhang Xuemei; Liu Xinyuan

    2004-01-01

    Purpose: Chemotherapy or external radiation therapy can potentiate the therapeutic effect of E1 B-attenuated oncolytic adenovirus. In this study, the antitumor efficacy of oncolytic adenovirus combined with internal radionuclide therapy was evaluated. Methods: Firstly, viral replication was examined by plaque assay and Southern blotting, after oncolytic adenovirus, ZD55, was exposed to iodine-131. Cell viability was evaluated qualitatively by crystal violet staining and quantitatively by MTT assay. FACS analysis was performed to determine the synergic proapoptotic effect of iodine-131 combined with ZD55. Results: Irradiation of iodine-131 does not influence ZD55 viral DNA replication. In combination with ZD55, iodine-131 can efficiently kill tumor cells in a p53-independent model. ZD55 augments the proapoptotic effect of iodine-131. Conclusion: Radionuclide-viral therapy might be a novel tool for treatment of hepatocarcinoma. (authors)

  16. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes.

    Science.gov (United States)

    Marino, Nalini; Illingworth, Sam; Kodialbail, Prithvi; Patel, Ashvin; Calderon, Hugo; Lear, Rochelle; Fisher, Kerry D; Champion, Brian R; Brown, Alice C N

    2017-01-01

    Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.

  17. Development of a versatile oncolytic virus platform for local intra-tumoural expression of therapeutic transgenes.

    Directory of Open Access Journals (Sweden)

    Nalini Marino

    Full Text Available Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.

  18. Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas.

    Science.gov (United States)

    Sasaki, Tsuyoshi; Tazawa, Hiroshi; Hasei, Jo; Kunisada, Toshiyuki; Yoshida, Aki; Hashimoto, Yuuri; Yano, Shuya; Yoshida, Ryosuke; Uno, Futoshi; Kagawa, Shunsuke; Morimoto, Yuki; Urata, Yasuo; Ozaki, Toshifumi; Fujiwara, Toshiyoshi

    2011-04-01

    Tumor-specific replication-selective oncolytic virotherapy is a promising antitumor therapy for induction of cell death in tumor cells but not of normal cells. We previously developed an oncolytic adenovirus, OBP-301, that kills human epithelial malignant cells in a telomerase-dependent manner. Recent evidence suggests that nonepithelial malignant cells, which have low telomerase activity, maintain telomere length through alternative lengthening of telomeres (ALT). However, it remains unclear whether OBP-301 is cytopathic for nonepithelial malignant cells. Here, we evaluated the antitumor effect of OBP-301 on human bone and soft tissue sarcoma cells. The cytopathic activity of OBP-301, coxsackie and adenovirus receptor (CAR) expression, and telomerase activity were examined in 10 bone (OST, U2OS, HOS, HuO9, MNNG/HOS, SaOS-2, NOS-2, NOS-10, NDCS-1, and OUMS-27) and in 4 soft tissue (CCS, NMS-2, SYO-1, and NMFH-1) sarcoma cell lines. OBP-301 antitumor effects were assessed using orthotopic tumor xenograft models. The fiber-modified OBP-301 (termed OBP-405) was used to confirm an antitumor effect on OBP-301-resistant sarcomas. OBP-301 was cytopathic for 12 sarcoma cell lines but not for the non-CAR-expressing OUMS-27 and NMFH-1 cells. Sensitivity to OBP-301 was dependent on CAR expression and not on telomerase activity. ALT-type sarcomas were also sensitive to OBP-301 because of upregulation of human telomerase reverse transcriptase (hTERT) mRNA following virus infection. Intratumoral injection of OBP-301 significantly suppressed the growth of OST and SYO-1 tumors. Furthermore, fiber-modified OBP-405 showed antitumor effects on OBP-301-resistant OUMS-27 and NMFH-1 cells. A telomerase-specific oncolytic adenovirus is a promising antitumor reagent for the treatment of bone and soft tissue sarcomas.

  19. Coxsackie adenovirus receptor expression in carcinomas of the head and neck.

    Science.gov (United States)

    Wunder, Tina; Schumacher, Udo; Friedrich, Reinhard E

    2012-03-01

    Advanced stage head and neck squamous cell carcinomas (HNSCC) have a poor prognosis, this being particularly true for undifferentiated carcinomas. Adenoviral oncolytic therapy, whose success depends on the expression of the coxsackie adenovirus receptor (CAR) on tumour cells, might be an interesting therapeutic option. Thus CAR expression in HNSCC was evaluated in the current study. CAR expression in 41 cases of HNSCC was investigated immunohistochemically. CAR expression was very heterogeneous and was more abundant in well differentiated carcinomas than in less differentiated ones. Expression decreased from 72.4% in G1 tumours to 56% in G4 tumours. As CAR expression decreases during malignant progression in HNSCC, its down-regulation in advanced grades of HNSCC is potential indicator of tumour progression. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify patients for treatment.

  20. Virotherapy targeting cyclin E overexpression in tumors with adenovirus-enhanced cancer-selective promoter.

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E; McMasters, Kelly M; Zhou, H Sam

    2015-02-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. Key messages: Cyclin E promoter activity is high in cancer cells and enhanced by adenovirus infection. Cyclin E promoter is used to control the E1a gene of a tumor-specific oncolytic adenovirus. Ad-cycE efficiently targets cancer cells and induces oncolysis. Ad-cycE significantly repressed xenograft tumor and prolonged survival.

  1. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    Science.gov (United States)

    2014-09-01

    Award Number: W81XWH-11-1-0387 TITLE: Viral Oncolytic Therapeutics for Neoplastic Meningitis PRINCIPAL INVESTIGATOR: Mikhail Papisov, PhD...SUBTITLE Viral Oncolytic Therapeutics for Neoplastic Meningitis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0387 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...for neoplastic meningitis ( meningeal metastasis of breast cancer). The proposed therapy will be based on direct (intrathecal) administration of

  2. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    . Hence, adenovirus induces the oncogenic Raf/MEK/ERK signaling pathway to enhance viral progeny by sustaining the levels of viral proteins. Concerning therapy, our results suggest that the use of Raf/MEK/ERK inhibitors will interfere with the propagation of oncolytic adenoviruses.......The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...

  3. p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker

    Directory of Open Access Journals (Sweden)

    Lockley Michelle

    2010-07-01

    Full Text Available Abstract The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015. We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1 to 0.03 pfu/cell (TOV21G. Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.

  4. Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression.

    Science.gov (United States)

    Lee, Cho-Hee; Kasala, Dayananda; Na, Youjin; Lee, Min Sang; Kim, Sung Wan; Jeong, Ji Hoon; Yun, Chae-Ok

    2014-07-01

    Adenovirus (Ad) is a potential vehicle for cancer gene therapy. However, cells that express low levels of the coxsackie and adenovirus receptor (CAR) demonstrate poor Ad infection efficiency. We developed a bile acid-conjugated poly(ethyleneimine) (DA3)-coated Ad complex (Ad/DA3) to enhance Ad transduction efficiency. The size distribution and zeta potential of Ad/DA3 increased to 324 ± 3.08 nm and 10.13 ± 0.21 mV, respectively, compared with those of naked Ad (108 ± 2.26 nm and -17.7 ± 1.5 mV). The transduction efficiency of Ad/DA3 increased in a DA3 polymer concentration-dependent manner. Enhanced gene transfer by Ad/DA3 was more evident in CAR-moderate and CAR-negative cancer cells. Competition assays with a CAR-specific antibody revealed that internalization of Ad/DA3 was not mediated primarily by CAR but involved clathrin-, caveolae-, and macropinocytosis-mediated endocytosis. Cancer cell death was significantly increased when oncolytic Ad and DA3 were complexed (RdB-KOX/DA3) compared to that of naked oncolytic Ad and was inversely proportional to CAR levels. Importantly, RdB-KOX/DA3 significantly enhanced apoptosis, reduced angiogenesis, reduced proliferation, and increased active viral replication in human tumor xenografts compared to that of naked Ad. These results demonstrate that a hybrid vector system can increase the efficacy of oncolytic Ad virotherapy, particularly in CAR-limited tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer

    Directory of Open Access Journals (Sweden)

    Kim JS

    2013-11-01

    Full Text Available Jae Sik Kim,1 Sang Don Lee,2 Sang Jin Lee,3 Moon Kee Chung21Department of Urology, The Catholic University of Korea Incheon St Mary's Hospital, Incheon, 2Pusan National University Yangsan Hospital and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 3Genitourinary Cancer Branch, National Cancer Center, Goyang, KoreaBackground: To develop a targeting therapy for hormone-independent prostate cancer, we constructed and characterized conditionally replicating oncolytic adenovirus (Ad equipped with mRFP(monomeric red fluorescence protein/ttk (modified herpes simplex virus thymidine kinase This construct was then further modified to express both mRFP/ttk and a soluble form of cytokine FLT3L (fms-related tyrosine kinase 3 ligand simultaneously.Methods: To construct the recombinant oncolytic adenovirus, E1a and E4 genes, which are necessary for adenovirus replication, were controlled by the prostate-specific enhancer sequence (PSES targeting prostate cancer cells expressing prostate-specific antigen (PSA and prostate-specific membrane antigen (PSMA. Simultaneously, it expressed the mRFP/ttk fusion protein in order to be able to elicit the cytotoxic effect.Results: The Ad5/35PSES.mRFP/ttk chimeric recombinant adenovirus was generated successfully. When replication of Ad5/35PSES.mRFP/ttk was evaluated in prostate cancer cell lines under fluorescence microscopy, red fluorescence intensity increased more in LNCaP cells, suggesting that the mRFP/ttk fusion protein was folded functionally. In addition, the replication assay including wild-type adenovirus as a positive control showed that PSES-positive cells (LNCaP and CWR22rv permitted virus replication but not PSES-negative cells (DU145 and PC3. Next, we evaluated the killing activity of this recombinant adenovirus. The Ad5/35PSES.mRFP/ttk killed LNCaP and CWR22rv more effectively. Unlike PSES-positive cells, DU145 and PC3 were resistant to killing by this recombinant

  6. Virotherapy Targeting Cyclin E Overexpression in Tumors with Adenovirus-enhanced Cancer Selective Promoter

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E.; McMasters, Kelly M.; Zhou, H. Sam

    2014-01-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. PMID:25376708

  7. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  8. Using Oncolytic Viruses to Treat Cancer

    Science.gov (United States)

    Cancer treatments known as oncolytic viruses are being tested in clinical trials, and one, T-VEC or Imlygic®, has been approved by the FDA. Research now suggests that these treatments work not only by infecting and killing tumor cells, but that they may also be a form of cancer immunotherapy.

  9. Improving Oral Oncolytic Patient Self-Management.

    Science.gov (United States)

    McNamara, Elaine; Redoutey, Lindsey; Mackler, Emily; Severson, Jane A; Petersen, Laura; Mahmood, Tallat

    2016-09-01

    Managing patients who are taking oral oncolytics is challenging because of the changing paradigm from frequent supervision during intravenous therapy to periodic observation with oral administration of drugs. We joined the Michigan Oncology Quality Consortium (MOQC) Oral Oncolytics Collaborative in 2013 to identify opportunities for improvement in this area. We completed MOQC's baseline self-assessment and performed an audit of medical records for 25 patients prescribed an oral oncolytic from May 2011 to July 2013. We implemented the following MOQC resources: a tracking system for patients taking oral oncolytics, patient education with drug-specific self-care guidelines, use of a modified Edmonton Symptom Assessment Scale, and a medication adherence questionnaire to be used on scheduled follow-up calls and return visits. We modified our workflow to include a standard teaching session and consistent follow-up phone calls. We conducted a retrospective postimplementation medical records audit from August 2013 to September 2014. Baseline self-assessment revealed lack of start date documentation and lack of consistent follow-up. A baseline medical records audit showed that 48% of patients discontinued their medication without consulting their physician, and start date documentation was available for only 52% of patients. After participating in the quality initiative, 100% of patients sampled had a documented start date, and no patients discontinued their drug on their own. Seventeen percent had a dose reduction as a result of toxicity, as directed by the physician. The introduction of new office procedures to easily identify all patients receiving oral therapy and improvement in patients' ability to manage symptoms at home with the use of self-care guidelines contributed to an improvement in managing patients who are taking oral oncolytics. Copyright © 2016 by American Society of Clinical Oncology.

  10. An Update on Canine Adenovirus Type 2 and Its Vectors

    Directory of Open Access Journals (Sweden)

    Eric J. Kremer

    2010-09-01

    Full Text Available Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2 biology and gives an overview of the generation of early region 1 (E1-deleted to helper-dependent (HD CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.

  11. Retargeting Strategies for Oncolytic Herpes Simplex Viruses.

    Science.gov (United States)

    Campadelli-Fiume, Gabriella; Petrovic, Biljana; Leoni, Valerio; Gianni, Tatiana; Avitabile, Elisa; Casiraghi, Costanza; Gatta, Valentina

    2016-02-26

    Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors' binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules.

  12. Oncolytic viruses: a step into cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  13. Oncolytic virotherapy: the questions and the promise

    Directory of Open Access Journals (Sweden)

    Aurelian L

    2013-06-01

    Full Text Available Laure Aurelian Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA Abstract: Oncolytic virotherapy is a new strategy to reduce tumor burden through selective virus replication in rapidly proliferating cells. Oncolytic viruses are members of at least ten virus families, each with its advantages and disadvantages. Here, I briefly review the recent advances and key challenges, as exemplified by the best-studied platforms. Recent advances include preclinical proof of feasibility, clinical evidence of tolerability and effectiveness, and the development of new strategies to improve efficacy. These include engineered tumor selectivity and expression of antitumorigenic genes that could function independently of virus replication, identification of combinatorial therapies that accelerate intratumoral virus propagation, and modification of immune responses and vascular delivery for treatment of metastatic disease. Key challenges are to select “winners” from the distinct oncolytic platforms that can stimulate anti-cancer immunity without affecting virus replication and can lyse cancer stem cells, which are most likely responsible for tumor maintenance, aggressiveness, and recurrence. Preventing the emergence of resistant tumor cells during virotherapy through the activation of multiple death pathways, the development of a better understanding of the mechanisms of cancer stem-cell lysis, and the development of more meaningful preclinical animal models are additional challenges for the next-generation of engineered viruses. Keywords: tumor cell lysis, virus replication, tumor selectivity, programmed cell death, immune response

  14. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population.

    Science.gov (United States)

    Ma, Ying-Yu; Wang, Xiao-Jun; Han, Yong; Li, Gang; Wang, Hui-Ju; Wang, Shi-Bing; Chen, Xiao-Yi; Liu, Fan-Long; He, Xiang-Lei; Tong, Xiang-Min; Mou, Xiao-Zhou

    2016-09-01

    The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; Pcolorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; Pcolorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.

  15. Fiber mediated receptor masking in non-infected bystander cells restricts adenovirus cell killing effect but promotes adenovirus host co-existence.

    Directory of Open Access Journals (Sweden)

    Johan Rebetz

    Full Text Available The basic concept of conditionally replicating adenoviruses (CRAD as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI, and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses.

  16. Cell carriers for oncolytic viruses: current challenges and future directions

    Directory of Open Access Journals (Sweden)

    Roy DG

    2013-10-01

    Full Text Available Dominic G Roy,1,2 John C Bell1–31Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 2Department of Biochemistry, Immunology and Microbiology, 3Department of Medicine, University of Ottawa, Ottawa, ON, CanadaAbstract: The optimal route for clinical delivery of oncolytic viruses is thought to be systemic intravenous injection; however, the immune system is armed with several highly efficient mechanisms to remove pathogens from the circulatory system. To overcome the challenges faced in trying to delivery oncolytic viruses specifically to tumors via the bloodstream, carrier cells have been investigated to determine their suitability as delivery vehicles for systemic administration of oncolytic viruses. Cell carriers protect viruses from neutralization, one of the most limiting aspects of oncolytic virus interaction with the immune system. Cell carriers can also possess inherent tumor tropism, thus directing the delivery of the virus more specifically to a tumor. With preclinical studies already demonstrating the success and feasibility of this approach with multiple oncolytic viruses, clinical evaluation of cell-mediated delivery of viruses is on the horizon. Meanwhile, ongoing preclinical studies are aimed at identifying new cellular vehicles for oncolytic viruses and improving current promising cell carrier platforms.Keywords: oncolytic virus, cell carrier, systemic delivery, tumor targeting, cancer

  17. Immune evasion by adenoviruses.

    Science.gov (United States)

    Mahr, J A; Gooding, L R

    1999-04-01

    Adenovirus is a human pathogen that infects mainly respiratory and gastrointestinal epithelia. While the pathology caused by this virus is generally not life threatening in immunocompetent individuals, there is a large literature describing its ability to establish a persistent infection. These persistent infections typically occur in apparently healthy individuals with no outward signs of disease. Such a long term and benign interaction between virus and immune system requires adenoviruses to dampen host antiviral effector mechanisms that would otherwise eliminate the virus and cause immune-mediated pathology to the host. Adenovirus devotes a significant portion of its genome to gene products whose sole function seems to be the modulation of host immune responses. This review focuses on what is currently understood about how these immunomodulatory mechanisms work and how they might play a role in maintaining the virus in a persistent state.

  18. Therapy of Experimental Nerve Sheath Tumors Using Oncolytic Viruses

    National Research Council Canada - National Science Library

    Rabkin, Samuel D

    2005-01-01

    .... To examine the combination of anti-angiogenic and oncolytic virus therapy, recombinant G47 deta vectors expressing anti- angiogenic factors dominant-negative fibroblast growth factor receptor (dnFGFR...

  19. Structure of human adenovirus

    Energy Technology Data Exchange (ETDEWEB)

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S. (Scripps); (Vanderbilt)

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  20. Thunder and Lightning: Immunotherapy and Oncolytic Viruses Collide

    OpenAIRE

    Melcher, Alan; Parato, Kelley; Rooney, Cliona M; Bell, John C

    2011-01-01

    For the last several decades, the development of antitumor immune-based strategies and the engineering and testing of oncolytic viruses (OVs) has occurred largely in parallel tracks. Indeed, the immune system is often thought of as an impediment to successful oncolytic virus delivery and efficacy. More recently, however, both preclinical and clinical results have revealed potential synergy between these two promising therapeutic strategies. Here, we summarize some of the evidence that support...

  1. Editorial announcing PubMed indexing of Oncolytic Virotherapy

    Directory of Open Access Journals (Sweden)

    Farassati F

    2017-02-01

    Full Text Available Faris Farassati1,21Saint Luke’s Cancer Institute-Saint Luke’s Marion Bloch Neuroscience Institute, Kansas City, MO, USA; 2Midwest Biomedical Research Foundation, Kansas City, MO, USAI am delighted to announce that Oncolytic Virotherapy has been accepted for indexing with PubMed. This is an exciting first step in the life of a new life sciences journal, when the scientific quality of its articles is proven high enough to meet the National Library of Medicine’s standards for archiving. All articles published in Oncolytic Virotherapy are available through PubMed Central (as well as Dove Medical Press and are now discoverable through National Center for Biotechnology Information (NCBI suite of databases, meaning increased exposure for our authors and their research.The field of oncolytic virotherapy has moved rapidly since the 1990s when the advent of genetic engineering renewed interest in the adaptation of viruses for cancer gene therapy.1 Publications in this field reached an all-time high in 2012,2 the same year that Oncolytic Virotherapy was launched. The journal has published high-quality reviews, case reports, and original research articles across a wide range of topics. Our most viewed article is currently “Oncolytic viral therapy for pancreatic cancer: current research and future directions”,3 while the review “Oncolytic viral therapy: targeting cancer stem cells”4 has generated the most citations.

  2. A Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2006-01-01

    ONE OF THE MAJOR LIMITATIONS FACING THE THERAPEUTIC USE OF ONCOLYTIC VIRUSES INCLUDING ONCOLYTIC HSV IS THAT THE PRE-EXISTING ANTI-VECTOR IMMUNITY CAN SUBSTANTIALLY REDUCE THE INFECTIVITY OF THE VIRUS...

  3. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  4. Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses.

    Science.gov (United States)

    Yu, Xiaodi; Veesler, David; Campbell, Melody G; Barry, Mary E; Asturias, Francisco J; Barry, Michael A; Reddy, Vijay S

    2017-05-01

    Human adenoviruses (HAdVs) cause acute respiratory, ocular, and gastroenteric diseases and are also frequently used as gene and vaccine delivery vectors. Unlike the archetype human adenovirus C5 (HAdV-C5), human adenovirus D26 (HAdV-D26) belongs to species-D HAdVs, which target different cellular receptors, and is differentially recognized by immune surveillance mechanisms. HAdV-D26 is being championed as a lower seroprevalent vaccine and oncolytic vector in preclinical and human clinical studies. To understand the molecular basis for their distinct biological properties and independently validate the structures of minor proteins, we determined the first structure of species-D HAdV at 3.7 Å resolution by cryo-electron microscopy. All the hexon hypervariable regions (HVRs), including HVR1, have been identified and exhibit a distinct organization compared to those of HAdV-C5. Despite the differences in the arrangement of helices in the coiled-coil structures, protein IX molecules form a continuous hexagonal network on the capsid exterior. In addition to the structurally conserved region (3 to 300) of IIIa, we identified an extra helical domain comprising residues 314 to 390 that further stabilizes the vertex region. Multiple (two to three) copies of the cleaved amino-terminal fragment of protein VI (pVIn) are observed in each hexon cavity, suggesting that there could be ≥480 copies of VI present in HAdV-D26. In addition, a localized asymmetric reconstruction of the vertex region provides new details of the three-pronged "claw hold" of the trimeric fiber and its interactions with the penton base. These observations resolve the previous conflicting assignments of the minor proteins and suggest the likely conservation of their organization across different HAdVs.

  5. [Adenovirus infection in immunocompromised patients].

    Science.gov (United States)

    Rynans, Sylwia; Dzieciątkowski, Tomasz; Młynarczyk, Grażyna

    2013-09-11

    Human adenoviruses belong to the Adenoviridae family and they are divided into seven species, including 56 types. Adenoviruses are common opportunistic pathogens that are rarely associated with clinical symptoms in immunocompetent patients. However, they are emerging pathogens causing morbidity and mortality in recipients of hematopoietic stem cell and solid organ transplants, HIV infected patients and patients with primary immune deficiencies. Clinical presentation ranges from asymptomatic viraemia to respiratory and gastrointestinal disease, haemorrhagic cystitis and severe disseminated illness. There is currently no formally approved therapy for the treatment of adenovirus infections. This article presents current knowledge about adenoviruses, their pathogenicity and information about available methods to diagnose and treat adenoviral infections.

  6. Canine adenoviruses and herpesvirus.

    Science.gov (United States)

    Decaro, Nicola; Martella, Vito; Buonavoglia, Canio

    2008-07-01

    Canine adenoviruses (CAVs) and canine herpesvirus (CHV) are pathogens of dogs that have been known for several decades. The two distinct types of CAVs, type 1 and type 2, are responsible for infectious canine hepatitis and infectious tracheobronchitis, respectively. In the present article, the currently available literature on CAVs and CHV is reviewed, providing a meaningful update on the epidemiologic, pathogenetic, clinical, diagnostic, and prophylactic aspects of the infections caused by these important pathogens.

  7. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  8. Oncolytic Virotherapy for Multiple Myeloma: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Chandini M. Thirukkumaran

    2011-01-01

    Full Text Available Multiple myeloma (MM is a B-cell malignancy that is currently felt to be incurable. Despite recently approved novel targeted treatments such as lenalidomide and bortezomib, most MM patients' relapse is emphasizing the need for effective and well-tolerated therapies for this deadly disease. The use of oncolytic viruses has garnered significant interest as cancer therapeutics in recent years, and are currently under intense clinical investigation. Both naturally occurring and engineered DNA and RNA viruses have been investigated preclinically as treatment modalities for several solid and hematological malignancies. Presently, only a genetically modified measles virus is in human clinical trials for MM. The information obtained from this and other future clinical trials will guide clinical application of oncolytic viruses as anticancer agents for MM. This paper provides a timely overview of the history of oncolytic viruses for the treatment of MM and future strategies for the optimization of viral therapy for this disease.

  9. New Adenovirus in Bats, Germany

    Science.gov (United States)

    Sonntag, Michael; Mühldorfer, Kristin; Speck, Stephanie; Wibbelt, Gudrun

    2009-01-01

    We tested 55 deceased vespertilionid bats of 12 species from southern Germany for virus infections. A new adenovirus was isolated from tissue samples of 2 Pipistrellus pipistrellus bats, which represents the only chiropteran virus isolate found in Europe besides lyssavirus (rabies virus). Evidence was found for adenovirus transmission between bats. PMID:19961700

  10. Thunder and lightning: immunotherapy and oncolytic viruses collide.

    Science.gov (United States)

    Melcher, Alan; Parato, Kelley; Rooney, Cliona M; Bell, John C

    2011-06-01

    For the last several decades, the development of antitumor immune-based strategies and the engineering and testing of oncolytic viruses (OVs) has occurred largely in parallel tracks. Indeed, the immune system is often thought of as an impediment to successful oncolytic virus delivery and efficacy. More recently, however, both preclinical and clinical results have revealed potential synergy between these two promising therapeutic strategies. Here, we summarize some of the evidence that supports combining OVs with immuno-therapeutics and suggest new ways to mount a multipronged biological attack against cancers.

  11. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  12. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  13. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches.

    Directory of Open Access Journals (Sweden)

    Dominik Wodarz

    Full Text Available Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5 that expresses enhanced jellyfish green fluorescent protein (EGFP, AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the

  14. Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells.

    Science.gov (United States)

    Delaunay, Tiphaine; Violland, Mathilde; Boisgerault, Nicolas; Dutoit, Soizic; Vignard, Virginie; Münz, Christian; Gannage, Monique; Dréno, Brigitte; Vaivode, Kristine; Pjanova, Dace; Labarrière, Nathalie; Wang, Yaohe; Chiocca, E Antonio; Boeuf, Fabrice Le; Bell, John C; Erbs, Philippe; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2018-01-01

    Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1 neg /HLA-DP4 pos melanoma cells with NY-ESO-1 pos /HLA-DP4 neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1 neg /HLA-DP4 pos tumor cells by an HLA-DP4/NY-ESO-1 (157-170) -specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.

  15. Adenovirus infection in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    Sylwia Rynans

    2013-09-01

    Full Text Available Human adenoviruses belong to the Adenoviridae family and they are divided into seven species, including 56 types. Adenoviruses are common opportunistic pathogens that are rarely associated with clinical symptoms in immunocompetent patients. However, they are emerging pathogens causing morbidity and mortality in recipients of hematopoietic stem cell and solid organ transplants, HIV infected patients and patients with primary immune deficiencies. Clinical presentation ranges from asymptomatic viraemia to respiratory and gastrointestinal disease, haemorrhagic cystitis and severe disseminated illness. There is currently no formally approved therapy for the treatment of adenovirus infections.This article presents current knowledge about adenoviruses, their pathogenicity and information about available methods to diagnose and treat adenoviral infections.

  16. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  17. Tracking adenovirus infections in reptiles

    OpenAIRE

    Ball, Inna

    2015-01-01

    The purpose of this project was to screen reptiles for the presence of adenovirus (AdV) infection, develop serological tests for the detection of antibodies against AdVs in squamate reptiles and to examine the serological relationships between lizard and snake AdVs, helping to ensure the establishment and maintenance of healthy populations. An additional aim of the project was the establishment of an agamid cell line and isolation of adenoviruses from bearded dragons (Pogona vitticeps). A...

  18. Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A

    DEFF Research Database (Denmark)

    Savelyeva, I.; Dobbelstein, M.

    2011-01-01

    accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed......Wild-type adenovirus type 5 eliminates p53 through the E1B-55 kDa and E4-34 kDa gene products. Deletion or mutation of E1B-55 kDa has long been thought to confer p53-selective replication of oncolytic viruses. We show here that infection with E1B-defective adenovirus mutants induces massive...

  19. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  20. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.

    Science.gov (United States)

    Loskog, Angelica

    2015-11-06

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  1. Oncolytic Viruses in the Treatment of Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Kyle G. Potts

    2012-01-01

    Full Text Available Bladder carcinoma is the second most common malignancy of the urinary tract. Up to 85% of patients with bladder cancer are diagnosed with a tumor that is limited to the bladder mucosa (Ta, T1, and CIS. These stages are commonly termed as non-muscle-invasive bladder cancer (NMIBC. Although the treatment of NMIBC has greatly improved in recent years, there is a need for additional therapies when patients fail bacillus Calmette-Guérin (BCG and chemotherapeutic agents. We propose that bladder cancer may be an ideal target for oncolytic viruses engineered to selectively replicate in and lyse tumor cells leaving normal cells unharmed. In support of this hypothesis, here we review current treatment strategies for bladder cancer and their shortcomings, as well as recent advancements in oncolytic viral therapy demonstrating encouraging safety profiles and antitumor activity.

  2. Measles to the Rescue: A Review of Oncolytic Measles Virus

    Directory of Open Access Journals (Sweden)

    Sarah Aref

    2016-10-01

    Full Text Available Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA, CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.

  3. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2013-12-01

    Full Text Available Lynne Braidwood,1 Sheila V Graham,2 Alex Graham,1 Joe Conner11Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK; 2MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UKAbstract: Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF], is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report

  4. Antitumor efficacy of a recombinant adenovirus encoding endostatin combined with an E1B55KD-deficient adenovirus in gastric cancer cells.

    Science.gov (United States)

    Li, Li-xia; Zhang, Yan-ling; Zhou, Ling; Ke, Miao-la; Chen, Jie-min; Fu, Xiang; Ye, Chun-ling; Wu, Jiang-xue; Liu, Ran-yi; Huang, Wenlin

    2013-10-14

    Gene therapy using a recombinant adenovirus (Ad) encoding secretory human endostatin (Ad-Endo) has been demonstrated to be a promising antiangiogenesis and antitumor strategy of in animal models and clinical trials. The E1B55KD-deficient Ad dl1520 was also found to replicate selectively in and destroy cancer cells. In this study, we aimed to investigate the antitumor effects of antiangiogenic agent Ad-Endo combined with the oncolytic Ad dl1520 on gastric cancer (GC) in vitro and in vivo and determine the mechanisms of these effects. The Ad DNA copy number was determined by real-time PCR, and gene expression was assessed by ELISA, Western blotting or immunohistochemistry. The anti-proliferation effect (cytotoxicity) of Ad was assessed using the colorimetry-based MTT cell viability assay. The antitumor effects were evaluated in BALB/c nude mice carrying SGC-7901 GC xenografts. The microvessel density and Ad replication in tumor tissue were evaluated by checking the expression of CD34 and hexon proteins, respectively. dl1520 replicated selectively in GC cells harboring an abnormal p53 pathway, including p53 mutation and the loss of p14(ARF) expression, but did not in normal epithelial cells. In cultured GC cells, dl1520 rescued Ad-Endo replication, and dramatically promoted endostatin expression by Ad-Endo in a dose- and time-dependent manner. In turn, the addition of Ad-Endo enhanced the inhibitory effect of dl1520 on the proliferation of GC cells. The transgenic expression of Ad5 E1A and E1B19K simulated the rescue effect of dl1520 supporting Ad-Endo replication in GC cells. In the nude mouse xenograft model, the combined treatment with dl1520 and Ad-Endo significantly inhibited tumor angiogenesis and the growth of GC xenografts through the increased endostatin expression and oncolytic effects. Ad-Endo combined with dl1520 has more antitumor efficacy against GC than Ad-Endo or dl1520 alone. These findings indicate that the combination of Ad-mediated antiangiogenic

  5. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-03-01

    Full Text Available The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.

  6. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.

    Science.gov (United States)

    Yuan, Ming; Webb, Eika; Lemoine, Nicholas Robert; Wang, Yaohe

    2016-03-07

    The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.

  7. The current status of oncolytic viral therapy for head and neck cancer

    Directory of Open Access Journals (Sweden)

    Matthew O. Old

    2016-06-01

    Full Text Available Objective: Cancer affects the head and neck region frequently and leads to significant morbidity and mortality. Oncolytic viral therapy has the potential to make a big impact in cancers that affect the head and neck. We intend to review the current state of oncolytic viruses in the treatment of cancers that affect the head and neck region. Method: Data sources are from National clinical trials database, literature, and current research. Results: There are many past and active trials for oncolytic viruses that show promise for treating cancers of the head and neck. The first oncolytic virus was approved by the FDA October 2015 (T-VEC, Amgen for the treatment of melanoma. Active translational research continues for this and many other oncolytic viruses. Conclusion: The evolving field of oncolytic viruses is impacting the treatment of head and neck cancer and further trials and agents are moving forward in the coming years. Keywords: Head and neck squamous cell carcinoma, Oncolytic viruses, Clinical trials, Novel therapeutics

  8. Atomic Structures of Minor Proteins VI and VII in the Human Adenovirus.

    Science.gov (United States)

    Dai, Xinghong; Wu, Lily; Sun, Ren; Zhou, Z Hong

    2017-10-04

    Human adenoviruses (Ad) are dsDNA viruses associated with infectious diseases, yet better known as tools for gene delivery and oncolytic anti-cancer therapy. Atomic structures of Ad provide the basis for the development of antivirals and for engineering efforts towards more effective applications. Since 2010, atomic models of human Ad5 have been independently derived from photographic film cryoEM and X-ray crystallography, but discrepancies exist concerning the assignment of cement proteins IIIa, VIII and IX. To clarify these discrepancies, here we have employed the technology of direct electron-counting to obtain a cryoEM structure of human Ad5 at 3.2 Å resolution. Our improved structure unambiguously confirmed our previous cryoEM models of proteins IIIa, VIII and IX and explained the likely cause of conflict in the crystallography models. The improved structure also allows the identification of three new components in the cavities of hexons - the cleaved N-terminus of precursor protein VI (pVIn), the cleaved N-terminus of precursor protein VII (pVIIn2), and mature protein VI. The binding of pVIIn2--by extension that of genome-condensing pVII--to hexons is consistent with the previously proposed dsDNA genome-capsid co-assembly for adenoviruses, which resembles that of ssRNA viruses but differs from the well-established mechanism of pumping dsDNA into a preformed protein capsid, as exemplified by tailed bacteriophages and herpesviruses. IMPORTANCE Adenovirus is a double-edged sword to humans - as a widespread pathogen and a bioengineering tool for anti-cancer and gene therapy. Atomic structure of the virus provides the basis for antiviral and application developments, but conflicting atomic models from conventional/film cryoEM and X-ray crystallography for important cement proteins IIIa, VIII, and IX have caused confusion. Using the cutting-edge cryoEM technology with electron counting, we improved the structure of human adenovirus type 5 and confirmed our

  9. Editorial announcing PubMed indexing of Oncolytic Virotherapy

    OpenAIRE

    Farassati F

    2017-01-01

    Faris Farassati1,21Saint Luke’s Cancer Institute-Saint Luke’s Marion Bloch Neuroscience Institute, Kansas City, MO, USA; 2Midwest Biomedical Research Foundation, Kansas City, MO, USAI am delighted to announce that Oncolytic Virotherapy has been accepted for indexing with PubMed. This is an exciting first step in the life of a new life sciences journal, when the scientific quality of its articles is proven high enough to meet the National Library of Medicine’s sta...

  10. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  11. Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma.

    Science.gov (United States)

    Le Boeuf, Fabrice; Selman, Mohammed; Son, Hwan Hee; Bergeron, Anabel; Chen, Andrew; Tsang, Jovian; Butterwick, Derek; Arulanandam, Rozanne; Forbes, Nicole E; Tzelepis, Fanny; Bell, John C; Werier, Joel; Abdelbary, Hesham; Diallo, Jean-Simon

    2017-09-15

    The poor prognosis of patients with advanced bone and soft-tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre-clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side-by-side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes-simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long-lasting cures in sarcoma-bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1-based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy. © 2017 UICC.

  12. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  13. Questing for an optimal, universal viral agent for oncolytic virotherapy

    Science.gov (United States)

    Paiva, L. R.; Martins, M. L.; Ferreira, S. C.

    2011-10-01

    One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.

  14. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2004-01-01

    The tasks that were originally planned for the first year of this 3 year project are to demonstrate that the fusogenic oncolytic herpes simplex viruses are potent anti-tumor agents for advanced ovarian cancer...

