WorldWideScience

Sample records for double rotation nmr

  1. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Raz [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  2. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    Science.gov (United States)

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. Copyright © 2011 Wiley-Liss, Inc.

  3. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  4. NMR of the rotator cuff. An update

    International Nuclear Information System (INIS)

    Kreitner, Karl-Friedrich; Maehringer-Kunz, Aline

    2016-01-01

    The rotator cuff consists of the tendons of the supscapularis, supraspinatus, infraspinatus and teres minor muscles. This group of muscles performs multiple functions and is often stressed during various activities. This explains, why rotator cuff disease is common and the most often cause of shoulder pain and dysfunction in adults. MR imaging still is the most important imaging modality in assessment of rotator cuff disease. It enables the radiologist to make an accurate diagnosis, the basis for an appropriate management. In this article, current concepts with regard to anatomy and imaging diagnosis will be reviewed. The discussion of the complex anatomy is followed by normal and pathologic MR imaging appearances of the rotator cuff including tendinopathy and tearing, and concluding with a review of the postoperative cuff.

  5. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  6. Conventions and nomenclature for double diffusion encoding NMR and MRI

    DEFF Research Database (Denmark)

    Shemesh, Noam; Jespersen, Sune N; Alexander, Daniel C

    2015-01-01

    , such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them...

  7. Spin-rotation and NMR shielding constants in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  8. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-01-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1 H 35 Cl are C Cl   = −53.914 kHz and C H   = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  9. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  10. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  11. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  12. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  13. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone {sup 13}CO-{sup 15}N rotational-echo double-resonance solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ujjayini; Xie Li; Weliky, David P., E-mail: weliky@chemistry.msu.edu [Michigan State University, Department of Chemistry (United States)

    2013-02-15

    The influenza virus fusion peptide is the N-terminal {approx}20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone {sup 13}CO-{sup 15}N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct {sup 13}C shifts.

  14. NMR and XAS Study of Fe-Mo Double Perovskites

    International Nuclear Information System (INIS)

    Zajac, D.A.; Kapusta, C.; Borowiec, M.; Sikora, M.; Marquina, C.; Blasco, J.; Ibarra, M.R.

    2005-01-01

    The results of NMR and XAS measurements of the A 2 FeMoO 6 double perovskites (DP) (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) at the Fe and Mo K edges are reported and the information on the individual site electronic and magnetic properties is analysed. The compounds studied belong to the family of materials exhibiting a high field '' colossal '' magnetoresistance as well as a low field '' giant '' magnetoresistance. Magnetoresistive properties of the compounds arise from their half-metallicity, i.e. only one spin direction being populated in the conduction band, which consists of overlapping spin down 3d Fe, 2p O and 4d Mo electron bands. Within the model, a spin-down electron undergoes a fast hopping through unoccupied oxygen 2p orbitals between Fe 3+ (3d 5 - spin up) and Mo 6+ (4d 0 ) ionic cores. This mechanism implicates an anti-parallel coupling of the Fe and Mo spins and leads to non-integer magnetic moments and a metallic character below TC. The interaction, in analogy with the '' double exchange '' (DE) in manganites, is called '' double exchange-like '' interaction. The superexchange interaction (SE) is also expected to be present, resulting also in an anti-parallel coupling of 3d Fe 3+ and 4d Mo 5+ spins through occupied oxygen 2p orbitals. The insulating character of SE is connected with an increase of the tilt angle of the Fe-O-Mo bond, which is related to a change of the structural tolerance factor f and results in structural distortions. The molybdenum NMR measurements revealed the existence of a non-integer magnetic moment at Mo and Fe, which can be attributed to the DE-like interaction. However, experiments using Moessbauer spectroscopy have shown the existence of two Fe ionisation states - with integer (SE) and non integer (DE) magnetic moments. The 95 Mo and 97 Mo NMR measurements on A 2 FeMoO 6 (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) presented in this work show different values of the Mo hyperfine field and the corresponding magnetic moment. This is attributed

  15. sup(1)H-NMR study of restricted rotation in dithiophosphoromethyl acetanilides

    International Nuclear Information System (INIS)

    Kovacs, Zs.

    1985-01-01

    sup(1)H-NMR spectra of a series of dithiophosphoromethyl acetanilide derivatives were investigated. The presence of an ortho substituted aryl group bonded to the nitrogen atom of the amide group allowed the observation of restricted internal rotation around the aryl-nitrogen bond. Coalescence temperature and the values of the free energy of activation were determined from the temperature dependent NMR behaviour of these molecules. The possibility of cis-trans isomerism about the nitrogen carbonyl bond was also studied, and the assignment of the conformation of the existing isomer was also made using the aromatic solvent induced shift. (author)

  16. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  17. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  18. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  19. Transverse plane pelvic rotation increase (TPPRI following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves

    Directory of Open Access Journals (Sweden)

    Asher Marc A

    2010-08-01

    Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI

  20. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  1. Control mechanism of double-rotator-structure ternary optical computer

    Science.gov (United States)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  2. Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sanger, Michael J. [Iowa State Univ., Ames, IA (United States)

    1994-05-27

    This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature 13C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO)35-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.

  3. Rotational-echo Double-resonance in Complex Biopolymers: a Study of Nephila Clavipes Dragline Silk

    International Nuclear Information System (INIS)

    Michal, Carl A.; Jelinski, Lynn W.

    1998-01-01

    Rotational-Echo Double-Resonance (REDOR) NMR on strategically 13C and 15N labeled samples is used to study the conformation of the LGXQ (X = S, G, or N) motif in the major ampullate gland dragline silk from the spider Nephila clavipes. A method is described for calculating REDOR dephasing curves suitable for background subtractions, using probability distributions of nitrogen atoms surrounding a given carbon site, which are developed from coordinates in the Brookhaven Protein Data Bank. The validity of the method is established by comparison to dephasings observed from natural abundance 13C peaks for G and A. Straightforward fitting of universal REDOR dephasing curves to the background corrected peaks of interest provide results which are not self-consistent, and a more sophisticated analysis is developed which better accounts for 15N labels which have scrambled from the intended positions. While there is likely some heterogeneity in the structures formed by the LGXQ sequences, the data indicate that they all form compact turn-like structures

  4. Lattice vibrations and barrier to hindered rotation in lithium tetradeuteroaluminate by 2H, 7Li and 27Al NMR

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Kirakosyan, G.A.

    1996-01-01

    Temperature dependences of 2 H, 7 Li, 27 Al NMR line shape in LiAlD 4 lithium polycrystal tetradeuteroaluminate in the range of 103-420 K have been studied. The quadrupole bond constants and asymmetry parameters of electric field gradient tensor have been measured. The frequencies of lattice vibrations have been evaluated in the framework of the Buyer model. From temperature dependences of spin-lattice relaxation time and 2 H NMR line shape the activation energies of AlD 4 anion decelerated rotation, amounting to 74 and 62 k J/mol respectively, have been determined. 15 refs.; 5 figs.; 2 tabs

  5. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique.

    Science.gov (United States)

    Mook, William R; Greenspoon, Joshua A; Millett, Peter J

    2016-01-01

    Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.

  6. Biomechanical evaluation of knotless anatomical double-layer double-row rotator cuff repair: a comparative ex vivo study.

    Science.gov (United States)

    Hepp, Pierre; Osterhoff, Georg; Engel, Thomas; Marquass, Bastian; Klink, Thomas; Josten, Christoph

    2009-07-01

    The layered configuration of the rotator cuff tendon is not taken into account in classic rotator cuff tendon repair techniques. The mechanical properties of (1) the classic double-row technique, (2) a double-layer double-row (DLDR) technique in simple suture configuration, and (3) a DLDR technique in mattress suture configuration are significantly different. Controlled laboratory study. Twenty-four sheep shoulders were assigned to 3 repair groups of full-thickness infraspinatus tears: group 1, traditional double-row repair; group 2, DLDR anchor repair with simple suture configuration; and group 3, DLDR knotless repair with mattress suture configuration. After ultrasound evaluation of the repair, each specimen was cyclically loaded with 10 to 100 N for 50 cycles. Each specimen was then loaded to failure at a rate of 1 mm/s. There were no statistically significant differences among the 3 testing groups for the mean footprint area. The cyclic loading test revealed no significant difference among the 3 groups with regard to elongation. For the load-to-failure test, groups 2 and 3 showed no differences in ultimate tensile load when compared with group 1. However, when compared to group 2, group 3 was found to have significantly higher values regarding ultimate load, ultimate elongation, and energy absorbed. The DLDR fixation techniques may provide strength of initial repair comparable with that of commonly used double-row techniques. When compared with the knotless technique with mattress sutures, simple suture configuration of DLDR repair may be too weak. Knotless DLDR rotator cuff repair may (1) restore the footprint by the use of double-row principles and (2) enable restoration of the shape and profile. Double-layer double-row fixation in mattress suture configuration has initial fixation strength comparable with that of the classic double-row fixation and so may potentially improve functional results of rotator cuff repair.

  7. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique

    OpenAIRE

    Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.

    2016-01-01

    Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construc...

  8. Meta-analysis of Clinical and Radiographic Outcomes After Arthroscopic Single-Row Versus Double-Row Rotator Cuff Repair

    OpenAIRE

    Perser, Karen; Godfrey, David; Bisson, Leslie

    2011-01-01

    Context: Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. Objective: To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Data Sources: Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. Study Sele...

  9. A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments.

    Science.gov (United States)

    Ozarslan, Evren; Shemesh, Noam; Basser, Peter J

    2009-03-14

    Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.

  10. A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments

    Science.gov (United States)

    Özarslan, Evren; Shemesh, Noam; Basser, Peter J.

    2009-03-01

    Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.

  11. Simultaneous double-rod rotation technique in posterior instrumentation surgery for correction of adolescent idiopathic scoliosis.

    Science.gov (United States)

    Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Sudo, Hideki; Hojo, Yoshihiro; Minami, Akio

    2010-03-01

    The authors present a new posterior correction technique consisting of simultaneous double-rod rotation using 2 contoured rods and polyaxial pedicle screws with or without Nesplon tapes. The purpose of this study is to introduce the basic principles and surgical procedures of this new posterior surgery for correction of adolescent idiopathic scoliosis. Through gradual rotation of the concave-side rod by 2 rod holders, the convex-side rod simultaneously rotates with the the concave-side rod. This procedure does not involve any force pushing down the spinal column around the apex. Since this procedure consists of upward pushing and lateral translation of the spinal column with simultaneous double-rod rotation maneuvers, it is simple and can obtain thoracic kyphosis as well as favorable scoliosis correction. This technique is applicable not only to a thoracic single curve but also to double major curves in cases of adolescent idiopathic scoliosis.

  12. Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.

    Science.gov (United States)

    Wall, Lindley B; Keener, Jay D; Brophy, Robert H

    2009-01-01

    A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.

  13. [Rotator cuff repair: single- vs double-row. Clinical and biomechanical results].

    Science.gov (United States)

    Baums, M H; Kostuj, T; Klinger, H-M; Papalia, R

    2016-02-01

    The goal of rotator cuff repair is a high initial mechanical stability as a requirement for adequate biological recovery of the tendon-to-bone complex. Notwithstanding the significant increase in publications concerning the topic of rotator cuff repair, there are still controversies regarding surgical technique. The aim of this work is to present an overview of the recently published results of biomechanical and clinical studies on rotator cuff repair using single- and double-row techniques. The review is based on a selective literature research of PubMed, Embase, and the Cochrane Database on the subject of the clinical and biomechanical results of single- and double-row repair. In general, neither the biomechanical nor the clinical evidence can recommend the use of a double-row concept for the treatment for every rotator cuff tear. Only tears of more than 3 cm seem to benefit from better results on both imaging and in clinical outcome studies compared with the use of single-row techniques. Despite a significant increase in publications on the surgical treatment of rotator cuff tears in recent years, the clinical results were not significantly improved in the literature so far. Unique information and algorithms, from which the optimal treatment of this entity can be derived, are still inadequate. Because of the cost-effectiveness and the currently vague evidence, the double-row techniques cannot be generally recommended for the repair of all rotator cuff tears.

  14. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    Science.gov (United States)

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  15. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, Taye B., E-mail: taye.b.demissie@uit.no; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Jaszuński, Michał [Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01 224 Warszawa (Poland)

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  16. Bridging suture makes consistent and secure fixation in double-row rotator cuff repair.

    Science.gov (United States)

    Fukuhara, Tetsutaro; Mihata, Teruhisa; Jun, Bong Jae; Neo, Masashi

    2017-09-01

    Inconsistent tension distribution may decrease the biomechanical properties of the rotator cuff tendon after double-row repair, resulting in repair failure. The purpose of this study was to compare the tension distribution along the repaired rotator cuff tendon among three double-row repair techniques. In each of 42 fresh-frozen porcine shoulders, a simulated infraspinatus tendon tear was repaired by using 1 of 3 double-row techniques: (1) conventional double-row repair (no bridging suture); (2) transosseous-equivalent repair (bridging suture alone); and (3) compression double-row repair (which combined conventional double-row and bridging sutures). Each specimen underwent cyclic testing at a simulated shoulder abduction angle of 0° or 40° on a material-testing machine. Gap formation and tendon strain were measured during the 1st and 30th cycles. To evaluate tension distribution after cuff repair, difference in gap and tendon strain between the superior and inferior fixations was compared among three double-row techniques. At an abduction angle of 0°, gap formation after either transosseous-equivalent or compression double-row repair was significantly less than that after conventional double-row repair (p row repair (p = 0.01) at 0° abduction had significantly less difference in gap formation between the superior and inferior fixations than did conventional double-row repair. After the 30th cycle, the difference in longitudinal strain between the superior and inferior fixations at 0° abduction was significantly less with compression double-row repair (2.7% ± 2.4%) than with conventional double-row repair (8.6% ± 5.5%, p = 0.03). Bridging sutures facilitate consistent and secure fixation in double-row rotator cuff repairs, suggesting that bridging sutures may be beneficial for distributing tension equally among all sutures during double-row repair of rotator cuff tears. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B

  17. Incidence of retear with double-row versus single-row rotator cuff repair.

    Science.gov (United States)

    Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi

    2014-11-01

    Rotator cuff tears have a high recurrence rate, even after arthroscopic rotator cuff repair. Although some biomechanical evidence suggests the superiority of the double-row vs the single-row technique, clinical findings regarding these methods have been controversial. The purpose of this study was to determine whether the double-row repair method results in a lower incidence of recurrent tearing compared with the single-row method. Electronic databases were systematically searched to identify reports of randomized, controlled trials (RCTs) comparing single-row with double-row rotator cuff repair. The primary outcome assessed was retear of the repaired cuff. Secondary outcome measures were the American Shoulder and Elbow Surgeons (ASES) shoulder score, the Constant shoulder score, and the University of California, Los Angeles (UCLA) score. Heterogeneity between the included studies was assessed. Six studies involving 428 patients were included in the review. Compared with single-row repair, double-row repair demonstrated a lower retear incidence (risk ratio [RR]=1.71 [95% confidence interval (CI), 1.18-2.49]; P=.005; I(2)=0%) and a reduced incidence of partial-thickness retears (RR=2.16 [95% CI, 1.26-3.71]; P=.005; I(2)=26%). Functional ASES, Constant, and UCLA scores showed no difference between single- and double-row cuff repairs. Use of the double-row technique decreased the incidence of retears, especially partial-thickness retears, compared with the single-row technique. The functional outcome was not significantly different between the 2 techniques. To improve the structural outcome of the repaired rotator cuff, surgeons should use the double-row technique. However, further long-term RCTs on this topic are needed. Copyright 2014, SLACK Incorporated.

  18. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  19. Rotating double arm spectrometer to study hard scattering interactions at Serpukhov accelerator

    International Nuclear Information System (INIS)

    Abramov, V.V.; Baldin, B.Yu.; Buzulutskov, A.F.

    1991-01-01

    The double arm magnetic spectrometer designed to study high P T particle production with intense proton and pion beams is described. Particle trajectories are measured by the drift and proportional chambers. Particles are identified by Cherenkov ring spectrometer and muon identifier. The spectrometer can be rotated around the target up to 160 mrad. 2 tabs.; 13 figs

  20. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  1. Outcomes of single-row and double-row arthroscopic rotator cuff repair: a systematic review.

    Science.gov (United States)

    Saridakis, Paul; Jones, Grant

    2010-03-01

    Arthroscopic rotator cuff repair is a common procedure that is gaining wide acceptance among orthopaedic surgeons because it is less invasive than open repair techniques. However, there is little consensus on whether to employ single-row or double-row fixation. The purpose of the present study was to systematically review the English-language literature to see if there is a difference between single-row and double-row fixation techniques in terms of clinical outcomes and radiographic healing. PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE were reviewed with the terms "arthroscopic rotator cuff," "single row repair," and "double row repair." The inclusion criteria were a level of evidence of III (or better), an in vivo human clinical study on arthroscopic rotator cuff repair, and direct comparison of single-row and double-row fixation. Excluded were technique reports, review articles, biomechanical studies, and studies with no direct comparison of arthroscopic rotator cuff repair techniques. On the basis of these criteria, ten articles were found, and a review of the full-text articles identified six articles for final review. Data regarding demographic characteristics, rotator cuff pathology, surgical techniques, biases, sample sizes, postoperative rehabilitation regimens, American Shoulder and Elbow Surgeons scores, University of California at Los Angeles scores, Constant scores, and the prevalence of recurrent defects noted on radiographic studies were extracted. Confidence intervals were then calculated for the American Shoulder and Elbow Surgeons, University of California at Los Angeles, and Constant scores. Quality appraisal was performed by the two authors to identify biases. There was no significant difference between the single-row and double-row groups within each study in terms of postoperative clinical outcomes. However, one study divided each of the groups into patients with small-to-medium tears ( or = 3 cm in length), and the

  2. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.

    Science.gov (United States)

    Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-21

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in

  3. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  4. Single-row versus double-row rotator cuff repair: techniques and outcomes.

    Science.gov (United States)

    Dines, Joshua S; Bedi, Asheesh; ElAttrache, Neal S; Dines, David M

    2010-02-01

    Double-row rotator cuff repair techniques incorporate a medial and lateral row of suture anchors in the repair configuration. Biomechanical studies of double-row repair have shown increased load to failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis, findings that have provided impetus for clinical studies comparing single-row with double-row repair. Clinical studies, however, have not yet demonstrated a substantial improvement over single-row repair with regard to either the degree of structural healing or functional outcomes. Although double-row repair may provide an improved mechanical environment for the healing enthesis, several confounding variables have complicated attempts to establish a definitive relationship with improved rates of healing. Appropriately powered rigorous level I studies that directly compare single-row with double-row techniques in matched tear patterns are necessary to further address these questions. These studies are needed to justify the potentially increased implant costs and surgical times associated with double-row rotator cuff repair.

  5. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  6. Transtendon, Double-Row, Transosseous-Equivalent Arthroscopic Repair of Partial-Thickness, Articular-Surface Rotator Cuff Tears

    OpenAIRE

    Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.

    2014-01-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-s...

  7. Functional and structural outcomes of single-row versus double-row versus combined double-row and suture-bridge repair for rotator cuff tears.

    Science.gov (United States)

    Mihata, Teruhisa; Watanabe, Chisato; Fukunishi, Kunimoto; Ohue, Mutsumi; Tsujimura, Tomoyuki; Fujiwara, Kenta; Kinoshita, Mitsuo

    2011-10-01

    Although previous biomechanical research has demonstrated the superiority of the suture-bridge rotator cuff repair over double-row repair from a mechanical point of view, no articles have described the structural and functional outcomes of this type of procedure. The structural and functional outcomes after arthroscopic rotator cuff repair may be different between the single-row, double-row, and combined double-row and suture-bridge (compression double-row) techniques. Cohort study; Level of evidence, 3. There were 206 shoulders in 201 patients with full-thickness rotator cuff tears that underwent arthroscopic rotator cuff repair. Eleven patients were lost to follow-up. Sixty-five shoulders were repaired using the single-row, 23 shoulders using the double-row, and 107 shoulders using the compression double-row techniques. Clinical outcomes were evaluated at an average of 38.5 months (range, 24-74 months) after rotator cuff repair. Postoperative cuff integrity was determined using Sugaya's classification of magnetic resonance imaging (MRI). The retear rates after arthroscopic rotator cuff repair were 10.8%, 26.1%, and 4.7%, respectively, for the single-row, double-row, and compression double-row techniques. In the subcategory of large and massive rotator cuff tears, the retear rate in the compression double-row group (3 of 40 shoulders, 7.5%) was significantly less than those in the single-row group (5 of 8 shoulders, 62.5%, P row group (5 of 12 shoulders, 41.7%, P row and suture-bridge techniques, which had the lowest rate of postoperative retear, is an effective option for arthroscopic repair of the rotator cuff tendons because the postoperative functional outcome in patients with a retear is inferior to that without retear.

  8. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, Taye B. [Centre for Theoretical and Computational Chemistry Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø (Norway)

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  9. NMR of the rotator cuff. An update; MRT der Rotatorenmanschette. Ein Update

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich; Maehringer-Kunz, Aline [Universitaetsmedizin Mainz (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2016-03-15

    The rotator cuff consists of the tendons of the supscapularis, supraspinatus, infraspinatus and teres minor muscles. This group of muscles performs multiple functions and is often stressed during various activities. This explains, why rotator cuff disease is common and the most often cause of shoulder pain and dysfunction in adults. MR imaging still is the most important imaging modality in assessment of rotator cuff disease. It enables the radiologist to make an accurate diagnosis, the basis for an appropriate management. In this article, current concepts with regard to anatomy and imaging diagnosis will be reviewed. The discussion of the complex anatomy is followed by normal and pathologic MR imaging appearances of the rotator cuff including tendinopathy and tearing, and concluding with a review of the postoperative cuff.

  10. Factors affecting healing rates after arthroscopic double-row rotator cuff repair.

    Science.gov (United States)

    Tashjian, Robert Z; Hollins, Anthony M; Kim, Hyun-Min; Teefey, Sharlene A; Middleton, William D; Steger-May, Karen; Galatz, Leesa M; Yamaguchi, Ken

    2010-12-01

    Double-row arthroscopic rotator cuff repairs were developed to improve initial biomechanical strength of repairs to improve healing rates. Despite biomechanical improvements, failure of healing remains a clinical problem. To evaluate the anatomical results after double-row arthroscopic rotator cuff repair with ultrasound to determine postoperative repair integrity and the effect of various factors on tendon healing. Case series; Level of evidence, 4. Forty-eight patients (49 shoulders) who had a complete arthroscopic rotator cuff repair (double-row technique) were evaluated with ultrasound at a minimum of 6 months after surgery. Outcome was evaluated at a minimum of 1-year follow-up with standardized history and physical examination, visual analog scale for pain, active forward elevation, and preoperative and postoperative shoulder scores according to the system of the American Shoulder and Elbow Surgeons and the Simple Shoulder Test. Quantitative strength was measured postoperatively. Ultrasound and physical examinations were performed at a minimum of 6 months after surgery (mean, 16 months; range, 6 to 36 months) and outcome questionnaire evaluations at a minimum of 12 months after surgery (mean, 29 months; range, 12 to 55 months). Of 49 repairs, 25 (51%) were healed. Healing rates were 67% in single-tendon tears (16 of 24 shoulders) and 36% in multitendon tears (9 of 25 shoulders). Older age and longer duration of follow-up were correlated with poorer tendon healing (P repair (P rotator cuff repair. The biological limitation at the repair site, as reflected by the effects of age on healing, appears to be the most important factor influencing tendon healing, even after maximizing repair biomechanical strength with a double-row construct.

  11. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    Science.gov (United States)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  12. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  13. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Lithium salt of N,N-dimethylsalicylamide in pyridine and pyridine-water solutions. NMR study on the internal rotation about the C-N bond

    Energy Technology Data Exchange (ETDEWEB)

    Gryff-Keller, A; Szczecinski, P [Politechnika Warszawska (Poland)

    1981-01-01

    NMR spectra of the title compound in pyridine and pyridine-water mixtures have been measured at various temperatures. The dependence of internal rotation rate and of chemical shift difference between N-CH/sub 3/ signals on the solvent composition has been discussed with reference to structure of the solution investigated.

  15. [Clinical research of arthroscopic separate double-layer suture bridge technique for delaminated rotator cuff tear].