  15. Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2007-01-01

    .... We proposed to develop a novel virotherapy for prostate cancer during the funding period. Our working hypothesis was that a fusogenic oncolytic virus would induce a widespread syncytia formation...

  16. Upregulation of Coxsackie Adenovirus Receptor Sensitizes Cisplatin-Resistant Lung Cancer Cells to CRAd-Induced Inhibition.

    Science.gov (United States)

    Sakhawat, Ali; Liu, Yanan; Ma, Ling; Muhammad, Tahir; Wang, Shensen; Zhang, Lina; Cong, Xianling; Huang, Yinghui

    2017-01-01

    Objective. Conditionally replicating adenoviruses (CRAds) have been proven potent oncolytic viruses in previous studies. They selectively replicate in the tumor cells because of incorporated survivin promoter and ultimately lead to their killing with minimal side effects on normal tissue. Chemotherapy with cisplatin is commonly employed for treating tumors, but its cytotoxic effects and development of resistance remained major concerns to be dealt with. The aim of this study was to explore the anticancer potential of survivin regulated CRAd alone or in combination with cisplatin in the A549 lung cancer cell line and cisplatin-resistant lung cancer cell line, A549-DDPR. Methods. CRAd was genetically engineered in our laboratory by removing its E1B region and adding survivin promoter to control its replication. A549, H292, and H661 lung cancer cell lines were procured from the CAS-China. The anti-tumor effectiveness of combined treatment (cisplatin plus CRAd) was evaluated in vitro through MTS assays and in vivo through mouse model experimentation. RT- PCR was used to assess MDR gene and mRNA expression of coxsackie adenoviral receptor (CAR). Results. Results of in vitro studies established that A549 lung cancer cells were highly sensitive to cisplatin showing dose-dependent inhibition. The resistant cells of A549-DDPR exhibited very less sensitivity to cisplatin but were infected with CRAd more efficiently as compared to A549. A549-DDPR cells exhibited higher expression of MDR gene and CAR in the RT-PCR analysis. The nearly similar rise in the CAR expression was seen when lung cancer cell lines received cisplatin in combined treatment (cisplatin plus CRAd). Combined anti-cancer therapy (cisplatin plus oncolytic virus) proved more efficient than monotherapy in the killing of cancer cells. Results of in vivo experiments recapitulated nearly similar tumor inhibition activities. Conclusion. This study highlighted the significant role of survivin in gene therapy as it

  17. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy

    OpenAIRE

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-01-01

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migra...

  18. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  19. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms.

    Science.gov (United States)

    Kim, Dae-Sun; Dastidar, Himika; Zhang, Chunfen; Zemp, Franz J; Lau, Keith; Ernst, Matthias; Rakic, Andrea; Sikdar, Saif; Rajwani, Jahanara; Naumenko, Victor; Balce, Dale R; Ewanchuk, Ben W; Taylor, Pankaj; Yates, Robin M; Jenne, Craig; Gafuik, Chris; Mahoney, Douglas J

    2017-08-24

    Second mitochondrial activator of caspase (Smac)-mimetic compounds and oncolytic viruses were developed to kill cancer cells directly. However, Smac-mimetic compound and oncolytic virus therapies also modulate host immune responses in ways we hypothesized would complement one another in promoting anticancer T-cell immunity. We show that Smac-mimetic compound and oncolytic virus therapies synergize in driving CD8 + T-cell responses toward tumors through distinct activities. Smac-mimetic compound treatment with LCL161 reinvigorates exhausted CD8 + T cells within immunosuppressed tumors by targeting tumor-associated macrophages for M1-like polarization. Oncolytic virus treatment with vesicular stomatitis virus (VSV ΔM51 ) promotes CD8 + T-cell accumulation within tumors and CD8 + T-cell activation within the tumor-draining lymph node. When combined, LCL161 and VSV ΔM51 therapy engenders CD8 + T-cell-mediated tumor control in several aggressive mouse models of cancer. Smac-mimetic compound and oncolytic virus therapies are both in clinical development and their combination therapy represents a promising approach for promoting anticancer T-cell immunity.Oncolytic viruses (OV) and second mitochondrial activator of caspase (Smac)-mimetic compounds (SMC) synergistically kill cancer cells directly. Here, the authors show that SMC and OV therapies combination also synergize in vivo by promoting anticancer immunity through an increase in CD8 + T-cell response.

  20. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  1. Urokinase-Type Plasminogen Activator Receptor Transcriptionally Controlled Adenoviruses Eradicate Pancreatic Tumors and Liver Metastasis in Mouse Models12

    Science.gov (United States)

    Huch, Meritxell; Gros, Alena; José, Anabel; González, Juan Ramon; Alemany, Ramon; Fillat, Cristina

    2009-01-01

    Treatment options for pancreatic cancer have shown limited success mainly owing to poor selectivity for pancreatic tumor tissue and to a lack of activity in the tumor. In this study, we describe the ability of the urokinase-type plasminogen activator receptor (uPAR) promoter to efficiently and selectively target pancreatic tumors and metastases, which enables the successful management of pancreatic cancer. We have generated a replication-defective reporter adenovirus, AduPARLuc, and a conditionally replicating adenovirus, AduPARE1A, and we have studied the selectivity and antitumoral efficacy in pancreatic tumors and metastases. Toxicity was studied on intravascular delivery. We demonstrate that the uPAR promoter is highly active in pancreatic tumors but very weak in normal tissues. Tumor specificity is evidenced by a 100-fold increase in the tumor-to-liver ratio and by selective targeting of liver metastases (P < .001). Importantly, the AduPARE1A maintains the oncolytic activity of the wild-type virus, with reduced toxicity, and exhibits significant antitumoral activity (25% tumor eradication) and prolonged survival in pancreatic xenograft models (P < .0001). Furthermore, upon intravascular delivery, we demonstrate complete eradication of liver metastasis in 33% of mice, improving median survival (P = 5.43 x 10-5). The antitumoral selective activity of AduPARE1A shows the potential of uPAR promoter-based therapies in pancreatic cancer treatment. PMID:19484141

  2. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression

    Directory of Open Access Journals (Sweden)

    Ashley Ansel

    2017-11-01

    Full Text Available With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.

  3. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    International Nuclear Information System (INIS)

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  4. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    Directory of Open Access Journals (Sweden)

    Janice Kim

    2015-11-01

    Full Text Available Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  5. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer

    Directory of Open Access Journals (Sweden)

    Andrew eNguyen

    2014-06-01

    Full Text Available Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy and elicit adaptive antitumor immune responses (oncolytic immunotherapy. However, administration of these modified oncolytic viruses alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of oncolytic viruses. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally-induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.

  6. Changing faces in virology: the dutch shift from oncogenic to oncolytic viruses.

    Science.gov (United States)

    Belcaid, Zineb; Lamfers, Martine L M; van Beusechem, Victor W; Hoeben, Rob C

    2014-10-01

    Viruses have two opposing faces. On the one hand, they can cause harm and disease. A virus may manifest directly as a contagious disease with a clinical pathology of varying significance. A viral infection can also have delayed consequences, and in rare cases may cause cellular transformation and cancer. On the other hand, viruses may provide hope: hope for an efficacious treatment of serious disease. Examples of the latter are the use of viruses as a vaccine, as transfer vector for therapeutic genes in a gene therapy setting, or, more directly, as therapeutic anticancer agent in an oncolytic-virus therapy setting. Already there is evidence for antitumor activity of oncolytic viruses. The antitumor efficacy seems linked to their capacity to induce a tumor-directed immune response. Here, we will provide an overview on the development of oncolytic viruses and their clinical evaluation from the Dutch perspective.

  7. Core labeling of adenovirus with EGFP

    International Nuclear Information System (INIS)

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2006-01-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology

  8. Nuclear Actin and Myosins in Adenovirus Infection

    Science.gov (United States)

    Fuchsova, Beata; Serebryannyy, Leonid A.; de Lanerolle, Primal

    2015-01-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host’s transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  9. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Science.gov (United States)

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    Directory of Open Access Journals (Sweden)

    Rutger K. Balvers

    2014-08-01

    Full Text Available Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs, which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007. Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.

  11. Enfermedad neurologica por adenovirus Neurologic disease due to adenovirus infection

    Directory of Open Access Journals (Sweden)

    Cristina L. Lema

    2005-06-01

    Full Text Available El objetivo de este trabajo fue determinar la prevalencia de adenovirus (ADV en las infecciones del sistema nervioso central (SNC. Se analizaron 108 muestras de líquido cefalorraquídeo (LCR provenientes de 79 casos de encefalitis, 7 meningitis y 22 de otras patologías neurológicas, recibidas en el período 2000-2002. Cuarenta y nueve (47.35% se obtuvieron de pacientes inmunocomprometidos. La presencia de ADV se investigó mediante reacción en cadena de la polimerasa en formato anidado (Nested-PCR. La identificación del genogrupo se realizó mediante análisis filogenético de la secuencia nucleotídica parcial de la región que codifica para la proteína del hexón. Se detectó la presencia de ADV en 6 de 108 (5.5% muestras de LCR analizadas. Todos los casos positivos pertenecieron a pacientes con encefalitis que fueron 79, (6/79, 7.6%. No se observó diferencia estadísticamente significativa entre los casos de infección por ADV en pacientes inmunocomprometidos e inmunocompetentes (p>0.05. Las cepas de ADV detectadas se agruparon en los genogrupos B1 y C. En conclusión, nuestros resultados describen el rol de los ADV en las infecciones neurológicas en Argentina. La información presentada contribuye al conocimiento de su epidemiología, en particular en casos de encefalitis.The aim of this study was to assess the prevalence of adenovirusm (ADV infections in neurological disorders. A total of 108 cerebrospinal fluid (CSF samples from 79 encephalitis cases, 7 meningitis and 22 other neurological diseases analysed in our laboratory between 2000 and 2002 were studied. Forty nine (47.4% belonged to immunocompromised patients. Viral genome was detected using nested polymerase chain reaction (Nested-PCR and ADV genotypes were identified using partial gene sequence analysis of hexon gene. Adenovirus were detected in 6 of 108 (5.5% CSF samples tested. All of these were from encephalitis cases, 6/79, representing 7.6% of them. No statistically

  12. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  13. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-05-01

    Full Text Available The concept of oncolytic virus (OV-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.

  14. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Guy Ungerechts

    2016-01-01

    Full Text Available Oncolytic viruses (OVs are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  15. 21 CFR 866.3020 - Adenovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenovirus serological reagents. 866.3020 Section... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3020 Adenovirus serological reagents. (a) Identification. Adenovirus serological reagents are devices that consist of antigens...

  16. Adenovirus transduction: More complicated than receptor expression.

    Science.gov (United States)

    Sharma, Priyanka; Martis, Prithy C; Excoffon, Katherine J D A

    2017-02-01

    The abundance and accessibility of a primary virus receptor are critical factors that impact the susceptibility of a host cell to virus infection. The Coxsackievirus and adenovirus receptor (CAR) has two transmembrane isoforms that occur due to alternative splicing and differ in localization and function in polarized epithelia. To determine the relevance of isoform-specific expression across cell types, the abundance and localization of both isoforms were determined in ten common cell lines, and correlated with susceptibility to adenovirus transduction relative to polarized primary human airway epithelia. Data show that the gene and protein expression for each isoform of CAR varies significantly between cell lines and polarization, as indicated by high transepithelial resistance, is inversely related to adenovirus transduction. In summary, the variability of polarity and isoform-specific expression among model cells are critical parameters that must be considered when evaluating the clinical relevance of potential adenovirus-mediated gene therapy and anti-adenovirus strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  18. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  19. Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Amelia Sadie Aitken

    2017-01-01

    Full Text Available Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host’s anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.

  20. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Timothy P Cripe

    Full Text Available Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  1. Oncolytic viruses in head and neck cancer: a new ray of hope in the ...

    African Journals Online (AJOL)

    This paper intends to highlight the different types of oncolytic viruses (OVs), mechanism of tumor specificity, its safety, and various obstacles in the design of treatment and combination therapy utilizing oncotherapy. Search was conducted using the internet‑based search engines and scholarly bibliographic databases with ...

  2. Adenovirus E1B 19-kilodalton protein modulates innate immunity through apoptotic mimicry.

    Science.gov (United States)

    Radke, Jay R; Grigera, Fernando; Ucker, David S; Cook, James L

    2014-03-01

    proinflammatory responses and enhanced some cytokine responses. Our results define a new function of the antiapoptotic, adenoviral protein E1B 19K, which we have termed "apoptotic mimicry." Our studies suggest the possibility that the presence or absence of this E1B 19K function could alter the immunological outcome of both natural and therapeutic adenoviral infections. For example, emerging, highly immunopathogenic adenovirus serotypes might induce increased host inflammatory responses as a result of altered E1B 19K function or expression. It is also possible that engineered variations in E1B 19K expression/function could be created during adenovirus vector design that would increase the therapeutic efficacy of replicating adenovirus vectors for vaccines or oncolytic viral targeting of neoplastic cells.

  3. Impact of pharmacy channel on adherence to oral oncolytics.

    Science.gov (United States)

    Stokes, Michael; Reyes, Carolina; Xia, Yu; Alas, Veronica; Goertz, Hans-Peter; Boulanger, Luke

    2017-06-19

    Oral chemotherapy is increasingly prescribed to treat cancer. Despite its benefits, concerns have been raised regarding adherence to therapy. The study objective was to compare and measure adherence, persistence, and abandonment in patients filling prescriptions in traditional retail (TR) versus specialty pharmacy (SP) channels. Using a retrospective cohort design, we selected newly treated patients aged ≥18 years with a prescription for erlotinib, capecitabine, or imatinib during 2007-2011 from a Medco population of both United States commercial and Medicare health plans. Patients were classified according to pharmacy channel providing the medication. Abandonment was defined as a reversal following initial approval of the index prescription claim with no additional paid claims for agent within 90 days of reversal. Patients were considered adherent if the proportion of days covered between the date of the first and last oral prescription was ≥80%. In our retrospective cohort, 11,972 filled their prescriptions within the SP channel, and 30,394 filled their prescriptions within the TR channels, respectively. The SP channel had the highest proportion of adherent patients compared with TR (71.6% vs. 56.4%, P < .001). Abandonment of the initial prescription was low with overall rates of only 1.7%. In multivariate models controlling for demographic characteristics, index oncolytic, days of supply, and copay, SP channel (relative to TR) was significantly associated with lower rates of abandonment and increased adherence. Pharmacy channel may be influential on abandonment and adherence. Lower rates of abandonment and higher rates of adherence were observed among SP patients versus TR.

  4. Oncolytic viruses as immunotherapy: progress and remaining challenges

    Directory of Open Access Journals (Sweden)

    Aurelian L

    2016-05-01

    Full Text Available Laure Aurelian Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA Abstract: Oncolytic viruses (OVs comprise an emerging cancer therapeutic modality whose activity involves both direct tumor cell lysis and the induction of immunogenic cell death (ICD. Cellular proteins released from the OV-lysed tumor cells, known as damage-associated molecular patterns and tumor-associated antigens, activate dendritic cells and elicit adaptive antitumor immunity. Interaction with the innate immune system and the development of long-lasting immune memory also contribute to OV-induced cell death. The degree to which the ICD component contributes to the clinical efficacy of OV therapy is still unclear. Modulation of a range of immune interactions may be beneficial or detrimental in nature and the interactions depend on the specific tumor, the site and extent of the disease, the immunosuppressive tumor microenvironment, the OV platform, the dose, time, and delivery conditions, as well as individual patient responses. To enhance the contribution of ICD, OVs have been engineered to express immunostimulatory genes and strategies have been developed to combine OV therapy with chemo- and immune-based therapeutic regimens. However, these approaches carry the risk that they may also be tolerogenic depending on their levels and the presence of other cytokines, their direct antiviral effects, and the timing and conditions of their expression. The contribution of autophagy to adaptive immunity, the ability of the OVs to kill cancer stem cells, and the patient’s baseline immune status are additional considerations. This review focuses on the complex and as yet poorly understood balancing act that dictates the outcome of OV therapy. We summarize current understanding of the OVs’ function in eliciting antitumor immunity and its relationship to therapeutic efficacy. Also discussed are the criteria involved in restraining antiviral

  5. Oncolytic Newcastle Disease Virus as Cutting Edge between Tumor and Host

    Directory of Open Access Journals (Sweden)

    Philippe Fournier

    2013-07-01

    Full Text Available Oncolytic viruses (OVs replicate selectively in tumor cells and exert anti-tumor cytotoxic activity. Among them, Newcastle Disease Virus (NDV, a bird RNA virus of the paramyxovirus family, appears outstanding. Its anti-tumor effect is based on: (i oncolytic activity and (ii immunostimulation. Together these activities facilitate the induction of post-oncolytic adaptive immunity. We will present milestones during the last 60 years of clinical evaluation of this virus. Two main strategies of clinical application were followed using the virus (i as a virotherapeutic agent, which is applied systemically or (ii as an immunostimulatory agent combined with tumor cells for vaccination of cancer patients. More recently, a third strategy evolved. It combines the strategies (i and (ii and includes also dendritic cells (DCs. The first step involves systemic application of NDV to condition the patient. The second step involves intradermal application of a special DC vaccine pulsed with viral oncolysate. This strategy, called NDV/DC, combines anti-cancer activity (oncolytic virotherapy and immune-stimulatory properties (oncolytic immunotherapy with the high potential of DCs (DC therapy to prime naive T cells. The aim of such treatment is to first prepare the cancer-bearing host for immunocompetence and then to instruct the patient’s immune system with information about tumor-associated antigens (TAAs of its own tumor together with danger signals derived from virus infection. This multimodal concept should optimize the generation of strong polyclonal T cell reactivity targeted against the patient’s TAAs and lead to the establishment of a long-lasting memory T cell repertoire.

  6. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin

    International Nuclear Information System (INIS)

    Hutzen, Brian; Bid, Hemant Kumar; Houghton, Peter J; Pierson, Christopher R; Powell, Kimerly; Bratasz, Anna; Raffel, Corey; Studebaker, Adam W

    2014-01-01

    Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood

  7. Characterisation of the Equine adenovirus 2 genome.

    Science.gov (United States)

    Giles, Carla; Vanniasinkam, Thiru; Barton, Mary; Mahony, Timothy J

    2015-09-30

    Equine adenovirus 2 (EAdV-2) is one of two serotypes of adenoviruses known to infect equines. Initial studies did not associate EAdV-2 infections with any specific clinical syndromes, although more recent evidence suggests that EAdV-2 may be associated with clinical and subclinical gastrointestinal infections of foals and adults respectively. In contrast, Equine adenovirus 1 is well recognised as a pathogen associated with upper respiratory tract infections of horses. In this study the complete genome sequence of EAdV-2 is reported. As expected, genes common to the adenoviruses were identified. Phylogenetic reconstructions using selected EAdV-2 genes confirmed the classification of this virus within the Mastadenovirus genus, and supported the hypothesis that EAdV-2 and EAdV-1 have evolved from separate lineages within the adenoviruses. One spliced open reading frame was identified that encoded for a polypeptide with high similarity to the pIX and E1b_55K adenovirus homologues and was designated pIX_E1b_55K. In addition to this fused version of E1b_55K, a separate E1b_55K encoding gene was also identified. These polypeptides do not appear to have evolved from a gene duplication event as the fused and unfused E1b_55K were most similar to E1b_55K homologues from the Atadenovirus and Mastadenovirus genera respectively. The results of this study suggest that EAdV-2 has an unusual evolutionary history that warrants further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Circumvention of Immunity to the Adenovirus Major Coat Protein Hexon

    Science.gov (United States)

    Roy, Soumitra; Shirley, Pamela S.; McClelland, Alan; Kaleko, Michael

    1998-01-01

    Immunity to adenoviruses is an important hurdle to be overcome for successful gene therapy. The presence of antibodies to the capsid proteins prevents efficacious adenovirus vector administration in vivo. We tested whether immunity to a particular serotype of adenovirus (Ad5) may be overcome with a vector that encodes the hexon sequences from a different adenovirus serotype (Ad12). We successfully constructed an adenovirus vector with a chimeric Ad5-Ad12 hexon which was not neutralized by plasma from C57BL/6 mice immunized with Ad5. The vector was also capable of transducing the livers of C57BL/6 mice previously immunized with Ad5. PMID:9658137

  9. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection.

    Science.gov (United States)

    Chen, Rong-Fu; Lee, Chun-Yi

    2014-01-01

    Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.

  10. Deaths from Adenovirus in the US Military

    Centers for Disease Control (CDC) Podcasts

    2012-03-26

    Dr. Joel Gaydos, science advisor for the Armed Forces Health Surveillance Center, and Dr. Robert Potter, a research associate for the Armed Forces Medical Examiner System, discuss deaths from adenovirus in the US military.  Created: 3/26/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/29/2012.

  11. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  12. Simplified Microneutralization Test for Serotyping Adenovirus Isolates

    Science.gov (United States)

    2001-08-01

    with rapidly growing , relatively high-Ad-titer Validation results revealed agreement of the simplified mi- viral isolates but may not perform as well...Quantitative colorimetric Not typed due to co-infection with Poliovirus 1. microneutralization assay for characterization of adenoviruses. J. Clin. Mi

  13. Characterisation of gastroenteritis associated adenoviruses in South ...

    African Journals Online (AJOL)

    Objective. To analyse adenovirus (Ad) numbers and types associated with paediatric gastro-enteritis in South Africa Setting. Gauteng, 1994-1996. Methods. A total of 234 paediatric diarrhoeal stool samples were screened for Ad using commercial enzyme-linked iInmunosorbent assays (EUSAs). Adenoviral isolates were ...

  14. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti

  15. Engineering the Rapid Adenovirus Production and Amplification (RAPA) Cell Line to Expedite the Generation of Recombinant Adenoviruses.

    Science.gov (United States)

    Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Song, Dongzhe; Liu, Jianxiang; Cui, Jing; Liu, Feng; Ma, Chao; Hu, Xue; Li, Li; Yu, Yichun; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Xingye; Shu, Yi; Reid, Russell R; Lee, Michael J; Wolf, Jennifer Moritis; He, Tong-Chuan

    2017-01-01

    While recombinant adenoviruses are among the most widely-used gene delivery vectors and usually propagated in HEK-293 cells, generating recombinant adenoviruses remains time-consuming and labor-intense. We sought to develop a rapid adenovirus production and amplification (RAPA) line by assessing human Ad5 genes (E1A, E1B19K/55K, pTP, DBP, and DNA Pol) and OCT1 for their contributions to adenovirus production. Stable transgene expression in 293T cells was accomplished by using piggyBac system. Transgene expression was determined by qPCR. Adenoviral production was assessed with titering, fluorescent markers and/or luciferase activity. Osteogenic activity was assessed by measuring alkaline phosphatase activity. Overexpression of both E1A and pTP led to a significant increase in adenovirus amplification, whereas other transgene combinations did not significantly affect adenovirus amplification. When E1A and pTP were stably expressed in 293T cells, the resultant RAPA line showed high efficiency in adenovirus amplification and production. The produced AdBMP9 infected mesenchymal stem cells with highest efficiency and induced most effective osteogenic differentiation. Furthermore, adenovirus production efficiency in RAPA cells was dependent on the amount of transfected DNA. Under optimal transfection conditions high-titer adenoviruses were obtained within 5 days of transfection. The RAPA cells are highly efficient for adenovirus production and amplification. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. 4th European Seminars in Virology on Oncogenic and Oncolytic Viruses, in Bertinoro (Bologna), Italy.

    Science.gov (United States)

    Reale, Alberto; Messa, Lorenzo; Vitiello, Adriana; Loregian, Arianna; Palù, Giorgio

    2017-10-01

    The 4th European Seminars in Virology (EuSeV), which was focused on oncogenic and oncolytic viruses, was held in Bertinoro (Bologna), Italy, from June 10 to 12, 2016. This article summarizes the plenary lectures and aims to illustrate the main topics discussed at 4th EuSeV, which brought together knowledge and expertise in the field of oncogenic and oncolytic viruses from all over the world. The meeting was divided in two parts, "Mechanisms of Viral Oncogenesis" and "Viral Oncolysis and Immunotherapy," which were both focused on dissecting the complex and multi-factorial interplay between cancer and human viruses and on exploring new anti-cancer strategies. J. Cell. Physiol. 232: 2641-2648, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Oncorine, the World First Oncolytic Virus Medicine and its Update in China.

    Science.gov (United States)

    Liang, Min

    2018-01-01

    The oncolytic viruses now hold a promise of new therapeutic strategy for cancer. Its concept has inspired a wave of commercial research and development activities for the products of this category in China since 1998. The first commercialized oncolytic virus product in the world, Oncorine (H101), developed by Shanghai Sunway Biotech Co., Ltd since 1999, was approved by Chinese SFDA in November, 2005 for nasopharyngeal carcinoma in combination with chemotherapy after the phase III clinical trial, and finally acquired GMP certificate in August, 2006. This review introduces how Oncorine was successfully developed in China, and how the Chinese market responded after it was launched into the market in 2006. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade

    Science.gov (United States)

    Marchini, Antonio; Scott, Eleanor M.; Rommelaere, Jean

    2016-01-01

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a “double-edged sword” for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. PMID:26751469

  19. Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus

    Science.gov (United States)

    2010-04-01

    Approved for public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the...Exp Neurol, 2006. 65(9): p. 846-54. 13. Msaouel, P ., A . Dispenzieri, and E . Galanis, Clinical testing of engineered oncolytic measles virus strains...using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol, 2000. 46 Suppl: p. S67-72. 32

  20. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  1. Modulation of the Intratumoral Immune Landscape by Oncolytic Herpes Simplex Virus Virotherapy

    Directory of Open Access Journals (Sweden)

    Jie Yin

    2017-06-01

    Full Text Available Vaccines and immunotherapeutic approaches to cancers with the advent of immune checkpoint inhibitors and chimeric antigen receptor-modified T cells have recently demonstrated preclinical success and entered clinical trials. Despite advances in these approaches and combinatorial therapeutic regimens, depending on the nature of the cancer and the immune and metabolic landscape within the tumor microenvironment, current immunotherapeutic modalities remain inadequate. Recent clinical trials have demonstrated clear evidence of significant, and sometimes dramatic, antitumor activity, and long-term survival effects of a variety of oncolytic viruses (OVs, particularly oncolytic herpes simplex virus (oHSV. Acting as a multifaceted gene therapy vector and potential adjuvant-like regimens, oHSV can carry genes encoding immunostimulatory molecules in its genome. The oncolytic effect of oHSV and the inflammatory response that the virus stimulates provide a one-two punch at attacking tumors. However, mechanisms underlying oHSV-induced restoration of intratumoral immunosuppression demand extensive research in order to further improve its therapeutic efficacy. In this review, we discuss the current OV-based therapy, with a focus on the unique aspects of oHSV-initiated antiviral and antitumor immune responses, arising from virus-mediated immunological cell death to intratumoral innate and adaptive immunity.

  2. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer

    Science.gov (United States)

    Heo, Jeong; Reid, Tony; Ruo, Leyo; Breitbach, Caroline J; Rose, Steven; Bloomston, Mark; Cho, Mong; Lim, Ho Yeong; Chung, Hyun Cheol; Kim, Chang Won; Burke, James; Lencioni, Riccardo; Hickman, Theresa; Moon, Anne; Lee, Yeon Sook; Kim, Mi Kyeong; Daneshmand, Manijeh; Dubois, Kara; Longpre, Lara; Ngo, Minhtran; Rooney, Cliona; Bell, John C; Rhee, Byung-Geon; Patt, Richard; Hwang, Tae-Ho; Kirn, David H

    2014-01-01

    Oncolytic viruses and active immunotherapeutics have complementary mechanisms of action (MOA) that are both self amplifying in tumors, yet the impact of dose on subject outcome is unclear. JX-594 (Pexa-Vec) is an oncolytic and immunotherapeutic vaccinia virus. To determine the optimal JX-594 dose in subjects with advanced hepatocellular carcinoma (HCC), we conducted a randomized phase 2 dose-finding trial (n = 30). Radiologists infused low-or high-dose JX-594 into liver tumors (days 1, 15 and 29); infusions resulted in acute detectable intravascular JX-594 genomes. Objective intrahepatic Modified Response Evaluation Criteria in Solid Tumors (mRECIST) (15%) and Choi (62%) response rates and intrahepatic disease control (50%) were equivalent in injected and distant noninjected tumors at both doses. JX-594 replication and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression preceded the induction of anticancer immunity. In contrast to tumor response rate and immune endpoints, subject survival duration was significantly related to dose (median survival of 14.1 months compared to 6.7 months on the high and low dose, respectively; hazard ratio 0.39; P = 0.020). JX-594 demonstrated oncolytic and immunotherapy MOA, tumor responses and dose-related survival in individuals with HCC. PMID:23396206

  3. Ras signaling influences permissiveness of malignant peripheral nerve sheath tumor cells to oncolytic herpes.

    Science.gov (United States)

    Farassati, Faris; Pan, Weihong; Yamoutpour, Farnaz; Henke, Susann; Piedra, Mark; Frahm, Silke; Al-Tawil, Said; Mangrum, Wells I; Parada, Luis F; Rabkin, Samuel D; Martuza, Robert L; Kurtz, Andreas

    2008-12-01

    Lack of expression of neurofibromin in neurofibromatosis 1 and its lethal derivative, malignant peripheral nerve sheath tumors (MPNSTs), is thought to result in the overactivation of the Ras signaling pathway. Our previous studies have shown that cells with overactivation in the Ras pathway are more permissive to infection with herpes simplex virus 1 and its mutant version R3616. In this study, we show that among five different mouse MPNST cell lines, only the ones with elevated levels of Ras signaling are highly permissive to infection with oncolytic herpes G207. Specific inhibitors of the Ras, ERK, and JNK pathways all reduced the synthesis of viral proteins in MPNST cells. The cell lines that contained lower levels of Ras and decreased activation of downstream signaling components underwent an enhancement in apoptosis upon exposure to G207. Additionally, mouse SW10 Schwann cells were able to become infected by parental herpes but were found to be resistant to G207. The immortalization of these cell lines with the expression of SV40 large T antigen increased the levels of Ras activation and permissiveness to oncolytic herpes. A Ras/Raf kinase inhibitor reduced the synthesis of both herpes simplex virus-1 and G207 proteins in SW10 cells. The results of this study, therefore, introduce Ras signaling as a divergent turning point for the response of MPNST cells to an assault by oncolytic herpes.

  4. Pro-oncogenic cell signaling machinery as a target for oncolytic viruses.

    Science.gov (United States)

    Borrego-Diaz, Emma; Mathew, Rajesh; Hawkinson, Dana; Esfandyari, Tuba; Liu, Zhengian; Lee, Patrick W; Farassati, Faris

    2012-07-01

    Viruses function in close harmony with the signaling machinery of their host. Upon exposure to the cell, a battery of viral products become engaged in boosting friendly signaling elements of the host or suppressing harmful ones. The efficiency of viral replication is indeed the biological outcome of this interaction between cellular and host signaling molecules. Oncolytic viruses, natural or man-made, follow the same set of rules of engagement. Pro-oncogenic cell signaling machinery, therefore, is undoubtedly the most important area influencing the development of the next generation of effective, specific and rationally designed oncolytic viruses. Ras signaling, with its central role in what is known today as molecular oncology, is an attractive topic for studying the behavior of viruses versus cancer cells and to develop strategies to target cancer cells on the basis of such platform. This work reviews the development of oncolytic herpes viruses capable of targeting Ras signaling pathway along with a few other examples of viruses which are developed to contain specificity for certain pro-oncogenic characteristics of their host cells.

  5. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Sampath P

    2015-06-01

    Full Text Available Padma Sampath, Steve H Thorne Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Results from randomized clinical trials over the last several years have finally begun to demonstrate the potential of oncolytic viral therapies to treat a variety of cancers. One reason for these successes has been the realization that this platform is most effective when considered primarily as an immunotherapy. Cancer immunotherapy has also made dramatic strides recently with antibodies capable of blocking immune checkpoint inhibitors and adoptive T-cell therapies, notably CAR T-cells, leading a panel of novel and highly clinically effective therapies. It is clear therefore that an understanding of how and when these complementary approaches can most effectively be combined offers the real hope of moving beyond simply treating the disease and toward starting to talk about curative therapies. In this review we discuss approaches to combining these therapeutic platforms, both through engineering the viral vectors to more beneficially interact with the host immune response during therapy, as well as through the direct combinations of different therapeutics. This primarily, but not exclusively focuses on strains of oncolytic vaccinia virus. Some of the results reported to date, primarily in pre-clinical models but also in early clinical trials, are dramatic and hold great promise for the future development of similar therapies and their translation into cancer therapies. Keywords: oncolytic virus, CAR T-cell, adoptive cell therapy, immune checkpoint inhibitor 

  6. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  7. SPRi-based adenovirus detection using a surrogate antibody method.

    Science.gov (United States)

    Abadian, Pegah N; Yildirim, Nimet; Gu, April Z; Goluch, Edgar D

    2015-12-15

    Adenovirus infection, which is a waterborne viral disease, is one of the most prevelant causes of human morbidity in the world. Thus, methods for rapid detection of this infectious virus in the environment are urgently needed for public health protection. In this study, we developed a rapid, real-time, sensitive, and label-free SPRi-based biosensor for rapid, sensitive and highly selective detection of adenoviruses. The sensing protocol consists of mixing the sample containing adenovirus with a predetermined concentration of adenovirus antibody. The mixture was filtered to remove the free antibodies from the sample. A secondary antibody, which was specific to the adenovirus antibody, was immobilized onto the SPRi chip surface covalently and the filtrate was flowed over the sensor surface. When the free adenovirus antibodies bound to the surface-immobilized secondary antibodies, we observed this binding via changes in reflectivity. In this approach, a higher amount of adenoviruses resulted in fewer free adenovirus antibodies and thus smaller reflectivity changes. A dose-response curve was generated, and the linear detection range was determined to be from 10 PFU/mL to 5000 PFU/mL with an R(2) value greater than 0.9. The results also showed that the developed biosensing system had a high specificity towards adenovirus (less than 20% signal change when tested in a sample matrix containing rotavirus and lentivirus). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology.

    Science.gov (United States)

    Ramírez, Manuel; García-Castro, Javier; Melen, Gustavo J; González-Murillo, África; Franco-Luzón, Lidia

    2015-01-01

    Oncolytic virotherapy is gaining interest in the clinic as a new weapon against cancer. In vivo administration of oncolytic viruses showed important limitations that decrease their effectiveness very significantly: the antiviral immune response causes the elimination of the therapeutic effect, and the poor natural ability of oncolytic viruses to infect micrometastatic lesions significantly minimizes the effective dose of virus. This review will focus on updating the technical and scientific foundations of one of the strategies developed to overcome these limitations, ie, using cells as vehicles for oncolytic viruses. Among many candidates, a special type of adult stem cell, mesenchymal stem cells (MSCs), have already been used in the clinic as cell vehicles for oncolytic viruses, partly due to the fact that these cells are actively being evaluated for other indications. MSC carrier cells are used as Trojan horses loaded with oncoviruses, are administered systemically, and release their cargos at the right places. MSCs are equipped with an array of molecules involved in cell arrest in the capillaries (integrins and selectins), migration toward specific parenchymal locations within tissues (chemokine receptors), and invasion and degradation of the extracellular matrix (proteases). In addition to anatomical targeting capacity, MSCs have a well-recognized role in modulating immune responses by affecting cells of the innate (antigen-presenting cells, natural killer cells) and adaptive immune system (effector and regulatory lymphocytes). Therefore, carrier MSCs may also modulate the immune responses taking place after therapy, ie, the antiviral and the antitumor immune responses.

  9. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  10. A Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells.

    Science.gov (United States)

    Leoni, Valerio; Gatta, Valentina; Casiraghi, Costanza; Nicosia, Alfredo; Petrovic, Biljana; Campadelli-Fiume, Gabriella

    2017-05-15

    The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ 1 34.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth factor receptor 2), which is present in breast, ovary, and other cancers, and in detargeting from the natural receptors. Because the HER2-retargeted HSVs strictly depend on this receptor for infection, the viruses employed in preclinical studies were cultivated in HER2-positive cancer cells. The production of clinical-grade viruses destined for humans should avoid the use of cancer cells. Here, we engineered the R-213 recombinant, by insertion of a 20-amino-acid (aa) short peptide (named GCN4) in the gH of R-LM113; this recombinant was retargeted to HER2 through insertion in gD of a single-chain antibody (scFv) to HER2. Next, we generated a Vero cell line expressing an artificial receptor (GCN4R) whose N terminus consists of an scFv to GCN4 and therefore is capable of interacting with GCN4 present in gH of R-213. R-213 replicated as well as R-LM113 in SK-OV-3 cells, implying that addition of the GCN4 peptide was not detrimental to gH. R-213 grew to relatively high titers in Vero-GCN4R cells, efficiently spread from cell to cell, and killed both Vero-GCN4R and SK-OV-3 cells, as expected for an oncolytic virus. Altogether, Vero-GCN4R cells represent an efficient system for cultivation of retargeted oncolytic HSVs in non-cancer cells. IMPORTANCE There is growing interest in viruses as oncolytic agents, which can be administered in combination with immunotherapeutic compounds, including immune checkpoint inhibitors. The oncolytic HSV approved for clinical practice and those in clinical trials are attenuated viruses. An alternative to attenuation is a cancer specificity

  11. Molecular architecture and function of adenovirus DNA polymerase

    NARCIS (Netherlands)

    Brenkman, A.B. (Arjan Bernard)

    2002-01-01

    Central to this thesis is the role of adenovirus DNA polymerase (Ad pol) in adenovirus DNA replication. Ad pol is a member of the family B DNA polymerases but belongs to a distinct subclass of polymerases that use a protein as primer. As Ad pol catalyses both the initiation and elongation phases and

  12. Incidence of adenovirus detected by immunoenzymatic assay from ...

    African Journals Online (AJOL)

    Adenovirus is recognized as the most common cause of severe gastroenteritis in children less than 5 years of age. Due to the lack of recent reports about the surveillance of enteric adenovirus (EAd) infection in Cameroon, in this study we assessed the prevalence rate of HAV infection on 65 stool samples belonging to 65 ...

  13. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    Science.gov (United States)

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  14. A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica) in Antarctica

    Science.gov (United States)

    Lee, Sook-Young; Kim, Jeong-Hoon; Park, Yon Mi; Shin, Ok Sarah; Kim, Hankyeom; Choi, Han-Gu; Song, Jin-Won

    2014-01-01

    Adenoviruses (family Adenoviridae) infect various organ systems and cause diseases in a wide range of host species. In this study, we examined multiple tissues from Chinstrap penguins (Pygoscelis antarctica), collected in Antarctica during 2009 and 2010, for the presence of novel adenoviruses by PCR. Analysis of a 855-bp region of the hexon gene of a newly identified adenovirus, designated Chinstrap penguin adenovirus 1 (CSPAdV-1), showed nucleotide (amino acid) sequence identity of 71.8% (65.5%) with South Polar skua 1 (SPSAdV-1), 71% (70%) with raptor adenovirus 1 (RAdV-1), 71.4% (67.6%) with turkey adenovirus 3 (TAdV-3) and 61% (61.6%) with frog adenovirus 1 (FrAdV-1). Based on the genetic and phylogenetic analyses, CSPAdV-1 was classified as a member of the genus, Siadenovirus. Virus isolation attempts from kidney homogenates in the MDTC-RP19 (ATCC® CRL-8135™) cell line were unsuccessful. In conclusion, this study provides the first evidence of new adenovirus species in Antarctic penguins. PMID:24811321

  15. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein

    NARCIS (Netherlands)

    Sumida, Shawn M.; Truitt, Diana M.; Lemckert, Angelique A. C.; Vogels, Ronald; Custers, Jerome H. H. V.; Addo, Marylyn M.; Lockman, Shahin; Peter, Trevor; Peyerl, Fred W.; Kishko, Michael G.; Jackson, Shawn S.; Gorgone, Darci A.; Lifton, Michelle A.; Essex, Myron; Walker, Bruce D.; Goudsmit, Jaap; Havenga, Menzo J. E.; Barouch, Dan H.

    2005-01-01

    The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans

  16. What do we know about adenovirus in renal transplantation?

    Science.gov (United States)

    Florescu, Marius C; Miles, Clifford D; Florescu, Diana F

    2013-08-01

    Adenoviruses are common pathogens that have the potential to cause opportunistic infections with significant morbidity and mortality in immunocompromised hosts. The significance of adenoviral infection and disease is incompletely known in the setting of kidney transplantation. Reported adenovirus infections in renal transplant recipients have typically manifested as hemorrhagic cystitis and tubulointerstitial nephritis, less severe diseases than often seen in other solid organ transplant recipients (i.e. pneumonia, hepatitis and enteritis). The prevalent adenovirus subgroups associated with cystitis and nephritis are B1 and B2 with the serotypes 7, 11, 34, 35. However, disseminated or severe adenovirus infections, including fatal cases, have been described in renal transplant recipients. There is uncertainty regarding monitoring of and treatment of this virus. Although not supported by randomized clinical trials, cidofovir is used for the treatment of adenovirus disease not responding to reduction of immunosuppression.

  17. Molecular basis of immune evasion strategies by adenoviruses.

    Science.gov (United States)

    Hayder, H; Müllbacher, A

    1996-12-01

    Human adenoviruses have provided valuable insights into virus-host interactions at the clinical and experimental levels. In addition to the medical importance of adenoviruses in acute infections and the ability of the virus to persist in the host, adenovirus-based recombinants are being developed as potential vaccine vectors. It is now clear that adenoviruses employ various strategies to modulate the innate and the adaptive host immune defences. Adenovirus genome-coded products that interact with the immune response of the host have been identified, and to a large extent the molecular mechanisms of their functions have been revealed. Such knowledge will no doubt influence our approach to the areas of viral pathogenesis, vaccine development and immune modulation for disease management.

  18. Alternate adenovirus type-pairs for a possible circumvention of host immune response to recombinant adenovirus vectors.

    Science.gov (United States)

    Nász, I; Adám, E; Lengyel, A

    2001-01-01

    With the help of monoclonal antibodies the existence of at least 18 different earlier not known intertype (IT) specific epitopes were demonstrated in different numbers and combinations on the hexons of different adenovirus serotypes. The IT specific epitopes play an important role in the experimental gene therapy and in the recombinant adenovirus vaccination because of the harmful immune response of the recipient organisms directed against the many different epitopes of the adenovirus vector. For the elimination of harmful effect the authors suggest the use of multiple vectors, each prepared from different adenovirus serotypes showing the loosest antigenic relationship to each other. The vectors would be used sequentially when second or multiple administration is needed. For this purpose the authors determined and described 31 such adenovirus type-pairs, which are probably the best alternates for sequential use in experimental gene therapy.

  19. Oncolytic activity of Sindbis virus in human oral squamous carcinoma cells.

    Science.gov (United States)

    Saito, K; Uzawa, K; Kasamatsu, A; Shinozuka, K; Sakuma, K; Yamatoji, M; Shiiba, M; Shino, Y; Shirasawa, H; Tanzawa, H

    2009-08-18

    Sindbis virus (SIN) infection causes no or only mild symptoms (fever, rash, and arthralgia) in humans. However, SIN has a strong cytopathic effect (CPE) on various cancer cells. This study focuses on the oncolytic activity of SIN AR399 on oral cancer cells compared with reovirus, a well-known oncolytic virus that targets cancer cells. We analysed the cytotoxicity and growth of SIN in 13 oral squamous cell carcinoma (OSCC) cell lines (HSC-2, HSC-3, HSC-4, Ca9-22, H-1, Sa-3, KON, KOSC-2, OK-92, HO-1-N1, SCC-4, SAT, SKN-3) and normal human oral keratinocytes (NHOKs). Sindbis virus infection induced CPE in 12 OSCC cell lines at a low multiplicity of infection (MOI) of 0.01, but not in the OSCC cell line, HSC-4 or NHOKs. Sindbis viral growth was not observed in NHOKs, whereas high SIN growth was observed in all OSCC cell lines, including HCS-4. The cytotoxicity and growth of SIN was the same as reovirus at an MOI of 20 in 12 OSCC cell lines. The CPE was shown, by terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labelling assays, to be apoptotic cell death. Furthermore, quantitative RT-PCR of mRNA in HSC-3 and HSC-4 cells after SIN infection showed that activation of caspases, cytochrome c, and IkappaBalpha was associated with SIN-induced apoptosis. As a replication-competent oncolytic virus, SIN may be a useful therapeutic modality for oral cancers.

  20. Combined CD8+ and CD4+ adenovirus hexon-specific T cells associated with viral clearance after stem cell transplantation as treatment for adenovirus infection.

    Science.gov (United States)

    Zandvliet, Maarten L; Falkenburg, J H Frederik; van Liempt, Ellis; Veltrop-Duits, Louise A; Lankester, Arjan C; Kalpoe, Jayant S; Kester, Michel G D; van der Steen, Dirk M; van Tol, Maarten J; Willemze, Roel; Guchelaar, Henk-Jan; Schilham, Marco W; Meij, Pauline

    2010-11-01

    Human adenovirus can cause morbidity and mortality in immunocompromised patients after allogeneic stem cell transplantation. Reconstitution of adenovirus-specific CD4(+) T cells has been reported to be associated with sustained protection from adenovirus disease, but epitope specificity of these responses has not been characterized. Since mainly CD4(+) T cells and no CD8(+) T cells specific for adenovirus have been detected after allogeneic stem cell transplantation, the relative contribution of adenovirus-specific CD4(+) and CD8(+) T cells in protection from adenovirus disease remains to be elucidated. The presence of human adenovirus hexon-specific T cells was investigated in peripheral blood of pediatric and adult allogeneic stem cell transplant recipients, who showed spontaneous resolution of disseminated adenovirus infection. Subsequently, a clinical grade method was developed for rapid generation of adenovirus-specific T-cell lines for adoptive immunotherapy. Clearance of human adenovirus viremia coincided with emergence of a coordinated CD8(+) and CD4(+) T-cell response against adenovirus hexon epitopes in patients after allogeneic stem cell transplantation. Activation of adenovirus hexon-specific CD8(+) and CD4(+) T cells with a hexon protein-spanning peptide pool followed by interferon-γ-based isolation allowed rapid expansion of highly specific T-cell lines from healthy adults, including donors with very low frequencies of adenovirus hexon-specific T cells. Adenovirus-specific T-cell lines recognized multiple MHC class I and II restricted epitopes, including known and novel epitopes, and efficiently lysed human adenovirus-infected target cells. This study provides a rationale and strategy for the adoptive transfer of donor-derived human adenovirus hexon-specific CD8(+) and CD4(+) T cells for the treatment of disseminated adenovirus infection after allogeneic stem cell transplantation.

  1. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  2. Adrenal gland infection by serotype 5 adenovirus requires coagulation factors.

    Directory of Open Access Journals (Sweden)

    Lucile Tran

    Full Text Available Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT imaging of gene expression to determine whether local virus administration (direct injection in the kidney could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.

  3. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers.

    Science.gov (United States)

    Parato, Kelley A; Breitbach, Caroline J; Le Boeuf, Fabrice; Wang, Jiahu; Storbeck, Chris; Ilkow, Carolina; Diallo, Jean-Simon; Falls, Theresa; Burns, Joseph; Garcia, Vanessa; Kanji, Femina; Evgin, Laura; Hu, Kang; Paradis, Francois; Knowles, Shane; Hwang, Tae-Ho; Vanderhyden, Barbara C; Auer, Rebecca; Kirn, David H; Bell, John C

    2012-04-01

    Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.

  4. Ex Vivo Oncolytic Virotherapy with Myxoma Virus Arms Multiple Allogeneic Bone Marrow Transplant Leukocytes to Enhance Graft versus Tumor

    NARCIS (Netherlands)

    Lilly, Cameron L.; Villa, Nancy Y.; Lemos de Matos, Ana; Ali, Haider M.; Dhillon, Jess-Karan S.; Hofland, Tom; Rahman, Masmudur M.; Chan, Winnie; Bogen, Bjarne; Cogle, Christopher; McFadden, Grant

    2017-01-01

    Allogeneic stem cell transplant-derived T cells have the potential to seek and eliminate sites of residual cancer that escaped primary therapy. Oncolytic myxoma virus (MYXV) exhibits potent anti-cancer efficacy against human cancers like multiple myeloma (MM) and can arm transplant-derived T cells

  5. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    Full Text Available Oncolytic engineered herpes simplex viruses (HSVs possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  6. Arming viruses in multi-mechanistic oncolytic viral therapy: current research and future developments, with emphasis on poxviruses

    Directory of Open Access Journals (Sweden)

    Sampath P

    2013-12-01

    Full Text Available Padma Sampath, Steve H ThorneDepartment of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USAAbstract: The field of oncolytic virology has made great strides in recent years. However, one key finding has been that the use of viral agents that replicate selectively in tumors is usually insufficient to achieve anything beyond small and transient responses. Instead, like most cancer therapies, oncolytic viruses are most effective in combination with other therapies, which is where they have proven therapeutic effects in clinical and preclinical studies. In cases of some of the smaller RNA viruses, effects can only be achieved through combination regimens with chemotherapy, radiotherapy, or targeted conventional therapies. However, larger DNA viruses are able to express one or more transgenes; thus, therapeutic mechanisms can be built into the viral vector itself. The incorporated approaches into arming oncolytic viruses through transgene expression will be the main focus of this review, including use of immune activators, prodrug converting enzymes, anti-angiogenic factors, and targeting of the stroma. This will focus on poxviruses as model systems with large cloning capacities, which have routinely been used as transgene expression vectors in different settings, including vaccine and oncolytic viral therapy.Keywords: vaccinia, poxvirus, immunotherapy, angiogenesis, prodrug

  7. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Catherine Dold

    2016-01-01

    Full Text Available Previously, we described an oncolytic vesicular stomatitis virus variant pseudotyped with the nonneurotropic glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, which was highly effective in glioblastoma. Here, we tested its potency for the treatment of ovarian cancer, a leading cause of death from gynecological malignancies. Effective oncolytic activity of VSV-GP could be demonstrated in ovarian cancer cell lines and xenografts in mice; however, remission was temporary in most mice. Analysis of the innate immune response revealed that ovarian cancer cell lines were able to respond to and produce type I interferon, inducing an antiviral state upon virus infection. This is in stark contrast to published data for other cancer cell lines, which were mostly found to be interferon incompetent. We showed that in vitro this antiviral state could be reverted by combining VSV-GP with the JAK1/2-inhibitor ruxolitinib. In addition, for the first time, we report the in vivo enhancement of oncolytic virus treatment by ruxolitinib, both in subcutaneous as well as in orthotopic xenograft mouse models, without causing significant additional toxicity. In conclusion, VSV-GP has the potential to be a potent and safe oncolytic virus to treat ovarian cancer, especially when combined with an inhibitor of the interferon response.

  8. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    Science.gov (United States)

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  9. Activating Peripheral Innate Immunity Enables Safe and Effective Oncolytic Virotherapy in the Brain

    Directory of Open Access Journals (Sweden)

    Lukxmi Balathasan

    2017-12-01

    Full Text Available The oncolytic mutant vesicular stomatitis virus VSVΔ51 achieves robust efficacy in multiple extracranial tumor models. Yet for malignancies of the brain, direct intratumoral infusion of VSVΔ51 causes lethal virus-induced neuropathology. Here, we have developed a novel therapeutic regime that uses peripheral immunization with a single sub-lethal dose of VSVΔ51 to establish an acute anti-viral state that enables the safe intracranial (IC infusion of an otherwise lethal dose of VSVΔ51 within just 6 hr. Although type I interferons alone appeared insufficient to explain this protective phenotype, serum isolated at early time points from primed animals conferred protection against an IC dose of virus. Adaptive immune populations had minimal contributions. Finally, the therapeutic utility of this novel strategy was demonstrated by peripherally priming and intracranially treating mice bearing aggressive CT2A syngeneic astrocytomas with VSVΔ51. Approximately 25% of animals achieved complete regression of established tumors, with no signs of virus-induced neurological impairment. This approach may harness an early warning system in the brain that has evolved to protect the host against otherwise lethal neurotropic viral infections. We have exploited this protective mechanism to safely and efficaciously treat brain tumors with an otherwise neurotoxic virus, potentially widening the available treatment options for oncolytic virotherapy in the brain.

  10. Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice

    Directory of Open Access Journals (Sweden)

    Eric Bartee

    2016-01-01

    Full Text Available Multiple myeloma is an incurable malignancy of plasma B-cells. Traditional chemotherapeutic regimes often induce initial tumor regression; however, virtually all patients eventually succumb to relapse caused by either reintroduction of disease during autologous transplant or expansion of chemotherapy resistant minimal residual disease. It has been previously demonstrated that an oncolytic virus known as myxoma can completely prevent myeloma relapse caused by reintroduction of malignant cells during autologous transplant. The ability of this virus to treat established residual disease in vivo, however, remained unknown. Here we demonstrate that intravenous administration of myxoma virus into mice bearing disseminated myeloma results in the elimination of 70–90% of malignant cells within 24 hours. This rapid debulking was dependent on direct contact of myxoma virus with residual myeloma and did not occur through destruction of the hematopoietic bone marrow niche. Importantly, systemic myxoma therapy also induced potent antimyeloma CD8+ T cell responses which localized to the bone marrow and were capable of completely eradicating established myeloma in some animals. These results demonstrate that oncolytic myxoma virus is not only effective at preventing relapse caused by reinfusion of tumor cells during stem cell transplant, but is also potentially curative for patients bearing established minimal residual disease.

  11. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  12. Varicella zoster virus infection of malignant glioma cell cultures: a new candidate for oncolytic virotherapy?

    Science.gov (United States)

    Leske, Henning; Haase, Rudolf; Restle, Florian; Schichor, Christian; Albrecht, Valerie; Vizoso Pinto, Maria G; Tonn, Joerg C; Baiker, Armin; Thon, Niklas

    2012-04-01

    Glioblastoma multiforme is a highly aggressive tumor with a median survival of 14 months despite all standard therapies. Focusing on alternative treatment strategies, we evaluated the oncolytic potential of varicella zoster virus (VZV) in malignant glioma cell cultures. Replication of wildtype and mutant VZV was comparatively analyzed in glioma cell lines (U87, U251 and U373) and in primary malignant glioma cells (n=10) in vitro by infectious foci assay, immunofluorescence microscopy and western blot analysis. Additionally, the tumor-targeting potential of VZV-infected human mesenchymal stem cells was evaluated. VZV replicated efficiently in all the glioma cells studied here followed by rapid oncolysis in vitro. The attenuated vaccine VZV mutant rOKA/ORF63rev[T171] exhibited most efficient replication. Human mesenchymal stem cells were found suitable for targeting VZV to sites of tumor growth. VZV exhibits an intrinsic oncolytic potential in malignant glioma cell cultures and might be a novel candidate for virotherapy in glioblastoma multiforme.

  13. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  14. Adenovirus Infection in Children with Diarrhea Disease in ...

    African Journals Online (AJOL)

    Ad40) and type 41(Ad41), can cause acute and severe diarrhea in young children worldwide. This study was conducted to delineate the epidemiological features of adenoviruses identified in children with gastroenteritis in Northwestern Nigeria.

  15. Adenovirus targeting for gene therapy of pancreatic cancer

    NARCIS (Netherlands)

    van Geer, M.A.

    2011-01-01

    Omdat pancreascarcinoom (alvleesklierkanker) een slechte prognose kent, worden nieuwe behandelmethoden onderzocht zoals gentherapie met behulp van een adenovirus (verkoudheidsvirus). Conditioneel Replicerende Adenovirussen (CRAds) zijn in staat om zich alleen te vermeerderen in tumorcellen en deze

  16. Role of MyD88 in adenovirus keratitis.

    Science.gov (United States)

    Zhou, Xiaohong; Ramke, Mirja; Chintakuntlawar, Ashish V; Lee, Jeong Yoon; Rajaiya, Jaya; Chodosh, James

    2017-01-01

    Pattern recognition receptors (PRRs) are critical to the early detection and innate immune responses to pathogens. In particular, the toll-like receptor (TLR) system and its associated adaptor proteins have essential roles in early host responses to infection. Epidemic keratoconjunctivitis, caused by the human adenovirus, is a severe ocular surface infection associated with corneal inflammation (stromal keratitis). We previously showed that adenovirus capsid was a key molecular pattern in adenovirus keratitis, with viral DNA having a lesser role. We have now investigated the role of the adaptor molecule MyD88 in a mouse model of adenovirus keratitis in which there is no viral replication. In MyD88 -/- mice infected with human adenovirus type 37, clinical keratitis was markedly reduced, along with infiltration of CD45 + cells, and expression of inflammatory cytokines. Reduction of inflammatory cytokines was also observed in infected primary human corneal fibroblasts pretreated with a MyD88 inhibitory peptide. Keratitis similar to wild type mice was observed in TLR2, TLR9 and IL-1R knockout mice, but was reduced in TLR2/9 double knockout mice, consistent with synergy of TLR2 and TLR9 in the response to adenovirus infection. MyD88 co-immunoprecipitated with Src kinase in mice corneas and in human corneal fibroblasts infected with adenovirus, and MyD88 inhibitory peptide reduced Src phosphorylation, linking MyD88 activation to inflammatory gene expression through a signaling cascade previously shown to be directed by Src. Our findings reveal a critical role for the PRRs TLR2 and 9, and their adaptor protein MyD88, in corneal inflammation upon adenovirus infection.

  17. Acute Hepatitis and Pancytopenia in Healthy Infant with Adenovirus

    Directory of Open Access Journals (Sweden)

    Amr Matoq

    2016-01-01

    Full Text Available Adenoviruses are a common cause of respiratory infection, pharyngitis, and conjunctivitis in infants and young children. They are known to cause hepatitis and liver failure in immunocompromised patients; they are a rare cause of hepatitis in immunocompetent patients and have been known to cause fulminant hepatic failure. We present a 23-month-old immunocompetent infant who presented with acute noncholestatic hepatitis, hypoalbuminemia, generalized anasarca, and pancytopenia secondary to adenovirus infection.

  18. Human adenovirus-36 and childhood obesity.

    Science.gov (United States)

    Atkinson, Richard L

    2011-09-01

    There is increasing evidence that obesity in humans is associated with infection with human adenovirus-36 (Adv36). Infection of experimental animals with Adv36 demonstrates that this virus causes obesity. Human studies have shown a prevalence of Adv36 infection of 30% or greater in obese adult humans, but a correlation with obesity has not always been demonstrated. In contrast, three published studies and one presented study with a total of 559 children all show that there is an increase in prevalence of Adv36 infection in obese children (28%) compared to non-obese children (10%). The explanation for the apparently more robust correlation of Adv36 infection with obesity in children vs. adults is not clear. The data in animals and people suggests that Adv36 has contributed to the worldwide increase in childhood obesity. More research is needed to identify prevalences and consequences of Adv36 infection in people of all age groups and geographic locations.

  19. Adenovirus-based vaccine against Listeria monocytogenes

    DEFF Research Database (Denmark)

    Jensen, Søren; Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech

    2013-01-01

    bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP......The use of replication-deficient adenoviruses as vehicles for transfer of foreign genes offers many advantages in a vaccine setting, eliciting strong cellular immune responses involving both CD8(+) and CD4(+) T cells. Further improving the immunogenicity, tethering of the inserted target Ag to MHC...... class II-associated invariant chain (Ii) greatly enhances both the presentation of most target Ags, as well as overall protection against viral infection, such as lymphocytic choriomeningitis virus (LCMV). The present study extends this vaccination concept to include protection against intracellular...

  20. Adenovirus infections in immunocompetent and immunocompromised patients.

    Science.gov (United States)

    Lion, Thomas

    2014-07-01

    Human adenoviruses (HAdVs) are an important cause of infections in both immunocompetent and immunocompromised individuals, and they continue to provide clinical challenges pertaining to diagnostics and treatment. The growing number of HAdV types identified by genomic analysis, as well as the improved understanding of the sites of viral persistence and reactivation, requires continuous adaptions of diagnostic approaches to facilitate timely detection and monitoring of HAdV infections. In view of the clinical relevance of life-threatening HAdV diseases in the immunocompromised setting, there is an urgent need for highly effective treatment modalities lacking major side effects. The present review summarizes the recent progress in the understanding and management of HAdV infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum

    Science.gov (United States)

    Harmon, Andrew W.; Moitra, Rituparna; Xu, Zhili

    2018-01-01

    Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors. PMID:29401488

  2. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.

    Science.gov (United States)

    Zhang, Nian-Hua; Peng, Rui-Qing; Ding, Ya; Zhang, Xiao-Shi

    2016-08-01

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity.

  3. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum.

    Science.gov (United States)

    Harmon, Andrew W; Moitra, Rituparna; Xu, Zhili; Byrnes, Andrew P

    2018-01-01

    Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors.

  4. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells.

    Science.gov (United States)

    Lenman, Annasara; Liaci, A Manuel; Liu, Yan; Årdahl, Carin; Rajan, Anandi; Nilsson, Emma; Bradford, Will; Kaeshammer, Lisa; Jones, Morris S; Frängsmyr, Lars; Feizi, Ten; Stehle, Thilo; Arnberg, Niklas

    2015-02-01

    Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.

  5. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells.

    Directory of Open Access Journals (Sweden)

    Annasara Lenman

    2015-02-01

    Full Text Available Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR protein. Human adenovirus type 52 (HAdV-52 is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK binds to CAR, and the knob domain of the short fiber (52SFK binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.

  6. Combination of Vaccine-Strain Measles and Mumps Viruses Enhances Oncolytic Activity against Human Solid Malignancies.

    Science.gov (United States)

    Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh

    2018-02-07

    Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.

  7. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.

    Science.gov (United States)

    Gong, Jun; Sachdev, Esha; Mita, Alain C; Mita, Monica M

    2016-03-26

    Reovirus is a double-stranded RNA virus with demonstrated oncolysis or preferential replication in cancer cells. The oncolytic properties of reovirus appear to be dependent, in part, on activated Ras signaling. In addition, Ras-transformation promotes reovirus oncolysis by affecting several steps of the viral life cycle. Reovirus-mediated immune responses can present barriers to tumor targeting, serve protective functions against reovirus systemic toxicity, and contribute to therapeutic efficacy through antitumor immune-mediated effects via innate and adaptive responses. Preclinical studies have demonstrated the broad anticancer activity of wild-type, unmodified type 3 Dearing strain reovirus (Reolysin(®)) across a spectrum of malignancies. The development of reovirus as an anticancer agent and available clinical data reported from 22 clinical trials will be reviewed.

  8. Targeting of Adenovirus Vectors to Breast Cancer Mediated by Soluble Receptor-Ligand Fusion Proteins

    National Research Council Canada - National Science Library

    Dmitriev, Igor

    2002-01-01

    The use of adenovirus (Ad) vectors for cancer gene therapy is currently limited by several factors, including broad Ad tropism associated with expression of coxsackie virus and adenovirus receptor (CAR...

  9. Targeting of Adenovirus Vectors to Breast Cancer Mediated by Soluble Receptor-Ligand Fusion Proteins

    National Research Council Canada - National Science Library

    Dmitriev, Igor

    2001-01-01

    The use of adenovirus (Ad) vectors for cancer gene therapy applications is currently limited due to the broad viral tropism associated with the widespread expression of primary coxsackievirus and adenovirus receptor (CAR) in human tissues...

  10. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection

    Directory of Open Access Journals (Sweden)

    Justin Ady

    2016-01-01

    Full Text Available Tunneling nanotubes (TNTs are ultrafine, filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here, we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP, which is encoded by the herpes simplex virus NV1066, from infected to uninfected recipient cells. Using time-lapse imaging, we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally, increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir, inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus, we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments.

  11. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections.

    Science.gov (United States)

    Wares, Joanna R; Crivelli, Joseph J; Yun, Chae-Ok; Choi, Il-Kyu; Gevertz, Jana L; Kim, Peter S

    2015-12-01

    Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.

  12. Oncolytic Herpes Simplex Virus-based Strategies: Toward a Breakthrough in Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Jianfang eNing

    2014-06-01

    Full Text Available Oncolytic viruses are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricted viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs. In an attempt to address these issues, recent research efforts have been directed at: (1 design of new engineered viruses to enhance potency, (2 better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3 combinatorial strategies with different antitumor agents with a mechanistic rationale, (4 armed viruses expressing therapeutic transgenes, (5 use of GSC-derived models in oHSV evaluation, and (6 combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma.

  13. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy.

    Science.gov (United States)

    Ning, Jianfang; Wakimoto, Hiroaki

    2014-01-01

    Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) "armed" viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma.

  14. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  15. A current perspective on the oncopreventive and oncolytic properties of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Radin, Daniel P; Patel, Parth

    2017-03-01

    Current cancer research strongly focuses on identifying novel pathways that can be selectively exploited in the clinic and identifying drugs capable of exploiting cancer vulnerabilities. Occasionally, drugs identified to exploit a cancer-specific vulnerability are on the market for clinical indications in another disease area. Rebranding them as anti-cancer drugs is a process commonly referred to as drug repurposing and is typically a faster method than bringing a novel drug to market. Selective serotonin reuptake inhibitors (SSRIs) are primarily used for treating several types of depression, but over the past two decades mounting evidence suggests that drugs in this class have oncolytic properties and reduce the risk of certain cancers. In the current work, we discuss how the secondary mechanisms of action associated with these drugs mediate their oncolytic effect. In particular, sertraline limits tumor growth by abrogating the PI3K/akt signaling pathway, a growth pathway shown to be constitutively active in multiple cancers. Fluoxetine has been shown to activate the AMPA-type glutamate receptor, induce massive calcium influx and mitochondrial calcium overload and induce caspase-9-dependent apoptosis. This receptor being highly overexpressed in cancer stem cells may explain why SSRIs lower the risk of multiple types of cancer. Fluoxetine has also been shown to inhibit multidrug resistance pumps, increasing the efficacy of several standard chemotherapies. Given the vast potential of SSRIs in treating cancer, these drugs should be more heavily used not only in treating cancer-related depression, but in combating cancer and increasing the efficacy of standard of care chemotherapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Endothelial progenitor cells as cellular vehicles to deliver oncolytic virus therapies to metastatic tumors: the "Trojan horse" approach.

    Science.gov (United States)

    Deng, Wei; Jia, Jun

    2008-01-01

    In view of the limited success of available treatment modalities for metastatic tumor, alternative and complementary strategies need to be developed. Oncolytic viruses are capable of selective replication in malignant cells and therefore offer levels of potency and specificity that are potentially far higher than conventional treatments for tumor. However, lack of systemic delivery technique for therapeutic viruses impacts their application in treating patients with multiple disseminated metastases. Recent studies have demonstrated that when being transplanted, endothelial progenitor cells can migrate via peripheral blood and home exclusively to the site of tumor neovasculature. We hypothesized that endothelial progenitor cells can act as "Trojan horse" to systemically deliver oncolytic virus to metastases in order to inhibit tumor neovascularization formation and eventually eradicate the metastatic tumor.

  17. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses.

    Science.gov (United States)

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-08-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  18. Immune responses to adenoviruses: viral evasion mechanisms and their implications for the clinic.

    Science.gov (United States)

    Wold, W S; Doronin, K; Toth, K; Kuppuswamy, M; Lichtenstein, D L; Tollefson, A E

    1999-08-01

    Adenoviruses encode proteins that block responses to interferons, intrinsic cellular apoptosis, killing by CD8(+) cytotoxic T lymphocytes and killing by the death ligands TNF, Fas ligand and TRAIL. The viral proteins are believed to prolong acute and persistent adenovirus infections. The proteins may prove useful in protecting adenovirus gene therapy vectors and transplanted cells from the immune system.

  19. Falcon adenovirus in an American kestrel (Falco sparverius).

    Science.gov (United States)

    Tomaszewski, Elizabeth K; Phalen, David N

    2007-06-01

    A fatal adenovirus infection is described in a wild-caught American kestrel (Falco sparverius). Predominate lesions were a moderate to severe hepatitis with diffuse single-cell necrosis of hepatocytes and a splenitis characterized by necrosis of cells surrounding the sheathed arteries. Pan-nuclear eosinophilic to magenta inclusion bodies were abundant within hepatocytes. Polymerase chain reaction was used to amplify a portion of the hexon gene from DNA extracted from the bird's liver and spleen. Sequence analysis showed that the adenovirus infecting this kestrel was the falcon adenovirus with a sequence homology of 99.5% to the isolate from the Northern aplomado falcon (Falco femoralis) variant and 98.6% homology to isolates from the taita (Falco fasciinucha) and orange-breasted falcons (Falco deiroleucus). This report expands the range of species of falcons that are susceptible to falcon adenovirus infection and disease. Given that this kestrel was recently wild caught and housed in isolation with other wild-caught kestrels, it is likely that the falcon adenovirus is present in wild populations of American kestrels.

  20. Viability of human adenovirus from hospital fomites.

    Science.gov (United States)

    Ganime, Ana Carolina; Carvalho-Costa, Filipe A; Santos, Marisa; Costa Filho, Rubens; Leite, José Paulo G; Miagostovich, Marize P

    2014-12-01

    The monitoring of environmental microbial contamination in healthcare facilities may be a valuable tool to determine pathogens transmission in those settings; however, such procedure is limited to bacterial indicators. Viruses are found commonly in those environments and are rarely used for these procedures. The aim of this study was to assess distribution and viability of a human DNA virus on fomites in an Adult Intensive Care Unit of a private hospital in Rio de Janeiro, Brazil. Human adenoviruses (HAdV) were investigated in 141 fomites by scraping the surface area and screening by quantitative PCR (qPCR) using TaqMan® System (Carlsbad, CA). Ten positive samples were selected for virus isolation in A549 and/or HEp2c cell lines. A total of 63 samples (44.7%) were positive and presented viral load ranging from 2.48 × 10(1) to 2.1 × 10(3) genomic copies per millilitre (gc/ml). The viability was demonstrated by integrated cell culture/nested-PCR in 5 out of 10 samples. Nucleotide sequencing confirmed all samples as HAdV and characterized one of them as specie B, serotype 3 (HAdV-3). The results indicate the risk of nosocomial transmission via contaminated fomites and point out the use of HAdV as biomarkers of environmental contamination. © 2014 Wiley Periodicals, Inc.

  1. Latest Insights on Adenovirus Structure and Assembly

    Directory of Open Access Journals (Sweden)

    Carmen San Martín

    2012-05-01

    Full Text Available Adenovirus (AdV capsid organization is considerably complex, not only because of its large size (~950 Å and triangulation number (pseudo T = 25, but also because it contains four types of minor proteins in specialized locations modulating the quasi-equivalent icosahedral interactions. Up until 2009, only its major components (hexon, penton, and fiber had separately been described in atomic detail. Their relationships within the virion, and the location of minor coat proteins, were inferred from combining the known crystal structures with increasingly more detailed cryo-electron microscopy (cryoEM maps. There was no structural information on assembly intermediates. Later on that year, two reports described the structural differences between the mature and immature adenoviral particle, starting to shed light on the different stages of viral assembly, and giving further insights into the roles of core and minor coat proteins during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution structure of the complete virion appeared [3,4]. These reports represent a veritable tour de force for two structural biology techniques: X-ray crystallography and cryoEM, as this is the largest macromolecular complex solved at high resolution by either of them. In particular, the cryoEM analysis provided an unprecedented clear picture of the complex protein networks shaping the icosahedral shell. Here I review these latest developments in the field of AdV structural studies.

  2. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    Science.gov (United States)

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.

  3. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a “Hammer” and “Anvil”

    Directory of Open Access Journals (Sweden)

    Michael Karl Melzer

    2017-02-01

    Full Text Available Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV, a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.

  4. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    Directory of Open Access Journals (Sweden)

    Jan RH Hanauer

    2016-01-01

    Full Text Available To target oncolytic measles viruses (MV to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins. These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.

  5. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  6. Full genome sequence analysis of a novel adenovirus of rhesus macaque origin indicates a new simian adenovirus type and species.