    Science.gov (United States)

    Ren, Jiangtao; Xu, Cong; Liu, Xianglin; Wang, Jiansong; Li, Zhihuai; Lü, Yongming

    2017-10-01

    To explore the effectiveness of the arthroscopic separate double-layer suture bridge technique in treatment of the delaminated rotator cuff tear. Between May 2013 and May 2015, 54 patients with the delaminated rotator cuff tears were recruited in the study. They were randomly allocated into 2 groups to receive repair either using arthroscopic separate double-layer suture bridge technique (trial group, n =28) or using arthroscopic whole-layer suture bridge technique (control group, n =26). There was no significant difference in gender, age, injured side, tear type, and preoperative visual analogue scale (VAS) score, Constants score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) score, and the range of motion of shoulder joint between 2 groups ( P >0.05). Postoperative functional scores, range of motion, and recurrence rate of tear in 2 groups were observed and compared. The operation time was significant longer in trial group than in control group ( t =8.383, P =0.000). All incisions healed at stage Ⅰ without postoperative complication. All the patients were followed up 12 months. At 12 months postoperatively, the UCLA score, ASES score, VAS score, Constant score, and the range of motion were significantly improved when compared with the preoperative values in 2 groups ( P 0.05). Four cases (14.3%) of rotator cuff tear recurred in trial group while 5 cases (19.2%) in control group, showing no significant difference ( χ 2 =0.237, P =0.626). Compared with the arthroscopic whole-layer suture bridge technique, arthroscopic separate double-layer suture bridge technique presents no significant difference in the shoulder function score, the range of motion, and recurrence of rotator cuff tear, while having a longer operation time.

  16. Influence of Preoperative Musculotendinous Junction Position on Rotator Cuff Healing After Double-Row Repair.

    Science.gov (United States)

    Tashjian, Robert Z; Erickson, Gregory A; Robins, Richard J; Zhang, Yue; Burks, Robert T; Greis, Patrick E

    2017-06-01

    The primary purpose of this study was to determine the effect of the preoperative position of the musculotendinous junction (MTJ) on rotator cuff healing after double-row arthroscopic rotator cuff repair. A secondary purpose was to evaluate how tendon length and MTJ position change when the rotator cuff heals. Preoperative and postoperative magnetic resonance imaging (MRI) scans of 42 patients undergoing arthroscopic double-row rotator cuff repair were reviewed. Patients undergoing repairs with other constructs or receiving augmented repairs (platelet-rich fibrin matrix) who had postoperative MRI scans were excluded. Preoperative MRI scans were evaluated for anteroposterior tear size, tendon retraction, tendon length, muscle quality, and MTJ position with respect to the glenoid in the coronal plane. The position of the MTJ was referenced off the glenoid face as either lateral or medial. Postoperative MRI scans were evaluated for healing, tendon length, and MTJ position. Of 42 tears, 36 (86%) healed, with 27 of 31 small to medium tears (87%) and 9 of 11 large to massive tears (82%) healing. Healing occurred in 94% of tears that had a preoperative MTJ lateral to the face of the glenoid but only 56% of tears that had a preoperative MTJ medial to the glenoid face (P = .0135). The measured tendon length increased an average of 14.4 mm in patients whose tears healed compared with shortening by 6.4 mm in patients with tears that did not heal (P rotator cuff repair. The position of the MTJ with respect to the glenoid face is a reliable, identifiable marker on MRI scans that can be predictive of healing. Level IV, retrospective review of case series; therapeutic study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Arthroscopic undersurface rotator cuff repair versus conventional arthroscopic double-row rotator cuff repair - Comparable results at 2-year follow-up.

    Science.gov (United States)

    Ang, Benjamin Fu Hong; Chen, Jerry Yongqiang; Yeo, William; Lie, Denny Tijauw Tjoen; Chang, Paul Chee Cheng

    2018-01-01

    The aim of our study is to compare the improvement in clinical outcomes after conventional arthroscopic double-row rotator cuff repair and arthroscopic undersurface rotator cuff repair. A consecutive series of 120 patients who underwent arthroscopic rotator cuff repair was analysed. Sixty-one patients underwent conventional double-row rotator cuff repair and 59 patients underwent undersurface rotator cuff repair. Several clinical outcomes, including numerical pain rating scale (NPRS), constant shoulder score (CSS), Oxford shoulder score (OSS) and University of California Los Angeles shoulder score (UCLASS), were prospectively recorded by a trained healthcare professional preoperatively and at 3, 6, 12 and 24 months after surgery. Comparing both groups, there were no differences in age, gender and preoperative NPRS, CSS, OSS and UCLASS. However, the tear size was 0.7 ± 0.2 (95% confidence interval (CI) 0.3-1.1) cm larger in the conventional group ( p = 0.002). There was no difference in the improvement of NPRS, CSS, OSS and UCLASS at all time points of follow-up, that is, at 3, 6, 12 and 24 months after surgery. The duration of operation was shorter by 35 ± 3 (95% CI 28-42) min in the undersurface group ( p rotator cuff repair and conventional arthroscopic double-row rotator cuff repair showed marked improvements in clinical scores when compared preoperatively, and there was no difference in improvements between both groups. Arthroscopic undersurface rotator cuff repair is a faster technique compared to the conventional arthroscopic double-row rotator cuff repair.

  18. [Open double-row rotator cuff repair using the LASA-DR screw].

    Science.gov (United States)

    Schoch, C; Geyer, S; Geyer, M

    2016-02-01

    Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).

  19. Clinical outcomes of arthroscopic single and double row repair in full thickness rotator cuff tears.

    Science.gov (United States)

    Ji, Jong-Hun; Shafi, Mohamed; Kim, Weon-Yoo; Kim, Young-Yul

    2010-07-01

    There has been a recent interest in the double row repair method for arthroscopic rotator cuff repair following favourable biomechanical results reported by some studies. The purpose of this study was to compare the clinical results of arthroscopic single row and double row repair methods in the full-thickness rotator cuff tears. 22 patients of arthroscopic single row repair (group I) and 25 patients who underwent double row repair (group II) from March 2003 to March 2005 were retrospectively evaluated and compared for the clinical outcomes. The mean age was 58 years and 56 years respectively for group I and II. The average follow-up in the two groups was 24 months. The evaluation was done by using the University of California Los Angeles (UCLA) rating scale and the shoulder index of the American Shoulder and Elbow Surgeons (ASES). In Group I, the mean ASES score increased from 30.48 to 87.40 and the mean ASES score increased from 32.00 to 91.45 in the Group II. The mean UCLA score increased from the preoperative 12.23 to 30.82 in Group I and from 12.20 to 32.40 in Group II. Each method has shown no statistical clinical differences between two methods, but based on the sub scores of UCLA score, the double row repair method yields better results for the strength, and it gives more satisfaction to the patients than the single row repair method. Comparing the two methods, double row repair group showed better clinical results in recovering strength and gave more satisfaction to the patients but no statistical clinical difference was found between 2 methods.

  20. Comparison between single-row and double-row rotator cuff repair: a biomechanical study.

    Science.gov (United States)

    Milano, Giuseppe; Grasso, Andrea; Zarelli, Donatella; Deriu, Laura; Cillo, Mario; Fabbriciani, Carlo

    2008-01-01

    The aim of this study was to compare the mechanical behavior under cyclic loading test of single-row and double-row rotator cuff repair with suture anchors in an ex-vivo animal model. For the present study, 50 fresh porcine shoulders were used. On each shoulder, a crescent-shaped full-thickness tear of the infraspinatus was performed. Width of the tendon tear was 2 cm. The lesion was repaired using metal suture anchors. Shoulders were divided in four groups, according the type of repair: single-row tension-free repair (Group 1); single-row tension repair (Group 2); double-row tension-free repair (Group 3); double-row tension repair (Group 4); and a control group. Specimens were subjected to a cyclic loading test. Number of cycles at 5 mm of elongation and at failure, and total elongation were calculated. Single-row tension repair showed significantly poorest results for all the variables considered, when compared with the other groups. Regarding the mean number of cycles at 5 mm of elongation and at failure, there was a nonsignificant difference between Groups 3 and 4, and both of them were significantly greater than Group 1. For mean total elongation, the difference between Groups 1, 3, and 4 was not significant, but all of them were significantly lower than the control group. A single-row repair is particularly weak when performed under tension. Double-row repair is significantly more resistant to cyclic displacement than single-row repair in both tension-free and tension repair. Double-row repair technique can be primarily considered for large, unstable rotator cuff tears to improve mechanical strength of primary fixation of tendons to bone.

  1. Clinical outcomes of arthroscopic single and double row repair in full thickness rotator cuff tears

    Directory of Open Access Journals (Sweden)

    Ji Jong-Hun

    2010-01-01

    Full Text Available Background: There has been a recent interest in the double row repair method for arthroscopic rotator cuff repair following favourable biomechanical results reported by some studies. The purpose of this study was to compare the clinical results of arthroscopic single row and double row repair methods in the full-thickness rotator cuff tears. Materials and Methods: 22 patients of arthroscopic single row repair (group I and 25 patients who underwent double row repair (group II from March 2003 to March 2005 were retrospectively evaluated and compared for the clinical outcomes. The mean age was 58 years and 56 years respectively for group I and II. The average follow-up in the two groups was 24 months. The evaluation was done by using the University of California Los Angeles (UCLA rating scale and the shoulder index of the American Shoulder and Elbow Surgeons (ASES. Results: In Group I, the mean ASES score increased from 30.48 to 87.40 and the mean ASES score increased from 32.00 to 91.45 in the Group II. The mean UCLA score increased from the preoperative 12.23 to 30.82 in Group I and from 12.20 to 32.40 in Group II. Each method has shown no statistical clinical differences between two methods, but based on the sub scores of UCLA score, the double row repair method yields better results for the strength, and it gives more satisfaction to the patients than the single row repair method. Conclusions: Comparing the two methods, double row repair group showed better clinical results in recovering strength and gave more satisfaction to the patients but no statistical clinical difference was found between 2 methods.

  2. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation.

    Science.gov (United States)

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich

    2013-01-01

    The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double

  3. A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair.

    Science.gov (United States)

    Smith, Christopher D; Alexander, Susan; Hill, Adam M; Huijsmans, Pol E; Bull, Anthony M J; Amis, Andrew A; De Beer, Joe F; Wallace, Andrew L

    2006-11-01

    The optimal method for arthroscopic rotator cuff repair is not yet known. The hypothesis of the present study was that a double-row repair would demonstrate superior static and cyclic mechanical behavior when compared with a single-row repair. The specific aims were to measure gap formation at the bone-tendon interface under static creep loading and the ultimate strength and mode of failure of both methods of repair under cyclic loading. A standardized tear of the supraspinatus tendon was created in sixteen fresh cadaveric shoulders. Arthroscopic rotator cuff repairs were performed with use of either a double-row technique (eight specimens) or a single-row technique (eight specimens) with nonabsorbable sutures that were double-loaded on a titanium suture anchor. The repairs were loaded statically for one hour, and the gap formation was measured. Cyclic loading to failure was then performed. Gap formation during static loading was significantly greater in the single-row group than in the double-row group (mean and standard deviation, 5.0 +/- 1.2 mm compared with 3.8 +/- 1.4 mm; p row repairs failed at a mean of 320 +/- 96.9 N whereas the single-row repairs failed at a mean of 224 +/- 147.9 N (p = 0.058). Three single-row repairs and three double-row repairs failed as a result of suture cut-through. Four single-row repairs and one double-row repair failed as a result of anchor or suture failure. The remaining five repairs did not fail, and a midsubstance tear of the tendon occurred. Although more technically demanding, the double-row technique demonstrates superior resistance to gap formation under static loading as compared with the single-row technique. A double-row reconstruction of the supraspinatus tendon insertion may provide a more reliable construct than a single-row repair and could be used as an alternative to open reconstruction for the treatment of isolated tears.

  4. Rotational barriers in ammonium hexachlorometallates as studied by NMR, tunneling spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Birczynski, A.; Lalowicz, Z.T.; Lodziana, Zbigniew

    2004-01-01

    Ammonium hexachlorometallates, (NH4)(2)MCl6 With M = Pd, Pt, Ir, Os, Re, Se, Sn, Te and Pb, comprise a set of compounds with systematically changing properties. The compounds may be ordered according to decreasing tunnelling frequency (TF) of ammonium ions, which is related to the increasing...... structure explain observed variation of the tunnelling frequencies for NH4+. The theory provides also M-Cl distances and barriers for C-2 and C-3 rotations of ammonium ions in respective compounds, which show good agreement with experimental values. (C) 2004 Elsevier B.V. All rights reserved....

  5. Meta-analysis of Clinical and Radiographic Outcomes After Arthroscopic Single-Row Versus Double-Row Rotator Cuff Repair.

    Science.gov (United States)

    Perser, Karen; Godfrey, David; Bisson, Leslie

    2011-05-01

    Double-row rotator cuff repair methods have improved biomechanical performance when compared with single-row repairs. To review clinical outcomes of single-row versus double-row rotator cuff repair with the hypothesis that double-row rotator cuff repair will result in better clinical and radiographic outcomes. Published literature from January 1980 to April 2010. Key terms included rotator cuff, prospective studies, outcomes, and suture techniques. The literature was systematically searched, and 5 level I and II studies were found comparing clinical outcomes of single-row and double-row rotator cuff repair. Coleman methodology scores were calculated for each article. Meta-analysis was performed, with treatment effect between single row and double row for clinical outcomes and with odds ratios for radiographic results. The sample size necessary to detect a given difference in clinical outcome between the 2 methods was calculated. Three level I studies had Coleman scores of 80, 74, and 81, and two level II studies had scores of 78 and 73. There were 156 patients with single-row repairs and 147 patients with double-row repairs, both with an average follow-up of 23 months (range, 12-40 months). Double-row repairs resulted in a greater treatment effect for each validated outcome measure in 4 studies, but the differences were not clinically or statistically significant (range, 0.4-2.2 points; 95% confidence interval, -0.19, 4.68 points). Double-row repairs had better radiographic results, but the differences were also not statistically significant (P = 0.13). Two studies had adequate power to detect a 10-point difference between repair methods using the Constant score, and 1 study had power to detect a 5-point difference using the UCLA (University of California, Los Angeles) score. Double-row rotator cuff repair does not show a statistically significant improvement in clinical outcome or radiographic healing with short-term follow-up.

  6. Impingement syndrome of the shoulder following double row suture anchor technique for arthroscopic rotator cuff repair: a case report

    Directory of Open Access Journals (Sweden)

    Rambani Rohit

    2009-06-01

    Full Text Available Abstract Introduction Arthroscopic repair of the rotator cuff is a demanding surgery. Accurate placement of anchors is key to success. Case presentation A 38-year-old woman received arthroscopic repair of her rotator cuff using a double row suture anchor technique. Postoperatively, she developed impingement syndrome which resulted from vertical displacement of a suture anchor once the shoulder was mobilised. The anchor was removed eight weeks following initial surgery and the patient had an uneventful recovery. Conclusion Impingement syndrome following arthroscopic repair of the rotator cuffs using double row suture anchor has not been widely reported. This is the first such case where anchoring has resulted in impingement syndrome.

  7. Transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears.

    Science.gov (United States)

    Dilisio, Matthew F; Miller, Lindsay R; Higgins, Laurence D

    2014-10-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness.

  8. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian

    2010-01-01

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of 13 C- 13 correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN n ν and RN n ν mixing sequences as well as heteronuclear RN n ν s ,ν k feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG) 97 -RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN n ν s ,ν k pulse sequences both 15 N- 13 C and 13 C- 15 N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D- 15 N- 13 C- 13 C and 13 C- 15 N-( 1 H)- 1 H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle χ in RNA. This was demonstrated by means of the (CUG) 97 -RNA. The simultaneous acquisition of all relevant crossing signals of the correlation spectra leads not only to an essential time saving, but

  9. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.

    Science.gov (United States)

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). Copyright © 2010 Elsevier Inc. All rights reserved.

  10. The cost-effectiveness of single-row compared with double-row arthroscopic rotator cuff repair.

    Science.gov (United States)

    Genuario, James W; Donegan, Ryan P; Hamman, Daniel; Bell, John-Erik; Boublik, Martin; Schlegel, Theodore; Tosteson, Anna N A

    2012-08-01

    Interest in double-row techniques for arthroscopic rotator cuff repair has increased over the last several years, presumably because of a combination of literature demonstrating superior biomechanical characteristics and recent improvements in instrumentation and technique. As a result of the increasing focus on value-based health-care delivery, orthopaedic surgeons must understand the cost implications of this practice. The purpose of this study was to examine the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with traditional single-row repair. A decision-analytic model was constructed to assess the cost-effectiveness of double-row arthroscopic rotator cuff repair compared with single-row repair on the basis of the cost per quality-adjusted life year gained. Two cohorts of patients (one with a tear of row compared with single-row arthroscopic rotator cuff repair was $571,500 for rotator cuff tears of row repair was less than $287 for small or moderate tears and less than $352 for large or massive tears compared with the cost of single-row repair, then double-row repair would represent a cost-effective surgical alternative. On the basis of currently available data, double-row rotator cuff repair is not cost-effective for any size rotator cuff tears. However, variability in the values for costs and probability of retear can have a profound effect on the results of the model and may create an environment in which double-row repair becomes the more cost-effective surgical option. The identification of the threshold values in this study may help surgeons to determine the most cost-effective treatment.

  11. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Science.gov (United States)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  12. Biomechanical evaluation of arthroscopic rotator cuff repairs: double-row compared with single-row fixation.

    Science.gov (United States)

    Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M

    2006-02-01

    Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p row fixation (287 +/- 24 N) than for all of the single-row fixations (p row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.

  13. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  14. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  15. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...

  16. Structural Characterization by NMR of a Double Phosphorylated Chimeric Peptide Vaccine for Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2013-04-01

    Full Text Available Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer’s disease (AD and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau229-237[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B241-255 originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  17. Medial versus lateral supraspinatus tendon properties: implications for double-row rotator cuff repair.

    Science.gov (United States)

    Wang, Vincent M; Wang, Fan Chia; McNickle, Allison G; Friel, Nicole A; Yanke, Adam B; Chubinskaya, Susan; Romeo, Anthony A; Verma, Nikhil N; Cole, Brian J

    2010-12-01

    Rotator cuff repair retear rates range from 25% to 90%, necessitating methods to improve repair strength. Although numerous laboratory studies have compared single-row with double-row fixation properties, little is known regarding regional (ie, medial vs lateral) suture retention properties in intact and torn tendons. A torn supraspinatus tendon will have reduced suture retention properties on the lateral aspect of the tendon compared with the more medial musculotendinous junction. Controlled laboratory study. Human supraspinatus tendons (torn and intact) were randomly assigned for suture retention mechanical testing, ultrastructural collagen fibril analysis, or histologic testing after suture pullout testing. For biomechanical evaluation, sutures were placed either at the musculotendinous junction (medial) or 10 mm from the free margin (lateral), and tendons were elongated to failure. Collagen fibril assessments were performed using transmission electron microscopy. Intact tendons showed no regional differences with respect to suture retention properties. In contrast, among torn tendons, the medial region exhibited significantly higher stiffness and work values relative to the lateral region. For the lateral region, work to 10-mm displacement (1592 ± 261 N-mm) and maximum load (265 ± 44 N) for intact tendons were significantly higher (P .05). Regression analyses for the intact and torn groups revealed generally low correlations between donor age and the 3 biomechanical indices. For both intact and torn tendons, the mean fibril diameter and area density were greater in the medial region relative to the lateral (P ≤ .05). In the lateral tendon, but not the medial region, torn specimens showed a significantly lower fibril area fraction (48.3% ± 3.8%) than intact specimens (56.7% ± 3.6%, P row after double-row repair. Larger diameter collagen fibrils as well as greater fibril area fraction in the medial supraspinatus tendon may provide greater resistance to

  18. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  19. Single-row versus double-row arthroscopic rotator cuff repair in small- to medium-sized tears.

    Science.gov (United States)

    Aydin, Nuri; Kocaoglu, Baris; Guven, Osman

    2010-07-01

    Double-row rotator cuff repair leads to superior cuff integrity and clinical results compared with single-row repair. The study enrolled 68 patients with a full-thickness rotator cuff tear who were divided into 2 groups of 34 patients according to repair technique. The patients were followed-up for at least 2 years. The results were evaluated by Constant score. Despite the biomechanical studies and cadaver studies that proved the superiority of double-row fixation over single-row fixation, our clinical results show no difference in functional outcome between the two methods. It is evident that double-row repair is more technically demanding, expensive, and time-consuming than single-row repair, without providing a significant improvement in clinical results. Comparison between groups did not show significant differences. At the final follow-up, the Constant score was 82.2 in the single-row group and 78.8 in the double-row group. Functional outcome was improved in both groups after surgery, but the difference between the 2 groups was not significant. At long-term follow-up, arthroscopic rotator cuff repair with the double-row technique showed no significant difference in clinical outcome compared with single-row repair in small to medium tears. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  20. Development of the Simulation Program for the In-Vessel Fuel Handling System of Double Rotating Plug Type

    International Nuclear Information System (INIS)

    Kim, S. H.; Kim, J. B.

    2011-01-01

    In-vessel fuel handling machines are the main equipment of the in-vessel fuel handling system, which can move the core assembly inside the reactor vessel along with the rotating plug during refueling. The in vessel fuel handling machines for an advanced sodium cooled fast reactor(SFR) demonstration plant are composed of a direct lift machine(DM) and a fixed arm machine(FM). These machines should be able to access all areas above the reactor core by means of the rotating combination of double rotating plugs. Thus, in the in vessel fuel handling system of the double rotating plug type, it is necessary to decide the rotating plug size and evaluate the accessibility of in-vessel fuel handling machines in given core configuration. In this study, the simulation program based on LABVIEW which can effectively perform the arrangement design of the in vessel fuel handling system and simulate the rotating plug motion was developed. Fig. 1 shows the flow chart of the simulation program

  1. Single versus double-row repair of the rotator cuff: does double-row repair with improved anatomical and biomechanical characteristics lead to better clinical outcome?

    Science.gov (United States)

    Pauly, Stephan; Gerhardt, Christian; Chen, Jianhai; Scheibel, Markus

    2010-12-01

    Several techniques for arthroscopic repair of rotator cuff defects have been introduced over the past years. Besides established techniques such as single-row repairs, new techniques such as double-row reconstructions have gained increasing interest. The present article therefore provides an overview of the currently available literature on both repair techniques with respect to several anatomical, biomechanical, clinical and structural endpoints. Systematic literature review of biomechanical, clinical and radiographic studies investigating or comparing single- and double-row techniques. These results were evaluated and compared to provide an overview on benefits and drawbacks of the respective repair type. Reconstructions of the tendon-to-bone unit for full-thickness tears in either single- or double-row technique differ with respect to several endpoints. Double-row repair techniques provide more anatomical reconstructions of the footprint and superior initial biomechanical characteristics when compared to single-row repair. With regard to clinical results, no significant differences were found while radiological data suggest a better structural tendon integrity following double-row fixation. Presently published clinical studies cannot emphasize a clearly superior technique at this time. Available biomechanical studies are in favour of double-row repair. Radiographic studies suggest a beneficial effect of double-row reconstruction on structural integrity of the reattached tendon or reduced recurrent defect rates, respectively.

  2. Computational NMR, IR/RAMAN calculations in sodium pravastatin: Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems

    Science.gov (United States)

    Petersen, Philippe; Cunha, Vanessa; Gonçalves, Marcos; Petrilli, Helena; Constantino, Vera; Instituto de Física, Departamento de Física de Materiais e Mecânica Team; Instituto de Química, Departamento de Química Fundamental Team

    2013-03-01

    Layered double hydroxides (LDH) can be used as nanocontainers for immobilization of Pravastatin, in order to obtain suitable drug carriers. The material's structure and spectroscopic properties were analyzed by NMR, IR/RAMAN and supported by theoretical calculations. Density Functional Theory (DFT) calculations were performed using the Gaussian03 package. The geometry optimizations were performed considering the single crystal X-ray diffraction data of tert-octylamonium salt of Pravastatin. Tetramethylsilane (TMS), obtained with the same basis set, was used as reference for calculating the chemical shift of 13C. A scaling factor was used to compare theoretical and experimental harmonic vibrational frequencies. Through the NMR and IR/RAMAN spectra, we were able to make precise assignments of the NMR and IR/RAMAN of Sodium Pravastatin. We acknowledge support from CAPES, INEO and CNPQ.

  3. Product diversification of banana cv. Mas Kirana off grade by using a double rotating screw extruder

    Science.gov (United States)

    Setyadjit, S.; Sukasih, E.; Risfaheri, R.

    2018-01-01

    Extrusion technology is today’s favorite technology since it has a varied, practical and consistent product form. The purpose of this research was to get precise composite flour composition so that the quality of the resulted product has optimum quality for breakfast meals. The experimental design used was Design Expert vs. 7 with response surface box-behnken. The flour composition and level to be inputted to the program were banana flour (10-50g), mung beans (10-30g), egg flour (10-20g). Formula made was based on 200 g with addition of maize flour if the amount is less than 200 g. The extrusion tool used is a Thermo Scientific double rotating screw; with Haake Reomax OS. The best results in terms of carbohydrate content is the Formula 8 with a composition of 60 g of banana flour, 20 g eggs, 20 g of green beans and 100 g maize flour. The proximate chemical content of this formula is carbohydrate 84.04%, protein 8.55%, fat 5.49%, ash content 1.24%. K-calories per 100 g is 419.5 which is higher than the standard of breakfast meals calories.

  4. Mapping protein–protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Changmiao; Hou, Guangjin, E-mail: hou@udel.edu; Lu, Xingyu; Polenova, Tatyana, E-mail: tpolenov@udel.edu [University of Delaware, Department of Chemistry and Biochemistry (United States)

    2017-02-15

    REDOR-based experiments with simultaneous {sup 1}H–{sup 13}C and {sup 1}H−{sup 15}N dipolar dephasing are explored for investigating intermolecular protein–protein interfaces in complexes formed by a U–{sup 13}C,{sup 15}N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U–{sup 13}C,{sup 15}N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by {sup 1}H–{sup 13}C or {sup 1}H–{sup 15}N cross polarization, permitting to establish the residues of the U–{sup 13}C,{sup 15}N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into {sup 13}C–{sup 13}C correlation experiments. We established the validity of this approach on U–{sup 13}C,{sup 15}N-histidine and on a structurally characterized complex of dynactin’s U–{sup 13}C,{sup 15}N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.

  5. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  6. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  7. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    Science.gov (United States)

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis

  8. Effect of glass-forming biopreservatives on head group rotational dynamics in freeze-dried phospholipid bilayers: A 31P NMR study

    Science.gov (United States)

    Jain, P.; Sen, S.; Risbud, S. H.

    2009-07-01

    P31 NMR spectroscopy has been used to elucidate the role of glass-forming sugars in the preservation of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers. P31 wideline NMR spectra of freeze-dried pure DPPC, DPPC/trehalose, DPPC/glucose, and DPPC/hydroxyethyl starch (HES) mixtures collected in the temperature range of 25-80 °C have been simulated to obtain quantitative information about rotational dynamics and orientation of the lipid head groups in these media. In the case of pure DPPC, DPPC/glucose, and DPPC/HES, the gel-to-liquid crystalline phase transition of DPPC bilayer is characterized by a sudden increase in the rate of rotational diffusion of the PO4 head groups near 40 °C. The corresponding rotational jump frequency increases from a few kilohertz in the gel phase to at least several megahertz in the liquid crystalline phase. On the other hand, in the case of DPPC/trehalose mixture the temperature of this onset of rapid head group dynamics is increased by ˜10 °C. Trehalose reduces the lipid head group motions most effectively in the temperature range of T ≤50 °C relevant for biopreservation. Additionally, and possibly more importantly, trehalose is found to strongly restrict any change in the orientation of the diffusion axis of the PO4 head groups during the phase transformation. This unique ability of trehalose to maintain the dynamical and orientational rigidity of lipid head groups is likely to be responsible for its superior ability in biopreservation.

  9. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  10. Biomechanical comparison of a single-row versus double-row suture anchor technique for rotator cuff repair.

    Science.gov (United States)

    Kim, David H; Elattrache, Neal S; Tibone, James E; Jun, Bong-Jae; DeLaMora, Sergai N; Kvitne, Ronald S; Lee, Thay Q

    2006-03-01

    Reestablishment of the native footprint during rotator cuff repair has been suggested as an important criterion for optimizing healing potential and fixation strength. A double-row rotator cuff footprint repair will demonstrate superior biomechanical properties compared with a single-row repair. Controlled laboratory study. In 9 matched pairs of fresh-frozen cadaveric shoulders, the supraspinatus tendon from 1 shoulder was repaired with a double-row suture anchor technique: 2 medial anchors with horizontal mattress sutures and 2 lateral anchors with simple sutures. The tendon from the contralateral shoulder was repaired using a single lateral row of 2 anchors with simple sutures. Each specimen underwent cyclic loading from 10 to 180 N for 200 cycles, followed by tensile testing to failure. Gap formation and strain over the footprint area were measured using a video digitizing system; stiffness and failure load were determined from testing machine data. Gap formation for the double-row repair was significantly smaller (P row repair for the first cycle (1.67 +/- 0.75 mm vs 3.10 +/- 1.67 mm, respectively) and the last cycle (3.58 +/- 2.59 mm vs 7.64 +/- 3.74 mm, respectively). The initial strain over the footprint area for the double-row repair was nearly one third (P row repair. Adding a medial row of anchors increased the stiffness of the repair by 46% and the ultimate failure load by 48% (P row repair improved initial strength and stiffness and decreased gap formation and strain over the footprint when compared with a single-row repair. To achieve maximal initial fixation strength and minimal gap formation for rotator cuff repair, reconstructing the footprint attachment with 2 rows of suture anchors should be considered.

  11. Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique.

    Science.gov (United States)

    Mihata, Teruhisa; Fukuhara, Tetsutaro; Jun, Bong Jae; Watanabe, Chisato; Kinoshita, Mitsuo

    2011-03-01

    After rotator cuff repair, the shoulder is immobilized in various abduction positions. However, there is no consensus on the proper abduction angle. To assess the effect of shoulder abduction angle on the biomechanical properties of the repaired rotator cuff tendons among 3 types of double-row techniques. Controlled laboratory study. Thirty-two fresh-frozen porcine shoulders were used. A simulated rotator cuff tear was repaired by 1 of 3 double-row techniques: conventional double-row repair, transosseous-equivalent repair, and a combination of conventional double-row and bridging sutures (compression double-row repair). Each specimen underwent cyclic testing followed by tensile testing to failure at a simulated shoulder abduction angle of 0° or 40° on a material testing machine. Gap formation and failure loads were measured. Gap formation in conventional double-row repair at 0° (1.2 ± 0.5 mm) was significantly greater than that at 40° (0.5 ± 0.3mm, P = .01). The yield and ultimate failure loads for conventional double-row repair at 40° were significantly larger than those at 0° (P row repair (P row repair was the greatest among the 3 double-row techniques at both 0° and 40° of abduction. Bridging sutures have a greater effect on the biomechanical properties of the repaired rotator cuff tendon at a low abduction angle, and the conventional double-row technique has a greater effect at a high abduction angle. Proper abduction position after rotator cuff repair differs between conventional double-row repair and transosseous-equivalent repair. The authors recommend the use of the combined technique of conventional double-row and bridging sutures to obtain better biomechanical properties at both low and high abduction angles.

  12. Single- and double-row repair for rotator cuff tears - biology and mechanics.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Vasta, Sebastiano; Zampogna, Biagio; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    We critically review the existing studies comparing the features of single- and double-row repair, and discuss suggestions about the surgical indications for the two repair techniques. All currently available studies comparing the biomechanical, clinical and the biological features of single and double row. Biomechanically, the double-row repair has greater performances in terms of higher initial fixation strength, greater footprint coverage, improved contact area and pressure, decreased gap formation, and higher load to failure. Results of clinical studies demonstrate no significantly better outcomes for double-row compared to single-row repair. Better results are achieved by double-row repair for larger lesions (tear size 2.5-3.5 cm). Considering the lack of statistically significant differences between the two techniques and that the double row is a high cost and a high surgical skill-dependent technique, we suggest using the double-row technique only in strictly selected patients. Copyright © 2012 S. Karger AG, Basel.

  13. Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures

    Science.gov (United States)

    Galal, Ahmed Mohamed; Kanemoto, Toshiaki

    This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.

  14. Outcomes following arthroscopic transosseous equivalent suture bridge double row rotator cuff repair: a prospective study and short-term results

    Directory of Open Access Journals (Sweden)

    Imam Mohamed Abdelnabi

    2016-01-01

    Full Text Available Background: The transosseous-equivalent cross bridge double row (TESBDR rotator cuff (RC repair technique has been developed to optimize healing biology at a repaired RC tendon insertion. It has been shown in the laboratory to improve pressurized contact area and mean foot print pressure when compared with a double row anchor technique. Pressure has been shown to influence healing between tendon and bone, and the tendon compression vector provided by the transosseous-equivalent suture bridges may enhance healing. The purpose was to prospectively evaluate the outcomes of arthroscopic TESBDR RC repair. Methods: Single center prospective case series study. Sixty-nine patients were selected to undergo arthroscopic TESBDR RC repair and were included in the current study. Primary outcome measures included the Oxford Shoulder Score (OSS, the University of California, Los Angeles (UCLA score, the Constant-Murley (CM Score and Range of motion (ROM. Secondary outcome measures included a Visual Analogue Scale (VAS for pain, another VAS for patient satisfaction from the operative procedure, EuroQoL 5-Dimensions Questionnaire (EQ-5D for quality of life assessment. Results: At 24 months post-operative, average OSS score was 44, average UCLA score was 31, average CM score was 88, average forward flexion was 145°, average internal rotation was 35°, average external rotation was 79°, average abduction was 150°, average EQ-5D score was 0.73, average VAS for pain was 2.3, and average VAS for patient satisfaction was 9.2. Conclusion: Arthroscopic TESBDR RC repair is a procedure with good post-operative functional outcome and low re-tear rate based on a short term follow-up.

  15. Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor

    International Nuclear Information System (INIS)

    D'Auvergne, Edward J.; Gooley, Paul R.

    2008-01-01

    Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set U-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported

  16. The effect of double-row fixation on initial repair strength in rotator cuff repair: a biomechanical study.

    Science.gov (United States)

    Meier, Steven W; Meier, Jeffrey D

    2006-11-01

    The purpose of this study was to compare the initial mechanical strength of 3 rotator cuff repair techniques. A total of 30 fresh-frozen cadaveric shoulders were prepared, and full-thickness supraspinatus tears were created. Specimens were randomized and placed into 3 groups: (1) transosseous suture technique (group I: TOS, n = 10, 6F/4M), (2) single-row suture anchor fixation (group II: SRSA, n = 10, 6F/4M), and (3) double-row suture anchor fixation (group III: DRSA, n = 10, 6F/4M). Each specimen underwent cyclic load testing from 5 N to 180 N at a rate of 33 mm/sec. The test was stopped when complete failure (repair site gap of 10 mm) or a total of 5,000 cycles was attained. Group I (TOS) failed at an average of 75.3 +/- 22.49 cycles, and group II (SRSA) at an average of 798.3 +/- 73.28 cycles; group III (DRSA) had no failures because all samples were stopped when 5,000 cycles had been completed. Fixation strength of the DRSA technique proved to be significantly greater than that of SRSA (P row suture anchor fixation was significantly stronger than was single-row repair. Therefore, double-row fixation may be superior to other techniques in that it provides a substantially stronger repair that could lead to improved biologic healing. A high incidence of incomplete healing occurs in rotator cuff repair. Use of double-row fixation may help the clinician to address some deficiencies in current methods by increasing the strength of the repair, potentially leading to improved healing rates.

  17. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs.

    Science.gov (United States)

    Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H

    2010-03-01

    To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P row repair (P row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures

  18. Space confinement and rotation stress induced self-organization of double-helix nanostructure: a nanotube twist with a moving catalyst head.

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei

    2012-05-22

    Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.

  19. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model.

    Science.gov (United States)

    Goschka, Andrew M; Hafer, Jason S; Reynolds, Kirk A; Aberle, Nicholas S; Baldini, Todd H; Hawkins, Monica J; McCarty, Eric C

    2015-10-01

    To further reduce the invasiveness of arthroscopic rotator cuff repair surgery the all-suture anchor has been developed. The all-suture anchor requires less bone removal and reduces the potential of loose body complications. The all-suture anchor must also have adequate biomechanical strength for the repair to heal. The hypothesis is there is no significant difference in the biomechanical performance of supraspinatus repairs using an all-suture anchor when compared to traditional solid-body suture anchors. Using nine shoulders per group, the supraspinatus tendon was dissected from the greater tuberosity. The four different double row repairs tested were (medial row/lateral row): A: ICONIX2/ICONIX2; B: ICONIX2/Stryker ReelX 3.9mm; C: ICONIX2/Stryker ReelX 4.5mm; D: Arthrex BioComposite CorkScrew FT 4.5mm/Arthrex BioComposite SwiveLock 4.75mm. The ICONIX2 was the only all-suture anchor tested. Tendons underwent cyclic loading from 10 to 100N for 500 cycles, followed by load-to-failure. Data was collected at cycles 5, 100, 200, 300, 400, and 500. One-way ANOVA analysis was used to assess significance (P≤0.05). The anchor combinations tested did not differ significantly in anterior (P>0.4) or posterior (P>0.3) gap formation, construct stiffness (P>0.7), ultimate load (P=0.06), or load to 5mm gap formation (P=0.84). The all-suture anchor demonstrated comparable biomechanical performance in multiple double-row anchor combinations to a combination of traditional solid-body anchors. Thus it may be an attractive option to further reduce the invasiveness of rotator cuff repairs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Outcome and Structural Integrity of Rotator Cuff after Arthroscopic Treatment of Large and Massive Tears with Double Row Technique: A 2-Year Followup

    Directory of Open Access Journals (Sweden)

    Ignacio Carbonel

    2013-01-01

    Full Text Available Purpose. The purpose of this study was to evaluate the functional outcome and the tendon healing after arthroscopic double row rotator cuff repair of large and massive rotator cuff tears. Methods. 82 patients with a full-thickness large and massive rotator cuff tear underwent arthroscopic repair with double row technique. Results were evaluated by use of the UCLA, ASES, and Constant questionnaires, the Shoulder Strength Index (SSI, and range of motion. Follow-up time was 2 years. Magnetic resonance imaging (MRI studies were performed on each shoulder preoperatively and 2 years after repair. Results. 100% of the patients were followed up. UCLA, ASES, and Constant questionnaires showed significant improvement compared with preoperatively (P<0.001. Range of motion and SSI in flexion, abduction, and internal and external rotation also showed significant improvement (P<0.001. MRI studies showed 24 cases of tear after repair (29%. Only 8 cases were a full-thickness tear. Conclusions. At two years of followup, in large and massive rotator cuff tears, an arthroscopic double row rotator cuff repair technique produces an excellent functional outcome and structural integrity.

  1. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    Science.gov (United States)

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  2. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    DEFF Research Database (Denmark)

    Boisen Staal, Line; Lipton, Andrew S.; Zorin, Vadim

    2014-01-01

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg1−xGax(OH)2(NO3)x·yH2O] was investigated using solid-state 1H and 71Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg3single bondOH, Mg2Gasingle...... analysis show that the synthesized MgGa LDH׳s had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH)4]− complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Gasingle bondOsingle bond...

  3. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    International Nuclear Information System (INIS)

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO 2 + CO 2 collisions have been measured. All data were obtained by double resonance spectroscopy with CO 2 lasers in a 2.5 meter absorption cell at 700 0 K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ΔJ up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 → 101) and hot-band (011 → 110) lasting have been used to observe resonant nu 3 -transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments

  4. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-05-15

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.

  5. [Mid-Term Clinical Results after Open Rotator Cuff Reconstruction in Double-Row Technique with Titanium Anchor Screws].

    Science.gov (United States)

    Geyer, S; Schoch, C; Nelitz, M; Geyer, M

    2015-08-01

    The double-row rotator cuff repair is discussed controversially. Despite improved biomechanical properties, reduced re-tear rates and higher costs, no significant difference compared to single-row fixation in the clinical results is found. Mid-term results of an open double-row fixation with titanium anchor screws are presented. 237 patients (m = 142, f = 95, median age: 56.3 years) were operated in 2007 with this technique by the senior author (M. G.). Preoperatively, 2 years and 4,5 years postoperatively a subjective shoulder score (SSG) with follow-up rates of 86, 87 and 83 %, was evaluated. 5.1 years postoperatively an objective evaluation of 131 patients using the Constant-Murley scores (CS), the simple shoulder tests (SST), Gerber's shoulder value and the evaluation with school grades followed. The integrity of the cuff was checked with ultrasound. The absolute (re-tears and partial re-tears) and the relative (re-tears, partial re-tears, thinning and thickening of the cuff) re-tear rates were evaluated. In SSG a highly significant improvement from 51 to 83 points was found (p row cuff repair with titanium screws is a safe and cost effective technique with a low re-tear rate with comparable clinical results regarding open and arthroscopic procedures. Georg Thieme Verlag KG Stuttgart · New York.

  6. Effect of single- and double-row rotator cuff repair at the tendon-to-bone interface: preliminary results using an in vivo sheep model.

    Science.gov (United States)

    Baums, M H; Schminke, B; Posmyk, A; Miosge, N; Klinger, H-M; Lakemeier, S

    2015-01-01

    The clinical superiority of the double-row technique is still a subject of controversial debate in rotator cuff repair. We hypothesised that the expression of different collagen types will differ between double-row and single-row rotator cuff repair indicating a faster healing response by the double-row technique. Twenty-four mature female sheep were randomly assembled to two different groups in which a surgically created acute infraspinatus tendon tear was fixed using either a modified single- or double-row repair technique. Shoulder joints from female sheep cadavers of identical age, bone maturity, and weight served as untreated control cluster. Expression of type I, II, and III collagen was observed in the tendon-to-bone junction along with recovering changes in the fibrocartilage zone after immunohistological tissue staining at 1, 2, 3, 6, 12, and 26 weeks postoperatively. Expression of type III collagen remained positive until 6 weeks after surgery in the double-row group, whereas it was detectable for 12 weeks in the single-row group. In both groups, type I collagen expression increased after 12 weeks. Type II collagen expression was increased after 12 weeks in the double-row versus single-row group. Clusters of chondrocytes were only visible between week 6 and 12 in the double-row group. The study demonstrates differences regarding the expression of type I and type III collagen in the tendon-to-bone junction following double-row rotator cuff repair compared to single-row repair. The healing response in this acute repair model is faster in the double-row group during the investigated healing period.

  7. Single-row vs. double-row arthroscopic rotator cuff repair: clinical and 3 Tesla MR arthrography results

    Science.gov (United States)

    2013-01-01

    Background Arthroscopic rotator cuff repair has become popular in the last few years because it avoids large skin incisions and deltoid detachment and dysfunction. Earlier arthroscopic single-row (SR) repair methods achieved only partial restoration of the original footprint of the tendons of the rotator cuff, while double-row (DR) repair methods presented many biomechanical advantages and higher rates of tendon-to-bone healing. However, DR repair failed to demonstrate better clinical results than SR repair in clinical trials. MR imaging at 3 Tesla, especially with intra-articular contrast medium (MRA), showed a better diagnostic performance than 1.5 Tesla in the musculoskeletal setting. The objective of this study was to retrospectively evaluate the clinical and 3 Tesla MRA results in two groups of patients operated on for a medium-sized full-thickness rotator cuff tear with two different techniques. Methods The first group consisted of 20 patients operated on with the SR technique; the second group consisted of 20 patients operated on with the DR technique. All patients were evaluated at a minimum of 3 years after surgery. The primary end point was the re-tear rate at 3 Tesla MRA. The secondary end points were the Constant-Murley Scale (CMS), the Simple Shoulder Test (SST) scores, surgical time and implant expense. Results The mean follow-up was 40 months in the SR group and 38.9 months in the DR group. The mean postoperative CMS was 70 in the SR group and 68 in the DR group. The mean SST score was 9.4 in the SR group and 10.1 in the DR group. The re-tear rate was 60% in the SR group and 25% in the DR group. Leakage of the contrast medium was observed in all patients. Conclusions To the best of our knowledge, this is the first report on 3 Tesla MRA in the evaluation of two different techniques of rotator cuff repair. DR repair resulted in a statistically significant lower re-tear rate, with longer surgical time and higher implant expense, despite no

  8. Single-row vs. double-row arthroscopic rotator cuff repair: clinical and 3 Tesla MR arthrography results

    Directory of Open Access Journals (Sweden)

    Tudisco Cosimo

    2013-01-01

    Full Text Available Abstract Background Arthroscopic rotator cuff repair has become popular in the last few years because it avoids large skin incisions and deltoid detachment and dysfunction. Earlier arthroscopic single-row (SR repair methods achieved only partial restoration of the original footprint of the tendons of the rotator cuff, while double-row (DR repair methods presented many biomechanical advantages and higher rates of tendon-to-bone healing. However, DR repair failed to demonstrate better clinical results than SR repair in clinical trials. MR imaging at 3 Tesla, especially with intra-articular contrast medium (MRA, showed a better diagnostic performance than 1.5 Tesla in the musculoskeletal setting. The objective of this study was to retrospectively evaluate the clinical and 3 Tesla MRA results in two groups of patients operated on for a medium-sized full-thickness rotator cuff tear with two different techniques. Methods The first group consisted of 20 patients operated on with the SR technique; the second group consisted of 20 patients operated on with the DR technique. All patients were evaluated at a minimum of 3 years after surgery. The primary end point was the re-tear rate at 3 Tesla MRA. The secondary end points were the Constant-Murley Scale (CMS, the Simple Shoulder Test (SST scores, surgical time and implant expense. Results The mean follow-up was 40 months in the SR group and 38.9 months in the DR group. The mean postoperative CMS was 70 in the SR group and 68 in the DR group. The mean SST score was 9.4 in the SR group and 10.1 in the DR group. The re-tear rate was 60% in the SR group and 25% in the DR group. Leakage of the contrast medium was observed in all patients. Conclusions To the best of our knowledge, this is the first report on 3 Tesla MRA in the evaluation of two different techniques of rotator cuff repair. DR repair resulted in a statistically significant lower re-tear rate, with longer surgical time and higher implant

  9. Single-row vs. double-row arthroscopic rotator cuff repair: clinical and 3 Tesla MR arthrography results.

    Science.gov (United States)

    Tudisco, Cosimo; Bisicchia, Salvatore; Savarese, Eugenio; Fiori, Roberto; Bartolucci, Dario A; Masala, Salvatore; Simonetti, Giovanni

    2013-01-27

    Arthroscopic rotator cuff repair has become popular in the last few years because it avoids large skin incisions and deltoid detachment and dysfunction. Earlier arthroscopic single-row (SR) repair methods achieved only partial restoration of the original footprint of the tendons of the rotator cuff, while double-row (DR) repair methods presented many biomechanical advantages and higher rates of tendon-to-bone healing. However, DR repair failed to demonstrate better clinical results than SR repair in clinical trials. MR imaging at 3 Tesla, especially with intra-articular contrast medium (MRA), showed a better diagnostic performance than 1.5 Tesla in the musculoskeletal setting. The objective of this study was to retrospectively evaluate the clinical and 3 Tesla MRA results in two groups of patients operated on for a medium-sized full-thickness rotator cuff tear with two different techniques. The first group consisted of 20 patients operated on with the SR technique; the second group consisted of 20 patients operated on with the DR technique. All patients were evaluated at a minimum of 3 years after surgery. The primary end point was the re-tear rate at 3 Tesla MRA. The secondary end points were the Constant-Murley Scale (CMS), the Simple Shoulder Test (SST) scores, surgical time and implant expense. The mean follow-up was 40 months in the SR group and 38.9 months in the DR group. The mean postoperative CMS was 70 in the SR group and 68 in the DR group. The mean SST score was 9.4 in the SR group and 10.1 in the DR group. The re-tear rate was 60% in the SR group and 25% in the DR group. Leakage of the contrast medium was observed in all patients. To the best of our knowledge, this is the first report on 3 Tesla MRA in the evaluation of two different techniques of rotator cuff repair. DR repair resulted in a statistically significant lower re-tear rate, with longer surgical time and higher implant expense, despite no difference in clinical outcomes. We think that

  10. Does double-row rotator cuff repair improve functional outcome of patients compared with single-row technique? A systematic review.

    Science.gov (United States)

    DeHaan, Alexander M; Axelrad, Thomas W; Kaye, Elizabeth; Silvestri, Lorenzo; Puskas, Brian; Foster, Timothy E

    2012-05-01

    The advantage of single-row versus double-row arthroscopic rotator cuff repair techniques has been a controversial issue in sports medicine and shoulder surgery. There is biomechanical evidence that double-row techniques are superior to single-row techniques; however, there is no clinical evidence that the double-row technique provides an improved functional outcome. When compared with single-row rotator cuff repair, double-row fixation, although biomechanically superior, has no clinical benefit with respect to retear rate or improved functional outcome. Systematic review. The authors reviewed prospective studies of level I or II clinical evidence that compared the efficacy of single- and double-row rotator cuff repairs. Functional outcome scores included the American Shoulder and Elbow Surgeons (ASES) shoulder scale, the Constant shoulder score, and the University of California, Los Angeles (UCLA) shoulder rating scale. Radiographic failures and complications were also analyzed. A test of heterogeneity for patient demographics was also performed to determine if there were differences in the patient profiles across the included studies. Seven studies fulfilled our inclusion criteria. The test of heterogeneity across these studies showed no differences. The functional ASES, Constant, and UCLA outcome scores revealed no difference between single- and double-row rotator cuff repairs. The total retear rate, which included both complete and partial retears, was 43.1% for the single-row repair and 27.2% for the double-row repair (P = .057), representing a trend toward higher failures in the single-row group. Through a comprehensive literature search and meta-analysis of current arthroscopic rotator cuff repairs, we found that the single-row repairs did not differ from the double-row repairs in functional outcome scores. The double-row repairs revealed a trend toward a lower radiographic proven retear rate, although the data did not reach statistical significance. There

  11. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers

    International Nuclear Information System (INIS)

    Chou, S.H.; Flynn, P.; Reid, B.