    Science.gov (United States)

    Malouli, Daniel; Howell, Grant L; Legasse, Alfred W; Kahl, Christoph; Axthelm, Michael K; Hansen, Scott G; Früh, Klaus

    2014-09-01

    Multiple novel simian adenoviruses have been isolated over the past years and their potential to cross the species barrier and infect the human population is an ever present threat. Here we describe the isolation and full genome sequencing of a novel simian adenovirus (SAdV) isolated from the urine of two independent, never co-housed, late stage simian immunodeficiency virus (SIV)-infected rhesus macaques. The viral genome sequences revealed a novel type with a unique genome length, GC content, E3 region and DNA polymerase amino acid sequence that is sufficiently distinct from all currently known human- or simian adenovirus species to warrant classifying these isolates as a novel species of simian adenovirus. This new species, termed Simian mastadenovirus D (SAdV-D), displays the standard genome organization for the genus Mastadenovirus containing only one copy of the fiber gene which sets it apart from the old world monkey adenovirus species HAdV-G, SAdV-B and SAdV-C.

  7. Characterization of a novel adenovirus isolated from a skunk.

    Science.gov (United States)

    Kozak, Robert A; Ackford, James G; Slaine, Patrick; Li, Aimin; Carman, Susy; Campbell, Doug; Welch, M Katherine; Kropinski, Andrew M; Nagy, Éva

    2015-11-01

    Adenoviruses are a ubiquitous group of viruses that have been found in a wide range of hosts. A novel adenovirus from a skunk suffering from acute hepatitis was isolated and its DNA genome sequenced. The analysis revealed this virus to be a new member of the genus Mastadenovirus, with a genome of 31,848 bp in length containing 30 genes predicted to encode proteins, and with a G+C content of 49.0%. Global genomic organization indicated SkAdV-1 was similar in organization to bat and canine adenoviruses, and phylogenetic comparison suggested these viruses shared a common ancestor. SkAdV-1 demonstrated an ability to replicate in several mammalian liver cell lines suggesting a potential tropism for this virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Comparative Inactivation of Enteroviruses and Adenovirus 2 by UV Light

    OpenAIRE

    Gerba, Charles P.; Gramos, Dawn M.; Nwachuku, Nena

    2002-01-01

    The doses of UV irradiation necessary to inactivate selected enteric viruses on the U.S. Environmental Protection Agency Contaminant Candidate List were determined. Three-log reductions of echovirus 1, echovirus 11, coxsackievirus B3, coxsackievirus B5, poliovirus 1, and human adenovirus type 2 were effected by doses of 25, 20.5, 24.5, 27, 23, and 119 mW/cm2, respectively. Human adenovirus type 2 is the most UV light-resistant enteric virus reported to date.

  9. Comparative inactivation of enteroviruses and adenovirus 2 by UV light.

    Science.gov (United States)

    Gerba, Charles P; Gramos, Dawn M; Nwachuku, Nena

    2002-10-01

    The doses of UV irradiation necessary to inactivate selected enteric viruses on the U.S. Environmental Protection Agency Contaminant Candidate List were determined. Three-log reductions of echovirus 1, echovirus 11, coxsackievirus B3, coxsackievirus B5, poliovirus 1, and human adenovirus type 2 were effected by doses of 25, 20.5, 24.5, 27, 23, and 119 mW/cm(2), respectively. Human adenovirus type 2 is the most UV light-resistant enteric virus reported to date.

  10. Adenovirus Respiratory Tract Infections in Peru

    Science.gov (United States)

    Ampuero, Julia S.; Ocaña, Víctor; Gómez, Jorge; Gamero, María E.; Garcia, Josefina; Halsey, Eric S.; Laguna-Torres, V. Alberto

    2012-01-01

    Background Currently, there is a paucity of data regarding human adenovirus (HAdv) circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. Methods/Principal Findings Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI) or severe acute respiratory infection (SARI) were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. Conclusions/Significance HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness. PMID:23056519

  11. Adenovirus respiratory tract infections in Peru.

    Directory of Open Access Journals (Sweden)

    Julia S Ampuero

    Full Text Available BACKGROUND: Currently, there is a paucity of data regarding human adenovirus (HAdv circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. METHODS/PRINCIPAL FINDINGS: Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI or severe acute respiratory infection (SARI were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. CONCLUSIONS/SIGNIFICANCE: HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness.

  12. Adenovirus respiratory tract infections in Peru.

    Science.gov (United States)

    Ampuero, Julia S; Ocaña, Víctor; Gómez, Jorge; Gamero, María E; Garcia, Josefina; Halsey, Eric S; Laguna-Torres, V Alberto

    2012-01-01

    Currently, there is a paucity of data regarding human adenovirus (HAdv) circulation in Andean regions of South America. To address this shortcoming, we report the clinical, phylogenetic, and epidemiologic characteristics of HAdv respiratory tract infection from a large sentinel surveillance study conducted among adults and children in Peru. Oropharyngeal swabs were collected from participants visiting any of 38 participating health centers, and viral pathogens were identified by immunofluorescence assay in cell culture. In addition, molecular characterization was performed on 226 randomly selected HAdv samples. Between 2000 and 2010, a total of 26,375 participants with influenza-like illness (ILI) or severe acute respiratory infection (SARI) were enrolled in the study. HAdv infection was identified in 2.5% of cases and represented 6.2% of all viral pathogens. Co-infection with a heterologous virus was found in 15.5% of HAdv cases. HAdv infection was largely confined to children under the age of 15, representing 88.6% of HAdv cases identified. No clinical characteristics were found to significantly distinguish HAdv infection from other respiratory viruses. Geographically, HAdv infections were more common in sites from the arid coastal regions than in the jungle or highland regions. Co-circulation of subgroups B and C was observed each year between 2006 and 2010, but no clear seasonal patterns of transmission were detected. HAdv accounted for a significant fraction of those presenting with ILI and SARI in Peru and tended to affect the younger population disproportionately. Longitudinal studies will help better characterize the clinical course of patients with HAdv in Peru, as well as determine the role of co-infections in the evolution of illness.

  13. Identification and characterization of a novel adenovirus in the cloacal bursa of gulls

    Energy Technology Data Exchange (ETDEWEB)

    Bodewes, R.; Bildt, M.W.G. van de; Schapendonk, C.M.E. [Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam (Netherlands); Leeuwen, M. van [Viroclinics Biosciences, Marconistraat 16, 3029 AK Rotterdam (Netherlands); Boheemen, S. van [Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam (Netherlands); Jong, A.A.W. de [Department of Pathology, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam (Netherlands); Osterhaus, A.D.M.E.; Smits, S.L. [Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam (Netherlands); Viroclinics Biosciences, Marconistraat 16, 3029 AK Rotterdam (Netherlands); Kuiken, T., E-mail: t.Kuiken@erasmusmc.nl [Department of Viroscience, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam (Netherlands)

    2013-05-25

    Several viruses of the family of Adenoviridae are associated with disease in birds. Here we report the detection of a novel adenovirus in the cloacal bursa of herring gulls (Larus argentatus) and lesser black-backed gulls (Larus fuscus) that were found dead in the Netherlands in 2001. Histopathological analysis of the cloacal bursa revealed cytomegaly and karyomegaly with basophilic intranuclear inclusions typical for adenovirus infection. The presence of an adenovirus was confirmed by electron microscopy. By random PCR in combination with deep sequencing, sequences were detected that had the best hit with known adenoviruses. Phylogenetic analysis of complete coding sequences of the hexon, penton and polymerase genes indicates that this novel virus, tentatively named Gull adenovirus, belongs to the genus Aviadenovirus. The present study demonstrates that birds of the Laridae family are infected by family-specific adenoviruses that differ from known adenoviruses in other bird species. - Highlights: ► Lesions typical for adenovirus infection detected in cloacal bursa of dead gulls. ► Confirmation of adenovirus infection by electron microscopy and deep sequencing. ► Sequence analysis indicates that it is a novel adenovirus in the genus Aviadenovirus. ► The novel (Gull) adenovirus was detected in multiple organs of two species of gulls.

  14. Identification and characterization of a novel adenovirus in the cloacal bursa of gulls

    International Nuclear Information System (INIS)

    Bodewes, R.; Bildt, M.W.G. van de; Schapendonk, C.M.E.; Leeuwen, M. van; Boheemen, S. van; Jong, A.A.W. de; Osterhaus, A.D.M.E.; Smits, S.L.; Kuiken, T.

    2013-01-01

    Several viruses of the family of Adenoviridae are associated with disease in birds. Here we report the detection of a novel adenovirus in the cloacal bursa of herring gulls (Larus argentatus) and lesser black-backed gulls (Larus fuscus) that were found dead in the Netherlands in 2001. Histopathological analysis of the cloacal bursa revealed cytomegaly and karyomegaly with basophilic intranuclear inclusions typical for adenovirus infection. The presence of an adenovirus was confirmed by electron microscopy. By random PCR in combination with deep sequencing, sequences were detected that had the best hit with known adenoviruses. Phylogenetic analysis of complete coding sequences of the hexon, penton and polymerase genes indicates that this novel virus, tentatively named Gull adenovirus, belongs to the genus Aviadenovirus. The present study demonstrates that birds of the Laridae family are infected by family-specific adenoviruses that differ from known adenoviruses in other bird species. - Highlights: ► Lesions typical for adenovirus infection detected in cloacal bursa of dead gulls. ► Confirmation of adenovirus infection by electron microscopy and deep sequencing. ► Sequence analysis indicates that it is a novel adenovirus in the genus Aviadenovirus. ► The novel (Gull) adenovirus was detected in multiple organs of two species of gulls

  15. Identification and characterization of a novel adenovirus in the cloacal bursa of gulls.

    Science.gov (United States)

    Bodewes, R; van de Bildt, M W G; Schapendonk, C M E; van Leeuwen, M; van Boheemen, S; de Jong, A A W; Osterhaus, A D M E; Smits, S L; Kuiken, T

    2013-05-25

    Several viruses of the family of Adenoviridae are associated with disease in birds. Here we report the detection of a novel adenovirus in the cloacal bursa of herring gulls (Larus argentatus) and lesser black-backed gulls (Larus fuscus) that were found dead in the Netherlands in 2001. Histopathological analysis of the cloacal bursa revealed cytomegaly and karyomegaly with basophilic intranuclear inclusions typical for adenovirus infection. The presence of an adenovirus was confirmed by electron microscopy. By random PCR in combination with deep sequencing, sequences were detected that had the best hit with known adenoviruses. Phylogenetic analysis of complete coding sequences of the hexon, penton and polymerase genes indicates that this novel virus, tentatively named Gull adenovirus, belongs to the genus Aviadenovirus. The present study demonstrates that birds of the Laridae family are infected by family-specific adenoviruses that differ from known adenoviruses in other bird species. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Enteritis in an alpaca (Vicugna pacos) associated with a potentially novel adenovirus.

    Science.gov (United States)

    Twomey, David F; Grierson, Sylvia S; Martelli, Francesca; Higgins, Robert J; Jeffrey, Martin

    2012-09-01

    Adenovirus-associated enteritis was diagnosed by histopathology of small intestine in a 2-year-old alpaca (Vicugna pacos). Electron microscopy confirmed intracytoplasmic and intranuclear adenoviral particles within enterocytes. Nucleic acid was extracted from paraffin-embedded tissue sections, and a pan-adenovirus nested polymerase chain reaction (PCR) assay was employed to target a partial sequence of the polymerase gene. The PCR product (321 bp) was cloned and sequenced. Comparison of the nucleotide sequence against the National Center for Biotechnology Information (NCBI) nucleotide database demonstrated 68% identity with the isolates Canine adenovirus 1 and Bovine adenovirus 3. Comparison of the predicted amino acid sequence against the NCBI database demonstrated 75% identity with Bovine adenovirus 3. Phylogenetic analysis supported the relatively close relationship of this isolate to Bovine adenovirus 3, but the alpaca isolate was sufficiently distant to be considered a potentially novel adenovirus for this species.

  17. Novel adenovirus detected in captive bottlenose dolphins (Tursiops truncatus) suffering from self-limiting gastroenteritis.

    Science.gov (United States)

    Rubio-Guerri, Consuelo; García-Párraga, Daniel; Nieto-Pelegrín, Elvira; Melero, Mar; Álvaro, Teresa; Valls, Mónica; Crespo, Jose Luis; Sánchez-Vizcaíno, Jose Manuel

    2015-03-07

    Adenoviruses are common pathogens in vertebrates, including humans. In marine mammals, adenovirus has been associated with fatal hepatitis in sea lions. However, only in rare cases have adenoviruses been detected in cetaceans, where no clear correlation was found between presence of the virus and disease status. A novel adenovirus was identified in four captive bottlenose dolphins with self-limiting gastroenteritis. Viral detection and identification were achieved by: PCR-amplification from fecal samples; sequencing of partial adenovirus polymerase (pol) and hexon genes; producing the virus in HeLa cells, with PCR and immunofluorescence detection, and with sequencing of the amplified pol and hexon gene fragments. A causative role of this adenovirus for gastroenteritis was suggested by: 1) we failed to identify other potential etiological agents; 2) the exclusive detection of this novel adenovirus and of seropositivity for canine adenoviruses 1 and 2 in the four sick dolphins, but not in 10 healthy individuals of the same captive population; and 3) the virus disappeared from feces after clinical signs receded. The partial sequences of the amplified fragments of the pol and hexon genes were closest to those of adenoviruses identified in sea lions with fatal adenoviral hepatitis, and to a Genbank-deposited sequence obtained from a harbour porpoise. These data suggest that adenovirus can cause self-limiting gastroenteritis in dolphins. This adenoviral infection can be detected by serology and by PCR detection in fecal material. Lack of signs of hepatitis in sick dolphins may reflect restricted tissue tropism or virulence of this adenovirus compared to those of the adenovirus identified in sea lions. Gene sequence-based phylogenetic analysis supports a common origin of adenoviruses that affect sea mammals. Our findings suggest the need for vigilance against adenoviruses in captive and wild dolphin populations.

  18. Regression of Human Prostate Tumors and Metastases in Nude Mice following Treatment with the Recombinant Oncolytic Vaccinia Virus GLV-1h68

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    2010-01-01

    Full Text Available Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In the current study, we analyzed the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 against two human prostate cancer cell lines DU-145 and PC-3 in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 was able to infect, replicate in, and lyse these prostate cancer cells in culture. In DU-145 and PC-3 tumor xenograft models, a single intravenous injection with GLV-1h68 resulted in a significant reduction of primary tumor size. In addition, the GLV-1h68-infection led to strong inflammatory and oncolytic effects resulting in drastic reduction of regional lymph nodes with PC-3 metastases. Our data documented that the GLV-1h68 virus has a great potential for treatment of human prostate carcinoma.

  19. Localization of adenovirus DNA replication in KB cells

    NARCIS (Netherlands)

    Vlak, J.M.; Rozijn, Th.H.; Spies, F.

    1975-01-01

    The localization of adenovirus type 5 DNA replication has been investigated by both fractionation of isolated nuclei and electron-microscope autoradiography. Nuclear fractionation by means of the M-band-technique of Tremblay et al. (Tremblay, G. Y., Daniels, M. J., and Schaechter, M. (1969). J. Mol.

  20. Gene therapy for meningioma: improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, Clemens M. F.; Grill, Jacques; Lamfers, Martine L. M.; van der Valk, Paul; Leonhart, Angelique M.; van Beusechem, Victor W.; Haisma, Hidde J.; Pinedo, Herbert M.; Curiel, David T.; Vandertop, W. Peter; Gerritsen, Winald R.

    2002-01-01

    OBJECT: Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  1. Gene therapy for meningioma : improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, CMF; Grill, J; Lamfers, MLM; Van der Valk, P; Leonhart, AM; Van Beusechem, VW; Haisma, HJ; Pinedo, HM; Curiel, DT; Vandertop, WP; Gerritsen, WR

    Object. Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  2. Adenovirus-derived vectors for prostate cancer gene therapy

    Czech Academy of Sciences Publication Activity Database

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  3. Isolation and Identification of Adenovirus Recovered from the Stool ...

    African Journals Online (AJOL)

    In order to establish the role of adenovirus in gastroenteritis in Nigerian children, stool samples were collected from 138 young children with gastroenteritis and 29 other age-matched controls. The samples were inoculated into 6 different tissue culture cell lines and isolates with characteristic CPE were subjected to CFT ...

  4. A non-replicative adenovirus vaccine platform for poultry diseases ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-04-09

    Apr 9, 2018 ... Using a non-replicative adenovirus to transfer genetic material into cells, researchers will generate two proteins (HN and F) that are known targets of protective immunity against ND. Unlike traditional ND vaccines that are produced using eggs, the resulting vaccine will be produced in a cell culture system, ...

  5. Prevalence of rotavirus, adenovirus and astrovirus infection in young ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence of three enteric viruses, namely rotavirus, adenovirus and astrovirus, as agents of diarrhoea in and around Gaborone, Botswana. Design: The sample were categorised into four groups according to the age of the patient: 0-3 months, 4-6 months, 7-12 months and 25-60 months.

  6. Evaluation of anti-adenovirus activity of some plants from ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Evaluation of anti-adenovirus activity of some plants from Lamiaceae family grown in Iran in cell culture. Horieh Saderi1 and Maryam Abbasi2*. 1Microbiology Department, School of Medicine, Shahed University, Tehran, Iran. 2Student Research Center, School of Medicine, Shahed University, Tehran, Iran.

  7. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    NARCIS (Netherlands)

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction

  8. prevalence of rotavirus, adenovirus and astrovirus infection in young

    African Journals Online (AJOL)

    hi-tech

    East African Medical Journal Vol. 80 No. 12 December 2003. PREVALENCE OF ROTAVIRUS, ADENOVIRUS AND ASTROVIRUS INFECTION IN YOUNG CHILDREN WITH GASTROENTERITIS IN GABORONE,. BOTSWANA. G. Basu, BSc, (Lucknow, India), MSc, P.O. Box 2327, Gaborone, Botswana, J. Rossouw, BSc ...

  9. Evaluation of anti-adenovirus activity of some plants from ...

    African Journals Online (AJOL)

    The family Lamiaceae included some plants such as thyme species which have a lot of medical properties even in the Iranian traditional medicine. Some of these properties have not been approved by this original article. The aim of this study was to evaluate the anti-adenovirus effect of the three plants from Lamiaceae ...

  10. Integrin and Defensin Modulate the Mechanical Properties of Adenovirus

    NARCIS (Netherlands)

    Snijder, Joost; Reddy, Vijay S.; May, Eric R.; Roos, Wouter H.; Nemerow, Glen R.; Wuite, Gijs J. L.

    The propensity for capsid disassembly and uncoating of human adenovirus is modulated by interactions with host cell molecules like integrins and alpha defensins. Here, we use atomic force microscopy (AFM) nanoindentation to elucidate, at the single-particle level, the mechanism by which binding of

  11. Bioaccumulation of animal adenoviruses in the pink shrimp

    Directory of Open Access Journals (Sweden)

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  12. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  13. Histone Deacetylase Inhibitors Improve the Replication of Oncolytic Herpes Simplex Virus in Breast Cancer Cells

    Science.gov (United States)

    Cody, James J.; Markert, James M.; Hurst, Douglas R.

    2014-01-01

    New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV) is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC) inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50) for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI) following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy. PMID:24651853

  14. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Zong Sheng eGuo

    2014-04-01

    Full Text Available Oncolytic viruses (OVs are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD, including immunogenic apoptosis, necrosis/necroptosis, pyroptosis and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high mobility group box-1 [HMGB1], uric acid, and other DAMPs as well as PAMPs as danger signals, along with tumor-associated antigens, to activate dendritic cells (DCs and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells towards certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity and thus the overall therapeutic efficacy.

  15. Oncolytic vaccinia virus as an adjuvant treatment to cytoreductive surgery for malignant peritoneal mesothelioma.

    Science.gov (United States)

    Acuna, Sergio A; Ottolino-Perry, Kathryn; Çako, Besmira; Tang, Nan; Angarita, Fernando A; McCart, J Andrea

    2014-07-01

    Malignant peritoneal mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Oncolytic viruses are a promising new therapy for cancer because of their ability to kill tumor cells with minimal toxicity to normal tissues. This experimental study aimed to examine the potential of modified vaccinia virus (VV) to treat MPM when administered alone or as an adjuvant treatment to surgery. Two aggressive murine mesothelioma cell lines (AC29, AB12), were used. Cell viability and viral cytopathic effects were assessed using MTS and crystal violet assays. Immunocompetent mice were injected intraperitoneally with MPM cells and treated with intraperitoneal VV. Tumor-bearing mice also underwent cytoreductive surgery (CRS) followed by VV (or control) therapy. The cytotoxic effects of VV on MPM cell lines was significantly increased compared with the control non-cancer cell line. In both orthotopic models, VV induced tumor regression, prolonging median and long-term survival. VV treatment after incomplete CRS was not superior to VV alone; however, when mice with microscopic disease were treated with VV, further prolongation of median and long-term survivals was observed. VV selectively kills MPM cells in vitro and leads to improved survival and cures in immunocompetent murine models. Higher efficacy of the virus in the microscopic disease context suggests the use of the virus as an adjuvant treatment to complete surgical resection. These promising results justify further studies of VV in humans as a novel treatment for MPM.

  16. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  17. Melanoma Unknown Primary Brain Metastasis Treatment with ECHO-7 Oncolytic Virus Rigvir: A Case Report

    Directory of Open Access Journals (Sweden)

    Guna Proboka

    2018-02-01

    Full Text Available Melanoma is considered an aggressive malignancy with a tendency of forming metastasis in the brain. Less than 10% of all melanoma cases present with unknown primary tumor location. This diagnose is yet to be fully understood, because there are only theoretical assumptions about the nature of the disease. Melanoma brain metastases have many severe side effects and, unfortunately, any disease related to the brain has limited therapeutic options due to the blood–brain barrier. The course of the disease after a treatment course is complicated to predict, and it is difficult to obtain long-lasting remission. In this report, we describe a female patient with unknown primary melanoma brain metastasis treated with the oncolytic ECHO-7 virus Rigvir® after brain surgery. The patient has been stable, as monitored by magnetic resonance imaging, for more than 3.8 years with ongoing therapy. The median expected overall survival from the time of diagnosis is approximately 5 months. Additional positive effect could have been gained from use of the intranasal administration route, which is considered effective due to the direct anatomical connection between the nasal cavity and the central nervous system. However, further studies are required to fully understand this mode of drug administration.

  18. CD8(+) T-cell Immune Evasion Enables Oncolytic Virus Immunotherapy.

    Science.gov (United States)

    Pourchet, Aldo; Fuhrmann, Steven R; Pilones, Karsten A; Demaria, Sandra; Frey, Alan B; Mulvey, Matthew; Mohr, Ian

    2016-03-01

    Although counteracting innate defenses allows oncolytic viruses (OVs) to better replicate and spread within tumors, CD8(+) T-cells restrict their capacity to trigger systemic anti-tumor immune responses. Herpes simplex virus-1 (HSV-1) evades CD8(+) T-cells by producing ICP47, which limits immune recognition of infected cells by inhibiting the transporter associated with antigen processing (TAP). Surprisingly, removing ICP47 was assumed to benefit OV immuno-therapy, but the impact of inhibiting TAP remains unknown because human HSV-1 ICP47 is not effective in rodents. Here, we engineer an HSV-1 OV to produce bovine herpesvirus UL49.5, which unlike ICP47, antagonizes rodent and human TAP. Significantly, UL49.5-expressing OVs showed superior efficacy treating bladder and breast cancer in murine models that was dependent upon CD8(+) T-cells. Besides injected subcutaneous tumors, UL49.5-OV reduced untreated, contralateral tumor size and metastases. These findings establish TAP inhibitor-armed OVs that evade CD8(+) T-cells as an immunotherapy strategy to elicit potent local and systemic anti-tumor responses.

  19. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1

    Czech Academy of Sciences Publication Activity Database

    Carlisle, R. C.; Di, Y.; Cerny, A. M.; Sonnen, A. F. P.; Sim, R. B.; Green, N. K.; Šubr, Vladimír; Ulbrich, Karel; Gilbert, R. J. C.; Fisher, K. D.; Finberg, R. W.; Seymour, L. W.

    2009-01-01

    Roč. 113, č. 9 (2009), s. 1909-1918 ISSN 0006-4971 EU Projects: European Commission(XE) 512087 - GIANT Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * erythrocyte * complement receptor 1 Subject RIV: CD - Macromolecular Chemistry Impact factor: 10.555, year: 2009

  20. Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry

    OpenAIRE

    Li, Xiaoxin; Bangari, Dinesh S.; Sharma, Anurag; Mittal, Suresh K.

    2009-01-01

    Bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) entry into the host cells is independent of Coxsackievirus -adenovirus receptor and integrins. The role of sialic acid in BAd3 and PAd3 entry was investigated. Removal of sialic acid by neuraminidase, or blocking sialic acid by wheat germ agglutinin lectin significantly inhibited BAd3, but not PAd3, transduction of Madin Darby bovine kidney cells. Maackia amurensis agglutinin or Sambucus nigra (elder) agglutinin trea...

  1. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    International Nuclear Information System (INIS)

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  2. Early RNA of adenovirus type 3 in permissive and abortive infections.

    OpenAIRE

    Groff, D E; Daniell, E

    1981-01-01

    Early adenovirus type 3 cytoplasmic polyadenylated RNAs from HeLa and BHK-21 cells were detected and mapped on the viral genome by gel blotting and hybridization techniques. The sizes and locations of the 16 adenovirus type 3 RNAs were identical in the two cell types, although relative molarities of the various RNA species differed. Each of the early adenovirus type 3 RNAs was associated with polysomes in both cell types, suggesting that the abortive infection of hamster cells does not result...

  3. Optimization and evaluation of a method to detect adenoviruses in river water

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the recoveries of spiked adenovirus through various stages of experimental optimization procedures. This dataset is associated with the...

  4. ENTERIC ADENOVIRUS INFECTION IN INFANTS AND YOUNG CHILDREN WITH ACUTE GASTROENTERITIS IN TEHRAN

    Directory of Open Access Journals (Sweden)

    F. Jam-Afzon S. Modarres

    2006-09-01

    Full Text Available Adenoviruses are one of the most important etiological agents of serious gastroenteritis among infants and young children. Fecal specimens from patients with an acute gastroenteritis were evaluated for the presence of adenovirus (Ad40, 41 from April 2002 to February 2004. During the study, 1052 samples were collected from children under the age of 5 years in six educational and therapeutic pediatric centers. The specimens were tested for adenovirus (Ad40, 41 by EIA technique in the Virology Department of Pasteur Institute of Iran. Adenoviruses (Ad40, 41 were detected from 27(2.6% samples, but were not detected in 150 samples of healthy control group. In this study the highest rate of adenovirus was found in children aged 6 to 12 months (40.7%, but the male to female ratio inpatients was approximately equal. Adenovirus (Ad40, 41 infections peaked in the winter as 48.1% was detected from December to March. There were a statistically significant difference between age and infection (P < 0.001, also between season with adenovirus (Ad40, 41 infection (P = 0.005. Breast-feeding had a protective action against adenovirus (Ad40, 41 infection. This study revealed that enteric adenovirus (Ad40, 41 is an etiological agent of acute gastroenteritis among children in Tehran.

  5. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    Science.gov (United States)

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  6. Retrospective study of adenovirus in autopsied pulmonary tissue of pediatric fatal pneumonia in South China

    Directory of Open Access Journals (Sweden)

    Gong Si-Tang

    2008-09-01

    Full Text Available Abstract Background Adenovirus are the important pathogen of pediatric severe pneumonia. The aim of this study is to analyze the infection, subtype and distribution of adenovirus in autopsied pulmonary tissue of fatal pneumonia in infants and children, and the relationships between adenovirus infection and respiratory illness in South China. Methods Nested PCR was performed on DNA extracted from autopsied lung tissue from patients who died of severe pneumonia, and the positive nested PCR products were cloned and sequenced. The adenovirus in autopsied pulmonary tissue was also analyzed by immunohistochemistry assay in a blind way. Results In the 175 autopsied pulmonary tissues, the positive percentage of adenovirus was 9.14% (16/175 and 2.29% (4/175 detected with nested PCR and immunohistochemistry, respectively. There are three cases of adenovirus serotype 3, twelve cases of adenovirus serotype 4 and one case of serotype 41 determined by sequencing of the cloned positive nested PCR products. Conclusion Adenovirus is an important cause of severe pneumonia, and these data suggest that adenovirus serotype 4 might be an important pathogen responsible for the fatal pneumonia in Guangzhou, South China.

  7. Concentration of Reovirus and Adenovirus from Sewage and Effluents by Protamine Sulfate (Salmine) Treatment 1

    Science.gov (United States)

    England, Beatrice

    1972-01-01

    Protamine sulfate was employed to recover reoviruses, adenoviruses, and certain enteroviruses from sewage and treated effluents; 50- to 400-fold concentration of viral content was achieved. PMID:4342842

  8. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  9. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    Science.gov (United States)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  10. Oncolytic Reactivation of KSHV as a Therapeutic Approach for Primary Effusion Lymphoma.

    Science.gov (United States)

    Zhou, Feng; Shimoda, Michiko; Olney, Laura; Lyu, Yuanzhi; Tran, Khiem; Jiang, Guochun; Nakano, Kazushi; Davis, Ryan R; Tepper, Clifford G; Maverakis, Emanual; Campbell, Mel; Li, Yuanpei; Dandekar, Satya; Izumiya, Yoshihiro

    2017-11-01

    Primary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Currently, treatment options for patients with PEL are limited. Oncolytic viruses have been engineered as anticancer agents and have recently shown increased therapeutic promise. Similarly, lytic activation of endogenous viruses from latently infected tumor cells can also be applied as a cancer therapy. In theory, such a therapeutic strategy would induce oncolysis by viral replication, while simultaneously stimulating an immune response to viral lytic cycle antigens. We examined the combination of the FDA-approved drug ingenol-3-angelate (PEP005) with epigenetic drugs as a rational therapeutic approach for KSHV-mediated malignancies. JQ1, a bromodomain and extra terminal (BET) protein inhibitor, in combination with PEP005, not only robustly induced KSHV lytic replication, but also inhibited IL6 production from PEL cells. Using the dosages of these agents that were found to be effective in reactivating HIV (as a means to clear latent virus with highly active antiretroviral therapy), we were able to inhibit PEL growth in vitro and delay tumor growth in a PEL xenograft tumor model. KSHV reactivation was mediated by activation of the NF-κB pathway by PEP005, which led to increased occupancy of RNA polymerase II onto the KSHV genome. RNA-sequencing analysis further revealed cellular targets of PEP005, JQ1, and the synergistic effects of both. Thus, combination of PEP005 with a BET inhibitor may be considered as a rational therapeutic approach for the treatment of PEL. Mol Cancer Ther; 16(11); 2627-38. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy.

    Science.gov (United States)

    Power, A T; Bell, J C

    2008-05-01

    Live cells offer unique advantages as vehicles for systemic oncolytic virus (OV) delivery. Recent studies from our laboratory and others have shown that virus-infected cells can serve as Trojan horse vehicles to evade antiviral mechanisms encountered in the bloodstream, prevent uptake by off-target tissues and act as microscale factories to produce OV upon arrival in tumor beds. However to be employed effectively, OV-infected cells are best viewed as dynamic biological systems rather than static therapeutic agents. The time-dependent processes of infection and in vivo cell trafficking will inevitably vary depending on which particular OV is being delivered, as well as the type of carrier cells (CC) employed. Understanding these parameters with respect to each unique CC/OV combination will therefore be required in order to effectively evaluate and harness their potential in preclinical study. In the following review, we discuss how early studies of OV delivery led us to investigate the use of cell carriers in our laboratory, and the approaches we are currently undertaking to compare the dynamics of different CC/OV systems. On the basis of these studies and others it is apparent that the success of any cell-based system for OV delivery rests upon the coordinated timing of three sequential phases--(1) ex vivo loading, (2) stealth delivery and (3) virus production at the tumor site. While at the current time, the timing of these processes are coupled to the natural cycle of infection and in vivo trafficking properties innate to each cell virus system, a quantitative delineation of their dynamics will lay the foundation for engineering CC/OV biotherapeutic systems that can be clinically deployed in a highly directed and controlled manner.

  12. Modeling Adenovirus Latency in Human Lymphocyte Cell Lines ▿ †

    OpenAIRE

    Zhang, Yange; Huang, Wen; Ornelles, David A.; Gooding, Linda R.

    2010-01-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then decl...

  13. Novel epi-virotherapeutic treatment of pancreatic cancer combining the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus.

    Science.gov (United States)

    Ellerhoff, Tim Patrick; Berchtold, Susanne; Venturelli, Sascha; Burkard, Markus; Smirnow, Irina; Wulff, Tanja; Lauer, Ulrich M

    2016-11-01

    Oncolytic viruses (OV) constitute highly promising innovative biological anticancer agents. However, like every other antitumoral compound, OV are also faced with both primary and secondary mechanisms of resistance. To overcome those barriers and moreover amplify the therapeutic potential of OV, we evaluated a novel combined approach composed of the oral histone deacetylase inhibitor resminostat and an oncolytic measles vaccine virus (MeV) for a future epi‑virotherapy of pancreatic ductal adenocarcinoma. Cytotoxicity assays revealed that combined epi-virotherapeutic treatment of four well-characterized human pancreatic cancer cell lines resulted in a beneficial tumor cell killing as compared to either monotherapeutic approach. Notably, epi-virotherapeutic treatment of MIA PaCa-2 and partly also of PANC‑1 pancreatic cancer cells resulted in a tumor cell mass reduction being significantly more pronounced than it would be expected in case of an additive effect only, indicating a synergistic mode of action when combining resminostat with MeV. We further found that the epigenetic compound resminostat neither impaired MeV growth kinetics nor prevented the activation of the interferon signaling pathway which plays an important role in mediating primary and secondary resistances to OV. Moreover, we yielded information that the pharma-codynamic function of resminostat was presumably not altered in the course of pancreatic cancer cell infections with MeV. Taken together, these promising results favor the onset of epi-viro-thera-peutic clinical trials in patients suffering from advanced pancreatic ductal adenocarcinoma.

  14. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manbok, E-mail: manbok66@dankook.ac.kr [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Rahman, Masmudur M. [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States); Cogle, Christopher R. [Department of Hematology/Oncology, University of Florida, Gainesville, FL 32610 (United States); McFadden, Grant [Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610 (United States)

    2015-07-10

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.

  15. An outbreak of lethal adenovirus infection among different otariid species.

    Science.gov (United States)

    Inoshima, Yasuo; Murakami, Tomoaki; Ishiguro, Naotaka; Hasegawa, Kazuhiro; Kasamatsu, Masahiko

    2013-08-30

    An outbreak of fatal fulminant hepatitis at a Japanese aquarium involved 3 otariids: a California sea lion (Zalophus californianus), a South African fur seal (Arctocephalus pusillus) and a South American sea lion (Otaria flavescens). In a span of about a week in February 2012, 3 otariids showed diarrhea and were acutely low-spirited; subsequently, all three animals died within a period of 3 days. Markedly increased aspartate amino transferase and alanine amino transferase activities were observed. Necrotic hepatitis and eosinophilic intranuclear inclusion bodies in liver hepatocytes and intestinal epithelial cells were observed in the South American sea lion on histological examination. Otarine adenovirus DNA was detected from the livers of all three animals by polymerase chain reaction and determination of the sequences showed that all were identical. These results suggest that a single otarine adenovirus strain may have been the etiological agent of this outbreak of fatal fulminant hepatitis among the different otariid species, and it may be a lethal threat to wild and captive otariids. This is the first evidence of an outbreak of lethal adenovirus infection among different otariid species. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: Interim results.