    1989-01-01

    Ten-micromole solid-phase RNA synthesis has been successfully performed on an automated nucleic acid synthesizer with coupling efficiencies up to 99%, using the tert-butyldimethylsilyl group to protect the 2'-hydroxyl. The tert-butyldimethylsilyl group was easily removed by tetrabutylammonium fluoride under conditions in which virtually no 2'- to 3'-isomerization was found to occur. By use of this approach, the self-complementary RNA dodecamers r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) were synthesized on an automated nucleic acid synthesizer, purified by TLC, and studied by high-resolution NMR. Imino protons were assigned from one-dimensional nuclear Overhauser effects. The nonexchangeable base, H1', and H2' protons were assigned by the sequential NOESY connectivity method. The NOE data from these two oligomers were analyzed qualitatively and compared to the ideal A- and B-type helix models of Arnott et al. (1972a,b). The internucleotide H6/H8 NOEs to the preceding H1' in r(CGCGUAUACGCG) were found to be sequence-dependent and probably reflect the roll angles between adjacent bases. The internucleotide H6/H8 to H2' NOEs of these oligomers correspond very well to an A-type conformation, but the interstrand adenine H2 NOEs to the following H1' were much stronger than those predicted from the fiber model. These strong interstrand NOEs can be rationalized by base pair slide to favor more interstrand base overlap

  12. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Siemens-Halske-Ring 14, D-03046 Cottbus (Germany); Gal, Patrice Le, E-mail: vincze.m@lecso.elte.hu [Institut de Recherche sur les Phénomènes Hors Equilibre, CNRS—Aix-Marseille University—Ecole Centrale Marseille, 49 rue F. Joliot-Curie, F-13384 Marseille (France)

    2016-12-15

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense. (paper)

  13. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    International Nuclear Information System (INIS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Gal, Patrice Le

    2016-01-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense. (paper)

  14. Clinical outcomes and repair integrity after arthroscopic full-thickness rotator cuff repair: suture-bridge versus double-row modified Mason-Allen technique.

    Science.gov (United States)

    Lee, Kwang Won; Yang, Dae Suk; Lee, Gyu Sang; Ma, Chang Hyun; Choy, Won Sik

    2018-05-23

    This retrospective study compared the clinical and radiologic outcomes of patients who underwent arthroscopic rotator cuff repairs by the suture-bridge and double-row modified Mason-Allen techniques. From January 2012 to May 2013, 76 consecutive cases of full-thickness rotator cuff tear, 1 to 4 cm in the sagittal plane, for which arthroscopic rotator cuff repair was performed, were included. The suture-bridge technique was used in 37 consecutive shoulders; and the double-row modified Mason-Allen technique, in 39 consecutive shoulders. Clinical outcomes at a minimum of 2 years (mean, 35.7 months) were evaluated postoperatively using the visual analog scale; University of California, Los Angeles Shoulder Scale; American Shoulder and Elbow Surgeons Subjective Shoulder Scale; and Constant score. Postoperative cuff integrity was evaluated at a mean of 17.7 months by magnetic resonance imaging. At the final follow-up, the clinical outcomes improved in both groups (all P  .05). The retear rate was 18.9% in the shoulders subjected to suture-bridge repair and 12.8% in the double-row modified Mason-Allen group; the difference was not significant (P = .361). Despite the presence of fewer suture anchors, the patients who underwent double-row modified Mason-Allen repair had comparable shoulder functional outcomes and a comparable retear rate with those who underwent suture-bridge repair. Therefore, the double-row modified Mason-Allen repair technique can be considered an effective treatment for patients with medium- to large-sized full-thickness rotator cuff tears. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. A biomechanical comparison of 2 transosseous-equivalent double-row rotator cuff repair techniques using bioabsorbable anchors: cyclic loading and failure behavior.

    Science.gov (United States)

    Spang, Jeffrey T; Buchmann, Stefan; Brucker, Peter U; Kouloumentas, Panos; Obst, Tobias; Schröder, Manuel; Burgkart, Rainer; Imhoff, Andreas B

    2009-08-01

    A novel double-row configuration was compared with a traditional double-row configuration for rotator cuff repair. In 10 matched-pair sheep shoulders in vitro repair was performed with either a double-row technique with corkscrew suture anchors for the medial row and insertion anchors for the lateral row (group A) or a double-row technique with a new tape-like suture material with insertion anchors for both the medial and lateral rows (group B). Each specimen underwent cyclic loading from 10 to 150 N for 100 cycles, followed by unidirectional failure testing. Gap formation and strain within the repair area for the first and last cycles were analyzed with a video digitizing system, and stiffness and failure load were determined from the load-elongation curve. The results were similar for the 2 repair types. There was no significant difference between the ultimate failure loads of the 2 techniques (421 +/- 150 N in group A and 408 +/- 66 N in group B, P = .31) or the stiffness of the 2 techniques (84 +/- 26 N/mm in group A and 99 +/- 20 N/mm in group B, P = .07). In addition, gap formation was not different between the repair types. Strain over the repair area was also not different between the repair types. Both tested rotator cuff repair techniques had high failure loads, limited gap formation, and acceptable strain patterns. No significant difference was found between the novel and conventional double-row repair types. Two double-row techniques-one with corkscrew suture anchors for the medial row and insertion anchors for the lateral row and one with insertion anchors for both the medial and lateral rows-provided excellent biomechanical profiles at time 0 for double-row repairs in a sheep model. Although the sheep model may not directly correspond to in vivo conditions, all-insertion anchor double-row constructs are worthy of further investigation.

  16. Biomechanical comparison of 4 double-row suture-bridging rotator cuff repair techniques using different medial-row configurations.

    Science.gov (United States)

    Pauly, Stephan; Kieser, Bettina; Schill, Alexander; Gerhardt, Christian; Scheibel, Markus

    2010-10-01

    Biomechanical comparison of different suture-bridge configurations of the medial row with respect to initial construct stability (time 0, porcine model). In 40 porcine fresh-frozen shoulders, the infraspinatus tendons were dissected from their insertions. All specimens were operated on by use of the suture-bridge technique, only differing in terms of the medial-row suture-grasping configuration, and randomized into 4 groups: (1) single-mattress (SM) technique, (2) double-mattress (DM) technique, (3) cross-stitch (CS) technique, and (4) double-pulley (DP) technique. Identical suture anchors were used for all specimens (medial: Bio-Corkscrew FT 5.5 [Arthrex, Naples, FL]; lateral: Bio-PushLock 3.5 [Arthrex]). All repairs were cyclically loaded from 10 to 60 N until 10 to 200 N (20-N stepwise increase after 50 cycles each) with a material testing machine. Forces at 3 and 5 mm of gap formation, mode of failure, and maximum load to failure were recorded. The DM technique had the highest ultimate tensile strength (368.6 ± 99.5 N) compared with the DP (248.4 ± 122.7 N), SM (204.3 ± 90 N), and CS (184.9 ± 63.8 N) techniques (P = .004). The DM technique provided maximal force resistance until 3 and 5 mm of gap formation (90.0 ± 18.1 N and 128.0 ± 32.3 N, respectively) compared with the CS (72 ± 8.9 N and 108 ± 20.2 N, respectively), SM (66.0 ± 8.9 N and 90.0 ± 26.9 N, respectively), and DP (62.2 ± 6.2 N and 71 ± 13.2 N, respectively) techniques (P biomechanical construct stability at time 0 in this porcine ex vivo model. This technique increases initial stability and resistance to suture cutting through the rotator cuff tendon after arthroscopic suture-bridge repair. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair.

    Science.gov (United States)

    Burkhart, Stephen S; Adams, Christopher R; Burkhart, Sarah S; Schoolfield, John D

    2009-03-01

    The purpose of this study was to compare the biomechanical fixation parameters of a standard double-row rotator cuff repair with those of a knotless footprint reconstruction using the double-row SwiveLock-FiberChain technique (Arthrex, Naples, FL). Seven matched pairs of human cadaveric shoulders were used for testing (mean age, 48 +/- 10.3 years). A shoulder from each matched pair was randomly selected to receive a standard 4-anchor double-row repair of the supraspinatus tendon, and the contralateral shoulder received a 4-anchor double-row SwiveLock-FiberChain repair. The tendon was cycled from 10 N to 100 N at 1 Hz for 500 cycles, followed by a single-cycle pull to failure at 33 mm/s. Yield load, ultimate load, cyclic displacement, and mode of failure were recorded. Yield load and ultimate load were higher for the SwiveLock-FiberChain repair compared with the standard double-row repair for 6 of the 7 treatment pairs; however, 1 cadaver had a contrary outcome, so the overall mean differences in yield load and ultimate load were not significantly different from 0 by Student t test (P > .15). Furthermore, smaller differences between yield load and ultimate load for the SwiveLock-FiberChain repair in 5 of the 7 treatment pairs showed a self-reinforcing mechanism. Double-row footprint reconstruction with the knotless SwiveLock-FiberChain system in this study had yield loads, ultimate loads, and cyclic displacements that were statistically equivalent to those of standard double-row rotation cuff reconstructions. The SwiveLock-FiberChain system's combination of strength, self-reinforcement, and decreased operating time may offer advantages to the surgeon, particularly when dealing with older patients in whom poor tissue quality and total operative time are important considerations.

  18. Knotless double-row SutureBridge rotator cuff repairs have improved self-reinforcement compared with double-row SutureBridge repairs with tied medial knots: a biomechanical study using an ovine model.

    Science.gov (United States)

    Smith, Geoffrey C S; Bouwmeester, Theresia M; Lam, Patrick H

    2017-12-01

    In double-row SutureBridge (Arthrex, Naples, FL, USA) rotator cuff repairs, increasing tendon load may generate progressively greater compression forces at the repair footprint (self-reinforcement). SutureBridge rotator cuff repairs using tied horizontal mattress sutures medially may limit this effect compared with a knotless construct. Rotator cuff repairs were performed in 9 pairs of ovine shoulders. One group underwent repair with a double-row SutureBridge construct with tied horizontal medial-row mattress sutures. The other group underwent repair in an identical fashion except that medial-row knots were not tied. Footprint contact pressure was measured at 0° and 20° of abduction under loads of 0 to 60 N. Pull-to-failure tests were then performed. In both repair constructs, each 10-N increase in rotator cuff tensile load led to a significant increase in footprint contact pressure (P row SutureBridge configuration, self-reinforcement is seen in repairs with and without medial-row knots. Self-reinforcement is greater with the knotless technique. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Biomechanical and magnetic resonance imaging evaluation of a single- and double-row rotator cuff repair in an in vivo sheep model.

    Science.gov (United States)

    Baums, Mike H; Spahn, Gunter; Buchhorn, Gottfried H; Schultz, Wolfgang; Hofmann, Lars; Klinger, Hans-Michael

    2012-06-01

    To investigate the biomechanical and magnetic resonance imaging (MRI)-derived morphologic changes between single- and double-row rotator cuff repair at different time points after fixation. Eighteen mature female sheep were randomly assigned to either a single-row treatment group using arthroscopic Mason-Allen stitches or a double-row treatment group using a combination of arthroscopic Mason-Allen and mattress stitches. Each group was analyzed at 1 of 3 survival points (6 weeks, 12 weeks, and 26 weeks). We evaluated the integrity of the cuff repair using MRI and biomechanical properties using a mechanical testing machine. The mean load to failure was significantly higher in the double-row group compared with the single-row group at 6 and 12 weeks (P = .018 and P = .002, respectively). At 26 weeks, the differences were not statistically significant (P = .080). However, the double-row group achieved a mean load to failure similar to that of a healthy infraspinatus tendon, whereas the single-row group reached only 70% of the load of a healthy infraspinatus tendon. No significant morphologic differences were observed based on the MRI results. This study confirms that in an acute repair model, double-row repair may enhance the speed of mechanical recovery of the tendon-bone complex when compared with single-row repair in the early postoperative period. Double-row rotator cuff repair enables higher mechanical strength that is especially sustained during the early recovery period and may therefore improve clinical outcome. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Part II: Biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique.

    Science.gov (United States)

    Park, Maxwell C; Tibone, James E; ElAttrache, Neal S; Ahmad, Christopher S; Jun, Bong-Jae; Lee, Thay Q

    2007-01-01

    We hypothesized that a transosseous-equivalent repair would demonstrate improved tensile strength and gap formation between the tendon and tuberosity when compared with a double-row technique. In 6 fresh-frozen human shoulders, a transosseous-equivalent rotator cuff repair was performed: a suture limb from each of two medial anchors was bridged over the tendon and fixed laterally with an interference screw. In 6 contralateral matched-pair specimens, a double-row repair was performed. For all repairs, a materials testing machine was used to load each repair cyclically from 10 N to 180 N for 30 cycles; each repair underwent tensile testing to measure failure loads at a deformation rate of 1 mm/sec. Gap formation between the tendon edge and insertion was measured with a video digitizing system. The mean ultimate load to failure was significantly greater for the transosseous-equivalent technique (443.0 +/- 87.8 N) compared with the double-row technique (299.2 +/- 52.5 N) (P = .043). Gap formation during cyclic loading was not significantly different between the transosseous-equivalent and double-row techniques, with mean values of 3.74 +/- 1.51 mm and 3.79 +/- 0.68 mm, respectively (P = .95). Stiffness for all cycles was not statistically different between the two constructs (P > .40). The transosseous-equivalent rotator cuff repair technique improves ultimate failure loads when compared with a double-row technique. Gap formation is similar for both techniques. A transosseous-equivalent repair helps restore footprint dimensions and provides a stronger repair than the double-row technique, which may help optimize healing biology.

  1. NMR study of conformational exchange and double-well proton potential in intramolecular hydrogen bonds in monoanions of succinic acid and derivatives.

    Science.gov (United States)

    Guo, Jing; Tolstoy, Peter M; Koeppe, B; Denisov, Gleb S; Limbach, Hans-Heinrich

    2011-09-08

    We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.

  2. Biomechanical comparison of double-row versus transtendon single-row suture anchor technique for repair of the grade III partial articular-sided rotator cuff tears.

    Science.gov (United States)

    Zhang, Chun-Gang; Zhao, De-Wei; Wang, Wei-Ming; Ren, Ming-Fa; Li, Rui-Xin; Yang, Sheng; Liu, Yu-Peng

    2010-11-01

    For partial-thickness tears of the rotator cuff, double-row fixation and transtendon single-row fixation restore insertion site anatomy, with excellent results. We compared the biomechanical properties of double-row and transtendon single-row suture anchor techniques for repair of grade III partial articular-sided rotator cuff tears. In 10 matched pairs of fresh-frozen sheep shoulders, the infraspinatus tendon from 1 shoulder was repaired with a double-row suture anchor technique. This comprised placement of 2 medial anchors with horizontal mattress sutures at an angle of ≤ 45° into the medial margin of the infraspinatus footprint, just lateral to the articular surface, and 2 lateral anchors with horizontal mattress sutures. Standardized, 50% partial, articular-sided infraspinatus lesions were created in the contralateral shoulder. The infraspinatus tendon from the contralateral shoulder was repaired using two anchors with transtendon single-row mattress sutures. Each specimen underwent cyclic loading from 10 to 100 N for 50 cycles, followed by tensile testing to failure. Gap formation and strain over the footprint area were measured using a motion capture system; stiffness and failure load were determined from testing data. Gap formation for the transtendon single-row repair was significantly smaller (P row repair for the first cycle ((1.74 ± 0.38) mm vs. (2.86 ± 0.46) mm, respectively) and the last cycle ((3.77 ± 0.45) mm vs. (5.89 ± 0.61) mm, respectively). The strain over the footprint area for the transtendon single-row repair was significantly smaller (P row repair. Also, it had a higher mean ultimate tensile load and stiffness. For grade III partial articular-sided rotator cuff tears, transtendon single-row fixation exhibited superior biomechanical properties when compared with double-row fixation.

  3. Comparison of Passive Stiffness Changes in the Supraspinatus Muscle after Double-row and Knotless Transosseous-equivalent Rotator Cuff Repair Techniques: A Cadaveric Study

    Science.gov (United States)

    Hatta, Taku; Giambini, Hugo; Hooke, Alexander W.; Zhao, Chunfeng; Sperling, John W.; Steinmann, Scott P.; Yamamoto, Nobuyuki; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    Purpose To investigate the alteration of passive stiffness in the supraspinatus muscle after double-row (DR) and knotless transosseous-equivalent (KL-TOE) repair techniques, using the shear wave elastography (SWE) in cadavers with rotator cuff tears. We also aimed to compare altered muscular stiffness after these repairs to that obtained from shoulders with intact rotator cuff tendon. Methods Twelve fresh-frozen cadaveric shoulders with rotator cuff tear (tear size; small [6], medium-large [6]) were used. Passive stiffness of four anatomical regions in the supraspinatus muscle was measured based on an established SWE method. Each specimen underwent DR and KL-TOE footprint repairs at 30° glenohumeral abduction. SWE values, obtained at 0°, 10°, 20°, 30°, 60°, and 90° abduction, were assessed in 3 different conditions: preoperative (torn) and postoperative conditions with the 2 techniques. The increase ratio of SWE values after repair was compared among the four regions to assess stiffness distribution. In addition, SWE values were obtained on 12 shoulders with intact rotator cuff tendons as control. Results In shoulders with medium-large size tears, supraspinatus muscles showed an increased passive stiffness after rotator cuff repairs, and this was significantly observed at adducted positions. KL-TOE repair showed uniform stiffness changes among the four regions of the supraspinatus muscle (mean, 189-218% increase after repair), whereas, DR repair caused a significantly heterogeneous stiffness distribution within the muscle (mean, 187-319% after repair, P = 0.002). Although a repair-induced increase in muscle stiffness was observed also in small size tear, there were no significant differences in repaired stiffness changes between DR and KL-TOE (mean, 127-138% and 127-130% after repairs, respectively). Shoulders with intact rotator cuff tendon showed uniform SWE values among the four regions of the supraspinatus muscle (mean, 38.2-43.0 kPa). Conclusion Passive

  4. Effect of preemptive intra-articular morphine and ketamine on pain after arthroscopic rotator cuff repair: a prospective, double-blind, randomized controlled study.

    Science.gov (United States)

    Khashan, M; Dolkart, O; Amar, E; Chechik, O; Sharfman, Z; Mozes, G; Maman, E; Weinbroum, A A

    2016-02-01

    Rotator cuff tear is a leading etiology of shoulder pain and disability. Surgical treatment is indicated in patients with persistent pain who fail a trial of non-surgical treatment. Pain reduction following rotator cuff repair, particularly within the first 24-48 h, is a major concern to both doctors and patients. This study aimed to compare the postoperative antinociceptive additive effects of pre-incisional intra-articular (IA) ketamine when combined with morphine with two times the dose of morphine or saline. In this prospective, randomized, double blind, controlled trial patients undergoing arthroscopic rotator cuff tear repair (ARCR) under general anesthesia were enrolled. Patients were randomly assigned to one of the three intervention groups. Twenty minutes prior to incision, morphine (20 mg/10 ml), ketamine (50 mg + morphine 10 mg/10 ml), or saline (0.9 % 10 ml) (n = 15/group), were administered to all patients. First 24 h postoperative analgesia consisted of intravenous patient controlled analgesia (IV-PCA) morphine and oral rescue paracetamol 1000 mg or oxycodone 5 mg. 24-h, 2-week and 3-month patient rated pain numeric rating scale (NRS) and analgesics consumption were documented. Patients' demographic and perioperative data were similar among all groups. The 24-h and the 2-week NRSs were significantly (p pain in the first 2 weeks after arthroscopic rotator cuff repair. Further research is warranted to elucidate the optimal timing and dosing of IA ketamine and morphine for postoperative analgesic effects.

  5. Functional and structural comparisons of the arthroscopic knotless double-row suture bridge and single-row repair for anterosuperior rotator cuff tears.

    Science.gov (United States)

    Ide, Junji; Karasugi, Tatsuki; Okamoto, Nobukazu; Taniwaki, Takuya; Oka, Kiyoshi; Mizuta, Hiroshi

    2015-10-01

    We compared the outcomes of knotless double-row suture bridge and single-row repairs in patients undergoing arthroscopic repair for anterosuperior rotator cuff tears. We included 61 full-thickness anterosuperior rotator cuff tears treated by arthroscopic repair, namely, single-row repair (group 1: 25 shoulders; mean patient age, 64 years) and the knotless double-row suture bridge repair (group 2: 36 shoulders; mean patient age, 62 years). Preoperative and postoperative magnetic resonance imaging was performed for all shoulders. Clinical outcomes were evaluated for mean follow-up periods of 81 months (range, 72-96 months) in group 1 and 34 months (range, 24-42 months) in group 2, using the University of California, Los Angeles and Japanese Orthopaedic Association assessments. At the final follow-up, both groups showed improvement in the average University of California, Los Angeles and Japanese Orthopaedic Association scores and range of motion, although no intergroup differences were observed. Both groups showed improved abduction strength, and the average score was higher in group 2 (P = .0112). The lift-off and belly-press test results were improved in both groups. Postoperatively, the incidence of positive lift-off tests tended to be lower (P = .075) and that of positive belly-press tests was lower in group 2, P = .049). The repair failure rate tended to be lower in group 2 (14% [5 of 36]) than in group 1 (32% [8 of 25]; P = .0839). Arthroscopic knotless double-row suture bridge repair of anterosuperior rotator cuff tears yielded functional outcomes equivalent to those of single-row repair and may be useful for improving subscapularis function, abduction strength, and tendon healing. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Internal rotation of 1-Aryl-3,3-dialkyltriazenes. Comparison of semiempirical molecular orbital calculations with far-infrared, Raman, and NMR spectroscopic results

    International Nuclear Information System (INIS)

    Panitz, J.C.; Lippert, T.; Wokaun, A.

    1994-01-01

    PM3 and AM1 semiempirical molecular orbital techniques are used to establish a model for internal rotation about the N 2 -N 3 axis of 1-aryl-3,3-dialkyltriazines. The PM3 method is satisfactory for obtaining agreement between the experimental and calculated results, but the AM1 method has an artifact in the potential energy curve of internal rotation about the N 2 -N 3 axis. 24 refs., 6 figs., 5 tabs

  7. Influence of the initial rupture size and tendon subregion on three-dimensional biomechanical properties of single-row and double-row rotator cuff reconstructions.

    Science.gov (United States)

    Lorbach, O; Pape, D; Raber, F; Busch, L C; Kohn, D; Kieb, M

    2012-11-01

    Influence of the initial rotator cuff tear size and of different subregions of the SSP tendon on the cyclic loading behavior of a modified single-row reconstruction compared to a suture-bridging double-row repair. Artificial tears (25 and 35 mm) were created in the rotator cuff of 24 human cadaver shoulders. The reconstructions were performed as a single-row repair (SR) using a modified suture configuration or a suture-bridge double-row repair (DR). Radiostereometric analysis was used under cyclic loading (50 cycles, 10–180 N, 10–250 N) to calculate cyclic displacement in three different planes (anteroposterior (x), craniocaudal (y) and mediolateral (z) level). Cyclic displacement was recorded, and differences in cyclic displacement of the anterior compared to the posterior subregions of the tendon were calculated. In small-to-medium tears (25 mm) and medium-to-large tears (35 mm), significant lower cyclic displacement was seen for the SR-reconstruction compared to the DR-repair at 180 N (p ≤ 0.0001; p = 0.001) and 250 N (p = 0.001; p = 0.007) in the x-level. These results were confirmed in the y-level at 180 N (p = 0.001; p = 0.0022) and 250 N (p = 0.005; p = 0.0018). Comparison of the initial tear sizes demonstrated significant differences in cyclic displacement for the DR technique in the x-level at 180 N (p = 0.002) and 250 N (p = 0.004). Comparison of the anterior versus the posterior subregion of the tendon revealed significant lower gap formation in the posterior compared to the anterior subregions in the x-level for both tested rotator cuff repairs (p ≤ 0.05). The tested single-row repair using a modified suture configuration achieved superior results in three-dimensional measurements of cyclic displacement compared to the tested double-row suture-bridge repair. The results were dependent on the initial rupture size of the rotator cuff tear. Furthermore, significant differences were found between tendon subregions of the rotator cuff with

  8. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Demissie, Taye B. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  9. Surgical treatment of Lenke 1 thoracic adolescent idiopathic scoliosis with maintenance of kyphosis using the simultaneous double-rod rotation technique.

    Science.gov (United States)

    Sudo, Hideki; Ito, Manabu; Abe, Yuichiro; Abumi, Kuniyoshi; Takahata, Masahiko; Nagahama, Ken; Hiratsuka, Shigeto; Kuroki, Kei; Iwasaki, Norimasa

    2014-06-15

    Retrospective analysis of a prospectively collected, consecutive, nonrandomized series of patients. To assess the surgical outcomes of the simultaneous double-rod rotation technique for treating Lenke 1 thoracic adolescent idiopathic scoliosis (AIS). With the increasing popularity of segmental pedicle screw spinal reconstruction for treating AIS, concerns regarding the limited ability to correct hypokyphosis have also increased. A consecutive series of 32 patients with Lenke 1 main thoracic AIS treated with the simultaneous double-rod rotation technique at our institution was included. Outcome measures included patient demographics, radiographical measurements, and Scoliosis Research Society questionnaire scores. All 32 patients were followed up for a minimum of 2 years (average, 3.6 yr). The average main thoracic Cobb angle correction rate and the correction loss at the final follow-up were 67.8% and 3.3°, respectively. The average preoperative thoracic kyphosis (T5-T12) was 11.9°, which improved significantly to 20.5° (P correction of the main thoracic curve while maintaining sagittal profiles and correcting coronal and axial deformities. 4.

  10. Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model.

    Science.gov (United States)

    Quigley, Ryan J; Gupta, Akash; Oh, Joo-Han; Chung, Kyung-Chil; McGarry, Michelle H; Gupta, Ranjan; Tibone, James E; Lee, Thay Q

    2013-08-01

    The transosseous-equivalent (TOE) rotator cuff repair technique increases failure loads and contact pressure and area between tendon and bone compared to single-row (SR) and double-row (DR) repairs, but no study has investigated if this translates into improved healing in vivo. We hypothesized that a TOE repair in a rabbit chronic rotator cuff tear model would demonstrate a better biomechanical profile than SR and DR repairs after 12 weeks of healing. A two-stage surgical procedure was performed on 21 New Zealand White Rabbits. The right subscapularis tendon was transected and allowed to retract for 6 weeks to simulate a chronic tear. Repair was done with the SR, DR, or TOE technique and allowed to heal for 12 weeks. Cyclic loading and load to failure biomechanical testing was then performed. The TOE repair showed greater biomechanical characteristics than DR, which in turn were greater than SR. These included yield load (p repair of a chronic, retracted rotator cuff tear, the TOE technique was the strongest biomechanical construct after healing followed by DR with SR being the weakest. Copyright © 2013 Orthopaedic Research Society.

  11. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    Science.gov (United States)

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  12. Single-row modified mason-allen versus double-row arthroscopic rotator cuff repair: a biomechanical and surface area comparison.

    Science.gov (United States)

    Nelson, Cory O; Sileo, Michael J; Grossman, Mark G; Serra-Hsu, Frederick

    2008-08-01

    The purpose of this study was to compare the time-zero biomechanical strength and the surface area of repair between a single-row modified Mason-Allen rotator cuff repair and a double-row arthroscopic repair. Six matched pairs of sheep infraspinatus tendons were repaired by both techniques. Pressure-sensitive film was used to measure the surface area of repair for each configuration. Specimens were biomechanically tested with cyclic loading from 20 N to 30 N for 20 cycles and were loaded to failure at a rate of 1 mm/s. Failure was defined at 5 mm of gap formation. Double-row suture anchor fixation restored a mean surface area of 258.23 +/- 69.7 mm(2) versus 148.08 +/- 75.5 mm(2) for single-row fixation, a 74% increase (P = .025). Both repairs had statistically similar time-zero biomechanics. There was no statistical difference in peak-to-peak displacement or elongation during cyclic loading. Single-row fixation showed a higher mean load to failure (110.26 +/- 26.4 N) than double-row fixation (108.93 +/- 21.8 N). This was not statistically significant (P = .932). All specimens failed at the suture-tendon interface. Double-row suture anchor fixation restores a greater percentage of the anatomic footprint when compared with a single-row Mason-Allen technique. The time-zero biomechanical strength was not significantly different between the 2 study groups. This study suggests that the 2 factors are independent of each other. Surface area and biomechanical strength of fixation are 2 independent factors in the outcome of rotator cuff repair. Maximizing both factors may increase the likelihood of complete tendon-bone healing and ultimately improve clinical outcomes. For smaller tears, a single-row modified Mason-Allen suture technique may provide sufficient strength, but for large amenable tears, a double row can provide both strength and increased surface area for healing.

  13. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  14. Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement.

    Science.gov (United States)

    Pauly, Stephan; Fiebig, David; Kieser, Bettina; Albrecht, Bjoern; Schill, Alexander; Scheibel, Markus

    2011-12-01

    Biomechanical comparison of four different Speed-Bridge configurations with or without medial or lateral row reinforcement. Reinforcement of the knotless Speed-Bridge double-row repair technique with additional medial mattress- or lateral single-stitches was hypothesized to improve biomechanical repair stability at time zero. Controlled laboratory study: In 36 porcine fresh-frozen shoulders, the infraspinatus tendons were dissected and shoulders were randomized to four groups: (1) Speed-Bridge technique with single tendon perforation per anchor (STP); (2) Speed-Bridge technique with double tendon perforation per anchor (DTP); (3) Speed-Bridge technique with medial mattress-stitch reinforcement (MMS); (4) Speed-Bridge technique with lateral single-stitch reinforcement (LSS). All repairs were cyclically loaded from 10-60 N up to 10-200 N (20 N stepwise increase) using a material testing device. Forces at 3 and 5 mm gap formation, mode of failure and maximum load to failure were recorded. The MMS-technique with double tendon perforation showed significantly higher ultimate tensile strength (338.9 ± 90.0 N) than DTP (228.3 ± 99.9 N), LSS (188.9 ± 62.5 N) and STP-technique (122.2 ± 33.8 N). Furthermore, the MMS-technique provided increased maximal force resistance until 3 and 5 mm gap formation (3 mm: 77.8 ± 18.6 N; 5 mm: 113.3 ± 36.1 N) compared with LSS, DTP and STP (P row defect by tendon sawing first, then laterally. No anchor pullout occurred. Double tendon perforation per anchor and additional medial mattress stitches significantly enhance biomechanical construct stability at time zero in this ex vivo model when compared with the all-knotless Speed-Bridge rotator cuff repair.

  15. A biomechanical comparison of 2 technical variations of double-row rotator cuff fixation: the importance of medial row knots.

    Science.gov (United States)

    Busfield, Benjamin T; Glousman, Ronald E; McGarry, Michelle H; Tibone, James E; Lee, Thay Q

    2008-05-01

    Previous studies have shown comparable biomechanical properties of double-row fixation versus double-row fixation with a knotless lateral row. SutureBridge is a construct that secures the cuff with medial row mattress suture anchors and knotless lateral row fixation of the medial suture ends. Recent completely knotless constructs may lead to lesser clinical outcomes if the construct properties are compromised from lack of suture knots. A completely knotless construct without medial row knots will compromise the biomechanical properties in both cyclic and failure-testing parameters. Controlled laboratory study. Six matched pairs of cadaveric shoulders were randomized to 2 groups of double row fixation with SutureBridge: group 1 with medial row knots, and group 2 without medial row knots. The specimens were placed in a materials test system at 30 degrees of abduction. Cyclic testing to 180 N at 1 mm/sec for 30 cycles was performed, followed by tensile testing to failure at 1 mm/sec. Data included cyclic and failure data from the materials test system and gap data using a video digitizing system. All data from paired specimens were compared using paired Student t tests. Group 1 had a statistically significant difference (P row failure, whereas all group 1 specimens failed at the clamp. Although lateral row knotless fixation has been shown not to sacrifice structural integrity of this construct, the addition of a knotless medial row compromises the construct leading to greater gapping and failure at lower loads. This may raise concerns regarding recently marketed completely knotless double row constructs.

  16. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  17. An Inversion Recovery NMR Kinetics Experiment

    Science.gov (United States)

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  18. Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique

    Science.gov (United States)

    Kitashima, Tomonori; Liu, Lijun; Kitamura, Kenji; Kakimoto, Koichi

    2004-05-01

    The transport mechanism of supplied raw material in a double-crucible Czochralski system using the accelerated crucible rotation technique (ACRT) was investigated by three-dimensional and time-dependent numerical simulation. The calculation clarified that use of the ACRT resulted in enhancement of the mixing effect of the supplied raw material. It is, therefore, possible to maintain the composition of the melt in an inner crucible during crystal growth by using the ACRT. The effect of the continuous charge of the raw material on melt temperature was also investigated. Our results showed that the effect of feeding lithium niobate granules on melt temperature was small, since the feeding rate of the granules is small. Therefore, solidification of the melt surface due to the heat of fusion in this system is not likely.

  19. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  20. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  1. Biomechanical Performance of Medial Row Suture Placement Relative to the Musculotendinous Junction in Transosseous Equivalent Suture Bridge Double-Row Rotator Cuff Repair.

    Science.gov (United States)

    Virk, Mandeep S; Bruce, Benjamin; Hussey, Kristen E; Thomas, Jacqueline M; Luthringer, Tyler A; Shewman, Elizabeth F; Wang, Vincent M; Verma, Nikhil N; Romeo, Anthony A; Cole, Brian J

    2017-02-01

    To compare the biomechanical performance of medial row suture placement relative to the musculotendinous junction (MTJ) in a cadaveric transosseous equivalent suture bridge (TOE-SB) double-row (DR) rotator cuff repair (RCR) model. A TOE-SB DR technique was used to reattach experimentally created supraspinatus tendon tears in 9 pairs of human cadaveric shoulders. The medial row sutures were passed either near the MTJ (MTJ group) or 10 mm lateral to the MTJ (rotator cuff tendon [RCT] group). After the supraspinatus repair, the specimens underwent cyclic loading and load to failure tests. The localized displacement of the markers affixed to the tendon surface was measured with an optical tracking system. The MTJ group showed a significantly higher (P = .03) medial row failure (5/9; 3 during cyclic testing and 2 during load to failure testing) compared with the RCT group (0/9). The mean number of cycles completed during cyclic testing was lower in the MTJ group (77) compared with the RCT group (100; P = .07) because 3 specimens failed in the MTJ group during cyclic loading. There were no significant differences between the 2 study groups with respect to biomechanical properties during the load to failure testing. In a cadaveric TOE-SB DR RCR model, medial row sutures through the MTJ results in a significantly higher rate of medial row failure. In rotator cuff tears with tendon tissue loss, passage of medial row sutures through the MTJ should be avoided in a TOE-SB RCR technique because of the risk of medial row failure. Copyright © 2016. Published by Elsevier Inc.

  2. Biomechanical study comparing 3 fixation methods for rotator cuff massive tear: Transosseous No. 2 suture, transosseous braided tape, and double-row.

    Science.gov (United States)

    Hinse, Stéphanie; Ménard, Jérémie; Rouleau, Dominique M; Canet, Fanny; Beauchamp, Marc

    2016-11-01

    Important rotator cuff repair failure rates have prompted this study of the techniques and materials used in order to optimize clinical results. Is the reconstruction of the rotator cuff biomechanically stronger when using: 1) transosseous with 2 mm braided tape suture (TOT), 2) transosseous with multi-strand No. 2 sutures (TOS), or 3) double row suture bridge with suture anchors loaded with No. 2 braided sutures (DRSB)? Twenty-four cadaveric pig shoulders were randomized in the three repair constructs. The infraspinatus muscle was detached to mimic a complete laceration, repaired with one of the three repair groups and tested with a traction machine. Cameras recorded tendon displacement during trials. The ultimate strength (US), failure mode, and tendon displacement, qualified by the bare footprint area (BFA), during cycling phases were compared. The US for DRSB was 175 ± 82 Newton (N), 91 ± 51 N for TOS, and 147 ± 63 N for TOT. The BFA after 200 cycles was 81 ± 34% for TOS, 57 ± 41% for TOT, and 26 ± 27% for DRSB repairs. No significant difference was observed between the DRSB and TOT results for US or BFA percentage of loss during all the cycling phases. TOS proved to be weaker than TOT and DRSB. All the ruptures occurred in the tendon, which seems to be the weakness of rotator cuff repairs. The use of braided tape suture with a transosseous technique seems to be a cost effective, equivalent alternative implant compared to anchor fixation. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Biomechanical characteristics of the horizontal mattress stitch: implication for double-row and suture-bridge rotator cuff repair.

    Science.gov (United States)

    Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q

    2014-03-01

    We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.

  4. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  5. NMR studies on 15N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    International Nuclear Information System (INIS)

    Kenyon, G.L.; Reddick, R.E.

    1986-01-01

    Recently, the authors have synthesized 15 N-2-Cr, 15 N-3-Crn, 15 N-2-Crn, 15 N-3-PCrn, 15 N-3-PCr, and 15 N-2-PCr. 1 H, 15 N, 31 P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the 31 P- 15 N one-bond coupling constant in 15 N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the 14 N/ 15 N positional isotope exchange of 3- 15 N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity

  6. Determination of the Rotational Diffusion Tensor of Macromolecules in Solution from NMR Relaxation Data with a Combination of Exact and Approximate Methods—Application to the Determination of Interdomain Orientation in Multidomain Proteins

    Science.gov (United States)

    Ghose, Ranajeet; Fushman, David; Cowburn, David

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.

  7. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins.

    Science.gov (United States)

    Ghose, R; Fushman, D; Cowburn, D

    2001-04-01

    In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.

  8. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  9. Effect of Internal Heat Source on the Onset of Double-Diffusive Convection in a Rotating Nanofluid Layer with Feedback Control Strategy

    Directory of Open Access Journals (Sweden)

    I. K. Khalid

    2017-01-01

    Full Text Available A linear stability analysis has been carried out to examine the effect of internal heat source on the onset of Rayleigh–Bénard convection in a rotating nanofluid layer with double diffusive coefficients, namely, Soret and Dufour, in the presence of feedback control. The system is heated from below and the model used for the nanofluid layer incorporates the effects of thermophoresis and Brownian motion. Three types of bounding systems of the model have been considered which are as follows: both the lower and upper bounding surfaces are free, the lower is rigid and the upper is free, and both of them are rigid. The eigenvalue equations of the perturbed state were obtained from a normal mode analysis and solved using the Galerkin method. It is found that the effect of internal heat source and Soret parameter destabilizes the nanofluid layer system while increasing the Coriolis force, feedback control, and Dufour parameter helps to postpone the onset of convection. Elevating the modified density ratio hastens the instability in the system and there is no significant effect of modified particle density in a nanofluid system.

  10. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  11. Efficacy and cost-effectiveness of a physiotherapy program for chronic rotator cuff pathology: A protocol for a randomised, double-blind, placebo-controlled trial

    Science.gov (United States)

    Bennell, Kim; Coburn, Sally; Wee, Elin; Green, Sally; Harris, Anthony; Forbes, Andrew; Buchbinder, Rachelle

    2007-01-01

    Background Chronic rotator cuff pathology (CRCP) is a common shoulder condition causing pain and disability. Physiotherapy is often the first line of management for CRCP yet there is little conclusive evidence to support or refute its effectiveness and no formal evaluation of its cost-effectiveness. Methods/Design This randomised, double-blind, placebo-controlled trial will involve 200 participants with CRCP recruited from medical practices, outpatient departments and the community via print and radio media. Participants will be randomly allocated to a physiotherapy or placebo group using concealed allocation stratified by treating physiotherapist. Both groups will receive 10 sessions of individual standardised treatment over 10 weeks from one of 10 project physiotherapists. For the following 12 weeks, the physiotherapy group will continue a home exercise program and the placebo group will receive no treatment. The physiotherapy program will comprise shoulder joint and spinal mobilisation, soft tissue massage, postural taping, and home exercises for scapular control, posture and rotator cuff strengthening. The placebo group will receive inactive ultrasound and gentle application of an inert gel over the shoulder region. Blinded assessment will be conducted at baseline and at 10 weeks and 22 weeks after randomisation. The primary outcome measures are self reported questionnaires including the shoulder pain and disability index (SPADI), average pain on an 11-point numeric rating scale and participant perceived global rating of change. Secondary measures include Medical Outcomes Study 36-item short form (SF-36), Assessment of Quality of Life index, numeric rating scales for shoulder pain and stiffness, participant perceived rating of change for pain, strength and stiffness, and manual muscle testing for shoulder strength using a handheld dynamometer. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log

  12. Comparable biomechanical results for a modified single-row rotator cuff reconstruction using triple-loaded suture anchors versus a suture-bridging double-row repair.

    Science.gov (United States)

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter; Pape, Dietrich

    2012-02-01

    To compare the biomechanical properties and footprint coverage of a single-row (SR) repair using a modified suture configuration versus a double-row (DR) suture-bridge repair in small to medium and medium to large rotator cuff tears. We created 25- and 35-mm artificial defects in the rotator cuff of 24 human cadaveric shoulders. The reconstructions were performed as either an SR repair with triple-loaded suture anchors (2 to 3 anchors) and a modified suture configuration or a modified suture-bridge DR repair (4 to 6 anchors). Reconstructions were cyclically loaded from 10 to 60 N. The load was increased stepwise up to 100, 180, and 250 N. Cyclic displacement and load to failure were determined. Furthermore, footprint widths were quantified. In the 25-mm rupture, ultimate load to failure was 533 ± 107 N for the SR repair and 681 ± 250 N for the DR technique (P ≥ .21). In the 35-mm tear, ultimate load to failure was 792 ± 122 N for the SR reconstruction and 891 ± 174 N for the DR reconstruction (P ≥ .28). There were no statistically significant differences for both tested rupture sizes. Cyclic displacement showed no significant differences between the tested configurations at 60 N (P = .563), 100 N (P = .171), 180 N (P = .211), and 250 N (P = .478) for the 25-mm tear. For the 35-mm tear, cyclic displacement showed significantly lower gap formation for the SR reconstruction at 180 N (P = .037) and 250 N (P = .020). No significant differences were found at 60 N (P = .296) and 100 N (P = .077). A significantly greater footprint width (P = .028) was seen for the DR repair (16.2 mm) compared with the SR repair (13.8 mm). However, both reconstructions were able to achieve complete footprint coverage compared with the initial footprint. The tested SR repair using a modified suture configuration was similar in load to failure and cyclic displacement to the DR suture-bridge technique independent of the tested initial sizes of the rupture. The tested DR repair

  13. Efficacy and cost-effectiveness of a physiotherapy program for chronic rotator cuff pathology: A protocol for a randomised, double-blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Harris Anthony

    2007-08-01

    Full Text Available Abstract Background Chronic rotator cuff pathology (CRCP is a common shoulder condition causing pain and disability. Physiotherapy is often the first line of management for CRCP yet there is little conclusive evidence to support or refute its effectiveness and no formal evaluation of its cost-effectiveness. Methods/Design This randomised, double-blind, placebo-controlled trial will involve 200 participants with CRCP recruited from medical practices, outpatient departments and the community via print and radio media. Participants will be randomly allocated to a physiotherapy or placebo group using concealed allocation stratified by treating physiotherapist. Both groups will receive 10 sessions of individual standardised treatment over 10 weeks from one of 10 project physiotherapists. For the following 12 weeks, the physiotherapy group will continue a home exercise program and the placebo group will receive no treatment. The physiotherapy program will comprise shoulder joint and spinal mobilisation, soft tissue massage, postural taping, and home exercises for scapular control, posture and rotator cuff strengthening. The placebo group will receive inactive ultrasound and gentle application of an inert gel over the shoulder region. Blinded assessment will be conducted at baseline and at 10 weeks and 22 weeks after randomisation. The primary outcome measures are self reported questionnaires including the shoulder pain and disability index (SPADI, average pain on an 11-point numeric rating scale and participant perceived global rating of change. Secondary measures include Medical Outcomes Study 36-item short form (SF-36, Assessment of Quality of Life index, numeric rating scales for shoulder pain and stiffness, participant perceived rating of change for pain, strength and stiffness, and manual muscle testing for shoulder strength using a handheld dynamometer. To evaluate cost-effectiveness, participants will record the use of all health

  14. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  15. Editorial Commentary: "Knot" Less Strength at Half the Cost-Is It Time to Abandon Medial Row Anchors in Shoulder Double-Row Rotator Cuff Repair?

    Science.gov (United States)

    Sherman, Seth L

    2018-01-01

    Transosseous equivalent rotator cuff repair is an expensive construct that has demonstrated biomechanical superiority when compared with other rotator cuff repair techniques. A novel transosseous knotless repair that substitutes medial row anchors for a transosseous tunnel rivals the biomechanical advantages of transosseous equivalent rotator cuff repair at half the cost and with reduced dependence on bone quality. Surgeons should carefully consider if "knotless transosseous is more." Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  17. Ultrasound evaluation of arthroscopic full-thickness supraspinatus rotator cuff repair: single-row versus double-row suture bridge (transosseous equivalent) fixation. Results of a prospective, randomized study.

    Science.gov (United States)

    Gartsman, Gary M; Drake, Gregory; Edwards, T Bradley; Elkousy, Hussein A; Hammerman, Steven M; O'Connor, Daniel P; Press, Cyrus M

    2013-11-01

    The purpose of this study was to compare the structural outcomes of a single-row rotator cuff repair and double-row suture bridge fixation after arthroscopic repair of a full-thickness supraspinatus rotator cuff tear. We evaluated with diagnostic ultrasound a consecutive series of ninety shoulders in ninety patients with full-thickness supraspinatus tears at an average of 10 months (range, 6-12) after operation. A single surgeon at a single hospital performed the repairs. Inclusion criteria were full-thickness supraspinatus tears less than 25 mm in their anterior to posterior dimension. Exclusion criteria were prior operations on the shoulder, partial thickness tears, subscapularis tears, infraspinatus tears, combined supraspinatus and infraspinatus repairs and irreparable supraspinatus tears. Forty-three shoulders were repaired with single-row technique and 47 shoulders with double-row suture bridge technique. Postoperative rehabilitation was identical for both groups. Ultrasound criteria for healed repair included visualization of a tendon with normal thickness and length, and a negative compression test. Eighty-three patients were available for ultrasound examination (40 single-row and 43 suture-bridge). Thirty of 40 patients (75%) with single-row repair demonstrated a healed rotator cuff repair compared to 40/43 (93%) patients with suture-bridge repair (P = .024). Arthroscopic double-row suture bridge repair (transosseous equivalent) of an isolated supraspinatus rotator cuff tear resulted in a significantly higher tendon healing rate (as determined by ultrasound examination) when compared to arthroscopic single-row repair. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. Effect of 3 months of progressive high-load strength training in patients with rotator cuff tendinopathy: Primary results from the double-blind, randomised, controlled Rotator Cuff Tendinopathy Exercise (RoCTEx) trial

    DEFF Research Database (Denmark)

    Ingwersen, Kim Gordon; Jensen, Steen Lund; Sørensen, Lilli

    2017-01-01

    BACKGROUND: Progressive high-load exercise (PHLE) has led to positive clinical results in patients with patellar and Achilles tendinopathy. However, its effects on rotator cuff tendinopathy still need to be investigated. PURPOSE: To assess the clinical effects of PHLE versus low-load exercise (LLE......) among patients with rotator cuff tendinopathy. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Patients with rotator cuff tendinopathy were recruited and randomized to 12 weeks of PHLE or LLE, stratified for concomitant administration of corticosteroid injection. The primary...... benefit from PHLE over traditional LLE among patients with rotator cuff tendinopathy. Further investigation of the possible interaction between exercise type and corticosteroid injection is needed to establish optimal and potentially synergistic combinations of these 2 factors. REGISTRATION: NCT01984203...

  19. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    Science.gov (United States)

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  1. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  2. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial

    NARCIS (Netherlands)

    Kolk, A. van der; Yang, K.G.; Tamminga, R.; Hoeven, H. van der

    2013-01-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were

  3. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  4. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  5. Single- versus double-row repair for full-thickness rotator cuff tears using suture anchors. A systematic review and meta-analysis of basic biomechanical studies.