    Science.gov (United States)

    Packiam, Vignesh T; Lamm, Donald L; Barocas, Daniel A; Trainer, Andrew; Fand, Benjamin; Davis, Ronald L; Clark, William; Kroeger, Michael; Dumbadze, Igor; Chamie, Karim; Kader, A Karim; Curran, Dominic; Gutheil, John; Kuan, Arthur; Yeung, Alex W; Steinberg, Gary D

    2017-07-26

    CG0070 is a replication-competent oncolytic adenovirus that targets bladder tumor cells through their defective retinoblastoma pathway. Prior reports of intravesical CG0070 have shown promising activity in patients with high-grade non-muscle invasive bladder cancer (NMIBC) who previously did not respond to bacillus Calmette-Guérin (BCG). However, limited accrual has hindered analysis of efficacy, particularly for pathologic subsets. We evaluated interim results of a phase II trial for intravesical CG0070 in patients with BCG-unresponsive NMIBC who refused cystectomy. At interim analysis (April 2017), 45 patients with residual high-grade Ta, T1, or carcinoma-in-situ (CIS) ± Ta/T1 had evaluable 6-month follow-up in this phase II single-arm multicenter trial (NCT02365818). All patients received at least 2 prior courses of intravesical therapy for CIS, with at least 1 being a course of BCG. Patients had either failed BCG induction therapy within 6 months or had been successfully treated with BCG with subsequent recurrence. Complete response (CR) at 6 months was defined as absence of disease on cytology, cystoscopy, and random biopsies. Of 45 patients, there were 24 pure CIS, 8 CIS + Ta, 4 CIS + T1, 6 Ta, 3 T1. Overall 6-month CR (95% CI) was 47% (32%-62%). Considering 6-month CR for pathologic subsets, pure CIS was 58% (37%-78%), CIS ± Ta/T1 50% (33%-67%), and pure Ta/T1 33% (8%-70%). At 6 months, the single patient that progressed to muscle-invasive disease had Ta and T1 tumors at baseline. No patients with pure T1 had 6-month CR. Treatment-related adverse events (AEs) at 6 months were most commonly urinary bladder spasms (36%), hematuria (28%), dysuria (25%), and urgency (22%). Immunologic treatment-related AEs included flu-like symptoms (12%) and fatigue (6%). Grade III treatment-related AEs included dysuria (3%) and hypotension (1.5%). There were no Grade IV/V treatment-related AEs. This phase II study demonstrates that intravesical CG0070 yielded an overall 47

  17. Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer.

    Science.gov (United States)

    Angelova, Assia L; Grekova, Svitlana P; Heller, Anette; Kuhlmann, Olga; Soyka, Esther; Giese, Thomas; Aprahamian, Marc; Bour, Gaétan; Rüffer, Sven; Cziepluch, Celina; Daeffler, Laurent; Rommelaere, Jean; Werner, Jens; Raykov, Zahari; Giese, Nathalia A

    2014-05-01

    Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death

  18. Purification and characterization of adenovirus core protein VII: a histone-like protein that is critical for adenovirus core formation.

    Science.gov (United States)

    Sharma, Gaurav; Moria, Nithesh; Williams, Martin; Krishnarjuna, Bankala; Pouton, Colin W

    2017-07-01

    Adenovirus protein VII is a highly cationic core protein that forms a nucleosome-like structure in the adenovirus core by condensing DNA in combination with protein V and mu. It has been proposed that protein VII could condense DNA in a manner analogous to mammalian histones. Due to the lack of an expression and purification protocol, the interactions between protein VII and DNA are poorly understood. In this study we describe methods for the purification of biologically active recombinant protein VII using an E. coli expression system. We expressed a cleavable fusion of protein VII with thioredoxin and established methods for purification of this fusion protein in denatured form. We describe an efficient method for resolving the cleavage products to obtain pure protein VII using hydroxyapatite column chromatography. Mass spectroscopy data confirmed its mass and purity to be 19.4 kDa and >98 %, respectively. Purified recombinant protein VII spontaneously condensed dsDNA to form particles, as shown by dye exclusion assay, electrophoretic mobility shift assay and nuclease protection assay. Additionally, an in vitro bioluminescence assay revealed that protein VII can be used to enhance the transfection of mammalian cells with lipofectamine/DNA complexes. The availability of recombinant protein VII will facilitate future studies of the structure of the adenovirus core. Improved understanding of the structure and function of protein VII will be valuable in elucidating the mechanism of adenoviral DNA condensation, defining the morphology of the adenovirus core and establishing the mechanism by which adenoviral DNA enters the nucleus.

  19. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    Science.gov (United States)

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  20. 78 FR 3906 - Prospective Grant of a Co-Exclusive License: Adenovirus-Based Controls and Calibrators for...

    Science.gov (United States)

    2013-01-17

    ... HUMAN SERVICES National Institutes of Health Prospective Grant of a Co-Exclusive License: Adenovirus...), issued January 11, 2000 and entitled ``Adenovirus Comprising Deletions on the E1A, E1B And E3 Regions for... October 24, 2000, and entitled ``Replication Deficient Recombinant Adenovirus Vector'' to Life...

  1. Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor.

    NARCIS (Netherlands)

    Freiberg, F.; Sauter, M.; Pinkert, S.; Govindarajan, T.; Kaldrack, J.; Thakkar, M.; Fechner, H.; Klingel, K.; Gotthardt, M.

    2014-01-01

    The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail

  2. A simple negative selection method to identify adenovirus recombinants using colony PCR

    Directory of Open Access Journals (Sweden)

    Yongliang Zhao

    2014-01-01

    Conclusions: The negative selection method to identify AdEasy adenovirus recombinants by colony PCR can identify the recombined colony within a short time-period, and maximally avoid damage to the recombinant plasmid by limiting recombination time, resulting in improved adenovirus packaging.

  3. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Science.gov (United States)

    2010-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  4. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35

    NARCIS (Netherlands)

    Kälin, S.; Amstutz, B.; Gastaldelli, M.; Wolfrum, N.; Boucke, K.; Havenga, M.; DiGennaro, F.; Liska, N.; Hemmi, S.; Greber, U.F.

    2010-01-01

    Human adenovirus serotype 35 (HAdV-35; here referred to as Ad35) causes kidney and urinary tract infections and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence, which makes Ad35-based vectors promising candidates for gene therapy.

  5. Crystal structure of the fibre head domain of the Atadenovirus Snake Adenovirus 1.

    Directory of Open Access Journals (Sweden)

    Abhimanyu K Singh

    Full Text Available Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1 fibre head using the multi-wavelength anomalous dispersion (MAD method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest.

  6. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Science.gov (United States)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  7. Presence of adenovirus species C in infiltrating lymphocytes of human sarcoma.

    Directory of Open Access Journals (Sweden)

    Karin Kosulin

    Full Text Available Human adenoviruses are known to persist in T-lymphocytes of tonsils, adenoids and intestinal tract. The oncogenic potential of different adenovirus types has been widely studied in rodents, in which adenovirus inoculation can induce multiple tumors such as undifferentiated sarcomas, adenocarcinomas and neuroectodermal tumors. However, the oncogenic potential of this virus has never been proven in human subjects. Using a highly sensitive broad-spectrum qRT-PCR, we have screened a set of different human sarcomas including leiomyosarcoma, liposarcoma and gastro intestinal stroma tumors. Primers binding the viral oncogene E1A and the capsid-coding gene Hexon were used to detect the presence of adenovirus DNA in tumor samples. We found that 18% of the tested leiomyosarcomas and 35% of the liposarcomas were positive for the presence of adenovirus DNA, being species C types the most frequently detected adenoviruses. However, only in one sample of the gastro intestinal stroma tumors the virus DNA could be detected. The occurrence of adenovirus in the tumor sections was confirmed by subsequent fluorescence in-situ-hybridization analysis and co-staining with the transcription factor Bcl11b gives evidence for the presence of the virus in infiltrating T-lymphocytes within the tumors. Together these data underline, for the first time, the persistence of adenovirus in T-lymphocytes infiltrated in muscular and fatty tissue tumor samples. If an impaired immune system leads to the viral persistence and reactivation of the virus is involved in additional diseases needs further investigation.

  8. A novel technology to target adenovirus vectors : application in cells involved in atherosclerosis

    NARCIS (Netherlands)

    Gras, Jan Cornelis Emile

    2007-01-01

    In this thesis a novel technology is described to target adenovirus vectors. Adenovirus vectors are powerful tools to modulate gene expression. The use of these vectors however, is hampered by the fact that many for gene therapy interesting cell types do not, or only at low levels express the CAR

  9. Resident corneal c-fms(+) macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis.

    Science.gov (United States)

    Ramke, Mirja; Zhou, Xiaohong; Materne, Emma Caroline; Rajaiya, Jaya; Chodosh, James

    2016-06-01

    The cornea contains a heterogeneous population of antigen-presenting cells with the capacity to contribute to immune responses. Adenovirus keratitis is a severe corneal infection with acute and chronic phases. The role of resident corneal antigen-presenting cells in adenovirus keratitis has not been studied. We utilized transgenic MaFIA mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, in a mouse model of adenovirus keratitis. Clinical keratitis and recruitment of myeloperoxidase and CD45(+) cells were diminished in c-fms depleted, adenovirus infected mice, as compared to controls, consistent with a role for myeloid-lineage cells in adenovirus keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Resident corneal c-fms+ macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis

    Science.gov (United States)

    Ramke, Mirja; Zhou, Xiaohong; Materne, Emma Caroline; Rajaiya, Jaya; Chodosh, James

    2016-01-01

    The cornea contains a heterogeneous population of antigen-presenting cells with the capacity to contribute to immune responses. Adenovirus keratitis is a severe corneal infection with acute and chronic phases. The role of resident corneal antigen-presenting cells in adenovirus keratitis has not been studied. We utilized transgenic MaFIA mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, in a mouse model of adenovirus keratitis. Clinical keratitis and recruitment of myeloperoxidase and CD45+ cells were diminished in c-fms depleted, adenovirus infected mice, as compared to controls, consistent with a role for myeloid-lineage cells in adenovirus keratitis. PMID:27185163

  11. High-efficiency system for the construction of adenovirus vectors and its application to the generation of representative adenovirus-based cDNA expression libraries.

    Science.gov (United States)

    Hillgenberg, Moritz; Hofmann, Christian; Stadler, Herbert; Löser, Peter

    2006-06-01

    We here describe a convenient system for the production of recombinant adenovirus vectors and its use for the construction of a representative adenovirus-based cDNA expression library. The system is based on direct site-specific insertion of transgene cassettes into a replicating donor virus. The transgene is inserted into a donor plasmid containing the viral 5' inverted terminal repeat, the complete viral packaging signal, and a single loxP site. The plasmid is then transfected into a Cre recombinase-expressing packaging cell line that has been infected with a donor virus containing a partially deleted packaging signal flanked by loxP sites. Cre recombinase, by two steps of action, sequentially catalyzes the generation of a nonpackageable donor virus acceptor substrate and the generation of the desired recombinant adenovirus vector. Due to its growth impairment, residual donor virus can efficiently be counterselected during amplification of the recombinant adenovirus vector. By using this adenovirus construction system, a plasmid-based human liver cDNA library was converted by a single step into an adenovirus-based cDNA expression library with about 10(6) independent adenovirus clones. The high-titer purified library was shown to contain about 44% of full-length cDNAs with an average insert size of 1.3 kb. cDNAs of a gene expressed at a high level (human alpha(1)-antitrypsin) and a gene expressed at a relatively low level (human coagulation factor IX) in human liver were isolated from the adenovirus-based library using an enzyme-linked immunosorbent assay-based screening procedure.

  12. Clinicopathological features of 11 suspected outbreaks of bovine adenovirus infection and development of a real-time quantitative PCR to detect bovine adenovirus type 10.

    Science.gov (United States)

    Vaatstra, B L; Tisdall, D J; Blackwood, M; Fairley, R A

    2016-09-01

    A retrospective study was conducted to investigate 11 outbreaks of presumptive fatal adenovirus infection diagnosed through two New Zealand diagnostic laboratories during 2014 and 2015. Outbreaks occurred in 6-12-month-old Friesian or Friesian cross cattle during autumn, winter and spring. Individual outbreaks were short in duration, with mortality rates ranging from 3/250 to 20/600 (1.2 to 3.3%). Clinical signs included severe diarrhoea, depression, recumbency, and death. Post-mortem examination revealed congestion and oedema of the alimentary tract and fluid to haemorrhagic intestinal contents. Histopathological lesions were characterised by congestion and haemorrhage of the alimentary tract mucosa, oedema of the submucosa, and mild interstitial inflammation in the kidneys. Large basophilic intranuclear inclusion bodies were identified in vascular endothelial cells of the alimentary tract in 11/11 cases and of the kidney in 8/9 cases. A real-time quantitative PCR (qPCR) assay was designed to detect bovine adenovirus type 10 (BAdV-10) using hexon gene sequences available in GenBank. DNA extracted from a field case and confirmed by sequencing was used as a positive control. The qPCR had a reaction efficiency of 101% (R(2)=0.99) and the limit of detection was adenovirus Wic isolate Ma20-1, a close relative of BadV-10. Bovine adenovirus type 10 was identified in FFPE tissues from cattle with histopathological evidence of adenovirus infection. Bovine adenoviruses, and especially BAdV-10, should be considered in the differential diagnosis for acute enteric disease and death in young cattle. The qPCR detected BAdV-10 from FFPE tissue of cattle with suspected adenoviral infection diagnosed by histopathology. However results should be interpreted in light of clinical and pathological findings due to the possibility of adenovirus shedding by healthy cattle and the presence of pathogenic adenoviruses other than BAdV-10.

  13. Modeling adenovirus latency in human lymphocyte cell lines.

    Science.gov (United States)

    Zhang, Yange; Huang, Wen; Ornelles, David A; Gooding, Linda R

    2010-09-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.

  14. Novel adenovirus detected in kowari (Dasyuroides byrnei) with pneumonia.

    Science.gov (United States)

    Gál, János; Mándoki, Míra; Sós, Endre; Kertész, Péter; Koroknai, Viktória; Bányai, Krisztián; Farkas, Szilvia L

    2017-03-01

    A male kowari (Dasyuroides byrnei) originating from a zoo facility was delivered for post mortem evaluation in Hungary. Acute lobar pneumonia with histopathologic changes resembling an adenovirus (AdV) infection was detected by light microscopic examination. The presence of an AdV was confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Although the exact taxonomic position of this novel marsupial origin virus could not be determined, pairwise identity analyses and phylogenetic calculations revealed that it is distantly related to other members in the family Adenoviridae.

  15. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer.

    Science.gov (United States)

    Power, Anthony T; Bell, John C

    2007-04-01

    Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.

  16. Choindroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Anti Tumor Efficacy: A Mathematical Model

    Science.gov (United States)

    Kim, Yangjin; Lee, Hyun Geun; Dmitrieva, Nina; Kim, Junseok; Kaur, Balveen; Friedman, Avner

    2014-01-01

    Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV). We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC) on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment. PMID:25047810

  17. Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Yangjin Kim

    Full Text Available Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV. We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment.

  18. Transcription factors down-stream of Ras as molecular indicators for targeting malignancies with oncolytic herpes virus.

    Science.gov (United States)

    Esfandyari, Tuba; Tefferi, Ayalew; Szmidt, Anna; Alain, Tommy; Zwolak, Pawel; Lasho, Terra; Lee, Patrick W; Farassati, Faris

    2009-12-01

    Overactivation in Ras signaling has been under intensive study as the molecular basis for development of cancer. Such overactivation can occur in the presence or absence of mutations in Ras gene resulting in activation of a series of down-stream effectors such as transcription factors. Different studies have shown the activation of Ras down-stream effectors in non-Hodgkin lymphoma (NHL) although mutations in Ras are not prevalent in this malignancy. Since overactivation in Ras signaling also increases permissiveness of cancer cells to infection by oncolytic versions of herpes simplex virus (e.g. R3616), we were interested in evaluating the value of transcription factors down-stream of Ras as molecular indicators for permissiveness to herpes therapy. In order to accomplish this, and also to assess the permissiveness of lymphoma cells to infection with R3616, we used NHL cell lines Daudi, Jurkat, NC37, Raji, Ramos and ST486. Once the levels of phosphorylation (activation) of extracellular-signal regulated kinase (ERK, a Ras effector pathway) and its down-stream transcription factor ELK were evaluated, Raji and NC37 showed a significant increase in the phosphorylation levels of both molecules while ATF2 (another transcription factor down-stream of p38-kinase pathway) seemed to be activated in all studied cells. Raji and NC37 cells were also most permissive cells to infection with R3616 while their permissiveness was decreased upon treatment of cells with an inhibitor of ELK-DNA binding portraying ERK/ELK as a suitable predictive indicator for selection of cancer cells with increased sensitivity to R3616. This study, therefore, for the first time documents permissiveness of lymphoma cells to oncolytic herpes viruses and introduces ELK as a suitable factor for predicting tumor susceptibility to these novel anticancer agents.

  19. Oncolytic effects of parvovirus H-1 in medulloblastoma are associated with repression of master regulators of early neurogenesis.

    Science.gov (United States)

    Lacroix, Jeannine; Schlund, Franziska; Leuchs, Barbara; Adolph, Kathrin; Sturm, Dominik; Bender, Sebastian; Hielscher, Thomas; Pfister, Stefan M; Witt, Olaf; Rommelaere, Jean; Schlehofer, Jörg R; Witt, Hendrik

    2014-02-01

    Based on extensive pre-clinical studies, the oncolytic parvovirus H-1 (H-1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high-risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H-1PV on MB cells in vitro and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non-transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H-1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H-1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H-1PV. H-1PV induced down-regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H-1PV infection. H-1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus. Copyright © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  20. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Directory of Open Access Journals (Sweden)

    Hutzen Brian

    2012-11-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS, has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. Methods We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease or right lateral ventricle (disseminated disease and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131I at 24, 48 or 72 hours later. Results MV-NIS treatment, both by itself and in combination with 131I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. Conclusions These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for

  1. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    International Nuclear Information System (INIS)

    Hutzen, Brian; Pierson, Christopher R; Russell, Stephen J; Galanis, Evanthia; Raffel, Corey; Studebaker, Adam W

    2012-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV) can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS), has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease) or right lateral ventricle (disseminated disease) and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131 I at 24, 48 or 72 hours later. MV-NIS treatment, both by itself and in combination with 131 I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131 I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131 I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for the treatment of medulloblastoma

  2. Virotherapy of canine tumors with oncolytic vaccinia virus GLV-1h109 expressing an anti-VEGF single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Sandeep S Patil

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor single-chain antibody (scAb GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients.

  3. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma

    OpenAIRE

    Ruf, Benjamin; Berchtold, Susanne; Venturelli, Sascha; Burkard, Markus; Smirnow, Irina; Prenzel, Tanja; Henning, Stefan W; Lauer, Ulrich M

    2015-01-01

    Epigenetic therapies such as histone deacetylase inhibitors (HDACi) not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV) with the novel oral HDACi resminostat (Res), being in clinical testing in patients with hepatocellular carcinoma (HCC), results in an enhanced efficacy of this epi-virotherapeutic approach compare...

  4. A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla

    Directory of Open Access Journals (Sweden)

    Ludwig Carsten

    2010-11-01

    Full Text Available Abstract Adenoviruses (AdV broadly infect vertebrate hosts including a variety of primates. We identified a novel AdV in the feces of captive gorillas by isolation in cell culture, electron microscopy and PCR. From the supernatants of infected cultures we amplified DNA polymerase (DPOL, preterminal protein (pTP and hexon gene sequences with generic pan primate AdV PCR assays. The sequences in-between were amplified by long-distance PCRs of 2 - 10 kb length, resulting in a final sequence of 15.6 kb. Phylogenetic analysis placed the novel gorilla AdV into a cluster of primate AdVs belonging to the species Human adenovirus B (HAdV-B. Depending on the analyzed gene, its position within the cluster was variable. To further elucidate its origin, feces samples of wild gorillas were analyzed. AdV hexon sequences were detected which are indicative for three distinct and novel gorilla HAdV-B viruses, among them a virus nearly identical to the novel AdV isolated from captive gorillas. This shows that the discovered virus is a member of a group of HAdV-B viruses that naturally infect gorillas. The mixed phylogenetic clusters of gorilla, chimpanzee, bonobo and human AdVs within the HAdV-B species indicate that host switches may have been a component of the evolution of human and non-human primate HAdV-B viruses.

  5. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  6. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  7. Adenovirus chromatin structure at different stages of infection

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, E.; Groff, D.E.; Fedor, M.J.

    1981-12-01

    The authors investigated the structure of adenovirus deoxyribonecleic acid (DNA)-protein complexes in nuclei of infected cells by using micrococal nuclease. Parental (infecting) DNA was digested into multimers which had a unit fragment size that was indistinguishable from the size of the nucleosomal repeat of cellular chromatin. This pattern was maintained in parental DNA throughout infection. Similar repeating units were detected in hamster cells that were nonpermissive for human adenovirus and in cells pretreated with n-butyrate. Late in infection, the pattern of digestion of viral DNA was determined by two different experimental approaches. Nuclear DNA was electrophoresed, blotted, and hybridized with labeled viral sequences; in this procedure all virus-specific DNA was detected. This technique revealed a diffuse protected band of viral DNA that was smaller than 160 base pairs, but no discrete multimers. All regions of the genome were represented in the protected DNA. To examine the nuclease protection of newly replicated viral DNA, infected cells were labeled with (/sup 3/)thymidine after blocking of cellular DNA synthesis but not viral DNA synthesis. With this procedure they identified a repeating unit which was distinctly different from the cellular nucleosomal repeat. The authors found broad bands with midpoints at 200, 400, and 600 base pairs, as well as the limit digest material revealed by blotting. High-resolution acrylamide gel electrophoresis revealed that the viral species comprised a series of closely spaced bands ranging in size from less than 30 to 250 base pairs.

  8. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  9. Adenovirus-mediated suppression of hypothalamic glucokinase affects feeding behavior.

    Science.gov (United States)

    Uranga, Romina María; Millán, Carola; Barahona, María José; Recabal, Antonia; Salgado, Magdiel; Martinez, Fernando; Ordenes, Patricio; Elizondo-Vega, Roberto; Sepúlveda, Fernando; Uribe, Elena; García-Robles, María de Los Ángeles

    2017-06-16

    Glucokinase (GK), the hexokinase involved in glucosensing in pancreatic β-cells, is also expressed in arcuate nucleus (AN) neurons and hypothalamic tanycytes, the cells that surround the basal third ventricle (3V). Several lines of evidence suggest that tanycytes may be involved in the regulation of energy homeostasis. Tanycytes have extended cell processes that contact the feeding-regulating neurons in the AN, particularly, agouti-related protein (AgRP), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) neurons. In this study, we developed an adenovirus expressing GK shRNA to inhibit GK expression in vivo. When injected into the 3V of rats, this adenovirus preferentially transduced tanycytes. qRT-PCR and Western blot assays confirmed GK mRNA and protein levels were lower in GK knockdown animals compared to the controls. In response to an intracerebroventricular glucose injection, the mRNA levels of anorexigenic POMC and CART and orexigenic AgRP and NPY neuropeptides were altered in GK knockdown animals. Similarly, food intake, meal duration, frequency of eating events and the cumulative eating time were increased, whereas the intervals between meals were decreased in GK knockdown rats, suggesting a decrease in satiety. Thus, GK expression in the ventricular cells appears to play an important role in feeding behavior.

  10. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  11. Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-12-01

    Full Text Available Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.

  12. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  13. Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors

    Directory of Open Access Journals (Sweden)

    Adam W. Studebaker

    2017-09-01

    Full Text Available Pediatric brain tumors including medulloblastoma and atypical teratoid/rhabdoid tumor are associated with significant mortality and treatment-associated morbidity. While medulloblastoma tumors within molecular subgroups 3 and 4 have a propensity to metastasize, atypical teratoid/rhabdoid tumors frequently afflict a very young patient population. Adjuvant treatment options for children suffering with these tumors are not only sub-optimal but also associated with many neurocognitive obstacles. A potentially novel treatment approach is oncolytic virotherapy, a developing therapeutic platform currently in early-phase clinical trials for pediatric brain tumors and recently US Food and Drug Administration (FDA-approved to treat melanoma in adults. We evaluated the therapeutic potential of the clinically available oncolytic herpes simplex vector rRp450 in cell lines derived from medulloblastoma and atypical teratoid/rhabdoid tumor. Cells of both tumor types were supportive of virus replication and virus-mediated cytotoxicity. Orthotopic xenograft models of medulloblastoma and atypical teratoid/rhabdoid tumors displayed significantly prolonged survival following a single, stereotactic intratumoral injection of rRp450. Furthermore, addition of the chemotherapeutic prodrug cyclophosphamide (CPA enhanced rRp450’s in vivo efficacy. In conclusion, oncolytic herpes viruses with the ability to bioactivate the prodrug CPA within the tumor microenvironment warrant further investigation as a potential therapy for pediatric brain tumors.

  14. Adenovirus urethritis and concurrent conjunctivitis: a case series and review of the literature.

    Science.gov (United States)

    Liddle, Olivia Louise; Samuel, Mannampallil Itty; Sudhanva, Malur; Ellis, Joanna; Taylor, Chris

    2015-03-01

    We present eight cases and review the literature of concurrent urethritis and conjunctivitis where adenovirus was identified as the causative pathogen. The focus of this review concerns the identification of specific sexual practices, symptoms, signs and any serotypes that seem more commonly associated with such adenovirus infections. We discuss the seasonality of adenovirus infection and provide practical advice for clinicians to give to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Ileocecal Intussusception with Histomorphological Features of Inflammatory Neuropathy in Adenovirus Infection

    Directory of Open Access Journals (Sweden)

    Elke Kaemmerer

    2009-01-01

    Full Text Available The pathophysiological mechanisms for ileocecal intussusception in children with adenovirus infection are not well characterized. Here we demonstrate coincidence of adenovirus infection and inflammatory neuropathy of myenteric plexus in two children with ileocecal intussusception. Inflammatory neuropathy, an unspecific morphological feature which is found in peristalsis disorders, was morphologically characterized by the influx of CD3 positive lymphocytes in nervous plexus. To our knowledge, this is the first report suggesting peristalsis disorders from inflammatory neuropathy as additional mechanism in the pathophysiological concept of adenovirus-associated ileocecal intussusception.

  16. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV: consequences of deficient interferon-dependent antiviral defense

    Directory of Open Access Journals (Sweden)

    Hubbard Gene B

    2011-01-01

    Full Text Available Abstract Background Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. Methods The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors Results We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The

  17. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T...

  18. Coliphage and adenovirus concentrations at various points along the net-zero system

    Data.gov (United States)

    U.S. Environmental Protection Agency — Coliphage and adenovirus concentrations per liter. This dataset is associated with the following publication: Gassie, L., J. Englehardt, J. Wang, N. Brinkman, J....

  19. Detection of enteric Adenoviruses in South-African waters using gene probes

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1995-01-01

    Full Text Available Gene probes developed locally for both enteric Adenoviruses 40 and 41 were used to determine whether these viruses were present in both raw and treated waters. Approximately sixty water samples were concentrated by ultra filtration and analysed...

  20. New adenoviruses from new primate hosts - growing diversity reveals taxonomic weak points

    Czech Academy of Sciences Publication Activity Database

    Dadáková, E.; Chrudimský, Tomáš; Brožová, K.; Modrý, David; Celer, V.; Hrazdilová, K.

    2017-01-01

    Roč. 107, February (2017), s. 305-307 ISSN 1055-7903 Institutional support: RVO:60077344 Keywords : adenovirus * primate * phylogeny * taxonomy Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.419, year: 2016

  1. Adenovirus, herpes simplex virus and cytomegalovirus infection in a lung transplant recipient

    Directory of Open Access Journals (Sweden)

    Sandhya Nagarakanti

    2018-01-01

    Full Text Available Allograft infections post lung transplantation have a significant impact on morbidity and mortality. We report a rare case of triple viral infection with adenovirus, Herpes Simplex virus (HSV and Cytomegalovirus (CMV in a lung transplant recipient.

  2. Construction of Metabolically Biotinylated Adenovirus with Deleted Fiber Knob as Targeting Vector

    Directory of Open Access Journals (Sweden)

    Schnitzer Jan E

    2010-11-01

    Full Text Available Abstract Gene delivery vectors based on adenovirus, particularly human adenovirus serotype 5 (hAd5 have great potential for the treatment of variety of diseases. However, the tropism of hAd5 needs to be modified to achieve tissue- or cell- specific therapies for the successful application of this vector system to clinic. Here, we modified hAd5 tropism by replacing the fiber knob which contains the coxsackievirus B and adenovirus receptor (CAR-binding sites with a biotin acceptor peptide, a truncated form of Propionibacterium shermanii 1.3 S transcarboxylase domain (PSTCD, to enable metabolically biotinylation of the virus. We demonstrate here that the new adenovirus no longer shows CAR-dependent cell uptake and transduction. When metabolically biotinylated and avidin-coated, it forms a nano-complex that can be retargeted to distinct cells using biotinylated antibodies. This vector may prove useful in the path towards achieving targeted gene delivery.

  3. Clinical Trials Using Adenovirus/Cytomegalovirus/Epstein-Barr Virus-specific Allogeneic Cytotoxic T Lymphocytes

    Science.gov (United States)

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying adenovirus/cytomegalovirus/epstein-barr virus-specific allogeneic cytotoxic t lymphocytes.

  4. PCR Analysis of Egyptian Respiratory Adenovirus Isolates, Including Identification of Species, Serotypes, and Coinfections

    National Research Council Canada - National Science Library

    Metzgar, David; Osuna, Miguel; Yingst, Samuel; Rakha, Magda; Earhart, Kenneth; Elyan, Diaa; Esmat, Hala; Saad, Magdi D; Kajon, Adriana; Wu, Jianguo; Gray, Gregory C; Ryan, Margaret A; Russell, Kevin L

    2005-01-01

    Eighty-eight adenovirus (Ad) isolates and associated clinical data were collected from walk-in patients with influenza-like illness in Egypt during routine influenza surveillance from 1999 through 2002...

  5. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Krasnykh, Victor

    2008-01-01

    The goal of this project was to use the previously identified peptides with the reported specificity for neovasculature of prostate tumors to genetically modify the natural tropism of human adenovirus...

  6. Neuroblastomas and medulloblastomas exhibit more Coxsackie adenovirus receptor expression than gliomas and other brain tumors.

    Science.gov (United States)

    Persson, Annette; Fan, Xiaolong; Salford, Leif G; Widegren, Bengt; Englund, Elisabet

    2007-06-01

    Adenoviral vector-mediated treatment is a potential therapy for tumors of the central nervous system. To obtain a significant therapeutic effect by adenoviral vectors, a sufficient infection is required, the power of which depends predominantly on the level of Coxsackie adenovirus receptors. We stained surgical biopsies of central nervous system tumors and neuroblastomas for Coxsackie adenovirus receptors. For gliomas, the level of the receptor was low and markedly variable among individual tumors. By contrast, neuroblastomas and medulloblastomas exhibited a higher degree of Coxsackie adenovirus receptor expression than gliomas and other brain tumors. We conclude that neuroblastomas and medulloblastomas could be suitable for adenovirus-mediated gene therapy. Adverse effects of the treatment, however, must be considered because neurons and reactive astrocytes also express a significant amount of the receptor.

  7. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters.

    Science.gov (United States)

    Ying, Baoling; Tollefson, Ann E; Spencer, Jacqueline F; Balakrishnan, Lata; Dewhurst, Stephen; Capella, Cristina; Buller, R Mark L; Toth, Karoly; Wold, William S M

    2014-12-01

    Adenovirus infections of immunocompromised patients can develop into deadly multiorgan or systemic disease. The virus is especially threatening for pediatric allogeneic hematopoietic stem cell transplant recipients; according to some studies, 10% or more of these patients succumb to disease resulting from adenovirus infection. At present, there is no drug approved for the treatment or prevention of adenovirus infections. Compounds that are approved to treat other virus infections are used off-label to combat adenovirus, but only anecdotal evidence of the efficacy of these drugs exists. Ganciclovir, a drug approved for the treatment of herpesvirus infection, was previously reported to be effective against human adenoviruses in vitro. To model adenovirus infections in immunocompromised humans, we examined ganciclovir's efficacy in immunosuppressed Syrian hamsters intravenously infected with type 5 human adenovirus (Ad5). This animal model is permissive for Ad5 replication, and the animals develop symptoms similar to those seen in humans. We demonstrate that ganciclovir suppresses Ad5 replication in the liver of infected hamsters and that it mitigates the consequences of Ad5 infections in these animals when administered prophylactically or therapeutically. We show that ganciclovir inhibits Ad5 DNA synthesis and late gene expression. The mechanism of action for the drug is not clear; preliminary data suggest that it exerts its antiadenoviral effect by directly inhibiting the adenoviral DNA polymerase. While more extensive studies are required, we believe that ganciclovir is a promising drug candidate to treat adenovirus infections. Brincidofovir, a drug with proven activity against Ad5, was used as a positive control in the prophylactic experiment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Partial characterization of new adenoviruses found in lizards.

    Science.gov (United States)

    Ball, Inna; Behncke, Helge; Schmidt, Volker; Geflügel, F T A; Papp, Tibor; Stöhr, Anke C; Marschang, Rachel E

    2014-06-01

    In the years 2011-2012, a consensus nested polymerase chain reaction was used for the detection of adenovirus (AdV) infection in reptiles. During this screening, three new AdVs were detected. One of these viruses was detected in three lizards from a group of green striped tree dragons (Japalura splendida). Another was detected in a green anole (Anolis carolinensis). A third virus was detected in a Jackson's chameleon (Chamaeleo jacksonii). Analysis of a portion of the DNA-dependent DNA polymerase genes of each of these viruses revealed that they all were different from one another and from all previously described reptilian AdVs. Phylogenetic analysis of the partial DNA polymerase gene sequence showed that all newly detected viruses clustered within the genus Atadenovirus. This is the first description of AdVs in these lizard species.

  9. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease.

    Science.gov (United States)

    Lakatos, Béla; Hornyák, Ákos; Demeter, Zoltán; Forgách, Petra; Kennedy, Frances; Rusvai, Miklós

    2017-12-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissue samples of a cat that had suffered from disseminated adenovirus infection. The identity of the amplified products from the hexon and DNA-dependent DNA polymerase genes was confirmed by DNA sequencing. The sequences were clearly distinguishable from corresponding hexon and polymerase sequences of other mastadenoviruses, including human adenoviruses. These results suggest the possible existence of a distinct feline adenovirus.

  10. Replication-competent human adenovirus 11p vectors can propagate in Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se

    2016-08-15

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.

  11. A molecular epidemiology survey of respiratory adenoviruses circulating in children residing in Southern Palestine.

    Directory of Open Access Journals (Sweden)

    Lina Qurei

    Full Text Available A molecular epidemiology survey was performed in order to establish and document the respiratory adenovirus pathogen profiles among children in Southern Palestine. Three hundred and thirty-eight hospitalized pediatric cases with adenovirus-associated respiratory tract infections were analyzed. Forty four cases out of the 338 were evaluated in more detail for the adenoviruses types present. All of the children resided in Southern Palestine, that is, in city, village and refugee camp environments within the districts of Hebron and Bethlehem. Human adenoviruses circulated throughout 2005-2010, with major outbreaks occurring in the spring months. A larger percent of the children diagnosed with adenoviral infections were male infants. DNA sequence analysis of the hexon genes from 44 samples revealed that several distinct adenovirus types circulated in the region; these were HAdV-C1, HAdV-C2, HAdV-B3 and HAdV-C5. However, not all of these types were detected within each year. This is the first study ever conducted in Palestine of the genetic epidemiology of respiratory adenovirus infections.

  12. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology.

    Science.gov (United States)

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia.

  13. Isolation of a novel adenovirus from California sea lions Zalophus californianus.

    Science.gov (United States)

    Goldstein, T; Colegrove, K M; Hanson, M; Gulland, F M D

    2011-05-09

    Viral hepatitis associated with adenoviral infection has been reported in California sea lions Zalophus californianus admitted to rehabilitation centers along the California coast since the 1970s. Canine adenovirus 1 (CAdV-1) causes viral hepatitis in dogs and infects a number of wildlife species. Attempts to isolate the virus from previous sea lion hepatitis cases were unsuccessful, but as the hepatitis had morphologic features resembling canine infectious hepatitis, and since the virus has a wide host range, it was thought that perhaps the etiologic agent was CAdV-1. Here, we identify a novel adenovirus in 2 stranded California sea lions and associate the infection with viral hepatitis and endothelial cell infection. Phylogenetic analysis confirmed the classification of the sea lion adenovirus in the Mastadenovirus genus with the most similarity to tree shrew adenovirus 1 (TSAdV-1, 77%). However, as the sea lion adenovirus appeared to be equally distant from the other Mastadenovirus species based on phylogenetic analysis, results indicate that it represents an independent lineage and species. Although sequences from this novel virus, otarine adenovirus 1 (OtAdV-1), show some similarity to CAdV-1 and 2, it is clearly distinct and likely the cause of the viral hepatitis in the stranded California sea lions.