    Science.gov (United States)

    Hohmann, Erik; König, Anya; Kat, Cor-Jacques; Glatt, Vaida; Tetsworth, Kevin; Keough, Natalie

    2017-12-21

    The purpose of this study was to perform a systematic review and meta-analysis comparing single- and double-row biomechanical studies to evaluate load to failure, mode of failure and gap formation. A systematic review of MEDLINE, Embase, Scopus and Google Scholar was performed from 1990 through 2016. The inclusion criteria were: documentation of ultimate load to failure, failure modes and documentation of elongation or gap formation. Studies were excluded if the study protocol did not use human specimens. Publication bias was assessed by funnel plot and Egger's test. The risk of bias was established using the Cochrane Collaboration's risk of bias tool. Heterogeneity was assessed using χ 2 and I 2 statistic. Eight studies were included. The funnel plot was asymmetric suggesting publication bias, which was confirmed by Egger's test (p = 0.04). The pooled estimate for load to failure demonstrated significant differences (SMD 1.228, 95% CI: 0.55-5.226, p = 0.006, I 2  = 60.47%), favouring double-row repair. There were no differences for failure modes. The pooled estimate for elongation/gap formation demonstrated significant differences (SMD 0.783, 95% CI: 0.169-1.398, p = 0.012, I 2  = 58.8%), favouring double-row repair. The results of this systematic review and meta-analysis suggest that double-row repair is able to tolerate a significantly greater load to failure. Gap formation was also significantly lower in the double-row repair group, but both of these findings should be interpreted with caution because of the inherent interstudy heterogeneity. Systematic review and meta-analysis.

  6. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  7. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    2018-03-01

    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  8. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial.

    Science.gov (United States)

    Kolk, A; Yang, K G Auw; Tamminga, R; van der Hoeven, H

    2013-11-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were randomly allocated to a treatment group who received low-dose rESWT (three sessions at an interval 10 to 14 days, 2000 pulses, 0.11 mJ/mm(2), 8 Hz) or to a placebo group, with a follow-up of six months. The patients and the treating orthopaedic surgeon, who were both blinded to the treatment, evaluated the results. A total of 44 patients were allocated to the rESWT group and 38 patients to the placebo group. A visual analogue scale (VAS) score for pain, a Constant-Murley (CMS) score and a simple shoulder test (SST) score significantly improved in both groups at three and six months compared with baseline (all p ≤ 0.012). The mean VAS was similar in both groups at three (p = 0.43) and six months (p = 0.262). Also, the mean CMS and SST scores were similar in both groups at six months (p = 0.815 and p = 0.834, respectively). It would thus seem that low-dose rESWT does not reduce pain or improve function in patients chronic rotator cuff tendinitis compared with placebo treatment.

  9. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  10. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  11. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  12. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  13. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  14. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  15. Sine-squared shifted pulses for recoupling interactions in solid-state NMR

    Science.gov (United States)

    Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.

    2017-06-01

    Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.

  16. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  17. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  18. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Monitoring of argatroban and lepirudin anticoagulation in critically ill patients by conventional laboratory parameters and rotational thromboelastometry - a prospectively controlled randomized double-blind clinical trial.

    Science.gov (United States)

    Beiderlinden, Martin; Werner, Patrick; Bahlmann, Astrid; Kemper, Johann; Brezina, Tobias; Schäfer, Maximilian; Görlinger, Klaus; Seidel, Holger; Kienbaum, Peter; Treschan, Tanja A

    2018-02-09

    Argatroban or lepirudin anticoagulation therapy in patients with heparin induced thrombocytopenia (HIT) or HIT suspect is typically monitored using the activated partial thromboplastin time (aPTT). Although aPTT correlates well with plasma levels of argatroban and lepirudin in healthy volunteers, it might not be the method of choice in critically ill patients. However, in-vivo data is lacking for this patient population. Therefore, we studied in vivo whether ROTEM or global clotting times would provide an alternative for monitoring the anticoagulant intensity effects in critically ill patients. This study was part of the double-blind randomized trial "Argatroban versus Lepirudin in critically ill patients (ALicia)", which compared critically ill patients treated with argatroban or lepirudin. Following institutional review board approval and written informed consent, for this sub-study blood of 35 critically ill patients was analysed. Before as well as 12, 24, 48 and 72 h after initiation of argatroban or lepirudin infusion, blood was analysed for aPTT, aPTT ratios, thrombin time (TT), INTEM CT,INTEM CT ratios, EXTEM CT, EXTEM CT ratios and maximum clot firmness (MCF) and correlated with the corresponding plasma concentrations of the direct thrombin inhibitor. To reach a target aPTT of 1.5 to 2 times baseline, median [IQR] plasma concentrations of 0.35 [0.01-1.2] μg/ml argatroban and 0.17 [0.1-0.32] μg/ml lepirudin were required. For both drugs, there was no significant correlation between aPTT and aPTT ratios and plasma concentrations. INTEM CT, INTEM CT ratios, EXTEM CT, EXTEM CT ratios, TT and TT ratios correlated significantly with plasma concentrations of both drugs. Additionally, agreement between argatroban plasma levels and EXTEM CT and EXTEM CT ratios were superior to agreement between argatroban plasma levels and aPTT in the Bland Altman analysis. MCF remained unchanged during therapy with both drugs. In critically ill patients, TT and ROTEM parameters

  20. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  1. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  2. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  3. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  4. Residue-specific membrane location of peptides and proteins using specifically and extensively deuterated lipids and {sup 13}C-{sup 2}H rotational-echo double-resonance solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Xie Li; Ghosh, Ujjayini; Schmick, Scott D.; Weliky, David P., E-mail: weliky@chemistry.msu.edu [Michigan State University, Department of Chemistry (United States)

    2013-01-15

    Residue-specific location of peptides in the hydrophobic core of membranes was examined using {sup 13}C-{sup 2}H REDOR and samples in which the lipids were selectively deuterated. The transmembrane topology of the KALP peptide was validated with this approach with substantial dephasing observed for deuteration in the bilayer center and reduced or no dephasing for deuteration closer to the headgroups. Insertion of {beta} sheet HIV and helical and {beta} sheet influenza virus fusion peptides into the hydrophobic core of the membrane was validated in samples with extensively deuterated lipids.

  5. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  6. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  7. Recent advances in solid state NMR and its application to ceramics

    International Nuclear Information System (INIS)

    Maekawa, Hideki

    2006-01-01

    The basic principles of solid state NMR are explained. Four application examples contained amorphous glass, determination of defects of oxide crystal, nano particle and ionic materials. The structure of inorganic glass is measured by 29 Si, 11 B, 31 P and 23 Na NMR and Magic Angle Spinning NMR (MAS-NMR), chemical species near hydrogen by Cross-Polarization Magic Angle Spinning (CP/MAS) method, and hydrogen by Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) and MAS-NMR. Hydrous and anhydrous silicate glass with condensed 17 O was measured by 17 O Multi Quantum Magic Angle Spinning (MQ/MAS). 27 Al in slags was analyzed by 27 Al 5Q-MAS. 89 Y NMR spectrum of YSZ (Yttria Stabilization Zirconia, Y 2 O 3 -ZrO 2 ) was explained. The ion transfer phenomena in the electrolyte are observed directly by the solid state NMR. (S.Y.)

  8. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  9. Some nitrogen-14 NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  10. Some nitrogen-14 NMR studies in solids

    International Nuclear Information System (INIS)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the 14 N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long 14 N longitudinal relaxation times (T 1 ) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between 14 N and 1 H. Using quadrupolar echo and CP techniques, the 14 N quadrupolar coupling constants (e 2 qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the 14 N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects

  11. Molecular dynamics simulations on PGLa using NMR orientational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)

    2015-11-15

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  12. A biomechanical and histological comparison of the suture bridge and conventional double-row techniques of the repair of full-thickness rotator cuff tears in a rabbit model.

    Science.gov (United States)

    Fei, Wenyong; Guo, Weichun

    2015-06-16

    The suture bridge (SB) technique and conventional double-row (DR) are both effective in repair of full-thickness rotator cuff tears . However, increasing numbers of scholars believe that the SB technique produces better results than conventional DR because of the higher bone-tendon contact area and pressure. However, The clinical outcomes have been mixed and little direct evidence has been supplied in vivo. This study was designed using the SB and DR techniques to determine which is the better technique. Sixty-four New Zealand white rabbits were randomly divided into 2 groups, the SB group and DR group. SB and DR were then used to repair their rotator cuff tears. Rabbits were then sacrificed at the 2(nd), 4(th), or 8(th) week after surgery and a histological comparison was made. The biomechanical comparison was made at the 8(th) week. The load to failure of the SB group was 134.59 ± 17.69 N at the 8(th) postoperative week, and that was significantly higher than in the DR group (103.83 ± 6.62, P = 0.001), but both repair groups remained lower than in the control group (199.25 ± 14.81). Histological evaluation showed that both the SB and DR groups healed at the bone-tendon interface. But there were subtle differences between the two groups in the structure and morphology of collagen fibers and cartilage cells at bone-tendon interface. In general, the collagen fibers of the SB group were more compact than those of the DR group at all times tested. At the 4(th) and 8(th) weeks, the collagen fibers and cartilage cells in the SB group were arranged in a column modality, but those in the DR group were distributed horizontally. The SB technique facilitated healing more effectively than the conventional DR technique. The difference in morphology of collagen fibers and cartilage cells may be related to the difference in bone-tendon contact pressure.

  13. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...

  14. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  15. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  16. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  17. Introduction to quantum calculation methods in high resolution NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1996-01-01

    New techniques as for instance the polarization transfer, the coherence with several quanta and the double Fourier transformation have appeared fifteen years ago. These techniques constitute a considerable advance in NMR. Indeed, they allow to study more complex molecules than it was before possible. But with these advances, the classical description of the NMR is not enough to understand precisely the physical phenomena induced by these methods. It is then necessary to resort to quantum calculation methods. The aim of this work is to present these calculation methods. After some recalls of quantum mechanics, the author describes the NMR with the density matrix, reviews the main methods of double Fourier transformation and then gives the principle of the relaxation times calculation. (O.M.)

  18. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  19. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  20. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  1. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  3. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  4. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  5. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  6. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  7. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  8. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  9. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  10. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  11. NMR in clinical practice

    International Nuclear Information System (INIS)

    Smith, F.W.

    1987-01-01

    The development of NMR for clinical use has been complicated by a number of controversies, the largest of these being the question of what is the optimum field strength for proton imaging. Many workers believe that diagnostically useful images can only be produced at high field strength (i.e. 0.5 - 2.0 T), where in fact diagnostically useful images are made using field strengths of as low as 0.02 T. Because the method is more complex than X-ray CT, which relies on the measurement of only one parameter, tissue density, many new users have difficulty in selecting the correct imaging pulse sequence to provide the most useful image for diagnosis. NMR imaging pulse sequence may be selected to produce images of the proton density, T/sub 1/ or T/sub 2/ signals, or combinations of them. When this facility is used, images which are T/sub 1/ or T/sub 2/ weighted can be selected. Inversion-recovery sequences are more appropriate for imaging the abdomen where by selecting a short TR interval the signal from subcutaneous fat, which is the major cause of image artefact in abdominal imaging, is suppressed thereby improving image quality. The use of surface receiver coils, which are applied closely to the area of the body being examined is becoming more widespread and is of particular value when examining the orbits, facial structures, neck, breast, spine and limbs. The use of these coils together with a discussion of patient selection for NMR imaging, image interpretation and data storage follow

  12. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  13. Structure and Orientation of Bovine Lactoferrampin in the Mimetic Bacterial Membrane as Revealed by Solid-State NMR and Molecular Dynamics Simulation

    Science.gov (United States)

    Tsutsumi, Atsushi; Javkhlantugs, Namsrai; Kira, Atsushi; Umeyama, Masako; Kawamura, Izuru; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2012-01-01

    Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268–284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed 13C and 31P NMR, 13C-31P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. 31P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. 13C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by 13C-31P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu3, which are in excellent agreement with the experimental values. PMID:23083717

  14. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  15. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  16. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  17. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  18. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  19. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  20. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  1. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  2. Chirp echo Fourier transform EPR-detected NMR.

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  4. Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR

    DEFF Research Database (Denmark)

    Rodin, V.; Ponomarev, Alexander; Gerasimov, Maxim

    2017-01-01

    suspensions of Escherichia coli in the presence of xenon using nuclear magnetic resonance (NMR). The work studied how the spin-lattice relaxation times of water protons in suspension change under xenon conditions. Xenon is able to form clathrate hydrates with water molecules at a temperature above the melting...... point of ice. The work studied NMR relaxation times which reflect the rotation freedom of water molecules in suspension. Lower relaxation times indicate reduced rotational freedom of water. Single exponential behavior of spin-lattice relaxation of protons in the suspensions of microorganisms has been...

  5. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Victor P., E-mail: vpergarw@gobiernodecanarias.org [Instituto de Productos Naturales de Canarias, Departamento de Quimica de Productos Naturales y Biotecnologia (Spain)

    2011-05-15

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution {sup 1}H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that {omega}{tau}{sub c} {approx} 1, where {tau}{sub c} are the motional correlation times and {omega} is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of {tau}{sub c}. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Degree-Sign Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were

  6. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  7. A combined NMR and XRD study of AFI and AEL type molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Ven, van de L.J.M.; Haan, de J.W.; Hooff, van J.H.C.

    1993-01-01

    Calcined dehydrated AlPO4-5 was studied by x-ray powder diffraction, 31P MAS, and 27Al double-resonance (DOR) NMR. Three crystallog. different sites can be distinguished in the structure of dehydrated AlPO4-5 in the ratio 1:1:1. The obsd. splitting of the NMR spectra is correlated to the line width

  8. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  9. A Double-Minded Fractal

    Science.gov (United States)

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  10. Ultrahigh Field NMR and MRI: Science at a Crossroads Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Polenova, Tatyana [Univ. of Delaware, Newark, DE (United States); Budinger, Thomas F. [Univ. of California, Berkeley, CA (United States)

    2016-01-04

    The workshop “Ultrahigh Field NMR and MRI: Science at Crossroads”, initiated by the scientific community and supported by the National Science Foundation, the Department of Energy, and the National Institutes of Health, took place on November 12-13, 2015, in Bethesda, MD, on the NIH campus. The meeting was held to assess the science drivers, technological challenges, prospects for achieving field strengths for NMR and MRI nearly double their current value, and strategies on how to provide ultrahigh field NMR/MRI capabilities to a national user community.

  11. Ultrahigh Field NMR and MRI: Science at a Crossroads Workshop Report

    International Nuclear Information System (INIS)

    Polenova, Tatyana; Budinger, Thomas F.

    2016-01-01

    The workshop ''Ultrahigh Field NMR and MRI: Science at Crossroads'', initiated by the scientific community and supported by the National Science Foundation, the Department of Energy, and the National Institutes of Health, took place on November 12-13, 2015, in Bethesda, MD, on the NIH campus. The meeting was held to assess the science drivers, technological challenges, prospects for achieving field strengths for NMR and MRI nearly double their current value, and strategies on how to provide ultrahigh field NMR/MRI capabilities to a national user community.

  12. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  13. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  14. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  15. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  16. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  17. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  18. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  19. Integrative NMR for biomolecular research

    International Nuclear Information System (INIS)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L.

    2016-01-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  20. Integrative NMR for biomolecular research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R.; Tonelli, Marco; Westler, William M.; Butcher, Samuel E.; Henzler-Wildman, Katherine A.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-04-15

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download-packages.html http://pine.nmrfam.wisc.edu/download{sub p}ackages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html http://pine.nmrfam.wisc.edu/integrative.html ).

  1. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  2. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  3. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  4. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  5. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  7. Double Trouble

    NARCIS (Netherlands)

    Elsaesser, Thomas; Kievit, Robert; Simons, Jan

    1994-01-01

    Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime

  8. 2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer

    Science.gov (United States)

    Grage, Stephan L.; Watts, Jude A.; Watts, Anthony

    2004-01-01

    A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.

  9. In vitro biomechanical comparison of three different types of single- and double-row arthroscopic rotator cuff repairs: analysis of continuous bone-tendon contact pressure and surface during different simulated joint positions.

    Science.gov (United States)

    Grimberg, Jean; Diop, Amadou; Kalra, Kunal; Charousset, Christophe; Duranthon, Louis-Denis; Maurel, Nathalie

    2010-03-01

    We assessed bone-tendon contact surface and pressure with a continuous and reversible measurement system comparing 3 different double- and single-row techniques of cuff repair with simulation of different joint positions. We reproduced a medium supraspinatus tear in 24 human cadaveric shoulders. For the 12 right shoulders, single-row suture (SRS) and then double-row bridge suture (DRBS) were used. For the 12 left shoulders, DRBS and then double-row cross suture (DRCS) were used. Measurements were performed before, during, and after knot tying and then with different joint positions. There was a significant increase in contact surface with the DRBS technique compared with the SRS technique and with the DRCS technique compared with the SRS or DRBS technique. There was a significant increase in contact pressure with the DRBS technique and DRCS technique compared with the SRS technique but no difference between the DRBS technique and DRCS technique. The DRCS technique seems to be superior to the DRBS and SRS techniques in terms of bone-tendon contact surface and pressure. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  10. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  11. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  12. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  13. Lightweight hydrogen-storage material Mg0.65Sc0.35D2 studied with 2H and 2H–{45Sc} MAS NMR exchange spectroscopy

    NARCIS (Netherlands)

    Srinivasan, S.; Magusin, P.C.M.M.

    2011-01-01

    Using double-quantum 2H MAS NMR with 45Sc recoupling and Bloch–Siegert compensated 2H–{45Sc} TRAPDOR we have identified the overlapping NMR signals of deuterium with and without scandium neighbors in Mg0.65Sc0.35D2, a candidate lightweight material for hydrogen storage. At room temperature we also

  14. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  15. Carbon-13 NMR of flavinoids

    International Nuclear Information System (INIS)

    Agrawal, P.K.

    1989-01-01

    The present book has been written with the objective of introducing the organic chemists with the conceptual and experimental basis required for interpretation of 13 C NMR spectra of a flavonoid and to a discussion of general usefulness of the technique in solving flavonoid structural problem. After a brief general introduction to the essential aspects of flavonoids and 13 C NMR spectroscopy, considerable emphasis has been placed in chapter 2 on the various experimental methods and the interpretation of spectral details which enable individual resonance lines to be associated with the appropriate carbons in a molecule. The whole bulk of the literature, published on 13 C NMR of flavonoids in the major journals upto 1986 alongwith some recent references of 1987 has been classified in several categories such as: flavonoids, isflavonoids, other flavonoids, flavonoid glycosides, chalconoids and flavanoids. Each category constitutes a chapter. Finally the last chapter is devoted largely to a discussion for the differentiation of various categories and subcategories of flavonoids and for the establishment of aromatic substitution pattern in these compounds. It should be emphasized that the book is a data book and only concerned with the actual analysis of 13 C NMR spectra, thus a reasonable familiarity with basic instrumentation of 13 C NMR and general pattern of nuclear chemical shifts has been assumed. (author). refs.; figs.; tabs

  16. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  17. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  18. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-05-18

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  19. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  20. NMR investigation of coal extracts

    Energy Technology Data Exchange (ETDEWEB)

    Lang, I; Sebor, G [Ceskoslovenska Akademie Ved, Prague. Hornicky Ustav; Sebor, G Jr; Hajek, M; Mostecky, J [Vysoka Skola Chemicko-Technologicka, Prague (Czechoslovakia)

    1978-07-01

    Proton NMR spectroscopy was used for the evaluation of 10% coal extract solutions in deuterated pyridine. Four types of Czechoslovak coal were analyzed. Agreement was found between the aromaticity of coal extracts calculated from /sup 1/H NMR data using Brown's method and Ladner's and Williams' method and the characterization of an average molecule of the coal extract by the number of non-bridge carbon atoms of aromatic rings, by the overall number of aromatic ring carbon atoms and the number of aromatic rings, determined by the Williams and Ferris methods. The methods for calculating carbon distribution from /sup 1/H NMR data, however, contain some constants theoretically estimated or experimentally found using the method which still remain to be verified.

  1. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  2. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  3. Solid state NMR of materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sharon A; Ferguson, David B; Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    In situ NMR experiments are studied, including probe of several structures such as the structures of the organic adsorbates, Broensted acid sites, other nuclei associated with active sites, and other framework sites. The authors report that in the absence of high concentrations of paramagnetic sites or metal particles, high resolution MAS spectra are relatively easy to obtain and interpret. It is also concluded that NMR can measure spatial distributions and rates of diffusion; and are able to characterize equilibrium structures and the frequencies and amplitudes of molecular motion

  4. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  5. Benchtop-NMR and MRI--a new analytical tool in drug delivery research.

    Science.gov (United States)

    Metz, Hendrik; Mäder, Karsten

    2008-12-08

    During the last years, NMR spectroscopy and NMR imaging (magnetic resonance imaging, MRI) have been increasingly used to monitor drug delivery systems in vitro and in vivo. However, high installation and running costs of the commonly used superconducting magnet technology limits the application range and prevents the further spread of this non-invasive technology. Benchtop-NMR (BT-NMR) relaxometry uses permanent magnets and is much less cost intensive. BT-NMR relaxometry is commonly used in the food and chemical industry, but so far scarcely used in the pharmaceutical field. The paper shows on several examples that the application field of BT-NMR relaxometry can be extended into the field of drug delivery, including the characterisation of emulsions and lipid ingredients (e.g. the amount and physicochemical state of the lipid) and the monitoring of adsorption characteristics (e.g. oil binding of porous ingredients). The most exciting possibilities of BT-NMR technology are linked with the new development of BT-instruments with imaging capability. BT-MRI examples on the monitoring of hydration and swelling of HPMC-based monolayer and double-layer tablets are shown. BT-MRI opens new MRI opportunities for the non-invasive monitoring of drug delivery processes.

  6. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Balbach, John J. [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Yang Jun; Weliky, David P. [Michigan State University, Department of Chemistry (United States); Steinbach, Peter J. [National Institutes of Health, Center for Molecular Modeling, Center for Information Technology (United States); Tugarinov, Vitali; Anglister, Jacob [Weizmann Institute of Science, Department of Structural Biology (Israel); Tycko, Robert [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2000-04-15

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5{beta}, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with {sup 15}N labels at the {eta} nitrogen positions of arginine side chains and {sup 13}C labels at glycine carbonyl positions and {sup 13}C-detected {sup 13}C-{sup 15}N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5{beta} complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of {phi} and {psi} backbone dihedral angles in the RP135/0.5{beta} complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect {sup 13}C-{sup 15}N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.

  7. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    International Nuclear Information System (INIS)

    Balbach, John J.; Yang Jun; Weliky, David P.; Steinbach, Peter J.; Tugarinov, Vitali; Anglister, Jacob; Tycko, Robert

    2000-01-01

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5β, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15 N labels at the η nitrogen positions of arginine side chains and 13 C labels at glycine carbonyl positions and 13 C-detected 13 C- 15 N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5β complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of φ and Ψ backbone dihedral angles in the RP135/0.5β complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13 C- 15 N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations

  8. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  9. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  10. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.

    2011-09-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  11. 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT

    KAUST Repository

    Schmid, Marc R.; Goze-Bac, Christophe; Bouhrara, Mohamed; Saih, Youssef; Mehring, Michael; Abou-Hamad, Edy

    2011-01-01

    Structural and dynamical properties of the THF solvent in single-walled carbon nanotubes intercalated with lithium are investigated by NMR. 1H NMR experiments reveal the existence of two types of inequivalent THF solvent molecules with different chemical environments and dynamical behavior. At low temperatures THF molecules perpendicularly arranged in between adjacent SWNT presumably exhibit a restricted rotation around their dipolar axis. At higher temperatures THF molecules are isotropically rotating and diffusing along the interstitial channels of the SWNT bundles. © 2011 Elsevier B.V. All rights reserved.

  12. Synthesis, dynamic NMR characterization and XRD studies of novel N,N'-substituted piperazines for bioorthogonal labeling.

    Science.gov (United States)

    Mamat, Constantin; Pretze, Marc; Gott, Matthew; Köckerling, Martin

    2016-01-01

    Novel, functionalized piperazine derivatives were successfully synthesized and fully characterized by 1 H/ 13 C/ 19 F NMR, MS, elemental analysis and lipophilicity. All piperazine compounds occur as conformers resulting from the partial amide double bond. Furthermore, a second conformational shape was observed for all nitro derivatives due to the limited change of the piperazine chair conformation. Therefore, two coalescence points were determined and their resulting activation energy barriers were calculated using 1 H NMR. To support this result, single crystals of 1-(4-nitrobenzoyl)piperazine ( 3a , monoclinic, space group C 2/ c , a = 24.587(2), b = 7.0726(6), c = 14.171(1) Å, β = 119.257(8)°, V = 2149.9(4) Å 3 , Z = 4, D obs = 1.454 g/cm 3 ) and the alkyne derivative 4-(but-3-yn-1-yl)-1-(4-fluorobenzoyl)piperazine ( 4b , monoclinic, space group P 2 1 / n , a = 10.5982(2), b = 8.4705(1), c = 14.8929(3) Å, β = 97.430(1)°, V = 1325.74(4) Å 3 , Z = 4, D obs = 1.304 g/cm 3 ) were obtained from a saturated ethyl acetate solution. The rotational conformation of these compounds was also verified by XRD. As proof of concept for future labeling purposes, both nitropiperazines were reacted with [ 18 F]F - . To test the applicability of these compounds as possible 18 F-building blocks, two biomolecules were modified and chosen for conjugation either using the Huisgen-click reaction or the traceless Staudinger ligation.