  14. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  15. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  16. Anti-cancer effects of oncolytic viral therapy combined with photodynamic therapy in human pancreatic cancer cell lines.

    Science.gov (United States)

    Khaled, Yazan S; Wright, Kathleen; Melcher, Alan; Jayne, David

    2015-02-26

    Oncolytic viral therapy and photodynamic therapy are potential therapies for inoperable or advanced pancreatic cancer. Our aim was to investigate the anti-cancer killing effects of reovirus therapy combined with protoporphyrin IX (PpIX)-mediated photodynamic therapy on a variety of human pancreatic cancer cell lines. Pancreatic cancer cell lines (PsPC-1 and BXPC-3) and a non-cancer control cell line (HEK293) were infected with reovirus serotype 3 strain Dearing (T3D) at 0, 0·1, 1, and 10 plaque-forming units (PFU) per cell for 48 h. Cells were incubated with PpIX pro-drug 5-aminolevulinic acid (5-ALA) at 0, 1, 2, 3, and 4 mM for 4 h. Then, cells were photo-irradiated for 15 min with visible red light-emitting diodes with a light-fluence of 0·54 J/cm(2) of 653 nm (PpIX optimal excitation wavelength). The killing effects of reovirus combined with PpIX-mediated photodynamic therapy were analysed in methylthiazoltetrazolium (MTT) and trypan blue assays. The effect of adding reovirus after photodynamic therapy was also assessed. The statistical significance of the difference between groups was assessed with the two-tailed Student's t test. pphotodynamic therapy resulted in a significantly increased cytotoxic effect compared with reovirus monotherapy and photodynamic therapy (p=0·042) with 100% cell death observed across pancreatic cell lines with 10 PFU per cell combined with 1 and 2 mM 5-ALA. There was no difference in cytotoxicity observed between added reovirus before or after photodynamic therapy. To our knowledge, this is the first in-vitro study to combine reovirus oncolytic viral therapy with PpIX-mediated photodynamic therapy to treat pancreatic cancer. These results show a significant additive effect in cell killing and they provide initial evidence for a novel combined therapeutic intervention. National Institute for Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Ibrahim Ragab Eissa

    2017-07-01

    Full Text Available Oncolytic viruses (OVs are opening new possibilities in cancer therapy with their unique mechanism of selective replication within tumor cells and triggering of antitumor immune responses. HF10 is an oncolytic herpes simplex virus-1 with a unique genomic structure that has non-engineered deletions and insertions accompanied by frame-shift mutations, in contrast to the majority of engineered OVs. At the genetic level, HF10 naturally lacks the expression of UL43, UL49.5, UL55, UL56, and latency-associated transcripts, and overexpresses UL53 and UL54. In preclinical studies, HF10 replicated efficiently within tumor cells with extensive cytolytic effects and induced increased numbers of activated CD4+ and CD8+ T cells and natural killer cells within the tumor, leading to a significant reduction in tumor growth and prolonged survival rates. Investigator-initiated clinical studies of HF10 have been completed in recurrent breast carcinoma, head and neck cancer, and unresectable pancreatic cancer in Japan. Phase I trials were subsequently completed in refractory superficial cancers and melanoma in the United States. HF10 has been demonstrated to have a high safety margin with low frequency of adverse effects in all treated patients. Interestingly, HF10 antigens were detected in pancreatic carcinoma over 300 days after treatment with infiltration of CD4+ and CD8+ T cells, which enhanced the immune response. To date, preliminary results from a Phase II trial have indicated that HF10 in combination with ipilimumab (anti-CTLA-4 is safe and well tolerated, with high antitumor efficacy. Improvement of the effect of ipilimumab was observed in patients with stage IIIb, IIIc, or IV unresectable or metastatic melanoma. This review provides a concise description of the genomic functional organization of HF10 compared with talimogene laherparepvec. Furthermore, this review focuses on HF10 in cancer treatment as monotherapy as well as in combination therapy

  18. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    OpenAIRE

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice...

  19. Role of coxsackievirus and adenovirus receptor (CAR) expression and viral load of adenovirus and enterovirus in patients with dilated cardiomyopathy.

    Science.gov (United States)

    Sharma, Mirnalini; Mishra, Baijayantimala; Saikia, Uma Nahar; Bahl, Ajay; Ratho, Radha Kanta; Talwar, Kewal Kishan

    2016-01-01

    Enteroviruses (EVs) and adenoviruses (AdVs) are two important etiological agents of viral myocarditis and dilated cardiomyopathy (DCM). Both these viruses share a common receptor, the coxsackievirus and adenovirus receptor (CAR), for their infection. However, the role of viral load and CAR expression in disease severity has not yet been completely elucidated. The present study aimed to determine viral load of EV and AdV in DCM patients and correlate them with the level of CAR expression in these patients. Sixty-three DCM cases and 30 controls, each of whom died of heart disease other than DCM and non-cardiac disease respectively, were included. Viral load was determined by TaqMan real-time PCR using primers and probes specific for the AdV hexon gene and the 5'UTR region of EV. The CAR mRNA level was semi-quantitated by RT-PCR, and antigen expression was studied by immunohistochemistry. A significantly high AdV load (p < 0.05) and CAR expression (p < 0.05) were observed in DCM cases versus controls, whereas the EV load showed no significant difference. The data suggests a clinical threshold of 128 AdV copies/500 ng of DNA for DCM, with 66.7 % sensitivity and 65 % specificity. A positive correlation between AdV load and CAR expression (p < 0.001) was also observed in DCM cases. The high adenoviral load and increased CAR expression in DCM and their association with adverse disease outcome indicates role of both virus and receptor in disease pathogenesis. Thus, the need for targeting both the virus and the receptor for treatment of viral myocarditis and early DCM requires further confirmation with larger studies.

  20. Coxsackie and adenovirus receptor is increased in adipose tissue of obese subjects: a role for adenovirus infection?

    Science.gov (United States)

    Serrano, Marta; Moreno, María; Bassols, Judit; Moreno-Navarrete, José María; Ortega, Francisco; Ricart, Wifredo; Fernández-Real, José Manuel

    2015-03-01

    The coxsackie and adenovirus receptor (CAR) was originally identified as a common receptor for coxsackie B viruses and type C adenoviruses. The objective was to investigate CAR gene expression in human adipose tissue to explore its associations with adipocyte physiology. This was an ex vivo study in 91 visceral adipose tissue (VAT) and 109 sc adipose tissue (SAT) human samples (61 paired) obtained during elective surgical procedures. Patients were recruited at the Endocrinology Service of the Hospital Universitari Dr Josep Trueta. CAR mRNA was measured in human adipose tissue samples and confirmed at the protein level and in adipose tissue fractions. The effects of inflammatory stimuli on CAR gene expression were also evaluated. In paired samples, CAR was 46-fold higher in VAT vs SAT (P < .0001), being higher also at the protein level (P = .04). CAR was predominantly found in stromal vascular cell fractions (SVFs) in both fat depots. CAR mRNA (P = .006) and protein levels (P = .01) in VAT were significantly increased in obese vs nonobese subjects. In fact, CAR mRNA levels in SAT were positively associated with body mass index (r = 0.26; P = .008) and percentage fat mass (r = 0.28; P = .004). In VAT, MGLL, FSP27, AKAP, omentin, TKT, S14, and FABP contributed independently to CAR mRNA variation after adjusting for age and body mass index. Macrophage-conditioned medium led to increased CAR gene expression in mature adipocytes in vitro. The increased expression of CAR in adipose tissue from obese subjects, mainly in SVFs, suggests that CAR might play a role in adipose tissue dysfunction, given its dual associations with adipogenic and inflammatory genes.

  1. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  2. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    Directory of Open Access Journals (Sweden)

    Karoliina Autio

    2014-01-01

    Full Text Available We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  3. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    Science.gov (United States)

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  4. Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Chen, Aiping; Zhang, Yonghui; Meng, Gang; Jiang, Dengxu; Zhang, Hailin; Zheng, Meihong; Xia, Mao; Jiang, Aiqin; Wu, Junhua; Beltinger, Christian; Wei, Jiwu

    2017-07-12

    There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8 + NKG2D + cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8 + NKG2D + cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8 + NKG2D + cells. Second, MV-Edm-infected HCC cells stimulated CD8 + NKG2D + cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8 + NKG2D + cells. Moreover, we found that MV-Edm and adoptive CD8 + NKG2D + cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.

  5. The Oncolytic Virus MG1 Targets and Eliminates Cells Latently Infected With HIV-1: Implications for an HIV Cure.

    Science.gov (United States)

    Ranganath, Nischal; Sandstrom, Teslin S; Burke Schinkel, Stephanie C; Côté, Sandra C; Angel, Jonathan B

    2018-02-14

    Cells latently infected with human immunodeficiency virus (HIV) evade immune- and drug-mediated clearance. These cells harbor intracellular signaling defects, including impairment of the antiviral type I interferon response. Such defects have also been observed in several cancers and have been exploited for the development of therapeutic oncolytic viruses, including the recombinant Maraba virus (MG1). We therefore hypothesized that MG1 would infect and eliminate cells latently infected with HIV-1, while sparing healthy uninfected cells. Preferential infection and elimination by MG1 was first demonstrated in cell lines latently infected with HIV-1. Following this, a reduction in HIV-1 DNA and inducible HIV-1 replication was observed following MG1 infection of latently infected, resting CD4+ T cells generated using an in vitro model of latency. Last, MG1 infection resulted in a reduction in HIV-1 DNA and inducible HIV-1 replication in memory CD4+ T cells isolated from effectively treated, HIV-1-infected individuals. Our results therefore highlight a novel approach to eliminate the latent HIV-1 reservoir. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. Molecular epidemiology and surveillance of circulating rotavirus and adenovirus in Congolese children with gastroenteritis.

    Science.gov (United States)

    Mayindou, Gontran; Ngokana, Berge; Sidibé, Anissa; Moundélé, Victoire; Koukouikila-Koussounda, Felix; Christevy Vouvoungui, Jeannhey; Kwedi Nolna, Sylvie; Velavan, Thirumalaisamy P; Ntoumi, Francine

    2016-04-01

    Infectious Diarrhea caused by rotavirus and adenovirus, is a leading cause of death in children in sub-Sahara Africa but there is limited published data on the diverse rotavirus genotypes and adenovirus serotypes circulating in the Republic of Congo. In this study, we investigated the prevalence of severe diarrhea caused by rotavirus A (RVA) and Adenovirus serotype 40 and 41 in Congolese children hospitalized with severe gastroenteritis. Stool samples were collected from 655 Congolese children less than 60 months of age hospitalized with acute gastroenteritis between June 2012 and June 2013. Rotavirus and adenovirus antigens were tested using commercially available ELISA kits and the RVA G- and P- genotypes were identified by seminested multiplex RT-PCR. Three hundred and four (46.4%) children were tested positive for RVA. Adenovirus infection was found in 5.5% of the 564 tested children. Rotavirus infection was frequently observed in children between 6-12 months (55.9%). The dry season months recorded increased RVA infection while no seasonality of adenovirus infection was demonstrated. The most common RVA genotypes were G1 (57.5%), G2 (6.4%), G1G2 mixture (15.5%), P[8] (58%), P[6] (13.2%), and P[8]P[6] mixture (26%). Additionally, the genotype G12P[6] was significantly associated with increased vomiting. This first study on Congolese children demonstrates a high prevalence and clinical significance of existing rotavirus genotypes. Adenovirus prevalence is similar to that of other Central African countries. This baseline epidemiology and molecular characterization study will contribute significantly to the RVA surveillance after vaccine implementation in the country. © 2015 Wiley Periodicals, Inc.

  7. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity

    NARCIS (Netherlands)

    Vogels, Ronald; Zuijdgeest, David; van Rijnsoever, Richard; Hartkoorn, Eric; Damen, Irma; de Béthune, Marie-Pierre; Kostense, Stefan; Penders, Germaine; Helmus, Niels; Koudstaal, Wouter; Cecchini, Marco; Wetterwald, Antoinette; Sprangers, Mieke; Lemckert, Angelique; Ophorst, Olga; Koel, Björn; van Meerendonk, Michelle; Quax, Paul; Panitti, Laura; Grimbergen, Jos; Bout, Abraham; Goudsmit, Jaap; Havenga, Menzo

    2003-01-01

    Replication-deficient human adenovirus type 5 (Ad5) can be produced to high titers in complementing cell lines, such as PER.C6, and is widely used as a vaccine and gene therapy vector. However, preexisting immunity against Ad5 hampers consistency of gene transfer, immunological responses, and

  8. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013.

    Directory of Open Access Journals (Sweden)

    Sook-Young Lee

    Full Text Available Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica and two Gentoo penguins (Pygoscelis papua. The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630-24,662 bp and 35.5-35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9-39.3% (amino acid, 32.1-47.9% in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3 in phylogenetic analysis. During the 2008-2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%, and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%. Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population.

  9. Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013.

    Science.gov (United States)

    Lee, Sook-Young; Kim, Jeong-Hoon; Seo, Tae-Kun; No, Jin Sun; Kim, Hankyeom; Kim, Won-Keun; Choi, Han-Gu; Kang, Sung-Ho; Song, Jin-Won

    2016-01-01

    Antarctica is considered a relatively uncontaminated region with regard to the infectious diseases because of its extreme environment, and isolated geography. For the genetic characterization and molecular epidemiology of the newly found penguin adenovirus in Antarctica, entire genome sequencing and annual survey of penguin adenovirus were conducted. The entire genome sequences of penguin adenoviruses were completed for two Chinstrap penguins (Pygoscelis antarctica) and two Gentoo penguins (Pygoscelis papua). The whole genome lengths and G+C content of penguin adenoviruses were found to be 24,630-24,662 bp and 35.5-35.6%, respectively. Notably, the presence of putative sialidase gene was not identified in penguin adenoviruses by Rapid Amplification of cDNA Ends (RACE-PCR) as well as consensus specific PCR. The penguin adenoviruses were demonstrated to be a new species within the genus Siadenovirus, with a distance of 29.9-39.3% (amino acid, 32.1-47.9%) in DNA polymerase gene, and showed the closest relationship with turkey adenovirus 3 (TAdV-3) in phylogenetic analysis. During the 2008-2013 study period, the penguin adenoviruses were annually detected in 22 of 78 penguins (28.2%), and the molecular epidemiological study of the penguin adenovirus indicates a predominant infection in Chinstrap penguin population (12/30, 40%). Interestingly, the genome of penguin adenovirus could be detected in several internal samples, except the lymph node and brain. In conclusion, an analysis of the entire adenoviral genomes from Antarctic penguins was conducted, and the penguin adenoviruses, containing unique genetic character, were identified as a new species within the genus Siadenovirus. Moreover, it was annually detected in Antarctic penguins, suggesting its circulation within the penguin population.

  10. Adenovirus serotype 7 associated with a severe lower respiratory tract disease outbreak in infants in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Xu Wenbo

    2011-01-01

    Full Text Available Abstract Background Pneumonia caused by adenovirus infection is usually severe especially with adenovirus serotype 7 commonly associated with lower respiratory tract disease outbreaks. We reported an outbreak of 70 cases of severe pneumonia with one death of infants in Shaanxi Province, China. Sampling showed adenovirus 7 (Ad7 as the primary pathogen with some co-infections. Results Two strains of adenovirus and two strains of enterovirus were isolated, the 21 pharynx swabs showed 14 positive amplifications for adenovirus; three co-infections with respiratory syncytial virus, two positive for rhinovirus, one positive for parainfluenza 3, and four negative. Adenovirus typing showed nine of the nine adenovirus positive samples were HAdV-7, three were HAdV-3 and two were too weak to perform sequencing. The entire hexon gene of adenovirus was sequenced and analyzed for the two adenovirus serotype 7 isolates, showing the nucleic acid homology was 99.8% between the two strains and 99.5% compared to the reference strain HAdV-7 (GenBank accession number AY769946. For the 21 acute phase serum samples from the 21 patients, six samples had positives results for ELISA detection of HAdV IgA, and the neutralization titers of the convalescent-phase samples were four times higher than those of the acute-phase samples in nine pairs. Conclusions We concluded adenovirus was the viral pathogen, primarily HAdV-7, with some co-infections responsible for the outbreak. This is the first report of an infant pneumonia outbreak caused by adenovirus serotype 7 in Shaanxi Province, China.

  11. Interaction of human adenoviruses and coliphages with kaolinite and bentonite.

    Science.gov (United States)

    Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V

    2015-06-01

    Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor

  12. Detection and Analysis of Six Lizard Adenoviruses by Consensus Primer PCR Provides Further Evidence of a Reptilian Origin for the Atadenoviruses

    OpenAIRE

    Wellehan, James F. X.; Johnson, April J.; Harrach, Balázs; Benkö, Mária; Pessier, Allan P.; Johnson, Calvin M.; Garner, Michael M.; Childress, April; Jacobson, Elliott R.

    2004-01-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phyloge...

  13. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    Directory of Open Access Journals (Sweden)

    Dina Kleinlützum

    2017-06-01

    Full Text Available Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs. A putative marker of CSCs is CD133 (prominin-1. We have previously described a CD133-targeted oncolytic measles virus (MV-CD133 as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H. The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV. All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types.

  14. Comparative study of adenoviruses with monoclonal antibodies Estudo comparativo de diferentes tipos de adenovirus através de anticorpos monoclonais

    Directory of Open Access Journals (Sweden)

    Terezinha Maria de Paiva

    1992-02-01

    Full Text Available The obtainment of monoclonal antibodies for adenovirus species 4(Ad4 is described.The specificities of selected monoclonal antibodies were determined by means of viral neutralization test in cell culture, immunofluorescence and Enzyme-Linked Immunosorbent Assay (ELISA, in the presence of the following species of human adenovirus: 1, 2, 5 (subgenus C, 4 (subgenus E, 7 and 16 (subgenus B and 9 (subgenus D. Two monoclonal antibodies species specific to adenovirus 4 (1CIII and 3DIII and one monoclonal antibody that cross reacted with adenovirus species 4 and 7 (2HIII were obtained.O estudo relata a obtenção de anticorpos monoclonais para o adenovirus tipo (espécie 4. A especificidade dos anticorpos monoclonais, selecionados nesse experimento, foi determinada testando-os frente às diferentes espécies de adenovírus: 1, 2, 5 (subgênero C, 4 (subgênero E, 7 e 16 (subgênero B e 9 (subgênero D, pelas técnicas de neutralização em cultura de células, imunofluorescência e ensaio imunoenzimático (ELISA. Os resultados demonstram a obtenção de anticorpos monoclonais que reagiram de maneira específica para o adenovírus 4 (1CIII e 3DIII e anticorpo monoclonal apresentando reação cruzada com as espécies de adenovírus 4 e 7 (2HIII.

  15. Adenovirus disease in six small bowel, kidney and heart transplant recipients; pathology and clinical outcome.

    Science.gov (United States)

    Mehta, Vikas; Chou, Pauline C; Picken, Maria M

    2015-11-01

    Adenoviruses are emerging as important viral pathogens in hematopoietic stem cell and solid organ transplant recipients, impacting morbidity, graft survival, and even mortality. The risk seems to be highest in allogeneic hematopoietic stem cell transplant recipients as well as heart, lung, and small bowel transplant recipients. Most of the adenovirus diseases develop in the first 6 months after transplantation, particularly in pediatric patients. Among abdominal organ recipients, small bowel grafts are most frequently affected, presumably due to the presence of a virus reservoir in the mucosa-associated lymphoid tissue. Management of these infections may be difficult and includes the reduction of immunosuppression, whenever possible, combined with antiviral therapy, if necessary. Therefore, an awareness of the pathology associated with such infections is important in order to allow early detection and specific treatment. We reviewed six transplant recipients (small bowel, kidney, and heart) with adenovirus graft involvement from two institutions. We sought to compare the diagnostic morphology and the clinical and laboratory findings. The histopathologic features of an adenovirus infection of the renal graft and one native kidney in a heart transplant recipient included a vaguely granulomatous mixed inflammatory infiltrate associated with rare cells showing a cytopathic effect (smudgy nuclei). A lymphocytic infiltrate, simulating T cell rejection, with admixture of eosinophils was also seen. In the small bowel grafts, there was a focal mixed inflammatory infiltrate with associated necrosis in addition to cytopathic effects. In the heart, allograft adenovirus infection was silent with no evidence of inflammatory changes. Immunohistochemical stain for adenovirus was positive in all grafts and in one native kidney. All patients were subsequently cleared of adenovirus infection, as evidenced by follow-up biopsies, with no loss of the grafts. Adenovirus infection can

  16. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro

    2016-01-01

    Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA.

  17. Hyperplastic stomatitis and esophagitis in a tortoise (Testudo graeca) associated with an adenovirus infection.

    Science.gov (United States)

    Garcia-Morante, Beatriz; Pénzes, Judit J; Costa, Taiana; Martorell, Jaime; Martínez, Jorge

    2016-09-01

    A 2-year-old female, spur-thighed tortoise (Testudo graeca) was presented with poor body condition (1/5) and weakness. Fecal analysis revealed large numbers of oxyurid-like eggs, and radiographs were compatible with gastrointestinal obstruction. Despite supportive medical treatment, the animal died. At gross examination, an intestinal obstruction was confirmed. Histopathology revealed severe hyperplastic esophagitis and stomatitis with marked epithelial cytomegaly and enormous basophilic intranuclear inclusion bodies. Electron microscopy examination revealed a large number of 60-80 nm, nonenveloped, icosahedral virions arranged in crystalline arrays within nuclear inclusions of esophageal epithelial cells, morphologically compatible with adenovirus-like particles. PCR for virus identification was performed with DNA extracted from formalin-fixed, paraffin-embedded tissues. A nested, consensus pan-adenovirus PCR and sequencing analysis showed a novel adenovirus. According to phylogenetic calculations, it clustered to genus Atadenovirus in contrast with all other chelonian adenoviruses described to date. The present report details the pathologic findings associated with an adenovirus infection restricted to the upper digestive tract. © 2016 The Author(s).

  18. Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply Inactivates Adenovirus.

    Directory of Open Access Journals (Sweden)

    Akikazu Sakudo

    Full Text Available Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second, exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite, ultraviolet light (UV-A and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA.

  19. Fidelity of adenovirus RNA transcription in isolated HeLa cell nuclei.

    Science.gov (United States)

    Vennström, B; Philipson, L

    1977-05-01

    An in vitro nuclear system from adenovirus type 2-infected cells was developed to study transcription of viral RNA. Nuclei isolated from adenovirus-infected HeLa cells late in the infectious cycle synthesized in vitro only RNA from the r-strand of adenovirus DNA. Around 15% of the virus-specific RNA in isolated nuclei was polyadenylated. Short pulse labeling of nascent RNA followbd by hybrization of size-fractionated RNA to specific restriction endonuclease fragments of the genome suggested that the origin(s) for transcription is located on the r-strand in the left 30% of the adenovirus 2 genome at late times in the infectious cycle. Pulse-chase experiments were used to estimate the elongation rate of adenovirus high-molecular-weight RNA in isolated nuclei. An elongation of a least six nucleotides per second was observed in vitro. Viral RNA synthesis in the vitro nuclei showed several similarities to the in vivo system late in the infectious cycle.

  20. Adenovirus and mycoplasma infection in an ornate box turtle (Terrapene ornata ornata) in Hungary.

    Science.gov (United States)

    Farkas, Szilvia L; Gál, János

    2009-07-02

    A female, adult ornate box turtle (Terrapene ornata ornata) with fatty liver was submitted for virologic examination in Hungary. Signs of an adenovirus infection including degeneration of the liver cells, enlarged nuclei and intranuclear inclusion bodies were detected by light microscopic examination. The presence of an adenovirus was later confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Phylogenetic analyses revealed that this novel chelonian adenovirus was distinct from previously described reptilian adenoviruses, not belonging to any of the recognized genera of the family Adenoviridae. As a part of the routine diagnostic procedure for chelonians the detection of herpes-, rana- and iridoviruses together with Mycoplasma spp. was attempted. Amplicons were generated by a general mycoplasma polymerase chain reaction (PCR) targeting the 16S/23S ribosomal RNA (rRNA) intergenic spacer region, as well as, a specific Mycoplasma agassizii PCR targeting the 16S rRNA gene. Based on the analyses of partial sequences of the 16S rRNA gene, the Mycoplasma sp. of the ornate box turtle seemed to be identical with the recently described eastern box turtle (Terrapene carolina carolina) Mycoplasma sp. This is the first report of a novel chelonian adenovirus and a mycoplasma infection in an ornate box turtle (T. ornata ornata) in Europe.

  1. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Katherine J D A Excoffon

    2010-03-01

    Full Text Available Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7 and CAR(Ex8. We found low-level expression of the CAR(Ex8 isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7, CAR(Ex8 localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7, CAR(Ex8 differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8 providing a potential mechanism for the apical localization of CAR(Ex8 in airway epithelial. In summary, apical localization of CAR(Ex8 may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.

  2. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia.

    Science.gov (United States)

    Excoffon, Katherine J D A; Gansemer, Nicholas D; Mobily, Matthew E; Karp, Philip H; Parekh, Kalpaj R; Zabner, Joseph

    2010-03-26

    Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7) and CAR(Ex8)). We found low-level expression of the CAR(Ex8) isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7), CAR(Ex8) localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7), CAR(Ex8) differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8) providing a potential mechanism for the apical localization of CAR(Ex8) in airway epithelial. In summary, apical localization of CAR(Ex8) may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.

  3. Construction of an infectious clone of human adenovirus type 41.

    Science.gov (United States)

    Chen, Duo-Ling; Dong, Liu-Xin; Li, Meng; Guo, Xiao-Juan; Wang, Min; Liu, Xin-Feng; Lu, Zhuo-Zhuang; Hung, Tao

    2012-07-01

    Human adenovirus type 41 (HAdV-41) is well known for its fastidiousness in cell culture. To construct an infectious clone of HAdV-41, a DNA fragment containing the left and right ends of HAdV-41 as well as a kanamycin resistance gene and a pBR322 replication origin was excised from the previously constructed plasmid pAd41-GFP. Using homologous recombination, the plasmid pKAd41 was generated by co-transformation of the E. coli BJ5183 strain with this fragment and HAdV-41 genomic DNA. Virus was rescued from pKAd41-transfected 293TE7 cells, a HAdV-41 E1B55K-expressing cell line. The genomic integrity of the rescued virus was verified by restriction analysis and sequencing. Two fibers on the virion were confirmed by western blot. Immunofluorescence showed that more expression of the hexon protein could be found in 293TE7 cells than in 293 cells after HAdV-41 infection. The feature of non-lytic replication was preserved in 293TE7 cells, since very few progeny HAdV-41 viruses were released to the culture medium. These results show that pKAd41 is an effective infectious clone and suggest that the combination of pKAd41 and 293TE7 cells is an ideal system for virological study of HAdV-41.

  4. ADV36 adipogenic adenovirus in human liver disease

    Science.gov (United States)

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  5. Replication-uncoupled histone deposition during adenovirus DNA replication.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke

    2012-06-01

    In infected cells, the chromatin structure of the adenovirus genome DNA plays critical roles in its genome functions. Previously, we reported that in early phases of infection, incoming viral DNA is associated with both viral core protein VII and cellular histones. Here we show that in late phases of infection, newly synthesized viral DNA is also associated with histones. We also found that the knockdown of CAF-1, a histone chaperone that functions in the replication-coupled deposition of histones, does not affect the level of histone H3 bound on viral chromatin, although CAF-1 is accumulated at viral DNA replication foci together with PCNA. Chromatin immunoprecipitation assays using epitope-tagged histone H3 demonstrated that histone variant H3.3, which is deposited onto the cellular genome in a replication-independent manner, is selectively associated with both incoming and newly synthesized viral DNAs. Microscopic analyses indicated that histones but not USF1, a transcription factor that regulates viral late gene expression, are excluded from viral DNA replication foci and that this is achieved by the oligomerization of the DNA binding protein (DBP). Taken together, these results suggest that histone deposition onto newly synthesized viral DNA is most likely uncoupled with viral DNA replication, and a possible role of DBP oligomerization in this replication-uncoupled histone deposition is discussed.

  6. Magnesium-Dependent Interaction of PKR with Adenovirus VAI

    Energy Technology Data Exchange (ETDEWEB)

    K Launer -Felty; C Wong; A Wahid; G Conn; J Cole

    2011-12-31

    Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway for defense against viral infection. PKR is activated to undergo autophosphorylation upon binding to RNAs that contain duplex regions. Activated PKR phosphorylates the {alpha}-subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis in virus-infected cells. Viruses have evolved diverse PKR-inhibitory strategies to evade the antiviral response. Adenovirus encodes virus-associated RNA I (VAI), a highly structured RNA inhibitor that binds PKR but fails to activate. We have characterized the stoichiometry and affinity of PKR binding to define the mechanism of PKR inhibition by VAI. Sedimentation velocity and isothermal titration calorimetry measurements indicate that PKR interactions with VAI are modulated by Mg{sup 2+}. Two PKR monomers bind in the absence of Mg{sup 2+}, but a single monomer binds in the presence of divalent ion. Known RNA activators of PKR are capable of binding multiple PKR monomers to allow the kinase domains to come into close proximity and thus enhance dimerization. We propose that VAI acts as an inhibitor of PKR because it binds and sequesters a single PKR in the presence of divalent cation.

  7. Severe Necrotizing Adenovirus Tubulointerstitial Nephritis in a Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Ravi Parasuraman

    2013-01-01

    Full Text Available Adenoviruses (AdV are emerging pathogens with a prevalence of 11% viruria and 6.5% viremia in kidney transplant recipients. Although AdV infection is common, interstitial nephritis (ADVIN is rare with only 13 biopsy proven cases reported in the literature. We report a case of severe ADVIN with characteristic histological features that includes severe necrotizing granulomatous lesion with widespread tubular basement membrane rupture and hyperchromatic smudgy intranuclear inclusions in the tubular epithelial cells. The patient was asymptomatic at presentation, and the high AdV viral load (quantitative PCR>2,000,000 copies/mL in the urine and 646,642 copies/mL in the serum confirmed the diagnosis. The patient showed excellent response to a combination of immunosuppression reduction, intravenous cidofovir, and immunoglobulin therapy resulting in complete resolution of infection and recovery of allograft function. Awareness of characteristic biopsy findings may help to clinch the diagnosis early which is essential since the disseminated infection is associated with high mortality of 18% in kidney transplant recipients. Cidofovir is considered the agent of choice for AdV infection in immunocompromised despite lack of randomized trials, and the addition of intravenous immunoglobulin may aid in resolution of infection while help prevention of rejection.

  8. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity

    NARCIS (Netherlands)

    Thorner, Anna R.; Lemckert, Angelique A. C.; Goudsmit, Jaap; Lynch, Diana M.; Ewald, Bonnie A.; Denholtz, Matthew; Havenga, Menzo J. E.; Barouch, Dan H.

    2006-01-01

    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have

  9. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media.

    Science.gov (United States)

    Murrah, Kyle A; Turner, Roberta L; Pang, Bing; Perez, Antonia C; Reimche, Jennifer L; King, Lauren B; Wren, John; Gandhi, Uma; Swords, W Edward; Ornelles, David A

    2015-03-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma

    NARCIS (Netherlands)

    Kuhlmann, K.F.D.; Geer, M.A. van; Bakker, C.T.; Dekker, J.E.M.; Havenga, M.J.E.; Oude Elferink, R.P.J.; Gouma, D.J.; Bosma, P.J.; Wesseling, J.G.

    2009-01-01

    Survival of patients with pancreatic cancer is poor. Adenoviral (Ad) gene therapy employing the commonly used serotype 5 reveals limited transduction efficiency due to the low amount of coxsackie-adenovirus receptor on pancreatic cancer cells. To identify fiber-chimeric adenoviruses with improved

  11. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media

    Science.gov (United States)

    Murrah, Kyle A.; Turner, Roberta L.; Pang, Bing; Perez, Antonia C.; Reimche, Jennifer L.; King, Lauren B.; Wren, John; Gandhi, Uma; Swords, W. Edward; Ornelles, David A.

    2015-01-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  12. BS69 : A novel adenovirus E1A-associated protein that inhibits E1A transactivation

    NARCIS (Netherlands)

    Hateboer, G.; Gennissen, A.M.C.; Ramos, Y.F.M.; Kerkhoven, R.; Sonntag-Buck, V.; Stunnenberg, H.G.; Bernards, R.A.

    1995-01-01

    The adenovirus ElA gene products are nuclear phosphoproteins that can transactivate the other adenovirus early genes as well as several cellular genes, and can transform primary rodent cells in culture. Transformation and transactivation by ElA proteins is most likely to be mediated through

  13. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Science.gov (United States)

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  14. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    Science.gov (United States)

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  15. Species determination of fowl adenoviruses based on the 52K gene region.

    Science.gov (United States)

    Günes, Ayse; Marek, Ana; Hess, Michael

    2013-06-01

    In the present study, the classification of fowl adenoviruses (FAdVs) based on a part of the 52K gene region was described. A total of 44 FAdV field samples from different countries and sources were detected using a recently developed SYBR Green-based real-time PCR. Amplified products were sequenced, and phylogenetic analyses were conducted on the basis of the 116-bp region. For comparison, the already published sequences of the 52K gene region of aviadenoviruses were used in the analyses. The phylogenetic analysis allowed the grouping of the FAdVs into the established five different FAdV species: Fowl adenovirus A to Fowl adenovirus E. The existence of the species was supported by high bootstrap values (> 70%). This method provides the advantages of quantitation and high sensitivity for FAdV detection in combination with species assignment.

  16. Adenovirus-related epidemic keratoconjunctivitis outbreak at a hospital-affiliated ophthalmology clinic.

    Science.gov (United States)

    Muller, Matthew P; Siddiqui, Naureen; Ivancic, Rose; Wong, David

    2018-01-02

    Adenovirus-associated epidemic keratoconjunctivitis (A-EKC) is a cause of large and prolonged outbreaks in ophthalmology clinics and can result in substantial morbidity. A-EKC outbreaks are often the result of contaminated ophthalmologic equipment, surfaces, or hands. Contaminated multidose eye drops are also a likely culprit, but few prior studies provide clear epidemiologic evidence that adenovirus transmission resulted from contamination of eye drops. We describe an A-EKC outbreak at a large, hospital-affiliated eye clinic that affected 44 patients. The unique epidemiology of the outbreak provides strong evidence that contaminated multidose dilating eye drops resulted in adenovirus transmission. Removal of multidose eye medication from the clinic, combined with case finding, enhanced infection control and enhanced environmental cleaning, led to rapid control of the outbreak. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Adenoviruses isolated from civilian and military personnel in the city of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Albuquerque Maria Carolina Maciel de

    2003-01-01

    Full Text Available Adenovirus are important pathogen primarily associated to respiratory infections of children and military personnel, even though it is also associated to cases of conjunctivitis and keratoconjunctivitis. We analyzed respiratory secretion collected from subjects with and without respiratory infection symptoms, being 181 civilians and 221 military subjects. The samples were inoculated in HEp-2 and/or A549 tissue cultures for viral isolation. Samples presenting cytopathogenic effect (CPE in any tissue culture were tested by a polymerase chain reaction (PCR assay to confirm adenovirus isolation. The isolates confirmed as adenovirus were further analyzed by restriction endonuclease assay for determination of viral species. Three isolates were identified as specie A (two from civilian and one from military, one isolate from military was identified as specie C, and one isolate from civilian was identified as specie D. For two isolates the specie could not be identified.

  18. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    International Nuclear Information System (INIS)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  19. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  20. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells.

    Science.gov (United States)

    Maisonneuve, Elodie; Cateau, Estelle; Leveque, Nicolas; Kaaki, Sihem; Beby-Defaux, Agnès; Rodier, Marie-Hélène

    2017-01-01

    Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.

  1. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells.

    Directory of Open Access Journals (Sweden)

    Elodie Maisonneuve

    Full Text Available Free living amoebae (FLA including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.

  2. Genetic and Antigenic Analysis of Adenovirus Type 3 Strains Showing Intermediate Behavior in Standard Seroneutralization Test

    Directory of Open Access Journals (Sweden)

    Márcia TB Moraes

    1998-03-01

    Full Text Available During an epidemiological survey of acute respiratory infection in Rio de Janeiro, among 208 adenovirus isolates, we found two strains that we were not able, by a standard neutralization procedure, to distinguish between type 3 or 7. However, DNA restriction pattern for the two strains with different enzymes were analyzed and showed a typical Ad3h profile. Using a cross-neutralization test in which both Ad3p and Ad7p antisera were used in different concentration against 100 TCID50 of each adenovirus standard and both isolates, we were able to confirm that the two isolates belong to serotype 3. An hemagglutination inhibition test also corroborated the identification of both strains as adenovirus type 3. Comparing Ad3h and Ad3p genome, we observed 16 different restriction enzyme sites, three of which were located in genomic regions encoding polypeptides involved in neutralization sites

  3. Activating Ras mutations fail to ensure efficient replication of adenovirus mutants lacking VA-RNA

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    Adenoviruses lacking their PKR-antagonizing VA RNAs replicate poorly in primary cells. It has been suggested that these virus recombinants still replicate efficiently in tumor cells with Ras mutations and might therefore be useful in tumor therapy. The ability of interferon-sensitive viruses...... to grow in Ras-mutant tumor cells is generally ascribed to a postulated inhibitory effect of mutant Ras on PKR. We have constructed a set of isogenic adenoviruses that lack either or both VA RNA species, and tested virus replication in a variety of cell species with different Ras status. In tendency, VA...... mutational status, upon infection with VA-less adenoviruses in the presence of interferon, but also upon addition of the PKR activator polyIC to cells. When comparing two isogenic cell lines that differ solely with regard to the presence or absence of mutant Ras, no difference was observed concerning...

  4. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection

    DEFF Research Database (Denmark)

    Carson, Christian T; Orazio, Nicole I; Lee, Darwin V

    2009-01-01

    replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation......The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral...... for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection....

  5. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  6. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    Directory of Open Access Journals (Sweden)

    Carsten Geiss

    2017-10-01

    Full Text Available Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  7. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients.

    Science.gov (United States)

    Florescu, Diana F; Pergam, Steven A; Neely, Michael N; Qiu, Fang; Johnston, Christine; Way, SingSing; Sande, Jane; Lewinsohn, Deborah A; Guzman-Cottrill, Judith A; Graham, Michael L; Papanicolaou, Genovefa; Kurtzberg, Joanne; Rigdon, Joseph; Painter, Wendy; Mommeja-Marin, Herve; Lanier, Randall; Anderson, Maggie; van der Horst, Charles

    2012-05-01

    No therapeutic agent has yet been established as the definitive therapy for adenovirus infections. We describe the clinical experience of 13 immunocompromised patients who received CMX001 (hexadecyloxypropyl cidofovir), an orally bioavailable lipid conjugate of cidofovir, for adenovirus disease. We retrospectively analyzed 13 patients with adenovirus disease and viremia treated with CMX001; data were available for ≥ 4 weeks after initiation of CMX001 therapy. Virologic response (VR) was defined as a 99% drop from baseline or undetectable adenovirus DNA in serum. The median age of the group was 6 years (range, 0.92-66 years). One patient had severe combined immunodeficiency, 1 patient was a small bowel transplant recipient, and 11 were allogeneic stem cell transplant recipients. Adenovirus disease was diagnosed at a median of 75 days (range, 15-720 days) after transplantation. All patients received i.v. cidofovir for a median of 21 days (range, 5-90 days) before CMX001 therapy. The median absolute lymphocyte count at CMX001 initiation was 300 cells/μL (range, 7-1500 cells/μL). Eight patients (61.5%) had a ≥ 1 log10 drop in viral load after the first week of therapy. By week 8, 9 patients (69.2%) demonstrated a VR, with a median time to achieve VR of 7 days (range, 3-35 days). The change in absolute lymphocyte count was inversely correlated with the change in log10 viral load only at week 6 (r = -0.74; P = .03). Patients with VR had longer survival than those without VR (median 196 days versus 54.5 days; P = .04). No serious adverse events were attributed to CMX001 during therapy. CMX001 may be a promising therapeutic option for the treatment of severe adenovirus disease in immunocompromised patients. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells.

    Science.gov (United States)

    Arcasoy, S M; Latoche, J; Gondor, M; Watkins, S C; Henderson, R A; Hughey, R; Finn, O J; Pilewski, J M

    1997-10-01

    Recombinant adenoviruses are currently being evaluated as gene transfer vectors for the treatment of airway diseases. Recent evidence indicates that gene transfer to differentiated airway epithelial cells is inefficient. We hypothesized that apical membrane glycoconjugates, such as the transmembrane mucin MUC1, reduce the efficiency of adenovirus-mediated gene transfer. To address this, studies were performed in primary bronchial epithelial and Madin Darby canine kidney (MDCK) cells transduced to express human MUC1. Colocalization of MUC1 and an adenoviral lacZ transgene in the bronchial epithelial cells revealed that at several multiplicities of infection, the percentage of cells expressing lacZ was five-fold less in MUC1-expressing cells. Moreover, lacZ expression was three- to eight-fold lower in MUC1-expressing than in control MDCK cells, demonstrating that MUC1 interferes with gene transfer and is not merely a phenotypic marker of a cell that is refractory to adenovirus infection. Neuraminidase pretreatment of cells to remove sialic acid residues prior to viral adsorption increased the efficiency of gene transfer two- to five-fold in human airway and MDCK cells, and in a xenograft model of human airway. This effect was also observed in cultured cells that do not express MUC1, suggesting that other sialylated glycoconjugates impact on the efficiency of gene transfer. An inhibitory effect of negatively charged glycoconjugates on adenovirus binding was further supported by the finding that adsorption of adenovirus with a polycation significantly increased gene transfer efficiency. These data demonstrate for the first time that sialoglycoconjugates on epithelial cells reduce the efficiency of adenovirus-mediated gene transfer.

  9. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Ruf, Benjamin; Berchtold, Susanne; Venturelli, Sascha; Burkard, Markus; Smirnow, Irina; Prenzel, Tanja; Henning, Stefan W; Lauer, Ulrich M

    2015-01-01

    Epigenetic therapies such as histone deacetylase inhibitors (HDACi) not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV) with the novel oral HDACi resminostat (Res), being in clinical testing in patients with hepatocellular carcinoma (HCC), results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i) a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii) a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV) with enhanced induction of apoptosis, and, quite importantly, (iii) an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv) resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN)-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC.

  10. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Benjamin Ruf

    Full Text Available Epigenetic therapies such as histone deacetylase inhibitors (HDACi not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV with the novel oral HDACi resminostat (Res, being in clinical testing in patients with hepatocellular carcinoma (HCC, results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV with enhanced induction of apoptosis, and, quite importantly, (iii an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC.

  11. Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses.

    Science.gov (United States)

    Wellehan, James F X; Johnson, April J; Harrach, Balázs; Benkö, Mária; Pessier, Allan P; Johnson, Calvin M; Garner, Michael M; Childress, April; Jacobson, Elliott R

    2004-12-01

    A consensus nested-PCR method was designed for investigation of the DNA polymerase gene of adenoviruses. Gene fragments were amplified and sequenced from six novel adenoviruses from seven lizard species, including four species from which adenoviruses had not previously been reported. Host species included Gila monster, leopard gecko, fat-tail gecko, blue-tongued skink, Tokay gecko, bearded dragon, and mountain chameleon. This is the first sequence information from lizard adenoviruses. Phylogenetic analysis indicated that these viruses belong to the genus Atadenovirus, supporting the reptilian origin of atadenoviruses. This PCR method may be useful for obtaining templates for initial sequencing of novel adenoviruses.

  12. Dissemination of human adenoviruses and rotavirus species A on fomites of hospital pediatric units.

    Science.gov (United States)

    Ganime, Ana Carolina; Leite, José Paulo G; Figueiredo, Carlos Eduardo da Silva; Carvalho-Costa, Filipe A; Melgaço, Fabiana Gil; Malta, Fabio Correia; Fumian, Tulio M; Miagostovich, Marize P

    2016-11-01

    Rotavirus A and human adenovirus dissemination were demonstrated both in a pediatric ward and in a neonatal intensive care unit (NICU) of the same pediatric hospital. Virus detection from fomites samples were higher in the pediatric ward (42.3% [137 out of 324]) than in the NICU (4.5% [7 out of 156]), revealing that cleaning processes used in our NICU are effective in reducing viral contamination, suggesting human adenovirus as a potential biomarker of contamination of hospital fomites. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Unique Sequence Features of the Human Adenovirus 31 Complete Genomic Sequence are Conserved in Clinical Isolates

    OpenAIRE

    Hofmayer, Soeren; Darr, Sebastian; Rehren, Fabienne; Heim, Albert; Madisch, Ijad

    2009-01-01

    Abstract Background Human adenoviruses (HAdV) are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31) as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT) and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 proto...

  14. Future prospects for the development of cost-effective Adenovirus vaccines

    DEFF Research Database (Denmark)

    Fougeroux, Cyrielle; Holst, Peter J

    2017-01-01

    -vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient...... as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes...

  15. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie C; dos Santos Marques Resende, Mafalda; Salanti, Ali

    2017-01-01

    and the CSA binding region of VAR2CSA has been identified as a promising vaccine target against placental malaria. Here we designed adenovirus encoded virus-like particles (VLP) by co-encoding Simian Immunodeficiency Virus (SIV) gag and VAR2CSA. The VAR2CSA antigen was fused to the transmembrane (TM...... revealed a unique targeting of several epitopes in mice that had been primed with VAR2CSA HA TM-CT. Consequently, modification of VLP anchors is an important point of optimization in virus-encoded retroviral VLP-based vaccines, and adenovirus VLPs boosted by recombinant proteins offer hope of increasing...

  16. Sodium butyrate increases expression of the coxsackie and adenovirus receptor in colon cancer cells.

    Science.gov (United States)

    Küster, Katrin; Grötzinger, Carsten; Koschel, Annika; Fischer, Andreas; Wiedenmann, Bertram; Anders, Mario

    2010-03-01

    Histone deacetylase inhibitors (HDACI), e.g., sodium butyrate (NaB), have been suggested to upregulate the coxsackie and adenovirus receptor (CAR). Its impact on CAR in colon carcinomas, however, is poorly understood. NaB treatment of colon cancer cells increased CAR expression preferentially in cell lines with low basic CAR levels. These findings suggest that downregulation of CAR gene expression is mediated by transcriptional regulation and that activation of the CAR gene promoter is modulated by histone acetylation. The employment of HDACI may, therefore, represent a promising approach for improving adenovirus-based therapies of colon cancers with low CAR expression levels.

  17. The Murine CAR Homolog Is a Receptor for Coxsackie B Viruses and Adenoviruses

    Science.gov (United States)

    Bergelson, Jeffrey M.; Krithivas, Anita; Celi, Leo; Droguett, Gustavo; Horwitz, Marshall S.; Wickham, Thomas; Crowell, Richard L.; Finberg, Robert W.

    1998-01-01

    Complementary DNA clones encoding the murine homolog (mCAR) of the human coxsackievirus and adenovirus receptor (CAR) were isolated. Nonpermissive CHO cells transfected with mCAR cDNA became susceptible to infection by coxsackieviruses B3 and B4 and showed increased susceptibility to adenovirus-mediated gene transfer. These results indicate that the same receptor is responsible for virus interactions with both murine and human cells. Analysis of receptor expression in human and murine tissues should be useful in defining factors governing virus tropism in vivo. PMID:9420240

  18. Dual Ligand Insertion in gB and gD of Oncolytic Herpes Simplex Viruses for Retargeting to a Producer Vero Cell Line and to Cancer Cells.

    Science.gov (United States)

    Petrovic, Biljana; Leoni, Valerio; Gatta, Valentina; Zaghini, Anna; Vannini, Andrea; Campadelli-Fiume, Gabriella

    2018-03-15

    Oncolytic viruses gain cancer specificity in several ways. Like the majority of viruses, they grow better in cancer cells that are defective in mounting the host response to viruses. Often, they are attenuated by deletion or mutation of virulence genes that counteract the host response or are naturally occurring oncolytic mutants. In contrast, retargeted viruses are not attenuated or deleted; their cancer specificity rests on a modified, specific tropism for cancer receptors. For herpes simplex virus (HSV)-based oncolytics, the detargeting-retargeting strategies employed so far were based on genetic modifications of gD. Recently, we showed that even gH or gB can serve as retargeting tools. To enable the growth of retargeted HSVs in cells that can be used for clinical-grade virus production, a double-retargeting strategy has been developed. Here we show that several sites in the N terminus of gB are suitable to harbor the 20-amino-acid (aa)-long GCN4 peptide, which readdresses HSV tropism to Vero cells expressing the artificial GCN4 receptor and thus enables virus cultivation in the producer noncancer Vero-GCN4R cell line. The gB modifications can be combined with a minimal detargeting modification in gD, consisting in the deletion of two residues, aa 30 and 38, and replacement of aa 38 with the scFv to human epidermal growth factor receptor 2 (HER2), for retargeting to the cancer receptor. The panel of recombinants was analyzed comparatively in terms of virus growth, cell-to-cell spread, cytotoxicity, and in vivo antitumor efficacy to define the best double-retargeting strategy. IMPORTANCE There is increasing interest in oncolytic viruses, following FDA and the European Medicines Agency (EMA) approval of HSV Oncovex GM-CSF , and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly checkpoint inhibitors. A strategy to gain cancer specificity and avoid virus attenuation is to retarget the

  19. Experimental study of Human Adenoviruses interactions with clays

    Science.gov (United States)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  20. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  1. Enteritis hemorrágica por adenovirus en pavos

    Directory of Open Access Journals (Sweden)

    Francisco Bustos N.

    1984-12-01

    Full Text Available Se describe por primera vez en Colombia la enteritis hemorrágica (EH, en pavos de 4 a 11 semanas de edad, mediante estudios macroscópicos, hislológicos y de microscopía electrónica. Se demostró una enteritis hemorrágica severa, y esplenomegalia con inclusiones intranucleares en la mayoría de las células de la pulpa blanca esplénica y en algunos mononucleares en el intestino delgado. Las inclusiones son características; consisten de un centro eosinófilico, rodeado de cromatina densa y condensada sobre la membrana nuclear y de una estructura muy basófila y densa sobre un polo nuclear que parece corresponder a un nucleolo. Al microscopio electrónico se aprecian fases del desarrollo viral, desde un material filamentoso y amorfo hasta la formación de grandes acúmulos de viriones y cápsides de 70-80 nm de diámetro con morfología típica de adenovirus. Los viriones se demostraron fácilmente en macerados de bazo fijado en formol, teñidos negativamente con fosfotungstato de potasio; no se visualizaron en el contenido intestinal hemorrágico estudiado con el mismo método. El estudio de microscopía de luz de bazo e intestino es suficiente para establecer el diagnóstico de esta entidad.

  2. Outbreak of epidemic keratoconjunctivitis caused by adenovirus in medical residents.

    Science.gov (United States)

    Melendez, Carlos Pantoja; Florentino, Margarita Matias; Martinez, Irma Lopez; Lopez, Herlinda Mejia

    2009-01-01

    The present work documents an outbreak of epidemic keratoconjunctivitis among ophthalmology residents, its influence in the presentation of the community cases, the use of molecular techniques for its diagnosis, and the implementation of successful control measures for its containment. Isolation of the etiologic agent was achieved using cultured African green monkey kidney epithelial cells (VERO). Through molecular tests, such as polymerase chain reaction (PCR) and DNA sequencing, the genotype of the isolated virus was identified. The sequences obtained were aligned with data reported in the NCBI GenBank. A scheme of outbreak control measures was designed to enforce correct sanitary measures in the clinic. The statistical program, Epi info 2002, and openepi were used to determine the attack rate. The Excel Microsoft program was used to elaborate the endemic channel. Nine of the ten samples studied were isolated from the culture and identified by Adenovirus-specifc PCR. Sequencing allowed identification of Ad8 as the agent responsible for the outbreak. The attack rate was 24.39 cases per 100. The epidemic curve allowed identification of a disseminated source in the Institute of Ophthalmology "Conde de Valenciana." It was not possible to calculate the incubation periods among the cases. The endemic channel showed the presence of an epidemic keratoconjunctivitis among the patients that had been cared for at the out-patient services of the institute. One outbreak of a disseminated source caused by Ad8 was detected in the institute among its medical residents, probably associated with relaxation of the habitual sanitary measures during an epidemic of hemorrhagic conjunctivitis among the patients cared for at the institute. The proposed scheme to control the outbreak allowed for its containment and controlled the epidemic of associated cases.

  3. Viral RNAs detected in virions of porcine adenovirus type 3

    International Nuclear Information System (INIS)

    Li Xing; Tikoo, Suresh Kumar

    2004-01-01

    It has been demonstrated that cellular and viral RNAs were packaged in the virions of human cytomegalovirus (CMV) and herpes simplex virus 1 (HSV 1), members of the Herpesviridae family, both of which are enveloped double-stranded DNA viruses. Here, we provide evidence suggesting that RNAs are packaged in the virions of porcine adenovirus type 3 (PAdV-3), which is a member of the Adenoviridae family, a non-enveloped double-stranded DNA virus. The RNAs packaged in PAdV-3 virions were enriched in the size range of 300-1000 bases long. By reverse transcription (RT) of RNAs isolated from purified PAdV-3 virions, PCR amplification, and DNA sequence analysis of PCR products, we determined the identities of some viral RNAs contained in PAdV-3 virions. The results indicated that the RNAs representing transcripts from E1A, E1B, DNA binding protein (DBP), DNA polymerase (POL), E4 and some of the late genes including pIIIA, pIII, pV, Hexon, 33 K, and fiber were detected from purified PAdV-3 virions. In contrast, we could not detect the RNAs representing transcripts of precursor terminal protein (pTP), 52 kDa, pX, or 100-kDa protein genes in purified virions. Because the transcripts of pIX, IVa2, E3, protease, pVI, pVII, and pVIII overlap with those of other genes in PAdV-3, we could not definitely conclude that RNAs representing these transcripts were packaged in virions although the expected DNA fragments were produced by RT-PCR in the RNAs isolated from purified virions

  4. Improving adenovirus based gene transfer: strategies to accomplish immune evasion.

    Science.gov (United States)

    Seregin, Sergey S; Amalfitano, Andrea

    2010-09-01

    Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1) Ad-capsid-display of specific inhibitors or ligands; (2) covalent modifications of the entire Ad vector capsid moiety; (3) the use of tissue specific promoters and local administration routes; (4) the use of genome modified Ads; and (5) the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  5. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  6. Development of a nasal adenovirus-based vaccine: Effect of concentration and formulation on adenovirus stability and infectious titer during actuation from two delivery devices.

    Science.gov (United States)

    Renteria, Sandra S; Clemens, Courtney C; Croyle, Maria A

    2010-02-25

    A nasal adenovirus-based vaccine is under development. To determine if aggregation occurs during vaccination, infectious titer (limiting dilution) and capsid integrity (dynamic light scattering) were assessed after extrusion of a model vector from two intranasal delivery devices. Preparations of 2.5x10(12) and 1.25x10(11) virus particles (vp)/ml were studied. Virus aggregated ( approximately 10%) in the multi-dose vessel. Virus titer dropped by one log. Virus in the unit-dose device aggregated ( approximately 1%). Titer remained unchanged. Aggregation was concentration dependent. Formulations prevented aggregation during actuation, freeze-thaw and long-term storage. The device, formulation and dose may significantly influence aggregation and potency of any nasal adenovirus 5-based vaccine. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Pandemic influenza virus 2009 H1N1 and adenovirus in a high risk population of young adults: epidemiology, comparison of clinical presentations, and coinfection.

    Science.gov (United States)

    Yun, Heather C; Fugate, William H; Murray, Clinton K; Cropper, Thomas L; Lott, Lisa; McDonald, J Matthew

    2014-01-01

    In 2009, pandemic H1N1 influenza virus (2009 H1N1) emerged worldwide, causing morbidity and mortality that disproportionately affected young adults. Upper respiratory infection (URI), largely due to adenovirus, is an endemic cause of morbidity in military training. Whether clinical presentations differ or excess morbidity results from coinfection is unclear. The Center for Advanced Molecular Detection evaluates epidemiology and rapid diagnostics of respiratory pathogens in trainees with URI. From May 1, 2009, to November 30, 2009, demographic, clinical, and PCR data from throat and nasal specimens for adenovirus and 2009 H1N1 were prospectively collected. 375 trainees with URI enrolled and were tested for both adenovirus and 2009 H1N1 by PCR (median age 20; 89% male). Adenovirus PCR was positive in 72% (96% serotype E-4) and 2009 H1N1 in 20%. Males were more likely to have adenovirus and females more likely to have 2009 H1N1 (p  =  0.047). Subjects with 2009 H1N1 presented an average of 1 week earlier in training, had shorter illness duration before enrollment, less sore throat, diarrhea, and fewer abnormal findings on throat exam. Coryza and cough were more common with 2009 H1N1 compared to adenovirus. Subjects with 2009 H1N1 were less likely to have adenovirus than those without, despite persistently high frequencies of adenovirus detections during peak 2009 H1N1 weeks (15% vs. 83%, p adenovirus and 2009 H1N1 was rare (4%). Rates of hospitalization and pneumonia did not differ between the adenovirus, 2009 H1N1, or coinfected groups. Military trainees with 2009 H1N1 vs. adenovirus have differing clinical presentations, and males are more likely to have adenovirus. Despite high frequencies of adenovirus infection, coinfection with adenovirus and 2009 H1N1 is rare and apparently does not result in increased morbidity.

  8. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    OpenAIRE

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a s...

  9. Evaluation of methodology for detection of human adenoviruses in wastewater, drinking water, stream water and recreational waters.

    Science.gov (United States)

    Dong, Y; Kim, J; Lewis, G D

    2010-03-01

    This study evaluates dialysis filtration and a range of PCR detection methods for identification and quantification of human adenoviruses in a range of environmental waters. Adenovirus was concentrated from large volumes (50-200 l) of environmental and potable water by hollow fibre microfiltration using commercial dialysis filters. By this method, an acceptable recovery of a seeded control bacteriophage MS2 from seawater (median 95.5%, range 36-98%, n=5), stream water (median 84.7%, range 23-94%, n=5) and storm water (median 59.5%, range 6.3-112%, n=5) was achieved. Adenovirus detection using integrated cell culture PCR (ICC-PCR), direct PCR, nested PCR, real-time quantitative PCR (qPCR) and adenovirus group F-specific direct PCR was tested with PCR products sequenced for confirmation. Adenovirus was routinely detected from all water types by most methods, with ICC-PCR more sensitive than direct-nested PCR or qPCR. Group F adenovirus dominated in wastewater samples but was detected very infrequently in environmental waters. Human adenoviruses (HAdv) proved relatively common in environmental and potable waters when assessed using an efficient concentration method and sensitive detection method. ICC-PCR proved most sensitive, could be used semiquantitatively and demonstrated virus infectivity but was time consuming and expensive. qPCR provided quantitative results but was c. ten-fold less sensitive than the best methods.

  10. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro.

    Science.gov (United States)

    Arcasoy, S M; Latoche, J D; Gondor, M; Pitt, B R; Pilewski, J M

    1997-01-01

    Recombinant adenoviruses are being developed for gene therapy for cystic fibrosis and other lung diseases, and for prevention and treatment of vascular thrombosis. A major limitation to the clinical utility of adenoviruses is the low efficiency of gene transfer achieved in vivo. In addition, little is known about the initial interactions between adenoviruses and the target cell. To address the hypothesis that the negative charge presented by membrane glycoproteins reduces the efficiency of adenovirus-mediated gene transfer, primary cultures of human airway, Madin-Darby canine kidney cells, an immortalized cystic fibrosis airway epithelial cell line, and primary cultures of sheep pulmonary artery endothelium were infected with recombinant adenovirus containing the E. coli lacZ reporter gene (Ad2 beta gal2) in the presence of various polyions. For each cell type, adsorption of Ad2 beta gal2 in the presence of the polycations polybrene, protamine, DEAE-dextran, and poly-L-lysine significantly increased the percentage of cells that express lacZ. The polyanion heparin did not significantly alter gene transfer efficiency, but completely abrogated the effects of polycations. These data provide evidence that negatively charged moieties on the cell surface reduce the efficiency of adenovirus-mediated gene transfer, and that alteration of the charge interaction between adenoviruses and the cell surface may improve the potential clinical application of these vectors.

  11. Coating of adenovirus type 5 with polymers containing quaternary amines prevents binding to blood components

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Kostka, Libor; Selby-Milic, T.; Fisher, K.; Ulbrich, Karel; Seymour, W.; Carlisle, R. C.

    2009-01-01

    Roč. 135, č. 2 (2009), s. 152-158 ISSN 0168-3659 R&D Projects: GA AV ČR KJB400500803 EU Projects: European Commission(XE) 512087 - GIANT Institutional research plan: CEZ:AV0Z40500505 Keywords : quaternary ammonium * HPMA * adenovirus Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.949, year: 2009

  12. Adenovirus DNA replication in vitro: Duplication of single-stranded DNA containing a panhandle structure

    NARCIS (Netherlands)

    Leegwater, P.A.J.; Rombouts, R.F.A.; Vliet, P.C. van der

    1988-01-01

    Adenovirus DNA replicates by displacement of one of the parental strands followed by duplication of the displaced parental single strand (complementary strand synthesis). Displacement synthesis has been performed in a reconstituted system composed of viral and cellular proteins, employing either the

  13. Molecular Epidemiology of Adenovirus Type 7 in the United States, 1966-2000

    Science.gov (United States)

    2002-03-01

    Med Trop Sao Paulo 1997;39:185-9. GF, et al. Extrapulmonary manifestations of adenovirus type 7 pneumonia 31. Golovina GI, Zolotaryov FN, Yurlova TI...residues. J Virol 1996;70:1836-44. 22. McNeill KM, Ridgely Benton F, Monteith SC, Tuchscherer MA, Gaydos 44. Kajon AE, Murtagh P, Garcia Franco S, Freire

  14. Detection of adenovirus hexon sequence in a cat by polymerase chain reaction(short communication)

    NARCIS (Netherlands)

    Horzinek, M.C.; Lakatos, B.; Farkas, J.; Egberink, H.F.; Vennema, H.; Benko, M.

    1999-01-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in pharyngeal and rectal swab samples of a cat seropositive for adenovirus and suffering from transient hepatic failure. The samples were taken at a one-year interval, and both faecal samples as well as the second pharyngeal

  15. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  16. Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA

    Czech Academy of Sciences Publication Activity Database

    Carlisle, R. C.; Briggs, S. S.; Hale, A. B.; Green, N. K.; Fisher, K. D.; Etrych, Tomáš; Ulbrich, Karel; Mautner, V.; Seymour, L. W.

    2006-01-01

    Roč. 13, č. 22 (2006), s. 1579-1586 ISSN 0969-7128 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * non-viral, * gene delivery Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.782, year: 2006

  17. Effect of neutralizing sera on factor X-mediated adenovirus serotype 5 gene transfer

    NARCIS (Netherlands)

    Parker, A.L.; Waddington, S.N.; Buckley, S.M.K.; Custers, J.; Havenga, M.J.E.; Rooijen, N. van; Goudsmit, J.; McVey, J.H.; Nicklin, S.A.; Baker, A.H.

    2009-01-01

    The deployment of adenovirus serotype 5 (Ad5)-based vectors is hampered by preexisting immunity. When such vectors are delivered intravenously, hepatocyte transduction is mediated by the hexon-coagulation factor X (FX) interaction. Here, we demonstrate that human sera efficiently block FX-mediated

  18. Effect of X-rays on protein synthesis and RNA synthesis in adenovirus-infected cells

    International Nuclear Information System (INIS)

    Gorzkowski, B.; Majle, T.; Obrepalska, B.; Semkow, R.

    1977-01-01

    Ionizing radiation exerts a deteriorating effect on the rate of protein and RNA synthesis in HeLa cells. This effect is higher in cells infected with adenovirus, thus pointing to a higher radiosensitivity of viral syntheses compared with the cellular ones. (author)

  19. Chromatography paper strip sampling of enteric adenoviruses type 40 and 41 positive stool specimens

    Directory of Open Access Journals (Sweden)

    Rahman Mustafizur

    2005-02-01

    Full Text Available Abstract Background The enteric subgroup F adenoviruses type 40 (Ad40 and 41 (Ad41 are the second most important cause of acute infantile gastroenteritis after rotaviruses. Repeated community outbreaks have been associated with antigenic changes among the Ad40 and Ad41 strains due to host immune pressure. Therefore large field epidemiological surveys and studies on the genetic variations in different isolates of Ad40 and Ad41 are important for disease control programs, the design of efficient diagnostic kits and vaccines against subgroup F adenoviruses. A novel method using sodium dodecyl sulphate SDS/EDTA-pretreated chromatography paper strips was evaluated for the collection, storage and shipping of Ad40/41 contaminated stool samples. Results This study shows that adenoviral DNA can be successfully detected in the filter strips by PCR after four months storage at -20°C, 4°C, room temperature (20–25°C and 37°C. Furthermore no adenoviral infectivity was observed upon contact with the SDS/EDTA-pretreated strips. Conclusions Collecting, storing and transporting adenovirus type 40 and 41 positive stool samples on SDS/EDTA-pretreated chromatography filter strips is a convenient, biosafe and cost effective method for studying new genome variants and monitoring spread of enteric adenovirus strains during outbreaks.

  20. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro.

    Science.gov (United States)

    Chen, Nana; Zheng, Yang; Yin, Jianjian; Li, Xiujing; Zheng, Conglong

    2013-11-01

    Adenoviruses are associated with respiratory, ocular, or gastrointestinal disease. With various species and high morbidity, adenoviruses are increasingly recognized as significant viral pathogen among pediatric and immunocompromised patients. However, there is almost no specific drug for treatment. Silver nanoparticles are demonstrated to be virucidal against influenza A (H1N1) virus, human immunodeficiency virus and Hepatitis B virus. Currently, there is no data regarding whether the silver nanoparticles inhibit the adenovirus or not. The aim of this study is to investigate the effect of silver nanoparticles on adenovirus type 3 (Ad3). The results revealed that HeLa cells infected with silver nanoparticles treated Ad3 did not show obvious CPE. The viability of HeLa cells infected with silver nanoparticles treated Ad3 was significantly higher than that of cells infected with untreated Ad3. There was a significant difference of fluorescence intensity between the cells infected with silver nanoparticles treated and untreated Ad3. The transmission electron microscopy (TEM) showed that silver nanoparticles could directly damage the structure of Ad3 particle. The PCR amplification products of DNA isolated from silver nanoparticles treated Ad3 was decreased in a dose-dependent manner. The decreased DNA loads were also confirmed by real-time PCR experiment. The present study indicates silver nanoparticles exhibit remarkably inhibitory effects on Ad3 in vitro, which suggests silver nanoparticles could be a potential antiviral agent for inhibiting Ad3 infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Adenovirus DNA replication in vitro is stimulated by RNA from uninfected HeLa cells

    NARCIS (Netherlands)

    Vliet, P.C. van der; Dam, D. van; Kwant, M.M.

    1984-01-01

    Adenovirus DNA replication was studied in a partially reconstituted system consisting of purified viral proteins (DNA-binding protein, precursor terminal protein and Ad DNA polymerase) and a nuclear extract from uninfected HeLa cells. Optimal DNA replication required the presence of a heat-stable,

  2. Transcriptional activation by the E1A regions of adenovirus types 40 and 41

    NARCIS (Netherlands)

    Loon, A.E. van; Gilardi, P.; Perricaudet, M.; Rozijn, Th. H.; Sussenbach, J.S.

    In order to establish whether the poor growth of the two fastidious adenoviruses types 40 and 41 (Ad40 and Ad41) in HeLa cells is due to a reduced trans-activation by the early region to (E1A), we have determined the trans-activating effect of this region on the expression of the chloramphenicol

  3. E1A genes of adenovirus type 2 and type 5 are expressed at different levels

    DEFF Research Database (Denmark)

    Moritz, Constanze; Dobbelstein, Matthias

    2006-01-01

    between these types, including the prototype dl1520/Onyx015. We tested the replication of the wild-type viruses WtD (a hybrid of the type 2 E1 region and type 5) and dl309 (type 5) in comparison with the mutants dl1520 (hybrid) and dl338 (type 5), the latter two lacking part of the E1B-55 kDa coding......Adenoviruses are an extensively studied system for modeling oncogenesis and for experimental cancer therapy. The most commonly analyzed virus types are 2 and 5, and little distinction has been made between them in past studies. Adenoviruses used for therapeutic purposes are frequently hybrids...... region. We found that the hybrid viruses replicated with considerably lower efficiency than their type 5 counterparts in H1299 cells (dl309:WtD = 3-4, dl338:dl1520 > 10). Moreover, adenovirus type 2 E1A expression from the hybrid viruses was strongly reduced in comparison to adenovirus type 5 E1A...

  4. Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection

    NARCIS (Netherlands)

    Bernards, R.A.; Leeuw, M.G.W. de; Houweling, A.; Eb, A.J. van der

    1986-01-01

    We have investigated the contribution of each of the two adenovirus type 5 (Ad5) major early region lb (Elb) proteins in cell transformation and in lytic infection. An Ad5 El plasmid, in which the reading frame for the 19-kDa Elb protein was abolished by a stop codon close to the initiation codon,

  5. Sensitive analysis of genetic heterogeneity of adenovirus types 3 and 7 in the Soviet Union.

    Science.gov (United States)

    Golovina, G I; Zolotaryov, F N; Yurlova, T I

    1991-01-01

    An analysis of adenovirus strains isolated in the Soviet Union from 1976 to 1988 revealed four genome types of adenovirus type 3 (Ad3), i.e., Ad3a4, Ad3a9, Ad3a10, and Ad3a11, and four genome types of adenovirus type 7 (Ad7), i.e., Ad7p, Ad7a, Ad7a(1-5), and Ad7f1, identified with the DNA restriction enzymes BamHI, BglII, and HindIII. Three of them, Ad3a10, Ad3a11, and Ad7f1, are newly discovered. The genetic heterogeneity of adenoviruses was examined with restriction endonuclease Cfr13I with a 4-base recognition cleavage site. Eighteen different restriction patterns were identified among 21 selected Ad3 strains after cleavage of DNA with Cfr13I. Eight different subtypes were identified among 20 Ad7 strains by the same technique. For estimation of the relationships among these genome subtypes, pairwise analyses of comigrating DNA restriction fragments from isolates of Ad3 and Ad7 were done after digestion with Cfr13I or with restriction endonucleases recognizing DNA sequences of 6 bp. Surprisingly, the results were very discrepant. Images PMID:1658038

  6. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Rots, Marianne G.; Beljaars, Leonie; Ypma, Arjen Y.; Jansen, Peter L. M.; Poelstra, Klaas; Moshage, Albert; Haisma, Hidde J.

    2008-01-01

    Chronic liver damage may lead to liver fibrosis. In this process, hepatic activated stellate cells are the key players. Thus, activated stellate cells are attractive targets for antifibrotic gene therapy. Recombinant, adenovirus is a promising vehicle for delivering therapeutic genes to liver cells.

  7. Multiple cross-species transmission events of human adenoviruses (HAdV) during hominine evolution

    Czech Academy of Sciences Publication Activity Database

    Hoppe, E.; Pauly, M.; Gillespie, T. R.; Akoua-Koffi, C.; Hohmann, G.; Fruth, B.; Karhemere, S.; Madinda, N. F.; Mugisha, L.; Muyembe, J.-J.; Todd, A.; Petrželková, Klára Judita; Gray, M.; Robbins, M.; Bergl, R. A.; Wittig, R. M.; Zuberbuehler, K.; Boesch, C.; Schubert, G.; Leendertz, F. H.; Ehlers, B.; Calvignac-Spencer, S.

    2015-01-01

    Roč. 32, č. 8 (2015), s. 2072-2084 ISSN 0737-4038 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : adenovirus * African great apes * zoonosis Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 13.649, year: 2015

  8. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    Science.gov (United States)

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  9. Dynamin2 S-nitrosylation regulates adenovirus type 5 infection of epithelial cells.