  13. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  14. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    Science.gov (United States)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  15. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  16. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interlaboratory Comparison Test as an Evaluation of Applicability of an Alternative Edible Oil Analysis by 1H NMR Spectroscopy.

    Science.gov (United States)

    Zailer, Elina; Holzgrabe, Ulrike; Diehl, Bernd W K

    2017-11-01

    A proton (1H) NMR spectroscopic method was established for the quality assessment of vegetable oils. To date, several research studies have been published demonstrating the high potential of the NMR technique in lipid analysis. An interlaboratory comparison was organized with the following main objectives: (1) to evaluate an alternative analysis of edible oils by using 1H NMR spectroscopy; and (2) to determine the robustness and reproducibility of the method. Five different edible oil samples were analyzed by evaluating 15 signals (free fatty acids, peroxides, aldehydes, double bonds, and linoleic and linolenic acids) in each spectrum. A total of 21 NMR data sets were obtained from 17 international participant laboratories. The performance of each laboratory was assessed by their z-scores. The test was successfully passed by 90.5% of the participants. Results showed that NMR spectroscopy is a robust alternative method for edible oil analysis.

  18. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  19. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  20. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  1. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    Science.gov (United States)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  2. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  3. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  4. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  5. High-resolution, high-sensitivity NMR of nano-litre anisotropic samples by coil spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D [CEA Saclay, DSM, DRECAM, SCM, Lab Struct and Dynam Resonance Magnet, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Le Goff, G; Jacquinot, J F [CEA Saclay, DSM, DRECAM, SPEC: Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Nuclear magnetic resonance (NMR) can probe the local structure and dynamic properties of liquids and solids, making it one of the most powerful and versatile analytical methods available today. However, its intrinsically low sensitivity precludes NMR analysis of very small samples - as frequently used when studying isotopically labelled biological molecules or advanced materials, or as preferred when conducting high-throughput screening of biological samples or 'lab-on-a-chip' studies. The sensitivity of NMR has been improved by using static micro-coils, alternative detection schemes and pre-polarization approaches. But these strategies cannot be easily used in NMR experiments involving the fast sample spinning essential for obtaining well-resolved spectra from non-liquid samples. Here we demonstrate that inductive coupling allows wireless transmission of radio-frequency pulses and the reception of NMR signals under fast spinning of both detector coil and sample. This enables NMR measurements characterized by an optimal filling factor, very high radio-frequency field amplitudes and enhanced sensitivity that increases with decreasing sample volume. Signals obtained for nano-litre-sized samples of organic powders and biological tissue increase by almost one order of magnitude (or, equivalently, are acquired two orders of magnitude faster), compared to standard NMR measurements. Our approach also offers optimal sensitivity when studying samples that need to be confined inside multiple safety barriers, such as radioactive materials. In principle, the co-rotation of a micrometer-sized detector coil with the sample and the use of inductive coupling (techniques that are at the heart of our method) should enable highly sensitive NMR measurements on any mass-limited sample that requires fast mechanical rotation to obtain well-resolved spectra. The method is easy to implement on a commercial NMR set-up and exhibits improved performance with miniaturization, and we

  6. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  7. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  8. Double Chooz

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2006-05-15

    The goal of the Double Chooz reactor neutrino experiment is to search for the neutrino mixing parameter {theta}{sub 13}. Double Chooz will use two identical detectors at 150 m and 1.05 km distance from the reactor cores. The near detector is used to monitor the reactor {nu}-bar {sub e} flux while the second is dedicated to the search for a deviation from the expected (1/distance){sup 2} behavior. This two detector concept will allow a relative normalization systematic error of ca. 0.6 %. The expected sensitivity for sin{sup 2}2{theta}{sub 13} is then in the range 0.02 - 0.03 after three years of data taking. The antineutrinos will be detected in a liquid scintillator through the capture on protons followed by a gamma cascade, produced by the neutron capture on Gd.

  9. Double supergeometry

    Energy Technology Data Exchange (ETDEWEB)

    Cederwall, Martin [Division for Theoretical Physics, Department of Physics, Chalmers University of Technology,SE 412 96 Gothenburg (Sweden)

    2016-06-27

    A geometry of superspace corresponding to double field theory is developed, with type I I supergravity in D=10 as the main example. The formalism is based on an orthosymplectic extension OSp(d,d|2s) of the continuous T-duality group. Covariance under generalised super-diffeomorphisms is manifest. Ordinary superspace is obtained as a solution of the orthosymplectic section condition. A systematic study of curved superspace Bianchi identities is performed, and a relation to a double pure spinor superfield cohomology is established. A Ramond-Ramond superfield is constructed as an infinite-dimensional orthosymplectic spinor. Such objects in minimal orbits under the OSp supergroup (“pure spinors”) define super-sections.

  10. Double ambidexterity

    DEFF Research Database (Denmark)

    Kaulio, Matti; Thorén, Kent; Rohrbeck, René

    2017-01-01

    We leverage the business model innovation and ambidexterity literature to investigate a contradictory case, the Swedish-Finnish Telecom operator TeliaSonera. Despite being challenged by three major disruptions, the company not only still exists but also enjoys remarkably good financial performance....... Building on extant archival data and interviews, we carefully identify and map 26 organizational responses during 1992–2016. We find that the firm has overcome three critical phases by experimenting and pioneering with portfolios of business models and/or technological innovations. We describe...... this behaviour as double ambidexterity. We use an in-depth case study to conceptualize double ambidexterity and discuss its impact on the business's survival and enduring success....

  11. High resolution NMR in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Anix [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela). Dept. de Analisis y Evalucion

    1992-12-31

    In this work {sup 29} Si and {sup 27} Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author) 7 refs., 7 figs., 2 tabs.

  12. High resolution NMR in zeolites

    International Nuclear Information System (INIS)

    Diaz, Anix

    1991-01-01

    In this work 29 Si and 27 Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author)

  13. Carbon-13 NMR characterization of actinyl(VI) carbonate complexes in aqueous solution

    International Nuclear Information System (INIS)

    Clark, D.L.; Hobart, D.E.; Palmer, P.D.; Sullivan, J.C.; Stout, B.E.

    1992-01-01

    The uranyl(VI) carbonate system has been re-examined using 13 C NMR of 99.9% 13 C-enriched U VI O 2 ( 13 CO 3 ) 3 4- in millimolar concentrations. By careful control of carbonate ion concentration, we have confirmed the existence of the trimer, and observed dynamic equilibrium between the monomer and the timer. In addition, the ligand exchange reaction between free and coordinated carbonate on Pu VI O 2 ( 13 CO 3 ) 3 4- and Am VI O 2 ( 13 CO 3 ) 3 4- systems has been examined by variable temperature 13 C NMR line-broadening techniques 13 C NMR line-broadening techniques. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was written to allow for experimental determination of ligand exchange parameters for paramagnetic actinide complexes. Preliminary Eyring analysis has provided activation parameters of ΔG double-dagger 295 = 56 kJ/M, ΔH double-dagger = 38 kJ/M, and ΔS double-dagger = -60 J/M-K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl (VI) carbonate complex self-exchange reaction. Experiments for determination of the activation parameters for the americium (VI) carbonate system are in progress

  14. {sup 77}Se NMR study of nonmagnetic-magnetic transition in (TMTSF){sub 2}X

    Energy Technology Data Exchange (ETDEWEB)

    Mito, T., E-mail: mito_takeshi@hotmail.co [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Nishiyama, K.; Koyama, T.; Ueda, K.; Kohara, T.; Takeuchi, K.; Akutsu, H.; Yamada, J. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Kornilov, A.; Pudalov, V.M. [P.N. Lebedev Physics Institute, Moscow 119991 (Russian Federation); Qualls, J.S. [Sonoma State University, Rohnert Park, CA 94928 (United States)

    2010-12-15

    {sup 77}Se NMR measurements have been carried out on (TMTSF){sub 2}X (X = PF{sub 6} and AsF{sub 6}) single crystals. For both compounds, NMR lines split into double-peaked spectra in the SDW state, which is explained with sinusoidal internal field at Se nucleus positions having the same incommensurate wave number with that of the SDW order. No change in the lineshape was observed at T{sub x} at which the spin-relaxation rate shows a kink, suggesting that this anomaly does not cause significant static changes in internal field at the Se-site.

  15. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  16. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  17. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  18. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2018-01-01

    Full Text Available Bryostatin 1 (henceforth bryostatin is in clinical trials for the treatment of Alzheimer’s disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC–ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

  19. Solid-state {sup 2}H NMR investigations in guest-host systems and plastic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garibay, J.A.V.

    2004-07-01

    Variable temperature {sup 2}H NMR investigations have been carried out to study the molecular behavior of perdeuterated benzene and pyridine in the inclusion compound with tris-(1,2-dioxyphenyl)-cyclotriphosphazene. Here, a comprehensive variable temperature {sup 2}H NMR study is presented comprising line shape studies and relaxation experiments. The experimental data clearly indicate the presence of highly mobile guest species. Sample cooling gives rise to characteristic line shape effects that can be attributed to a slow-down of the rotational motion. Additional {sup 2}H NMR measurements were performed on the plastic crystal 1,4-diazabicyclo[2,2,2]octane where highly mobile species were observed. A quantitative analysis of the experimental data is achieved by appropriate computer simulations taking into account various molecular motions for each studied system. The analysis of these theoretical data give rise to the kinetic parameters that are in the order of related systems. (orig.)

  20. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  1. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  2. Teaching NMR spectra analysis with nmr.cheminfo.org.

    Science.gov (United States)

    Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien

    2018-06-01

    Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  4. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Broad line and pulsed NMR study of molecular motion in furfuryl alcohol resins

    International Nuclear Information System (INIS)

    Glowinkowski, S.; Pajak, Z.

    1978-01-01

    Broad line and pulsed nuclear magnetic resonance studies are carried out on a number of furfuryl alcohol resins differentiated by viscosity. Proton NMR spectra and relaxation times T 1 and Tsub(1rho) are measured over a wide temperature range and the results are interpreted in terms of molecular motion. The marked decrease in second moment and existence of high temperature spin-lattice relaxation times minima are presumed to result from rotational motion of polymer chains. The relaxation processes at low temperature are believed to be due to rotational motion of methyl endgroup and paramagnetic centres. (author)

  6. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  8. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  9. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  10. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  11. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    Science.gov (United States)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  12. NMR characterization of pituitary tumors

    International Nuclear Information System (INIS)

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions

  13. Short recovery time NMR probe

    International Nuclear Information System (INIS)

    Ramia, M.E.; Martin, C.A.; Jeandrevin, S.

    2011-01-01

    A NMR probe for low frequency and short recovery time is presented in this work. The probe contains the tuning circuit, diode expanders and quarter wavelength networks to protect the receiver from both the amplifier noise and the coil ringing following the transmitter power pulse. It also possesses a coil damper which is activated by of non active components. The probe performance shows a recovery time of about of 15μs a sensitive Q factor reduction and an increase of the signal to noise ratio of about 68% during the reception at a work frequency of 2 MHz. (author)

  14. Observation by flow 1H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    International Nuclear Information System (INIS)

    Fischer, D.

    1990-01-01

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow 1 H NMR spectroscopy at room temperature. The 1 H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the 1 H NMR spectrum of the more reactive 1, generated in a similar manner from [o-((trimethylsilyl)methyl)benzyl]trimethylammonium iodide (5.) could be obtained only in the presence of its stable [4 + 2] and [4 + 4] dimers. The dimerization kinetics of 3-methyl- (5'), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH 3 CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1') in CD 3 CN, which was observed by flow 1 H NMR spectroscopy at room temperature. The 1 H NMR spectrum (in CD 3 CN) of 1,2-dimethylene-1,2-dihydrothiophene (1 double-prime), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow 1 H NMR spectroscopy at room temperature. The dimerization rate of 1 double-prime in CH 3 CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs

  15. Timing and related artifacts in multidimensional NMR

    International Nuclear Information System (INIS)

    Marion, Dominique

    2012-01-01

    The information content of multidimensional NMR spectra is limited by the presence of several kinds of artifacts that originate from incorrect timing of evolution periods. The objective of this review is to provide tools for successful implementation of published pulse sequences, in which timing and pulse compensations are often implicit. We will analyze the constraints set by the use of Fourier transformation, the spin precession during rectangular or shaped pulses, the Bloch-Siegert effects due to pulse on other spins and the delay introduced by the filters for the acquisition dimension. A frequency dependent phase correction or an incorrect scaling of the first data point leads to baseline offsets or curvature due to the properties of the Fourier transform. Because any r.f. pulse has a finite length, chemical shift is always active during excitation, flip-back, inversion, and refocusing pulses. Rectangular or selective shaped pulses can be split into three periods: an ideal rotation surrounded by two chemical shift evolution periods, which should be subtracted from the adjacent delays to avoid linear phase correction. Bloch-Siegert effects originate from irradiation at frequencies near those observed in the spectrum and can lead to phase or frequency shifts. They can be minimized by simultaneous irradiation on both sides of the observed spins. In terms of timing, the very end of the pulse sequence the acquisition behaves differently since the data are filtered by either analog or digital means. This additional delay is filter and spectrometer specific and should be tuned to minimize the required phase correction. Combined together, all these adjustments lead to perfectly phased spectra with flat baseline and no peak shifts or distortion. (author)

  16. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  17. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    Science.gov (United States)

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  18. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  19. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  20. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  1. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  2. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  3. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  4. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  5. Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus.

    Science.gov (United States)

    Shaikh, Aasef G; Solomon, David

    2017-06-01

    Constant velocity rotations in darkness evoke vestibulo-ocular reflex in form of pre- and post-rotational nystagmus under cerebellar supervision. Reorientation of the head with respect to gravity, stimulating otolith and semicircular canal, during post-rotational phase rapidly suppresses the post-rotational nystagmus. We asked if pure otolith stimulation without semicircular canal signal is sufficient for the suppression of post-rotational nystagmus. The experimental paradigm comprised of on-axis rotations in the horizontal plane when the subject was sitting upright, followed by a novel stimulus that combined off-axis centrifugation in the horizontal plane with amplitude matched, yet out-of-phase, on-axis horizontal rotation-double centrifugation. The resultant effect of double centrifugation was pure otolith stimulation that constantly changed direction, yet completely canceled out angular velocity (no horizontal semicircular canal stimulation). Double centrifugation without pre-existing on-axis rotations evoked mixture of horizontal and vertical eye movements, latter reflected the known uncertainty of the vestibular system to differentiate whether the sensory signal is related to low-frequency translations in horizontal plane or head tilts relative to the gravity. Double centrifugation during post-rotational phase suppressed the peak slow phase eye velocity of the post-rotational nystagmus, hence affecting the vestibular ocular reflex gain (eye velocity/head velocity) matrix. The decay time constant, however, was unchanged. Amount of suppression of the peak slow phase eye velocity of the post-rotational nystagmus during double centrifugation correlated with the peak vertical eye velocity evoked by the pure otolith stimuli in the absence of pre-existing on axis rotations. In post-rotational phase, the pure otolith signal affects vestibular ocular reflex gain matrix but does not affect the time constant.

  6. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  7. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  8. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  9. 1H-NMR urinalysis

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-01-01

    In an effort to examine the usefulness of 1 H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. 1 H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.)

  10. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  11. Characterization of natural bentonite by NMR

    International Nuclear Information System (INIS)

    Leite, Sidnei Q.M.; Dieguez, Lidia C.; Menezes, Sonia M.C.; San Gil, Rosane A.S.

    1993-01-01

    Solid state NMR as well as several other instrumental chemical analysis techniques were used in order to characterize two natural occurring bentonite. The methodology is described. The NMR spectra, together with the other used techniques suggest that the observed differences are due to iron inclusions in tetrahedral and octahedral sites

  12. Using Cloud Storage for NMR Data Distribution

    Science.gov (United States)

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  13. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  14. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  15. Selective sensitivity enhancement in FT-NMR

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    In this article the basic two-spin nuclear magnetic resonance (NMR) experiment and the new sensitivity enhancement experiments are reviewed. In part two of this two-part series an overview of two-dimensional NMR experiments will be presented. Part two will appear in the June 1 issue of Analytical Chemistry

  16. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  17. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU 'cage' thereby making it extremely difficult to assign the NMR signals. Attachment ...

  18. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  19. NMR imaging of soft tissue tumors

    International Nuclear Information System (INIS)

    Laval-Jeantet, M.; Tobolsk, F.; Delepine, N.; Delepine, G.; Roger, B.; Cabanis, E.A.

    1986-01-01

    Preliminary findings on NMR imaging of 30 soft tissue tumors demonstrated the indispensable value of this examination (particularly when a surface antenna is used) for preoperative investigation and diagnosis of tumoral recurrence when compared with other radiologic techniques. The possible potential of NMR imaging for characterization of tissues, apart from lipoma or liposarcoma, cannot be evaluated at the present time [fr

  20. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  1. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  2. On Job Rotation

    OpenAIRE

    Metin M. Cosgel; Thomas J. Miceli

    1998-01-01

    A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

  3. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  4. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  5. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Muller D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Dao, Phuong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Jeong, Keunhong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Slack, Clancy C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vassiliou, Christophoros C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Francis, Matthew B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4.

  6. Double-diffusive convection of compressible rotating Walters' (B ...

    African Journals Online (AJOL)

    user

    Mathematical Formulation of the Problem and Perturbation Equations ...... Rayleigh number for the onset of instability via a state of pure oscillations, it suffices to find conditions for which ..... Cambridge University Press, Cambridge, UK.

  7. Double-diffusive convection of compressible rotating Walters' (B ...

    African Journals Online (AJOL)

    user

    A great number of applications of such a flow in geophysics are found in a ... We have considered an infinite, horizontal, compressible electrically conducting Walters' (Model B′) fluid layer of .... Linearized stability theory and normal mode analysis .... boundaries the boundary conditions are (see Chandrasekhar, 1981). 2.

  8. Conformational Analysis of Indole Alkaloids Corynantheine and Dihydrocorynantheine by Dynamic 1H NMR Spectroscopy and Computational Methods: Steric Effects of Ethyl vs Vinyl Group

    DEFF Research Database (Denmark)

    Stærk, Dan; Norrby, Per-Ola; Jaroszewski, Jerzy W.

    2001-01-01

    H-1 NMR (400 MHz) spectra of the indole alkaloid dihydrocorynantheine recorded at room temperature show the presence of two conformers near coalescence. Low temperature H-1 NMR allowed characterization of the conformational equilibrium, which involves rotation of the 3-methoxypropenoate side chain...... bulk of the vinyl and the ethyl group. The conformational equilibria involving the side chain rotation as well as inversion of the bridgehead nitrogen in corynantheine and dihydrocorynantheine was studied by force-field (Amber(*) and MMFF) and ab initio (density-functional theory at the B3LYP/6-31G...

  9. Rotator cuff - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

  10. Exploring translocation of proteins on DNA by NMR

    International Nuclear Information System (INIS)

    Marius Clore, G.

    2011-01-01

    While an extensive body of knowledge has accumulated on the structures of transcription factors, DNA and their complexes from both NMR and crystallography, much less is known at a molecular level regarding the mechanisms whereby transcription factors locate their specific DNA target site within an overwhelming sea of non-specific DNA sites. Indirect kinetic data suggested that three processes are involved in the search procedure: jumping by dissociation of the protein from the DNA followed by re-association at another site, direct transfer from one DNA molecule or segment to another, and one-dimensional sliding. In this brief perspective I summarize recent NMR developments from our laboratory that have permitted direct characterization of the species and molecular mechanisms involved in the target search process, including the detection of highly transient sparsely-populated states. The main tool in these studies involves the application of paramagnetic relaxation enhancement, supplemented by z-exchange spectroscopy, lineshape analysis and residual dipolar couplings. These studies led to the first direct demonstration of rotation-coupled sliding of a protein along the DNA and the direct transfer of a protein from one DNA molecule to another without dissociating into free solution.

  11. Determination of herb authenticity by low-field NMR.

    Science.gov (United States)

    Preto, M S M; Tavares, M I B; Sebastião, P J O; Azeredo, R B V

    2013-02-15

    The safe use of herbal medicines requires prior authentication of the raw materials used to make them. This is an important step, since the ingestion of herbal preparations or extracts can cause serious health problems. Among the different analytical techniques, nuclear magnetic resonance (NMR) spectroscopy has the advantage of being non-invasive and therefore suitable for the characterization of natural products such as medicinal plants. This work presents a characterisation study of the samples of the popular plant Maytenus ilicifolia, obtained from different commercial producers. This plant is used for the treatment of gastrointestinal disorders, as it possesses antitumorigenic, analgesic, anti-inflammatory and antioxidant properties. The differences in the chemical structure and molecular organisation detected by thermogravimetric analysis (TGA), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) were also investigated by proton nuclear magnetic resonance relaxometry, in particular by fast field cycling (FFC) relaxometry, and relaxometry in the rotating frame. All results confirmed the similarity between the control sample and only one of the plant investigated. The differences detected between the samples could be related to their non-authenticity, due to the non recognise the plant due to the leaves similarity among plants from the same family and/or contamination, due to addition of similar other plants parts to the commercial ones, as they are mixed together this difficulties the acceptation of the plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  13. On unsteady two-phase fluid flow due to eccentric rotation of a disk

    Directory of Open Access Journals (Sweden)

    A. K. Ghosh

    2003-01-01

    in a double-disk configuration, a result which is the reverse to that of solid-body rotation. Finally, the results are presented graphically to determine the quantitative response of the particle on the flow.

  14. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.

    1984-01-01

    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  15. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  16. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan

    Science.gov (United States)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-11-01

    Structure and conformational properties of valsartan were studied by advanced NMR techniques and quantum calculation methods. Potential energy scanning using B3LYP/6-311++g** and B3LYP-D3/6-311++g** methods were performed and four conformers (V1-V4) at minimum points of PES diagram were observed. According to the NMR spectra in acetone-d6, there are two conformers (M and m) with m/M = 0.52 ratio simultaneously and energy barriers of the two conformers were predicted from chemical shifts and multiplicities. While, intramolecular hydrogen bond at tetrazole ring and carboxylic groups prevent the free rotation on N6sbnd C11 bond in M-conformer, this bond rotates freely in m-conformer. On the other hand, intramolecular hydrogen bond at carbonyl and carboxylic acid can be observed at m-conformer. So, different intramolecular hydrogen bond is the reason for the stability of both M and m structures. Quite interestingly, 1H NMR spectra in CDCl3 show two distinct conformers (N and n) with unequal ratio which are differ from M-m conformers. Also, intramolecular hydrogen bond seven-member ring involving five-membered tetrazole ring and carboxylic acid group observed in both N and n-conformers Solvent effect, by using a set of polar and non-polar solvents including DMSO-d6, methanol-d4, benzene-d6, THF-d8, nitromethane-d3, methylene chloride-d2 and acetonitrile-d3 were investigated. NMR parameters include chemical shifts and spin-spin coupling constants were obtained from a set of 2D NMR spectra (H-H COSY, HMQC and HMBC). For this purpose, several DFT functionals from LDA, GGA and hybrid categories were used which the hybrid method showed better agreement with experiment values.

  17. Double inflation

    International Nuclear Information System (INIS)

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The Ω-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig

  18. Encapsulation of Protonated Diamines in a Water-Soluble Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation (NIR)

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-19

    Amine nitrogen inversion, difficult to observe in aqueous solution, is followed in a chiral, supramolecular host molecule with purely-rotational T-symmetry that reduces the local symmetry of encapsulated monoprotonated diamines and enables the observation and quantification of {Delta}G{double_dagger} for the combined hydrogen-bond breaking and nitrogen inversion rotation (NIR) process. Free energies of activation for the combined hydrogen-bond breaking and NIR process inside of the chiral assembly were determined by the NMR coalescence method. Activation parameters for ejection of the protonated amines from the assembly confirm that the NIR process responsible for the coalescence behavior occurs inside of the assembly rather than by a guest ejection/NIR/re-encapsulation mechanism. For one of the diamines, N,N,N{prime},N{prime}-tetramethylethylenediamine (TMEDA), the relative energy barriers for the hydrogen-bond breaking and NIR process were calculated at the G3(MP2)//B3LYP/6-31++G(d,p) level of theory, and these agreed well with the experimental data.

  19. Double Outlet Right Ventricle

    Science.gov (United States)

    ... Right Ventricle Menu Topics Topics FAQs Double Outlet Right Ventricle Double outlet right ventricle (DORV) is a rare form of congenital heart disease. En español Double outlet right ventricle (DORV) is a rare form of congenital ...