    Science.gov (United States)

    Wang, Zhimin; Kim, Jae Il; Frilot, Nicole; Daaka, Yehia

    2012-10-01

    Dynamin2 is a large GTPase that regulates vesicle trafficking, and the GTPase activity of dynamin2 is required for the multistep process of adenovirus infection. Activity of dynamin2 may be regulated by post-translational phosphorylation and S-nitrosylation modifications. In this study, we demonstrate a role for dynamin2 S-nitrosylation in adenovirus infection of epithelial cells. We show that adenovirus serotype 5 (Ad5) infection augments production of nitric oxide (NO) in epithelial cells and causes the S-nitrosylation of dynamin2, mainly on cysteine 86 (C86) and 607 (C607) residues. Forced overexpression of dynamin2 bearing C86A and/or C607A mutations decreases Ad5 infection. Diminishing NO synthesis by RNAi-induced knockdown of endogenous endothelial NO synthase (eNOS) expression attenuates virus infection of target cells. Ad5 infection promotes the kinetically dynamic S-nitrosylation of dynamin2 and eNOS: there is a rapid decrease in eNOS S-nitrosylation and a concomitant increase in the dynamin2 S-nitrosylation. These results support the hypothesis that dynamin2 S-nitrosylation following eNOS activation facilitates adenovirus infection of host epithelial cells.

  10. Influence of Inorganic Ions and Aggregation and Adsorption Behaviors of Human Adenovirus

    Science.gov (United States)

    In this study, influence of solution chemistries to the transport properties (aggregation and attachment behavior) of human adenovirus (HAdV) was investigated. Results showed isoelectric point (IEP) of HAdV in different salt conditions varied minimally, and it ranged from pH 3.5 ...

  11. Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor

    Czech Academy of Sciences Publication Activity Database

    Morrison, J.; Briggs, S. S.; Green, N.; Fisher, K.; Šubr, Vladimír; Ulbrich, Karel; Kehoe, S.; Seymour, L. W.

    2008-01-01

    Roč. 16, č. 2 (2008), s. 244-251 ISSN 1525-0016 EU Projects: European Commission(XE) 512087 - GIANT Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * gene delivery * N-(2-hydroxypropyl)methacrylamide Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.970, year: 2008

  12. Relative transport of human adenovirus and MS2 in porous media

    Science.gov (United States)

    Human adenovirus (HAdV) is the most prevalent enteric virus found in the water environment by numerous monitoring studies and MS2 is the most common surrogate used for previous virus transport studies. However, the current knowledge on the transport behavior of HAdV in porous med...

  13. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater

    Science.gov (United States)

    Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater. Therefore, wastewater is a source of a potentially diverse group of enteric viru...

  14. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies

    Czech Academy of Sciences Publication Activity Database

    Fisher, K. D.; Stallwood, Y.; Green, N. K.; Ulbrich, Karel; Mautner, V.; Seymour, L. W.

    2001-01-01

    Roč. 8, - (2001), s. 341-348 ISSN 0969-7128 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : adenovirus * gene therapy * targetting Subject RIV: CC - Organic Chemistry Impact factor: 5.893, year: 2001

  15. Effect of organic carbon on sorption of human adenovirus to soil particles and laboratory containers

    Science.gov (United States)

    A key factor controlling the relationship between virus release and human exposure is how virus particles interact with soils, sediments and other solid particles in the environment and in engineered treatment systems. Finding no previous investigations of human adenovirus (HAdV)...

  16. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus

    Czech Academy of Sciences Publication Activity Database

    Green, N. K.; Herbert, C. W.; Hale, S. J.; Hale, A. B.; Mautner, V.; Harkins, R.; Hermiston, T.; Ulbrich, Karel; Fisher, K. D.; Seymour, L. W.

    2004-01-01

    Roč. 11, č. 16 (2004), s. 1256-1263 ISSN 0969-7128 R&D Projects: GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : adenovirus * gene delivery * polymer coating Subject RIV: CC - Organic Chemistry Impact factor: 4.977, year: 2004

  17. Adenovirus serotype 5 vectored foot-and-mouth disease subunit vaccines: the first decade

    Science.gov (United States)

    Here we present the results of the first decade of development of a replication-defective human adenovirus (Ad5) containing the capsid and 3C protease coding regions of foot-and-mouth disease virus (FMDV) as a vaccine candidate. In proof-of concept studies we demonstrated that a single inoculation w...

  18. Targeting adenovirus gene delivery to activated tumour-associated vasculature via endothelial selectins

    Czech Academy of Sciences Publication Activity Database

    Bachtarzi, H.; Stevenson, M.; Šubr, Vladimír; Ulbrich, Karel; Seymour, L. W.; Fisher, K. D.

    2011-01-01

    Roč. 150, č. 2 (2011), s. 196-203 ISSN 0168-3659 R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : E-selectin * pHPMA * adenovirus Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.732, year: 2011

  19. Fatal adenovirus encephalomyeloradiculitis in an umbilical cord stem cell transplant recipient

    OpenAIRE

    Awosika, Oluwole O.; Lyons, Jennifer L.; Ciarlini, Pedro; Phillips, Richard E.; Alfson, Elizabeth D.; Johnson, Emily L.; Koo, Sophia; Marty, Francisco; Drew, Clifton; Zaki, Sherif; Folkerth, Rebecca D.; Klein, Joshua P.

    2013-01-01

    Adenovirus infections frequently complicate allogeneic stem cell transplants but nervous system involvement, usually presenting as encephalitis, is atypical. Progression from encephalitis to myeloradiculitis has not been described previously.1 We present a unique case of fatal adenoviral encephalomyeloradiculitis with imaging and pathologic correlates.

  20. Isolation and identification of Adenovirus in hospitalized children, under five years, with acute respiratory disease, in Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Tania Pumariega

    2000-12-01

    Full Text Available Nine Adenovirus (Ad strains isolated in Cuba, from 128 nasopharingeal swab specimens of children below five years old, with acute respiratory diseases, during 1996 and 1997, were studied by restriction enzyme analysis of genomic DNA with two endonucleases BamH I and Sma I. All different fragment patterns were compared with the respective prototypes. The identified adenoviruses were Ad 1 (n=4, Ad 2 (n=1 and Ad 6 (n=4. Males were more frequently infected than females. The analysis of the occurrence of these Adenovirus strains of subgenus C revealed that Ad 1 and Ad 6 were the predominant serotypes in 1996 and in 1997, respectively.

  1. Transmissibility of adenovirus-induced adiposity in a chicken model.

    Science.gov (United States)

    Dhurandhar, N V; Israel, B A; Kolesar, J M; Mayhew, G; Cook, M E; Atkinson, R L

    2001-07-01

    We previously reported that human adenovirus Ad-36 induces adiposity and paradoxically lower levels of serum cholesterol (CHOL) and triglycerides (TG) in animals. To evaluate the transmissibility of Ad-36 and Ad-36 induced adiposity using a chicken model. Experiment 1--four chickens were housed (two per cage) and one from each cage was inoculated with Ad-36. Duration of presence of Ad-36 DNA in the blood of all chickens was monitored. Experiment 2--two groups of chickens were intranasally inoculated with Ad-36 (infected donors, I-D) or media (control donors, C-D). Blood drawn 36 h later from I-D and C-D groups was inoculated into wing veins of recipient chickens (infected receivers, I-R, and control receivers, C-R, respectively). On sacrifice, 5 weeks post-inoculation, blood was drawn, body weight noted and visceral fat was separated and weighed. Experiment 1--Ad-36 DNA appeared in the blood of the inoculated chickens and that of uninoculated chickens (cage mates) within 12 h of inoculation and the viral DNA persisted up to 25 days in the blood. Experiment 2--compared with C-D, visceral and total body fat were significantly greater and CHOL significantly lower for the I-D and I-R. TG were significantly lower for the I-D. Ad-36 was isolated from 12 out of 16 blood samples of the I-D that were used for inoculating I-R chickens. Ad-36 DNA was present in the blood and the adipose tissue of the I-D and I-R but not in the skeletal muscles of animals selected randomly for testing. As seen in experiment 1, Ad-36 infection can be transmitted horizontally from an infected chicken to another chicken sharing the cage. Additionally, experiment 2 demonstrated blood-borne transmission of Ad-36-induced adiposity in chickens. Transmissibility of Ad-36-induced adiposity in chicken model raises serious concerns about such a possibility in humans that needs further investigation.

  2. Human Adenovirus 36 Infection Increased the Risk of Obesity

    Science.gov (United States)

    Xu, Mei-Yan; Cao, Bing; Wang, Dong-Fang; Guo, Jing-Hui; Chen, Kai-Li; Shi, Mai; Yin, Jian; Lu, Qing-Bin

    2015-01-01

    Abstract Human adenovirus 36 (HAdV-36), as the key pathogen, was supposed and discussed to be associated with obesity. We searched the references on the association between HAdV-36 infection and obesity with the different epidemiological methods, to explore the relationship with a larger sample size by meta-analysis and compare the differences of epidemiological methods and population subsets by the subgroup analyses. We conducted literature search on the association between HAdV-36 infections and obesity in English or Chinese published up to July 1, 2015. The primary outcome was the HAdV-36 infection rate in the obese and lean groups; the secondary outcomes were the BMI level and BMI z-score in the HAdV-36 positive and negative groups. The pooled odds ratio (OR) was calculated for the primary outcome; the standardized mean differences (SMDs) were calculated for the secondary and third outcomes. Prediction interval (PI) was graphically presented in the forest plot of the random effect meta-analyses. Metaregression analysis and subgroup analysis were performed. Finally 24 references with 10,191 study subjects were included in the meta-analysis. The obesity subjects were more likely to be infected with HAdV-36 compared to the lean controls (OR = 2.00; 95%CI: 1.46, 2.74; PI: 0.59, 6.76; P infection for obesity were 1.77 (95%CI: 1.19, 2.63; PI: 0.44, 7.03; P = 0.005) and 2.26 (95%CI: 1.67, 3.07; PI: 1.45, 3.54; P SMD of BMI was 0.28 (95% CI: 0.08, 0.47; PI: −0.53, 1.08; P = 0.006) in the HAdV-36 positive subjects with a high heterogeneity (I2 = 86.5%; P infection was higher than those without HAdV-36 infection (SMD = 0.19; 95%CI: −0.31, 0.70; PI: −2.10, 2.49), which had no significantly statistical difference (P = 0.453). HAdV-36 infection increased the risk of obesity. HAdV-36 also increased the risk of weight gain in adults, which was not observed in children. PMID:26705235

  3. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  4. Identification of a novel aviadenovirus, designated pigeon adenovirus 2 in domestic pigeons (Columba livia).

    Science.gov (United States)

    Teske, L; Rubbenstroth, D; Meixner, M; Liere, K; Bartels, H; Rautenschlein, S

    2017-01-02

    The young pigeon disease syndrome (YPDS) affects mainly young pigeons of less than one year of age and leads to crop stasis, vomitus, diarrhea, anorexia and occasionally death. This disease is internationally a major health problem because of its seasonal appearance during competitions such as homing pigeon races or exhibitions of ornamental birds. While the etiology of YPDS is still unclear, adenoviruses are frequently discussed as potential causative agents. Electron microscopy of feces from a YPDS outbreak revealed massive shedding of adenovirus-like particles. Whole genome sequencing of this sample identified a novel adenovirus tentatively named pigeon adenovirus 2 (PiAdV-2). Phylogenetic and comparative genome analysis suggest PiAdV-2 to belong to a new species within the genus Aviadenovirus, for which we propose the name Pigeon aviadenovirus B. The PiAdV-2 genome shares 54.9% nucleotide sequence identity with pigeon adenovirus 1 (PiAdV-1). In a screening of further YPDS-affected flocks two variants of PiAdV-2 (variant A and B) were detected which shared 97.6% nucleotide identity of partial polymerase sequences, but only 79.7% nucleotide identity of partial hexon sequences. The distribution of both PiAdV-2 variants was further investigated in fecal samples collected between 2008 and 2015 from healthy or YPDS-affected racing pigeons of different lofts. Independent of their health status, approximately 20% of young and 13% of adult pigeon flocks harbored PiAdV-2 variants. Birds were free of PiAdV-1 or other aviadenoviruses as determined by PCRs targeting the aviadenovirus polymerase or the PiAdV-1 fiber gene, respectively. In conclusion, there is no indication of a correlation between YPDS outbreaks and the presence of PiAdV-2 or other aviadenoviruses, arguing against an causative role in this disease complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Partial characterization of a new adenovirus lineage discovered in testudinoid turtles.

    Science.gov (United States)

    Doszpoly, Andor; Wellehan, James F X; Childress, April L; Tarján, Zoltán L; Kovács, Endre R; Harrach, Balázs; Benkő, Mária

    2013-07-01

    In the USA and in Hungary, almost simultaneously, adenoviruses of a putative novel lineage were detected by PCR and sequencing in turtles belonging to four different species (including two subspecies) of the superfamily Testudinoidea. In the USA, partial sequence of the adenoviral DNA-dependent DNA polymerase was obtained from samples of a captive pancake tortoise (Malacochersus tornieri), four eastern box turtles (Terrapene carolina carolina) and two red-eared sliders (Trachemys scripta elegans). In Hungary, several individuals of the latter subspecies as well as some yellow-bellied sliders (T. scripta scripta) were found to harbor identical, or closely related, putative new adenoviruses. From numerous attempts to amplify any other genomic fragment by PCR, only a nested method was successful, in which a 476-bp fragment of the hexon gene could be obtained from several samples. In phylogeny reconstructions, based on either DNA polymerase or hexon partial sequences, the putative new adenoviruses formed a clade distinct from the five accepted genera of the family Adenoviridae. Three viral sub-clades corresponding to the three host genera (Malacochersus, Terrapene, Trachemys) were observed. Attempts to isolate the new adenoviruses on turtle heart (TH-1) cells were unsuccessful. Targeted PCR screening of live and dead specimens revealed a prevalence of approximately 25% in small shelter colonies of red-eared and yellow-bellied sliders in Hungary. The potential pathology of these viruses needs further investigation; clinically healthy sliders were found to shed the viral DNA in detectable amounts. Based on the phylogenetic distance, the new adenovirus lineage seems to merit the rank of a novel genus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11

    International Nuclear Information System (INIS)

    Stone, Daniel; Furthmann, Anne; Sandig, Volker; Lieber, Andre

    2003-01-01

    The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome

  7. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus

    Science.gov (United States)

    Chen, Eunice C.; Liu, Maria; Brasky, Kathleen M.; Lanford, Robert E.; Kelly, Kristi R.; Bales, Karen L.; Schnurr, David P.; Canfield, Don R.; Patterson, Jean L.; Chiu, Charles Y.

    2013-01-01

    Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV), as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus) at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus). Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses. PMID:23894316

  8. Adenovirus-specific IgG maturation as a surrogate marker in acute exacerbations of COPD.

    Science.gov (United States)

    Boeck, Lucas; Gencay, Mikael; Roth, Michael; Hirsch, Hans H; Christ-Crain, Mirjam; Mueller, Beat; Tamm, Michael; Stolz, Daiana

    2014-08-01

    B cells in airways and lung parenchyma may be involved in COPD evolution; however, whether their pathogenic role is beneficial or harmful remains controversial. The objective of this study was to investigate the maturation of adenovirus-specific immunoglobulins in patients with COPD with respect to clinical outcome. The presence of adenovirus-specific immunoglobulins during acute exacerbation of COPD (AECOPD) was analyzed at exacerbation and 2 to 3 weeks later. Patients with detectable adenovirus-specific IgM and low IgG avidity were grouped into fast and delayed IgG maturation. The clinical outcome of both groups was evaluated. Of 208 patients, 43 (20.7%) had serologic evidence of recent adenovirus infection and were grouped by fast IgG maturation (26 patients) and delayed IgG maturation (17 patients). Baseline characteristics, AECOPD therapy, and duration of hospitalization were similar in both groups, but the AECOPD recurrence rate within 6 months was higher (P = .003), and there was a trend for earlier AECOPD-related rehospitalizations (P = .061) in the delayed IgG maturation group. The time to rehospitalization or death within 2 years was shorter in patients with delayed IgG maturation (P = .003). Adenovirus-specific IgG maturation was an independent predictor of the number of AECOPD recurrences within 6 months (P = .001) and the occurrence of hospitalization or death within 2 years (P = .005). Delayed immunoglobulin avidity maturation following COPD exacerbation is associated with worse outcomes. ISRCTN Register; No.: ISRCTN77261143; URL: www.isrctn.org.

  9. Increased adenovirus Type 5 mediated transgene expression due to RhoB down-regulation.

    Directory of Open Access Journals (Sweden)

    Dragomira Majhen

    Full Text Available Adenovirus type 5 (Ad5 is a non-enveloped DNA virus frequently used as a gene transfer vector. Efficient Ad5 cell entry depends on the availability of its primary receptor, coxsackie and adenovirus receptor, which is responsible for attachment, and integrins, secondary receptors responsible for adenovirus internalization via clathrin-mediated endocytosis. However, efficacious adenovirus-mediated transgene expression also depends on successful trafficking of Ad5 particles to the nucleus of the target cell. It has been shown that changes occurring in tumor cells during development of resistance to anticancer drugs can be beneficial for adenovirus mediated transgene expression. In this study, using an in vitro model consisting of a parental cell line, human laryngeal carcinoma HEp2 cells, and a cisplatin-resistant clone CK2, we investigated the cause of increased Ad5-mediated transgene expression in CK2 as compared to HEp2 cells. We show that the primary cause of increased Ad5-mediated transgene expression in CK2 cells is not modulation of receptors on the cell surface or change in Ad5wt attachment and/or internalization, but is rather the consequence of decreased RhoB expression. We propose that RhoB plays an important role in Ad5 post-internalization events and more particularly in Ad5 intracellular trafficking. To the best of our knowledge, this is the first study showing changed Ad5 trafficking pattern between cells expressing different amount of RhoB, indicating the role of RhoB in Ad5 intracellular trafficking.

  10. Experimental cross-species infection of common marmosets by titi monkey adenovirus.

    Directory of Open Access Journals (Sweden)

    Guixia Yu

    Full Text Available Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV, as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus. Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses.

  11. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water...

  12. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-Ad-IU-1

    National Research Council Canada - National Science Library

    Gardner, Thomas A

    2005-01-01

    .... The goal of this research is to develop a novel therapeutic agent, Ad-IU-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase (TK...

  13. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-AD-IU-1

    National Research Council Canada - National Science Library

    Gardner, Thomas A

    2006-01-01

    ... independent prostate cancers. The goal of this research is to develop a novel therapeutic agent, Ad-IU-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase (TK...

  14. Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients With Radiorecurrent Prostate Cancer

    National Research Council Canada - National Science Library

    Hall, Simon J

    2004-01-01

    .... Pre-clinical studies using adenovirus-mediated (Ad) transduction of IL-12 (Ad.mIL-12) in metastatic model of prostate cancer resulted in local growth suppression, survival enhancement and inhibition of pre-established metastases...

  15. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    Science.gov (United States)

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  16. Development and Pre-Clinical Evaluation of a Novel Prostate-Restricted Replication Competent Adenovirus-AD-IU-1

    National Research Council Canada - National Science Library

    Gardner, Thomas

    2004-01-01

    ... independent prostate cancers. The goal of this research is to develop a novel therapeutic agent, Ad-lu-1, using PSES to control the replication of adenovirus and the expression of a therapeutic gene, herpes simplex thymidine kinase...

  17. Serological and Molecular Biological Studies of Parvovirus B19, Coxsackie B Viruses, and Adenoviruses as Potential Cardiotropic Viruses in Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivanova Stefka Kr.

    2016-12-01

    Full Text Available Background: Inflammatory diseases of the heart (myocarditis, pericarditis are commonly caused by viruses. Among the human cardiotropic viruses, parvovirus B19, Coxsackie B viruses, and adenoviruses play a leading role.

  18. Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses

    Science.gov (United States)

    Hackenbrack, Nicole; Rogers, Matthew B.; Ashley, Robert E.; Keel, M. Kevin; Kubiski, Steven V.; Bryan, John A.; Ghedin, Elodie; Holmes, Edward C.; Hafenstein, Susan L.

    2016-01-01

    ABSTRACT Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. IMPORTANCE Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses

  19. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  20. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    Science.gov (United States)

    The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matricesThis dataset is associated with the following publication:Rhodes , E., E. Huff, D. Hamilton, and J. Jones. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 228(2): 31-38, (2016).

  1. A Dual-Action Armed Replicating Adenovirus for the Treatment of Osteoblastic Bone Metastases of Prostate Cancer

    Science.gov (United States)

    2007-03-01

    sufficient to bind RANKL and inhibit osteoclastogenesis . Hence, the dual-action armed replicating adenovirus is designed to express the four cysteine...osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis . Mol Ther 3: 197-205. 2. Fueyo J, Gomez-Manzano C, Alemany R...recombinant adenovirus: suppression of the immune 900response with cyclosporin. Endocrinology, 137, 5166–5169. 90164. Jooss, K., Turka, L. A

  2. Adenovirus core protein VII down-regulates the DNA damage response on the host genome.

    Science.gov (United States)

    Avgousti, Daphne C; Della Fera, Ashley N; Otter, Clayton J; Herrmann, Christin; Pancholi, Neha J; Weitzman, Matthew D

    2017-08-09

    Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier for successful infection. The adenovirus genome is packaged with protein VII, a viral-encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here, we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to manipulate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a

  3. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  4. Two different serum-free media and osmolality effect upon human 293 cell growth and adenovirus production.

    Science.gov (United States)

    Ferreira, Tiago B; Ferreira, Ana L; Carrondo, Manuel J T; Alves, Paula M

    2005-11-01

    Adenoviruses are promising vectors for gene therapy and vaccination protocols. Consequently, the market demands for adenovirus are increasing, driving the search for new methodologies for large-scale production of concentrated vectors with warranted purity and efficacy, in a cost-effective way. Nevertheless, the production of adenovirus is currently limited by the so-called 'cell density effect', i.e. a drop in cell specific productivity concomitant with increased cell concentration at infection. Of two different serum-free culture media (CD293 and EX-Cell), evaluated for their effect on human 293 cells growth and adenovirus production at cell densities higher than 1x10(6) cells/ml, EX-Cell proved the better medium for cell growth. Although adenovirus production was equivalent in both media when the infection was performed at 1x10(6) cells/ml, at 3x10(6) cells/ml CD293 was the better. This result related to the high ammonia content in EX-Cell medium at the highest cell concentration at infection. Besides this, the large-scale production of these vectors at high cell densities often requires re-feed strategies, which increase medium osmolality. While a negative effect on cell growth was observed with increasing osmolalities, adenovirus productivity was only affected for osmolalities higher than 430 mOsm.

  5. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages

    Directory of Open Access Journals (Sweden)

    Mareike D. Maler

    2017-08-01

    Full Text Available The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs and in AM-like primary macrophage lines (Max Planck Institute cells than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6, alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors.

  6. Pandemic Influenza Virus 2009 H1N1 and Adenovirus in a High Risk Population of Young Adults: Epidemiology, Comparison of Clinical Presentations, and Coinfection

    Science.gov (United States)

    2014-01-08

    Pandemic Influenza Virus 2009 H1N1 and Adenovirus in a High Risk Population of Young Adults: Epidemiology, Comparison of Clinical Presentations, and... H1N1 influenza virus (2009 H1N1 ) emerged worldwide, causing morbidity and mortality that disproportionately affected young adults. Upper respiratory...adenovirus and 2009 H1N1 were prospectively collected. Results: 375 trainees with URI enrolled and were tested for both adenovirus and 2009 H1N1 by

  7. Assessment of the Incidence of Enteric Adenovirus Species and Serotypes in Surface Waters in the Eastern Cape Province of South Africa: Tyume River as a Case Study

    Directory of Open Access Journals (Sweden)

    Timothy Sibanda

    2012-01-01

    Full Text Available TaqMan real-time PCR was used for the detection and quantitation of adenoviruses in Tyume River water samples over a 12-month period. A total of 72 samples were analysed, and 22 samples were positive for adenovirus. Of the positive samples, 18 were collected from downstream sampling points. Among the downstream sampling points, adenovirus detection rate increased with distance downstream, being 28%, 33%, and 39% for Alice, Drayini, and Manqulweni, respectively. The Alice sampling site had the highest concentrations of adenovirus ranging between 6.54×103 genome copies/L and 8.49×104 genome copies/L. The observed trend could have been expected considering the level of anthropogenic activities in areas along the lower stretch of Tyume River, with the major one being the effluent of treated and semi treated sewage from wastewater treatment facilities. Adenovirus detection was sporadic at most sampling sites. Multiplex conventional PCR was used for the detection of clinically important adenovirus species B, C, and F and their serotypes. Species C and F adenoviruses were detected in 77% and 18% of the samples, respectively. Most adenovirus positive samples were obtained from areas of increased population densities. The presence of adenoviruses may confirm the risk of its transmission to the human population.

  8. VEGF targeting in mesotheliomas using an interleukin-6 signal inhibitor based on adenovirus gene delivery.

    Science.gov (United States)

    Adachi, Yasuo; Yoshio-Hoshino, Naoko; Aoki, Chieko; Nishimoto, Norihiro

    2010-06-01

    Malignant mesotheliomas reportedly secrete interleukin-6 (IL-6) which augments production of vascular endothelial growth factor (VEGF) from mesothelioma cells. We previously reported the development of a new receptor inhibitor of IL-6 (NRI) by genetically engineering tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody. Since NRI is encoded on a single gene, it is easily applicable to a gene delivery system using virus vehicles. In this study, we report VEGF targeting through NRI expression based on adenovirus-mediated gene delivery in mesothelioma cells. We constructed an NRI expression vector in the context of a tropism-modified adenovirus vector that had enhanced infectivity in mesothelioma cells. This virus effectively induced NRI secretion from mesothelioma cells. This virus infection also reduced the VEGF production in mesothelioma cells. These results indicate that NRI shows potential as an agent in the treatment of mesotheliomas.

  9. The urethral smear as a tool in diagnosing adenovirus-induced urethritis.

    Science.gov (United States)

    Tønsberg, E; Hartgill, U

    2014-12-01

    Adenovirus is a recognised cause of non-gonococcal urethritis, and is not uncommonly associated with extragenital signs and symptoms. This case report describes a patient with symptoms of conjunctivitis, meatitis and urethritis. The urethral smear revealed almost exclusively monocytes microscopically, raising the suspicion of a viral aetiology. Results confirmed the presence of adenovirus in both the eyes and urethra. Despite waning reliance on the urethral smear in sexual health clinics, it can still be an important diagnostic tool in assessing the aetiology of non-specific urethritis. Finding an obvious monocytic cell response in the urethral smear can indicate a viral cause and allow the clinician to optimise management, counsel appropriately, and potentially reduce unnecessary antibiotic use. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Heavy metals enhance the reactivation of nitrous acid-treated adenovirus in HeLa cells.

    Science.gov (United States)

    Piperakis, S M

    1995-01-01

    Treatment of HeLa cells with cadmium chloride and zinc chloride increases the survival rate of nitrous acid-treated adenovirus 2 (ade2). This increase is maximal if the time interval between cell treatment and virus infection is delayed by 36 h. The induction process requires protein synthesis only during the 3-h period immediately following treatment; cycloheximide does not prevent the expression of enhanced reactivation if added to the cells after this time.

  11. Calcium gluconate in phosphate buffered saline increases gene delivery with adenovirus type 5.

    Directory of Open Access Journals (Sweden)

    Marko T Ahonen

    Full Text Available BACKGROUND: Adenoviruses are attractive vectors for gene therapy because of their stability in vivo and the possibility of production at high titers. Despite exciting preclinical data with various approaches, there are only a few examples of clear efficacy in clinical trials. Effective gene delivery to target cells remains the key variable determining efficacy and thus enhanced transduction methods are important. METHODS/RESULTS: We found that heated serum could enhance adenovirus 5 mediated gene delivery up to twentyfold. A new protein-level interaction was found between fiber knob and serum transthyretin, but this was not responsible for the observed effect. Instead, we found that heating caused the calcium and phosphate present in the serum mix to precipitate, and this was responsible for enhanced gene delivery. This finding could have relevance for designing preclinical experiments with adenoviruses, since calcium and phosphate are present in many solutions. To translate this into an approach potentially testable in patients, we used calcium gluconate in phosphate buffered saline, both of which are clinically approved, to increase adenoviral gene transfer up to 300-fold in vitro. Gene transfer was increased with or without heating and in a manner independent from the coxsackie-adenovirus receptor. In vivo, in mouse studies, gene delivery was increased 2-, 110-, 12- and 13-fold to tumors, lungs, heart and liver and did not result in increased pro-inflammatory cytokine induction. Antitumor efficacy of a replication competent virus was also increased significantly. CONCLUSION: In summary, adenoviral gene transfer and antitumor efficacy can be enhanced by calcium gluconate in phosphate buffered saline.

  12. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Science.gov (United States)

    Lenaerts, Liesbeth; van Dam, Wim; Persoons, Leentje; Naesens, Lieve

    2012-01-01

    Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  13. Multiple Phenotypes in Adult Mice following Inactivation of the Coxsackievirus and Adenovirus Receptor (Car) Gene

    OpenAIRE

    Pazirandeh, Ahmad; Sultana, Taranum; Mirza, Momina; Rozell, Björn; Hultenby, Kjell; Wallis, Karin; Vennström, Björn; Davis, Ben; Arner, Anders; Heuchel, Rainer; Löhr, Matthias; Philipson, Lennart; Sollerbrant, Kerstin

    2011-01-01

    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhib...

  14. Accurate identification of neutralizing antibodies to adenovirus Ad36, -a putative contributor of obesity in humans.

    Science.gov (United States)

    Dubuisson, Olga; Day, Rena Sue; Dhurandhar, Nikhil V

    2015-01-01

    In children and adults, human adenovirus serotype 36 (Ad36) is linked with increased adiposity, and important metabolic alterations. Since this property is not shared by many other human adenovirus serotypes, it is imperative to specifically identify exposure to Ad36. Although serum neutralization assay (SNA) is the gold standard to specifically detect neutralizing antibodies (NA) to Ad36, it requires 2-weeks to complete and considerable training to interpret the results. Whereas, an enzyme-immuno assay (EIA) may provide a quicker and objective determination. Evaluate the accuracy of commercially available EIA kits to detect NA to Ad36. Modify SNA to reduce time and increase objectivity. Sera of 15 seropositive or 16 seronegative subjects confirmed by SNA were used to test: 1) reproducibility of SNA to detect Ad36 exposure, by repeating assays twice; 2) an EIA that detects antibodies to all human adenovirus serotypes (NS-EIA) (Abcam-108705); 3) an EIA supposedly specific for Ad36 antibody (Ad36-EIA) (MyBioSource,#MBS705802), and 4) the concordance of SNA with a novel combination of SNA and immune-staining (SN-IS) kit (Cell BioLabs,#VPK-111). The SNA showed exact reproducibility. NS-EIA detected adenovirus antibodies in 94% samples, confirming the non-specificity of the assay for Ad36 serotype. All seronegative samples (as determined by SNA) were false positive by Ad36-EIA. In 97% samples, SN-IS showed fidelity with Ad36-antibody status as determined by SNA. The available EIA kits are not specific for detecting NA to Ad36. The modified SNA with immune-staining reduces assay time and increases accuracy of detecting by reducing subjectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    Science.gov (United States)

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Liesbeth Lenaerts

    Full Text Available Application of human adenovirus type 5 (Ad5 derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR, as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1 is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.

  17. Canine adenovirus type 2 vector generation via I-Sce1-mediated intracellular genome release.

    Directory of Open Access Journals (Sweden)

    Sandy Ibanes

    Full Text Available When canine adenovirus type 2 (CAdV-2, or also commonly referred to as CAV-2 vectors are injected into the brain parenchyma they preferentially transduce neurons, are capable of efficient axonal transport to afferent regions, and allow transgene expression for at last >1 yr. Yet, translating these data into a user-friendly vector platform has been limited because CAV-2 vector generation is challenging. Generation of E1-deleted adenovirus vectors often requires transfection of linear DNA fragments of >30 kb containing the vector genome into an E1-transcomplementing cell line. In contrast to human adenovirus type 5 vector generation, CAV-2 vector generation is less efficient due, in part, to a reduced ability to initiate replication and poor transfectibility of canine cells with large, linear DNA fragments. To improve CAV-2 vector generation, we generated an E1-transcomplementing cell line expressing the estrogen receptor (ER fused to I-SceI, a yeast meganuclease, and plasmids containing the I-SceI recognition sites flanking the CAV-2 vector genome. Using transfection of supercoiled plasmid and intracellular genome release via 4-OH-tamoxifen-induced nuclear translocation of I-SceI, we improved CAV-2 vector titers 1,000 fold, and in turn increased the efficacy of CAV-2 vector generation.

  18. Nucleotide sequence determination of the region in adenovirus 5 DNA involved in cell transformation

    International Nuclear Information System (INIS)

    Maat, J.

    1978-01-01

    A description is given of investigations into the primary structure of the transforming region of adenovirus type 5 DNA. The phenomenon of cell transformation is discussed in general terms and the principles of a number of fairly recent techniques, which have been in use for DNA sequence determination since 1975 are dealt with. A few of the author's own techniques are described which deal both with nucleotide sequence analysis and with the determination of DNA cleavage sites of restriction endonucleases. The results are given of the mapping of cleavage sites in the HpaI-E fragment of adenovirus DNA of HpaII, HaeIII, AluI, HinfI and TaqI and of the determination of the nucleotide sequence in the transforming region of adenovirus type 5 DNA. The results of the sequence determination of the Ad5 HindIII-G fragment are discussed in relation with the investigation on the transforming proteins isolated from in vitro and in vivo synthesizing systems. Labelling procedures of DNA are described including the exonuclease III/DNA polymerase 1 method and TA polynucleotide kinase labelling of DNA fragments. (Auth.)

  19. [Construction and expression of recombinant adenovirus containing human catalase gene in vitro].

    Science.gov (United States)

    Ou-Yang, Xiao-ling; Li, Ai-ling; Ning, Qi-lan; Yang, Xu-dong; Xu, Nan; Wang, Hui-lian

    2011-05-01

    To construct the adenovirus vector containing recombinant human catalase (CAT) and to express the recombinant gene in vitro. Total RNA was extracted from human leukocytes and full-length human CAT cDNA was obtained with RT-PCR method. The CAT gene was cloned into pcDNA3.1(+) vector and pcDNA3.1(+)CAT was constructed. The positive clones were confirmed by the restriction enzyme digestion and gene sequencing. The CAT gene was cloned into the entry vector pENTR1A, and pENTR1A-CAT vector was constructed. By LR reaction pENTR1A-CAT and pAd/CMV/V5-DEST was recombined in vitro, and the recombinant adenovirus pAd/CMV/V5-DEST-CAT was obtained. The positive pAd/CMV/V5-DEST-CAT was confirmed by sequencing and transfected into 293A cells with Pac I linearization and Lipofectamine 2 000, and the recombinant virus particles were packaged and amplified in the cells. The expression of CAT protein and CAT enzyme activities of the recombinant virus were determined by Western blot and 240 nm UV absorption methods. High expression of recombinant adenovirus was obtained and the expressed human catalase had high enzyme activity. Ad/CMV/V5-DEST-CAT vector containing human catalase gene has been constructed successfully; and the expressed enzyme in 293A cells has high activity.

  20. The serological and virological investigation of canine adenovirus infection on the dogs.

    Science.gov (United States)

    Bulut, Oya; Yapici, Orhan; Avci, Oguzhan; Simsek, Atilla; Atli, Kamil; Dik, Irmak; Yavru, Sibel; Hasircioglu, Sibel; Kale, Mehmet; Mamak, Nuri

    2013-01-01

    Two types of Canine Adenovirus (CAVs), Canine Adenovirus type 1 (CAV-1), the virus which causes infectious canine hepatitis, and Canine Adenovirus type 2 (CAV-2), which causes canine infectious laryngotracheitis, have been found in dogs. In this study, blood samples taken from 111 dogs, which were admitted to the Internal Medicine Clinic of Selcuk University, Faculty of Ve