  20. 1H and 13C NMR studies of palladium(2) and platinium(2) complexes with S-Methyl-L-Cysteine

    International Nuclear Information System (INIS)

    Allain, A.; Jezowska-Trzebiatowska, B.; Kozlowski, H.

    1979-01-01

    Our recent 1 H NMR studies on Pd(2)-S-Methyl-L-Cysteine(SMC) complexes have shown that the use of a conformational analysis to establish the complexed species existing in solution may provide clearer results than considering the proton chemical shift only. However, the use of the vicinal coupling constant of ABC spectrum of αCH-βCH 2 proton unit to estimate the rotational isomer fractions, may contain some ambiguity, especially on the proton assignment of the methylene group. For this reason 13 C NMR method has been applied to study these systems. (author)

  1. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  2. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    Spencer, D.H.; Bydder, G.M.

    1983-01-01

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  3. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  4. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  5. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  6. Introduction to some basic aspects of NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    The principal interactions are reviewed that are experienced by nuclear spins making magnetic resonance feasible and which disturb it in a way that gives access to the properties of bulk matter. The interactions leading to NMR include Zeeman interaction, dipole-dipole interactions, and exchange interactions. Spin-lattice relaxation relevant to NMR is revisited next. It is followed by an overview of spin temperature. Finally, the care of periodic Hamiltonian is discussed in detail as another contribution to NMR. (R.P.) 48 refs., 12 figs

  7. NMR study of LaPb2

    International Nuclear Information System (INIS)

    Ueda, K.; Kohara, T.; Yamada, Y.

    1995-01-01

    La and Pb NMR signals were observed in LaPb 2 with a superconducting transition temperature of about 7 K. The width of the Pb NMR spectrum with an asymmetric line shape was rather narrower than those of Er-, Gd- and Ho-Pb 2 . The spin-lattice relaxation time of Pb nuclei was twice longer than that of Pb metal. La NMR spectrum had satellites due to the electric quadrupole interaction. These results show that each local environment at La or Pb site in LaPb 2 compound is uniquely determined, compared with those in randomly substituted alloys. ((orig.))

  8. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    Belmonte, S.B.; Oliveira, I.S.; Guimaraes, A.P.

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T 2 ), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  9. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  10. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  11. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  12. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  13. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  14. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  15. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  16. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  17. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  18. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  19. Double hard scattering without double counting

    International Nuclear Information System (INIS)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-02-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  20. The doubling of stellar black hole nuclei

    Science.gov (United States)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  1. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  2. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  3. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    Science.gov (United States)

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  4. Physics of untied rotating space elevators

    Science.gov (United States)

    Knudsen, Steven; Golubović, Leonardo

    2015-12-01

    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  5. NMR in the SPINE Structural Proteomics project.

    Science.gov (United States)

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  6. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  7. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  8. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  9. NMR studies of cerebral metabolism in vivo

    International Nuclear Information System (INIS)

    Prichard, J.W.

    1986-01-01

    The nature and extent of the potential synergism between PET and NMR methods is not yet well appreciated in the biomedical community. The long-range interest of medical neurobiology will be well served by efforts of PET and NMR scientists to follow each others' work so that opportunities for productive interchange can be efficiently exploited. Appreciation of the synergism by the rest of the biomedical community will follow naturally. PET is said by the people doing it to be still in its infancy, for they are more concerned with advancing their discipline than with admiring its already impressive achievements. On the scale of the same developmental metaphor, many NMR methods for studying the living human brain are still in utero. The best way to provide the reader a sense of the current status and future course of NMR research in medical neurobiology is by discussion of published in vivo studies. Such a discussion, adapted from another article is what follows

  10. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  11. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  12. Use of 129 Xe NMR to characterize inhomogeneous solids: a 129 Xe NMR study of the miscibility of EPDM rubber and atactic polypropylene

    International Nuclear Information System (INIS)

    Morgan, David R.; Silva, Naira M. da; Stejskal, E.O.; Tavares, Maria Ines B.

    1997-01-01

    One of the goals of polymer blending is the creation of miscible blends. The ability to assess accurately the degree of miscibility thus is of great value to the polymer scientist. The traditional methods of determining phase separation include: DSC, DMA, crystallography, microscopy and NMR relaxation measurements in the rotating frame These methods are usually simple and rapid but each technique is not suitable for all samples and each has a lower limit below which they cannot detect small degrees of phase separation. In this presentation we demonstrate a non-destructive and simple technique that can provide miscibility/phase separation information about rubbery and amorphous polymers and polymer blends. (author)

  13. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  14. Ultrafast rotation in an amphidynamic crystalline metal organic framework.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Uribe-Romo, Fernando J; Lipton, Andrew S; Yang, Song; Houk, K N; Brown, Stuart; Garcia-Garibay, Miguel A

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4 O cubic lattice. Using spin-lattice relaxation 1 H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3-80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1 These results were confirmed with 2 H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  15. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; Yang, Song; Houk, K. N.; Brown, Stuart; Garcia-Garibay, Miguel A.

    2017-12-11

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  16. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  17. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  18. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  19. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

    1997-01-01

    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  20. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  1. Rotation and rotation-vibration spectroscopy of the 0+-0- inversion doublet in deuterated cyanamide.

    Science.gov (United States)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P; Winnewisser, Manfred

    2013-10-03

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, ΔE = 16.4964789(8), 32.089173(3), and 49.567770(6) cm(-1), for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  2. NMRbox: A Resource for Biomolecular NMR Computation.

    Science.gov (United States)

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  3. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  4. Rotating quantum states

    International Nuclear Information System (INIS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2014-01-01

    We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries

  5. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  6. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    Science.gov (United States)

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  7. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  8. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  9. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  10. Rotator Cuff Repair in Adolescent Athletes.

    Science.gov (United States)

    Azzam, Michael G; Dugas, Jeffrey R; Andrews, James R; Goldstein, Samuel R; Emblom, Benton A; Cain, E Lyle

    2018-04-01

    Rotator cuff tears are rare injuries in adolescents but cause significant morbidity if unrecognized. Previous literature on rotator cuff repairs in adolescents is limited to small case series, with few data to guide treatment. Adolescent patients would have excellent functional outcome scores and return to the same level of sports participation after rotator cuff repair but would have some difficulty with returning to overhead sports. Case series; Level of evidence 4. A retrospective search of the practice's billing records identified all patients participating in at least 1 sport who underwent rotator cuff repair between 2006 and 2014 with an age Rotator Cuff Index. Thirty-two consecutive adolescent athletes (28 boys and 4 girls) with a mean age of 16.1 years (range, 13.2-17.9 years) met inclusion criteria. Twenty-nine patients (91%) had a traumatic event, and 27 of these patients (93%) had no symptoms before the trauma. The most common single tendon injury was to the supraspinatus (21 patients, 66%), of which 2 were complete tendon tears, 1 was a bony avulsion of the tendon, and 18 were high-grade partial tears. Fourteen patients (56%) underwent single-row repair of their rotator cuff tear, and 11 (44%) underwent double-row repair. All subscapularis injuries were repaired in open fashion, while all other tears were repaired arthroscopically. Twenty-seven patients (84%) completed the outcome questionnaires at a mean 6.2 years after surgery (range, 2-10 years). The mean ASES score was 93 (range, 65-100; SD = 9); mean Western Ontario Rotator Cuff Index, 89% (range, 60%-100%; SD = 13%); and mean numeric pain rating, 0.3 (range, 0-3; SD = 0.8). Overall, 25 patients (93%) returned to the same level of play or higher. Among overhead athletes, 13 (93%) were able to return to the same level of play, but 8 (57%) were forced to change positions. There were no surgical complications, but 2 patients did undergo a subsequent operation. Surgical repair of high-grade partial

  11. Double contrast arthrography of the shoulder

    International Nuclear Information System (INIS)

    Gasparini, D.

    1991-01-01

    From 1980 to 1989 the author performed 481 double-contrast arthrographic examinations of the shoulder (DCSA). A hundred and forty-two complete and 46 partial rotator cuff tears were demonstrated; 68 of them underwent surgical exploration. Results confirmed DCSA capabilities in detecting both their location (100%) and size (95%). Moreover, thickness (89%) and erosions (94%) in tendon edges and surfaces were demonstrated - that is, all the qualitative information needed to depict degenerative processes. Such evidence may also affect treatment planning

  12. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  13. Negative Rotation Cinch Strap.

    Science.gov (United States)

    This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation

  14. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  15. Rotator Cuff Injuries.

    Science.gov (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  16. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  17. The Axial Curve Rotator.

    Science.gov (United States)

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  18. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  19. Criteria to average out the chemical shift anisotropy in solid-state NMR when irradiated with BABA I, BABA II, and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Stephane Mananga, Eugene

    2013-01-01

    Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  1. NMR studies of hydrogen diffusion in hydrogen uranyl phosphate tetrahydrate (HUP)

    International Nuclear Information System (INIS)

    Metcalfe, K.

    1988-01-01

    1 H NMR spin-lattice relaxation times, T 1 (Zeeman) and T 1p (rotating frame) and spin-spin relaxation times, T 2 , and 31 P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200-323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31 P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed. 30 refs.; 6 figs.; 2 tabs

  2. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  3. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  4. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    Science.gov (United States)

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  5. New methods for the correction of 31P NMR spectra in in vivo NMR spectroscopy

    International Nuclear Information System (INIS)

    Starcuk, Z.; Bartusek, K.; Starcuk, Z. jr.

    1994-01-01

    The new methods for the correction of 31 P NMR spectra in vivo NMR spectroscopy have been performed. A method for the baseline correction of the spectra which represents a combination of time-domain and frequency-domain has been discussed.The method is very fast and efficient for minimization of base line artifacts of biological tissues impact

  6. Direct 19F NMR observation of the conformational selection of optically active rotamers of the antifolate compound fluoronitropyrimethamine bound to enzyme dihydrofolate reductase

    International Nuclear Information System (INIS)

    Tendler, S.J.B.; Birdsall, B.; Feeney, J.; Griffin, R.J.; Stevens, M.F.G.; Roberts, G.C.K.

    1988-01-01

    The molucular basis of the binding of the lipophilic antifolate compound fluoronitropyrimethamine to its target enzyme dihydrofolate reductase has been investigated using a combination of 19 F NMR spectroscopy and molecular mechanical calculations 19 F NMR reveals the presence of two different conformational states for the fluoronitropyrimethamine-Lactobacillus casei enzyme complex. MM2 molecular mechanical calculations predict restricted rotation about the C5-C1 bond of the ligand and this give rise to two slowly interconverting rotamers which are an enantiomeric pair. The results of 19 F NMR spectroscopy reveal that both these isomers bind to the enzyme, with different affinities. There is no detectable interconversion of the bound rotamers themselves on the NMR timescale. The effect of the addition of co-enzyme to the sample is to reverse the preference the enzyme has for each rotamer. (author). 11 refs.; 3 figs

  7. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  8. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  9. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  10. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  11. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  12. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  13. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  14. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels

    NARCIS (Netherlands)

    Salami, S.; Rondeau-Mouro, C.; Barhoum, M.; Duynhoven, van J.P.M.; Mariette, F.

    2014-01-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ~ 10 g/100 g H2O), translational diffusion of the probe depended

  15. Rotator Cuff Injuries - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

  16. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  17. Rotatable seal assembly

    International Nuclear Information System (INIS)

    Garibaldi, J.L.; Logan, C.M.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

  18. Rotator cuff disease

    International Nuclear Information System (INIS)

    Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

    1988-01-01

    A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

  19. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan

    2009-01-01

    it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

  20. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  1. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  2. The rotational spectrum of IBr

    International Nuclear Information System (INIS)

    Tiemann, E.; Moeller, T.

    1975-01-01

    The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

  3. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  4. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  5. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. Copyright 2000 Academic Press.

  6. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  7. Determination of solid fat content by NMR

    International Nuclear Information System (INIS)

    Kawada, Tsukasa; Kato, Chihiro; Suzuki, Kazuaki

    1984-01-01

    To establish a standard method for determing solid fat content, the NMR method was tested at six laboratories and the results were examined for collaboration. Two types of instruments, pulse NMR and wide-line NMR were used. Standard deviation in results at six laboratories was less than 1.5 for the step wise method, but more than 1.5 for the rapid method. The standard deviation in results at a single laboratory was much less than either of these cases. No significant difference could be observed in the values obtained using both instruments. Solid fat content values measured for a mixture of fully hydrogenated rapeseed and rapeseed oil agreed well with the percentage of solid by weight. (author)

  8. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  9. Radiofrequency/infrared double resonance spectroscopy of the HD+ ion

    International Nuclear Information System (INIS)

    Carrington, Alan; McNab, I.R.; Montgomerie, C.A.

    1989-01-01

    We describe a double resonance technique for obtaining radiofrequency spectra of the HD + ion in vibration-rotation levels close to the dissociation limit. Infrared transitions are driven by Doppler tuning an HD + ion beam into resonance with a carbon dioxide infrared laser, and are detected by measuring H + fragment ions produced by electric field dissociation of the upper vibration-rotation level. Radiofrequency transitions between nuclear hyperfine components of the lower vibration-rotation level are then detected through resonant increases in the H + fragment ion current. The high spectroscopic resolution obtained, and the ability to measure magnetic dipole hyperfine transitions, will enable the hyperfine constants to be determined accurately. (author)

  10. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  11. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  12. International double taxation

    OpenAIRE

    Körbl, Hugo

    2012-01-01

    1 Summary This thesis deals with the issue of international double taxation of income and capital and methods for its solution. International double taxation is an issue which states began to deal with in the late 19th century. This interest intensified after the First World War when also the League of Nations (predecessor of the United Nations) began to deal with international double taxation. Most attention the phenomenon of double taxation of income and capital with an international elemen...

  13. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-09-09

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, (13)C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The ¹H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using ¹H-¹H distance constraints obtained from the ¹H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra.

  14. Applications of NMR spectroscopy to xenobiotic metabolism

    International Nuclear Information System (INIS)

    Harris, T.M.

    1989-01-01

    Recent years have seen high field NMR spectrometers become commonplace in research laboratories. At the same time, major advances in methodology for structural analysis have occurred, particularly notable among these being the development of two-dimensional spectroscopic techniques. Many applications have been made of NMR spectroscopy in the study of xenobiotic metabolic processes. This deals with two specific applications which have been made in the author's laboratory and involve mechanistic studies of the reactions of the carcinogens ethylene dibromide and aflatoxin with DNA

  15. Tritiation methods and tritium NMR spectroscopy

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by 1 H and 3 H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T 2 O, CH 3 COOT or CF 3 COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs

  16. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  17. Programmable pulse series generator for NMR relaxometer

    International Nuclear Information System (INIS)

    Stolbunov, R.N.; Chichikov, S.A.; Lundin, A.G.

    2005-01-01

    Paper describes a pulse series generator for NMR relaxometer. The operation mode is set on the basis of the PC program by the PCI bus in the internal memory. The design is based on two Altera Company MAX7000S and Cyclone family microcircuits using the Qartus II 4.0 software. The basic parameters are as follows: pulse minimum length - 50 ns, time resolution - 10 ns, pulse maximum number - 1024, number of controlled output channels - 8. The designed device as a part of the NMR hardware-software system enables to record, to process and to store the experiment results in the form of electronic document [ru

  18. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  19. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  20. Two dimensional NMR of liquids and oriented molecules

    International Nuclear Information System (INIS)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of 13 C and 1 H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface

  1. Two dimensional NMR of liquids and oriented molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  2. The molecular mobility of water in natural polymers : Silk Bombyx mori with a low water content as studied by H-1 DQF NMR

    NARCIS (Netherlands)

    Rodin, VV; Knight, DP

    2004-01-01

    The molecular mobility of water in fibres of natural silk (Bombyx mori) was studied by the double-quantum-filtered (DQF) and single-pulse H-1 NMR techniques. The results obtained showed a slow motion of water molecules and their strong interaction with silk macromolecules. At different model

  3. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  4. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  5. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  6. ULF-NMR system using HTS-SQUID and permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Shohei, E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Tsunaki, Shingo; Chigasaki, Takumi; Hatsukade, Yoshimi; Tanaka, Saburo [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2013-01-15

    Highlights: ► A permanent magnet was introduced into a ULF SQUID-NMR system for polarization. ► An instrument to transfer a sample in the magnet to under a SQUID was implemented. ► An AC pulse coil was also introduced to apply a π/2 pulse to obtain an NMR signal. ► A {sup 1}H NMR signal was measured while applying a static field of 45 μT. ► The signal to noise ratio of the {sup 1}H NMR signal was about 100. -- Abstract: We have constructed an ultra-low field (ULF) nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI) system using an HTS-rf-SQUID and room-temperature electromagnets in a magnetically shielded room (MSR). In this study, in order to improve the signal to noise ratio (S/N) of the system, we introduced a permanent magnet instead of the electromagnet for pre-polarizing the sample to enhance the pre-polarizing field (B{sub p}). The cylindrical permanent magnet of 270 mT was used to magnetize a water sample for several seconds outside the MSR and about 1.5 m away from the SQUID. We constructed an instrument to transfer the magnetized sample from the permanent magnet to under the SQUID in 0.5 s. Since the non-adiabatic condition cannot be kept in such sample transfer scheme, an AC pulse coil to apply an AC pulse field B{sub AC} to rotate the magnetization moments for π/2 was introduced to measure a free induction decay (FID) signal from the sample. By this system, we obtained an NMR signal from the water sample of 10 ml while applying a static field of 45 μT and π/2 pulse after the transfer. The S/N of the NMR spectrum was about 100 by a single shot, which was 10 times larger than that obtained with the electromagnet of 32 mT. In addition, we demonstrated the measurements of the longitudinal relaxation time (T{sub 1}) and the spin echo signal of the water sample by the system.

  7. Recommendations of the wwPDB NMR Validation Task Force

    Science.gov (United States)

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  8. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  9. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  10. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  11. Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures

    DEFF Research Database (Denmark)

    Tuoriniemi, J.T.; Knuuttila, T.A.; Lefmann, K.

    2000-01-01

    Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polarized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution...

  12. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-07-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. We briefly discuss the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Author)

  13. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  14. A 55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Rybicki, D.; Sikora, M.; Kapusta, Cz.; Riedi, P.C.; Jirak, Z.; Knizek, K.; Marysko, M.; Pollert, E.; Veverka, P.

    2006-01-01

    We report on a 55 Mn NMR study of the La 0.75 Sr 0.25 MnO 3 nanoparticles of the average grain size 33 nm and 114 nm at 4.2 K and 77 K and at applied field of 0, 0.2 and 0.5T. A dominant signal from the double exchange (DE) controlled metallic ferromagnetic interior of the grains as well as a small signal from insulating ferromagnetic regions is observed. From a comparison with bulk magnetization measurement the thickness of the nonferromagnetic outer layer of the grains and the amount of the ferromagnetic insulating phase was determined. The relative amount of these phases with respect to the ferromagnetic metallic phase increases with decreasing grain size. The DE line in the NMR spectrum shows a frequency shift with applied field according to a full 55 Mn gyromagnetic ratio. A value of the demagnetizing field close to zero is obtained, which indicates a single domain state of the nanoparticles. For the sample with larger grains a higher NMR enhancement is observed, which indicates a higher magnetic susceptibility of the sample at the NMR frequencies. A comparison with the NMR data obtained on a microcrystalline material is made. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Double-double effect and coordination number

    International Nuclear Information System (INIS)

    Mioduski, T.

    1992-01-01

    The original method of interpretation together with its theoretical foundations is developed, making it possible to use location and direction of the double-double (tetrad) effect within the Ln and An series to determine the coordination number (CN) complexes of the f-block elements. The method is applied for potentiometric and radiometric equilibrium studies. It has been pointed and that the decisive factor for the direction of the double-double effect in the case of the Gibbs energy variations is a difference in the CN of the f-element ion between the reaction product complex and that for the reaction substrate the ''regular'' effect for a given tetrad is accompanied by decrease in the CN while the ''reverse'' effect by increase in the CN. (author). 122 refs, 5 tabs, 8 figs

  16. Software Library for Bruker TopSpin NMR Data Files

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-14

    A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.

  17. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  18. Autonomous quantum rotator

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Imparato, Alberto

    2018-01-01

    to a directed rotary motion. At variance with the classical case, the thermal fluctuations in the baths give rise to a non-vanishing average torque contribution; this is a genuine quantum effect akin to the Casimir effect. In the steady state the heat current flowing between the two baths is systematically......, the rotator cannot work either as a heat pump or as a heat engine. We finally use our exact results to extend an ab initio quantum simulation algorithm to the out-of-equilibrium regime. Copyright (C) EPLA, 2018...

  19. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

    1984-01-01

    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  20. Rotational anomalies without anyons

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1985-01-01

    A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory

  1. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René

    2013-01-01

    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  2. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  3. NMR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Naegele, M.; Lienemann, A.; Hahn, D.

    1988-01-01

    NMR imaging now allows in vivo imaging of soft tissue hitherto undetectable by non-invasive means. This opens up excellent perspectives with regard to the diagnosis and therapy of various diseases in the field of traumatology and oncology, of which examples are discussed in this paper. (orig.) [de

  4. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  5. NMR analog of Bell's inequalities violation test

    International Nuclear Information System (INIS)

    Souza, A M; Oliveira, I S; Sarthour, R S; Magalhaes, A; Teles, J; Azevedo, E R de; Bonagamba, T J

    2008-01-01

    In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected

  6. NMR Analysis of Some Pentacycloundecanedione Derivatives

    African Journals Online (AJOL)

    NJD

    Although many authors have commented on the difficulty of ... coming these former difficulties. Cookson's dione 19,10 .... and 2.58 ppm) is the common factor and the positions of H-2. (2.94 ppm) .... Owing to advances in NMR technology, the.

  7. Proton NMR imaging in experimental ischemic infarction

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Brady, T.J.; Vielma, J.; Burt, C.T.; Goldman, M.R.; Hinshaw, W.S.; Pohost, G.M.; Kistler, J.P.

    1983-01-01

    Proton nuclear magnetic resonance (NMR) images depict the distribution and concentration of mobile protons modified by the relaxation times T1 and T2. Using the steady-state-free-precession (SSFP) technique, serial coronal images were obtained sequentially over time in laboratory animals with experimental ischemic infarction. Image changes were evident as early as 2 hours after carotid artery ligation, and corresponded to areas of ischemic infarction noted pathologically. Resulting SSFP images in experimental stroke are contrasted to inversion-recovery NMR images in an illustrative patient with established cerebral infarction. Bulk T1 and T2 measurements were made in vitro in three groups of gerbils: normal, those with clinical evidence of infarction, and those clinically normal after carotid ligature. Infarcted hemispheres had significantly prolonged T1 and T2 (1.47 +/- .12 sec, 76.0 +/- 9.0 msec, respectively) when compared to the contralateral hemisphere (T1 . 1.28 +/- .05 sec, T2 . 58.7 +/- 3.9 msec) or to the other two groups. These data suggest that changes in NMR parameters occur and can be detected by NMR imaging as early as two hours after carotid artery ligation

  8. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  9. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  10. Synthesis and NMR elucidation of novel pentacycloundecane ...

    African Journals Online (AJOL)

    NICO

    SYNTHESIS AND NMR ELUCIDATION OF NOVEL. PENTACYCLOUNDECANE DERIVED PEPTIDES. Rajshekhar Karpoormath, a. Oluseye K. Onajole, a. Thavendran Govender, b. Glenn E. M. Maguire, a and Hendrik G. Kruger a* a. School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa b. School of ...

  11. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  12. NMR characterization of polymers: Review and update

    Science.gov (United States)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  13. Some exercises in quantitative NMR imaging

    International Nuclear Information System (INIS)

    Bakker, C.J.G.

    1985-01-01

    The articles represented in this thesis result from a series of investigations that evaluate the potential of NMR imaging as a quantitative research tool. In the first article the possible use of proton spin-lattice relaxation time T 1 in tissue characterization, tumor recognition and monitoring tissue response to radiotherapy is explored. The next article addresses the question whether water proton spin-lattice relaxation curves of biological tissues are adequately described by a single time constant T 1 , and analyzes the implications of multi-exponentiality for quantitative NMR imaging. In the third article the use of NMR imaging as a quantitative research tool is discussed on the basis of phantom experiments. The fourth article describes a method which enables unambiguous retrieval of sign information in a set of magnetic resonance images of the inversion recovery type. The next article shows how this method can be adapted to allow accurate calculation of T 1 pictures on a pixel-by-pixel basis. The sixth article, finally, describes a simulation procedure which enables a straightforward determination of NMR imaging pulse sequence parameters for optimal tissue contrast. (orig.)

  14. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    an edge over the X-ray method as it can be used to study biomolecules ... currently as an Associate. Professor. ... Such a wealth of data is made available to the NMR ... important step towards structural characterization of a biomolecule. Box 1.

  15. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  16. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  17. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  18. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  19. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution