WorldWideScience

Sample records for dose ratio produced

  1. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  2. Evaluating the peak-to-valley dose ratio of synchrotron microbeams using PRESAGE fluorescence

    International Nuclear Information System (INIS)

    Annabell, N.; Yagi, N.; Umetani, K.; Wong, C.; Geso, M.

    2012-01-01

    The peak-to-valley dose ratio of a microbeam array can be measured by fluorescence of PRESAGE dosimeters. Peak-to-valley dose ratios are calculated using this new technique and also by EBT2 film. Synchrotron-generated microbeam radiotherapy holds great promise for future treatment, but the high dose gradients present conventional dosimetry with a challenge. Measuring the important peak-to-valley dose ratio (PVDR) of a microbeam-collimated synchrotron source requires both a dosimeter and an analysis method capable of exceptional spatial resolution. The PVDR is of great interest since it is the limiting factor for potential application of the microbeam radiation therapy technique clinically for its tissue-sparing properties (i.e. the valley dose should be below the tolerance of normal tissue). In this work a new method of measuring the dose response of PRESAGE dosimeters is introduced using the fluorescence from a 638 nm laser on a confocal laser-scanning microscope. This fluorescent microscopy method produces dosimetry data at a pixel size as low as 78 nm, giving a much better spatial resolution than optical computed tomography, which is normally used for scanning PRESAGE dosimeters. Using this technique the PVDR of the BL28B2 microbeam at the SPring-8 synchrotron in Japan is estimated to be approximately 52:1 at a depth of 2.5 mm. The PVDR was also estimated with EBT2 GAFchromic films as 30.5:1 at the surface in order to compare the PRESAGE fluorescent results with a more established dosimetry system. This estimation is in good agreement with previously measured ratios using other dosimeters and Monte Carlo simulations. This means that it is possible to use PRESAGE dosimeters with confocal microscopy for the determination of PVDR

  3. Tumour alpha/beta ratios and dose-rate selection in brachytherapy

    International Nuclear Information System (INIS)

    Duchesne, G.M.

    2003-01-01

    Traditionally brachytherapy employed low dose rate (LDR) techniques. Recent adoption of high dose rate (HDR) applications, addressing radiation protection concerns, has sparked debate over possible reductions in therapeutic ratio. The radiobiological characteristics of two contrasting examples, prostate cancer and cervical cancer, are examined. Both in-vitro and clinical observations of prostate cancer suggest a low α/β ratio. Labelling indices are below 2.5%, translating into long potential doubling times (Tpot ) of 16 to 61 days or more. Clinical PSA doubling times are in the order of years. Analysis of clinical endpoints in prostate cancer treated with either LDR or HDR techniques indicates that its α/β ratio may lie between 1 - 4 Gy, similar to slowly proliferating late reacting tissues. As such, therapeutic gain may arise from the use of hypofractionated HDR treatments, exploiting the sensitivity to large fraction sizes, effectively escalating dose. The slow proliferative rate also gives credence to the use of LDR, although several tumour doublings may occur during the effective treatment time, and analysis of the clinical data using a low α/β ratio suggests that LDR doses are only equivalent to 70 Gy with conventional fractionation. Cervical carcinoma is a rapidly proliferating tumour with Tpot values of 3-6 days. LDR implants were delivered over relatively short treatment times, negating repopulation effects, and the 'hyperfractionation' effect of LDR was suited to the high α/β ratio. HDR, although also preventing significant repopulation, has the potential to decrease the therapeutic ratio if low α/β , late-reacting tissues are not protected. Clinical data however show improved outcomes and reduced morbidity with HDR through reduced doses to normal tissues. Choosing the optimal dose rate in brachytherapy depends on tumour behaviour and achievable accuracy. HDR offers some advantages even for high α/β ratio tumours, and may be the technique of

  4. Tissue-phantom dose ratio R(t, F) in irradiation planning. 2

    International Nuclear Information System (INIS)

    Hegewald, H.

    1986-01-01

    The principles for measuring doses are represented to complete the developed tissue-phantom dose ratio R(t, F). The functional dependence of the tissue-phantom dose ratio on the field size results from the different spectral energy distribution in the buildup range compared to greater depths. This once more illustrates the demand, to move the calibration and reference depths into greater depths than the dose maximum depth on account of a high precision. The scattering factors and their dependence on the type of collimator are represented and tables are made up for practical use. In a supplement the derivations of the equation systems are given, to find out the tissue-phantom dose ratio by computation and the correspondence is tested. The measurements are more relevant in the megavolt range since dose values typically for the equipment are measured in the buildup range and depth dose tables are not available in the required completeness. (author)

  5. Evaluation of the dose uniformity for double-plane high dose rate interstitial breast implants with the use of dose reference points and dose non-uniformity ratio

    International Nuclear Information System (INIS)

    MAjor, T.; Polgar, C.; Somogyi, A.; Nemeth, G.

    2000-01-01

    This study investigated the influence of dwell time optimizations on dose uniformity characterized by dose values in dose points and dose non-uniformity ratio (DNR) and analyzed which implant parameters have influence on the DNR. Double-plane breast implants with catheters arranged in triangular pattern were used for the calculations. At a typical breast implant, dose values in dose reference points inside the target volume and volumes enclosed by given isodose surfaces were calculated and compared for non-optimized and optimized implants. The same 6-cm treatment length was used for the comparisons. Using different optimizations plots of dose non-uniformity ratio as a function of catheter separation, source step size, number of catheters, length of active sections were drawn and the minimum DNR values were determined. Optimization resulted in less variation in dose values over dose points through the whole volume and in the central plane only compared to the non-optimized case. At implant configurations consisting of seven catheters with 15-mm separation, 5-mm source step size and various active lengths adapted according to the type of optimization, the no optimization, geometrical (volume mode) and dose point (on dose points and geometry) optimization resulted in similar treatment volumes, but an increased high dose volume was observed due to the optimization. The dose non-uniformity ratio always had the minimum at average dose over dose normalization points, defined in the midpoints between the catheters through the implant volume. The minimum value of DNR depended on catheter separation, source step size, active length and number of catheters. The optimization had only a small influence on DNR. In addition to the reference points in the central plane only, dose points positioned in the whole implant volume can be used for evaluating the dose uniformity of interstitial implants. The dose optimization increases not only the dose uniformity within the implant but

  6. Ratio of the dose factors of the isotopes of iodine

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Thomas, P.

    1977-12-01

    The ratio of dose factors occurring during inhalation and ingestion to the respective dose factors of I-129 is calculated for the isotopes of I-123 to I-126 and I-129 to I-135. All the dose factors refer to the thyroid as the critical organ. A distinction is made between adults and infants up to 1 year of age. To calculate the ratios only the effective energies and the effective half-lives in the human body and on grass are required. Most of the data have been taken from the literature. The effective energies of I-123 and I-125 have been calculated as examples. (orig.) [de

  7. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure

    DEFF Research Database (Denmark)

    Ravnbak, Mette H; Philipsen, Peter A; Wulf, Hans Christian

    2010-01-01

    To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure.......To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure....

  8. Dose ratio proton radiography using the proximal side of the Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P. J., E-mail: paul.doolan.09@ucl.ac.uk; Royle, G.; Gibson, A. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Lu, H.-M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Prieels, D.; Bentefour, E. H. [Ion Beam Applications (IBA), 3 Chemin du Cyclotron, Louvain la Neuve B-1348 (Belgium)

    2015-04-15

    Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff. The authors investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a much wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak, the authors generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, the authors were able to generate lookup graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these lookup graphs, the authors investigated the applicability of the technique for a range of patient treatment sites. The authors validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation, it was found that, for a pediatric brain, it is possible to use the technique to image a region with a

  9. Induction of inherited sterility and sex ratio distribution due to exposure to substerilising doses of gamma radiation in cotton bollworm Earias vittella fabricius

    International Nuclear Information System (INIS)

    Tamhankar, A.J.; Shantharam, K.

    2005-01-01

    Substerilising doses of gamma radiation induced inherited sterility and sex ratio distortion in the cotton bollworm Earias vittella fabricius. Adults irradiated with 75 Gy and self-crossed, provided sterile F 1 adults, suitable for direct use in sterile insect technique (SIT). In case of 50 Gy, the F 1 adults, when backcrossed, produced F 2 progeny with sex ratio in favour of females (1: >3). With 25 Gy, a sex ratio distortion was recorded in F 1 (1 male: 2.25 females) and self-crossing of F 1 resulted in progeny with a sex ratio of 3:1. Backcrossing of the F 1 female produced F 2 progeny with a sex ratio of 1:5. These results have implications in improving cost/benefit ratio of SIT for this species. (author)

  10. Influence of Genotype on Warfarin Maintenance Dose Predictions Produced Using a Bayesian Dose Individualization Tool.

    Science.gov (United States)

    Saffian, Shamin M; Duffull, Stephen B; Roberts, Rebecca L; Tait, Robert C; Black, Leanne; Lund, Kirstin A; Thomson, Alison H; Wright, Daniel F B

    2016-12-01

    A previously established Bayesian dosing tool for warfarin was found to produce biased maintenance dose predictions. In this study, we aimed (1) to determine whether the biased warfarin dose predictions previously observed could be replicated in a new cohort of patients from 2 different clinical settings, (2) to explore the influence of CYP2C9 and VKORC1 genotype on predictive performance of the Bayesian dosing tool, and (3) to determine whether the previous population used to develop the kinetic-pharmacodynamic model underpinning the Bayesian dosing tool was sufficiently different from the test (posterior) population to account for the biased dose predictions. The warfarin maintenance doses for 140 patients were predicted using the dosing tool and compared with the observed maintenance dose. The impact of genotype was assessed by predicting maintenance doses with prior parameter values known to be altered by genetic variability (eg, EC50 for VKORC1 genotype). The prior population was evaluated by fitting the published kinetic-pharmacodynamic model, which underpins the Bayesian tool, to the observed data using NONMEM and comparing the model parameter estimates with published values. The Bayesian tool produced positively biased dose predictions in the new cohort of patients (mean prediction error [95% confidence interval]; 0.32 mg/d [0.14-0.5]). The bias was only observed in patients requiring ≥7 mg/d. The direction and magnitude of the observed bias was not influenced by genotype. The prior model provided a good fit to our data, which suggests that the bias was not caused by different prior and posterior populations. Maintenance doses for patients requiring ≥7 mg/d were overpredicted. The bias was not due to the influence of genotype nor was it related to differences between the prior and posterior populations. There is a need for a more mechanistic model that captures warfarin dose-response relationship at higher warfarin doses.

  11. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Yang, Jie [Pinnacle Health - Fox Chase Regional Cancer Center, Harrisburg, Pennsylvania 17109 (United States)

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  12. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    International Nuclear Information System (INIS)

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-01-01

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm 3 Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT

  13. Volume dose ratios relevant for alanine dosimetry in small, 6 MV photon beams

    DEFF Research Database (Denmark)

    Cronholm, Rickard O.; Andersen, Claus Erik; Behrens, Claus F.

    2012-01-01

    therapy). To this end, we here present the results of a Monte Carlo simulation study with DOSRZnrc that investigated the influence of field and detector size for small 6 MV photon beams. The study focusses on doses averaged over the volume of the detector rather than point doses.The ratio of volume...... averaged doses to water (D¯W) and alanine (D¯det) was found to be approximately 1.025 for most situations studied, and a constant ratio is likely to be representative for many applications in radiation therapy. However, D¯W/D¯det was found to be as low as 0.9908 ± 0.0037 in situations where one might...... expect significant deviations from charged particle equilibrium (i.e. at shallow depths and when the field size was smaller than the range of the secondary electrons). These effects therefore need consideration when finite-size alanine dosimeters are used under such conditions....

  14. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  15. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  16. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    Science.gov (United States)

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  17. Tacrolimus concentration/dose ratio as a therapeutic drug monitoring strategy: The influence of gender and comedication

    Directory of Open Access Journals (Sweden)

    Rančić Nemanja

    2015-01-01

    Full Text Available Background/Aim. A combination of tacrolimus and other drugs such as corticosteroids has been commonly used immunosuppresive regimens. On the other hand, there is a growing body of evidence that male and female may differ in their response to the equal drug treatment. The aim of the study was to estimated the use of tacrolimus concentration/dose (C/D ratio for the assessment of the influence of gender differences and comedication on tacrolimus exposure in renal transplant recipients. Methods. This prospective case series study included 54 patients, in which the unit of monitoring was outpatient examination (1,872 of the renal transplant patients. The patients were monitored in the period 2010-2014, starting one month after the transplantation. Tacrolimus trough concentrations (TTC were measured by chemiluminescence microparticles immunoassay. Results. TTC and the tacrolimus C/D ratio were significantly lower in the females comparing with the males. Contrary to the males, in the females a significant increase of the tacrolimus daily dose (TDD per body weight and TTC, along with the corticosteroid dose increase, was not accompanied by any significant changes in the tacrolimus C/D ratio; in different corticosteroid doses faster elimination of tacrolimus was found with the exception of the doses > 0.25 mg/kg. In the patients treated with proton pump inhibitors, mainly with pantoprazole TDD per body weight and TTC were significantly higher, while the tacrolimus C/D ratio was significantly lower compared to the patients without this treatment. In the patients treated with calcium channel blockers, TDD per body weight was significantly lower (particularly with amlodipine while the tacrolimus C/D ratio was higher compared to the patients who were not treated by them. Conclusion. A lower tacrolimus exposure was detected in females in comparison to males. When gender differences were considered in the context of different corticosteroid doses, faster

  18. Is Hedging a Habit? Hedging Ratio Determination of Cotton Producers

    NARCIS (Netherlands)

    Dorfman, J.H.; Pennings, J.M.E.; Garcia, P.

    2010-01-01

    We examine the role that habit plays when producers determine their hedge ratio. Data were collected from U.S. cotton growers in which they indicated their hedging position in 2001 and 2002 as well as their perceived profitability, land ownership structure, and income. To account for heterogeneity,

  19. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients.

    Science.gov (United States)

    Thervet, Eric; Anglicheau, Dany; King, Barry; Schlageter, Marie-Hélène; Cassinat, Bruno; Beaune, Philippe; Legendre, Christophe; Daly, Ann K

    2003-10-27

    Tacrolimus pharmacokinetic characteristics vary greatly among individuals. Tacrolimus is a substrate of cytochrome p450 (CYP), of subfamily CYP3A. CYP3A activity is the sum of the activities of the family of CYP3A genes, including CYP3A5. Subjects with the CYP3A5*1/*1 genotype express large amounts of CYP3A5. Heterozygotes (genotype CYP3A5*1/*3) also express the enzyme. We postulated that CYP3A5 polymorphism is associated with tacrolimus pharmacokinetic variations. CYP3A5 genotype was evaluated in 80 renal transplant recipients and correlated with the daily tacrolimus dose and concentration-to-dose ratio. The frequency of the homozygous CYP3A5*1 genotype (CYP3A5*1/*1) was 5%, and 11% of subjects were heterozygous (CYP3A5*1/*3). The mean doses required to obtain the targeted concentration-to-dose ratio were significantly lower in patients with the CYP3A5*1/*1 genotype. Determination of CYP3A5 genotype is predictive of the dose of tacrolimus in renal transplant recipients and may help to determine the initial daily dose needed by individual patients for adequate immunosuppression without excess nephrotoxicity.

  20. The Methane to Carbon Dioxide Ratio Produced during Peatland Decomposition and a Simple Approach for Distinguishing This Ratio

    Science.gov (United States)

    Chanton, J.; Hodgkins, S. B.; Cooper, W. T.; Glaser, P. H.; Corbett, J. E.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Holmes, B.; Hines, M. E.; Tfaily, M.; Kostka, J. E.

    2014-12-01

    Peatland organic matter is cellulose-like with an oxidation state of approximately zero. When this material decomposes by fermentation, stoichiometry dictates that CH4 and CO2 should be produced in a ratio approaching one. While this is generally the case in temperate zones, this production ratio is often departed from in boreal peatlands, where the ratio of belowground CH4/CO2 production varies between 0.1 and 1, indicating CO2 production by a mechanism in addition to fermentation. The in situ CO2/CH4 production ratio may be ascertained by analysis of the 13C isotopic composition of these products, because CO2 production unaccompanied by methane production produces CO2 with an isotopic composition similar to the parent organic matter while methanogenesis produces 13C depleted methane and 13C enriched CO2. The 13C enrichment in the subsurface CO2 pool is directly related to the amount of if formed from methane production and the isotopic composition of the methane itself. Excess CO2 production is associated with more acidic conditions, Sphagnum vegetation, high and low latitudes, methane production dominated by hydrogenotrophic methane production, 13C depleted methane, and generally, more nutrient depleted conditions. Three theories have been offered to explain these observations— 1) inhibition of acetate utilization, acetate build-up and diffusion to the surface and eventual aerobic oxidation, 2) the use of humic acids as electron acceptors, and the 3) utilization of organic oxygen to produce CO2. In support of #3, we find that 13C-NMR, Fourier transform infrared (FT IR) spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) clearly show the evolution of polysaccharides and cellulose towards more decomposed humified alkyl compounds stripped of organic oxygen utilized to form CO2. Such decomposition results in more negative carbon oxidation states varying from -1 to -2. Coincident with this reduction in oxidation state, is the

  1. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    Science.gov (United States)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  2. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    Science.gov (United States)

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  3. Cocaine tolerance: acute versus chronic effects as dependent upon fixed-ratio size.

    OpenAIRE

    Hoffman, S H; Branch, M N; Sizemore, G M

    1987-01-01

    The effects of cocaine on operant behavior were studied by examining fixed-ratio value as a factor in the development of tolerance. Pigeons pecked a response key under a three-component multiple schedule, with each bird being exposed to fixed-ratio values that were categorized as small, medium, or large. Administered acutely, cocaine (1.0 to 10.0 mg/kg) produced dose-related decreases in overall rate of responding. Responding maintained by the largest ratio was decreased by lower doses than t...

  4. The relationship between tacrolimus concentration-dose ratio and genetic polymorphism in patients subjected to renal transplantation

    Directory of Open Access Journals (Sweden)

    Rančić Nemanja

    2018-01-01

    Full Text Available Background/Aim. Tacrolimus concentration-dose ratio as a potential therapeutic drug monitoring strategy was suggested to be used for the patients subjected to renal transplantation. The aim of this study was examining the relationship between tacrolimus concentration-dose ratio, suggested to be used as a therapeutic drug monitoring strategy and the polymorphisms of genes encoding the most important enzymes, such as CYP3A5 and CYP3A4, as well as the transporter P-glycoprotein, for its metabolism and elimination. Methods. The study was designed as a prospective case series study, in which the unit of monitoring was the outpatient examination of 54 patients subjected to renal transplantation. Genotyping was performed by 7500 Real- Time PCR System by assessing allelic discrimination based on TaqMan® methodology. Results. Patients (n = 13 who were treated with less than 2 mg of tacrolimus/day (0.024 ± 0.006 mg/kg/day had the tacrolimus concentration-dose ratio larger than 150 ng/mL/mg/kg. In this group, 84.62% patients had CYP3А5 *3*3 allele. All of these patients had CYP3А4 *1*1/*1*1B allele. Regarding ABCB1 C3435T gene, 30.77% of patients had the TT gene variant, while 69.23% of our patients had CC and CT gene variants. Conclusion. Tacrolimus concentration-dose ratio greater than 150 ng/mL/mg/kg is cut-off value in patients subjected to renal transplantation which might point to patients who are poor CYP3A5 metabolizers and/or with dysfunctional P-glycoprotein.

  5. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  6. A study on tissue compensator thickness ratio and an application for 4MV X-rays

    International Nuclear Information System (INIS)

    Kim, Young Bum; Kwon, Young Ho; Jung, Hee Young; Kim, You Hyun

    1996-01-01

    A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of 5cm x 5cm, 10cm x 10cm, 15cm x 15cm, 20 x 20cm for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was 10% difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was 2% difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  7. CT dose management

    International Nuclear Information System (INIS)

    Zasheva, Ts.; Georgiev, E.; Kirova, G.

    2013-01-01

    Full text: Introduction: In recent decades Computed Tomography established itself as one of the most common study with a very wide range of applications and techniques of scanning. Best diagnostic value of the method resist to the risks of ionizing radiation, as statistics show that CT is one of the main sources of continuously increasing dose to the population. What you will learn: The physical parameters of the X-ray tube and the principles of image reconstruction; The relationship between variables parameters and the received dose; The ratio between the force and voltage of the current to the image quality, Influence of the used contrast medium to the physical properties of the image, The ratio of patient BMI to image processing, Effective use of knowledge for the optimal CT protocol. Discussions: The goal to reduce the dose received by the patient during a CT scan while keeping the diagnostic quality of the image puts to the test as handset X-ray producers and technicians who need to master the technique of study protocol forming as well as to balance the harm - benefit ratio. Among the most popular techniques are these of dose modulation, low-dose computed tomography at the expense of a reduction of the current or voltage intensity, and control of the number of post-processing algorithms for the image reconstruction. Conclusion: The training of radiologists and X-ray technicians plays a major role in optimizing of technical parameters in view of the reduction of the dose for the patient, while maintaining the diagnostic quality of the image

  8. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  9. Risk ratios for use in establishing dose limits for occupational exposure to radiation

    International Nuclear Information System (INIS)

    Metcalf, P.E.; Winkler, B.C.

    1980-01-01

    Dose limits for occupational exposure to radiation may be established by comparing the associated mortality risk with apparently accepted levels of industrial mortality risk due to conventional hazards. Average levels of industrial mortality risk rates are frequently quoted and used in such comparisons. However, within particular occupations or industries certain groups of workers will be exposed to higher levels of risk than the average, again an apparently accepted situation. A study has been made of the ratios of maximum to average industrial mortality risk currently experienced in some South African industries. Such a ratio may be used to assess the acceptability of maximum individual-to-average exposures in particular groups of exposed individuals. (author)

  10. Ratios between the effective doses for tomographic phantoms MAX and FAX

    International Nuclear Information System (INIS)

    Kramer, R.; Khoury, H.J.

    2005-01-01

    In the last two decades, the coefficients for the equivalent dose in organs and tissues, as well as to the effective dose, recommended by the International Commission on Radiological Protection (ICRP) were determined using exposure models based on stylized phantoms type MIRD, representing the human body with its radiosensitive organs and tissues according to the ICRP 23 Reference Man, Monte Carlo codes that simulate in a simplified way radiation physics, fabric compositions from different sources, and sometimes applied in a no realistic way, and by the list of organs and tissues at risk with their corresponding weight factors, published in ICRP 60. In the meantime, the International Commission on radiation units and Measurements (ICRU) published reference data to human tissue compositions in ICRU 44 and ICRP launched new anatomical and physiological data of reference in the report number 89. In addition a draft report with recommendations to be released in 2005 (http://icrp.org/) advances significant changes in the list of radiosensitive organs and tissues as well as their corresponding weight factors. As a practical consequence, all components of the traditional stylized models of exposure should be replaced: Monte Carlo codes, human phantoms, the compositions of the fabric and the selection of the organs and tissues at risk with their respective weight factors to determine the effective dose. This article presents the results of comprehensive research into the dosimetric consequences of replacing the stylized models of exposure. The calculations were done using the EGS4 Monte Carlo and MCNP4C codes for external and internal exposure to photons and electrons with phantoms ADAM and EVA, as well as with tomographic phantoms MAX and FAX, for different compositions and tissue distributions. The ratios between effective doses for models of exposure based on phantoms of voxels and effective doses for the stylized models for external and internal exposure to photons and

  11. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  12. Calculation of electron contamination doses produced using blocking trays for 6 MV X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J. E-mail: mbutson@guessmail.com; Cheung Tsang; Yu, P.K.N

    2002-04-01

    Calculation of electron contamination doses whilst using blocking trays in radiotherapy is achieved by comparison of measured absorbed dose within the first few centimeters of a water phantom. Electron contamination of up to 28% of maximum dose is produced at the central axis of the beam whilst using a 6 mm Perspex blocking tray for a 30 cmx30 cm field. The electron contamination is spread over the entire field reducing slightly towards the edge of the beam. Electron contamination from block trays is also present outside the primary collimated X-ray beam with more than 20% of the maximum dose deposited at the surface, 5 cm outside the primary collimated beam at a field size of 40 cmx40 cm. The electron contamination spectrum has been calculated from measured results.

  13. Cs-137 in milk produced in lituania dose in infants by infants

    International Nuclear Information System (INIS)

    Jerez Vegueria, S.F.; Frometa Suarez, I.

    1997-01-01

    The Chernovil accident caused a wide dispersion of radionuclides over extended in Europe and a part of the Spetentrional hemisphere giving to radionuclides enters in teh food cahins. Our country recived a shipment of evaporated, milkproduced in Lituania to fed infants la Habana City. Taking into account the origin and the final use of the mentioned product, a study was necessary in order to determine the content of Cs-137, one of the radionuclides released in teh accident withmost persistance in the environment because its long half life /30 yeras), and the doses produced by ingestion. The analysi were performed by a gamma spectrometry system using a 7,62cm.x7,62cm. NaI(TL) detector. The content of radioactivity measured in milk was 9,48+2,37 Bq/I and the effective committment dose per caput, due the consumption in four months, was appraised to be 9,40 uSv for a collective dose of 0,22 man-Sv

  14. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Science.gov (United States)

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  15. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    Directory of Open Access Journals (Sweden)

    Mayado Andrea

    2011-11-01

    Full Text Available Abstract Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p. 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.. IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v. prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.

  16. The response of mouse skin to multiple small doses of radiation

    International Nuclear Information System (INIS)

    Denekamp, J.; Harris, S.R.

    1975-01-01

    The response of mouse skin has been tested by irradiating the foot of albino mice and scoring erythema and desquamation during the following month. Multiple small doses of 150, 250 and 350 rad have been given 'daily', and the test dose necessary to achieve a given reaction has been determined one day after the last small fraction. This test dose has been compared with the single dose necessary to produce the same reaction level in previously untreated mice, in order to determine the ratio of the slopes of the dose-response curve at low and high doses: Slope ratio = (single dose - test dose)/total fractionated priming dose. In three separate experiments the slope ratio decreased as the dose per fraction was reduced from 350 to 150 rad. This conflicts with the data of Dutreix et al, who found a constant slope ratio over this dose range. The present data are compared with those obtained by Denekamp using 4, 9 and 14 fractions of 300 rad and by Douglas et al, using the same experimental technique, over the dose range 45 to 200 rad/fraction. In addition, the results from multifraction experiments in which equal dose increments were administered until the requisite skin reaction was achieved are also analysed in terms of their slope ratio (Fowler et al. Douglas et al). When all these results are plotted it is impossible to be sure whether the slope ratio is decreasing over the range 300 to 45 rad per fraction, although it seems likely. Most of the values at low doses lie in the range 0.15 to 0.25, indicating that at low doses the radiation is only 15 to 25% as effective per rad in causing cell death as at higher doses. (author)

  17. Dose coefficients for radionuclides produced in high energy proton accelerator facilities. Coefficients for radionuclides not listed in ICRP publications

    CERN Document Server

    Kawai, K; Noguchi, H

    2002-01-01

    Effective dose coefficients, the committed effective dose per unit intake, by inhalation and ingestion have been calculated for 304 nuclides, including (1) 230 nuclides with half-lives >= 10 min and their daughters that are not listed in ICRP Publications and (2) 74 nuclides with half-lives < 10 min that are produced in a spallation target. Effective dose coefficients for inhalation of soluble or reactive gases have been calculated for 21 nuclides, and effective dose rates for inert gases have been calculated for 9 nuclides. Dose calculation was carried out using a general-purpose nuclear decay database DECDC developed at JAERI and a decay data library newly compiled from the ENSDF for the nuclides abundantly produced in a spallation target. The dose coefficients were calculated with the computer code DOCAP based on the respiratory tract model and biokinetic model of ICRP. The effective dose rates were calculated by considering both external irradiation from the surrounding cloud and irradiation of the lun...

  18. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    International Nuclear Information System (INIS)

    Wenzl, Tatiana; Wilkens, Jan J

    2011-01-01

    The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes. Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations in vivo. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose. The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose in vivo for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36

  19. Genetically significant dose and sex ratio of the offsprings of patient treated with 131I for hyperthyroidism

    International Nuclear Information System (INIS)

    Takeshita, Akihisa

    1975-01-01

    The gonadal doses following the 131 I treatment of 6 male and 14 female patients with hyperthyroidism were calculated by the method of MIRD, measuring daily radioactivity in the thyroid gland and circulating blood. The testicular dose was 0.52 +- 0.256 rads and the ovarian dose was 0.632 +- 0.488 rads per mCi. In 1965, the genetically significant dose from 131 I treatment of 925 patients with hyperthyroidism was estimated to be 0.0136 mrads/person/year. The genetically significant dose would amount to 0.0613 mrads/person/year, assuming that the total amount of 131 I supplied for treatment in 1965 was administered to treat the hyperthyroid patients with an age-and sex distribution similar to that of the above mentioned group of patients. Sex ratios of the offspring of male and female patients treated with 131 I from 1953 to 1966 were compared with those of offspring born to male and female patients before the treatment. The proportion of males was higher among the offspring of male patients after 131 I treatment than among the offspring of the controls, but the difference was not statistically significant. The sex ratio of the offspring of female patients was not different from that of controls. The mean age of the parents at the times of their children's birth after 131 I treatment was 2.6 - 6.0 year older in male patients and 2.8 - 2.9 year older in female patients than that of controls. (J.P.N.)

  20. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  1. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    International Nuclear Information System (INIS)

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries

  2. Dose Measurements of Bremsstrahlung-Produced Neutrons at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Job, P.K.; Pisharody, M.; Semones, E.

    1998-01-01

    Bremsstrahlung is generated in the storage rings of the synchrotron radiation facilities by the radiative interaction of the circulating particle beam with both the residual gas molecules and storage ring components. These bremsstrahlung photons, having an energy range of zero to the maximum energy of the particle beam, interact with beamline components like beam stops and collimators generating photoneutrons of varying energies. There are three main processes by which photoneutrons may be produced by the high energy bremsstrahlung photons: giant nuclear dipole resonance and decay (10 MeV γ γ γ > 140 MeV). The giant resonance neutrons are emitted almost isotropically and have an average energy of about 2 MeV. High energy neutrons (E > 10 MeV) emitted from the quasi-deuteron decay and intranuclear cascade are peaked in the forward direction. At the Advanced Photon Source (APS), where bremsstrahlung energy can be as high as 7 GeV, production of photoneutrons in varying yields is possible from all of the above three processes. The bremsstrahlung produced along a typical 15.38-m straight path of the insertion device (ID) beamline of the APS has been measured and analyzed in previous studies. High-Z materials constituting the beamline components, such as collimators and beam stops, can produce photoneutrons upon interaction with these bremsstrahlung photons. The 1/E nature of the bremsstrahlung spectrum and the fact that the photoneutron production cross section is comparatively larger in the energy region 10 MeV γ 3 detector, as well as a very sensitive pressurized 3 He detector, is used for neutron dose measurements. The dose equivalent rates, normalized to bremsstrahlung power, beam current, and storage ring vacuum, are measured for various targets. This report details the experimental setup,

  3. Calculations of the photon dose behind concrete shielding of high energy proton accelerators

    International Nuclear Information System (INIS)

    Dworak, D.; Tesch, K.; Zazula, J.M.

    1992-02-01

    The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)

  4. Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles

    International Nuclear Information System (INIS)

    Hamzah, A A; Yeop Majlis, B; Yunas, J; Dee, C F; Abd Aziz, N; Bais, B

    2012-01-01

    High aspect ratio solid silicon microneedles with a concave conic shape were fabricated. Hydrofluoric acid–nitric acid–acetic acid (HNA) etching parameters were characterized and optimized to produce microneedles that have long and narrow bodies with smooth surfaces, suitable for transdermal drug delivery applications. The etching parameters were characterized by varying the HNA composition, the optical mask's window size, the etching temperature and bath agitation. An L9 orthogonal Taguchi experiment with three factors, each having three levels, was utilized to determine the optimal fabrication parameters. Isoetch contours for HNA composition with 0% and 10% acetic acid concentrations were presented and a high nitric acid region was identified to produce microneedles with smooth surfaces. It is observed that an increase in window size indiscriminately increases the etch rate in both the vertical and lateral directions, while an increase in etching temperature beyond 35 °C causes the etching to become rapid and uncontrollable. Bath agitation and sample placement could be manipulated to achieve a higher vertical etch rate compared to its lateral counterpart in order to construct high aspect ratio microneedles. The Taguchi experiment performed suggests that a HNA composition of 2:7:1 (HF:HNO 3 :CH 3 COOH), window size of 500 µm and agitation rate of 450 RPM are optimal. Solid silicon microneedles with an average height of 159.4 µm, an average base width of 110.9 µm, an aspect ratio of 1.44, and a tip angle and diameter of 19.2° and 0.38 µm respectively were successfully fabricated. (paper)

  5. A direct method for estimating the alpha/beta ratio from quantitative dose-response data

    International Nuclear Information System (INIS)

    Stuschke, M.

    1989-01-01

    A one-step optimization method based on a least squares fit of the linear quadratic model to quantitative tissue response data after fractionated irradiation is proposed. Suitable end-points that can be analysed by this method are growth delay, host survival and quantitative biochemical or clinical laboratory data. The functional dependence between the transformed dose and the measured response is approximated by a polynomial. The method allows for the estimation of the alpha/beta ratio and its confidence limits from all observed responses of the different fractionation schedules. Censored data can be included in the analysis. A method to test the appropriateness of the fit is presented. A computer simulation illustrates the method and its accuracy as examplified by the growth delay end point. A comparison with a fit of the linear quadratic model to interpolated isoeffect doses shows the advantages of the direct method. (orig./HP) [de

  6. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  7. Evaluations of absorbed dose ratio factor of Al2O3 dosemeter in radiotherapy photon beams using cavity theory

    International Nuclear Information System (INIS)

    Zhu, J.; Chen, S.; Chen, L.; Liu, X.

    2012-01-01

    The aim of the work was to evaluate the absorbed dose ratio factor f md of an Al 2 O 3 dosemeter to water in photon radiotherapy beams using cavity theory. Burlin theory was used for calculating of this ratio. The effective mass attenuation coefficient β was obtained by comparing Monte Carlo simulations in monoenergetic photon beams. The evaluations of the absorbed dose ratio factor f md were studied for Al 2 O 3 dosemeters of different sizes, which were placed at various depths of the water phantom in different radiation field sizes of Mohan's 6, 10 and 15-MV X-rays. Beyond the build-up region, the variation of f md increases by 0.25 % as the depth increases from 4 to 10 cm. The maximum variation due to different dosemeter sizes is 8.3 %. The difference in the f md due to different radiation field sizes is 1.5 %. The effect of the dosemeter size cannot be neglected. The difference in the f md due to the radiation field sizes of different beams would increase as the dosemeter size increases. (authors)

  8. Estimation of the radiation strength and dose equivalent from activities produced by p+ sup 2 sup 3 sup 8 U fission reaction

    CERN Document Server

    Kawakami, H

    2002-01-01

    The decay curves of radiation and dose equivalent of mass from 72 to 171 produced by p+ sup 2 sup 3 sup 8 U fission reaction are calculated under the consideration that 1) dose equivalent by decay of each nuclide is estimated by each calculation and 2) only one isomer is considered when there are some isomers in the chain decay. Four isotopes selected to calculate the time-depend intensity in the chain decay. Total radiation is 150 times, which is difference of proton beam current, larger than the value not considered isomer. There is no problem in the following isobar, which decays after beam off, 75, 78, 79, 81, 89, 100, 101, 104, 107, 116, 138, 163, 164 and 168. The nuclides such as 81, 95, 98, 102, 108, 146, 152, 158, 165, 169 and 170 are long life, but have low or weak energy of gamma-ray. Nuclides of gas or high vapor pressure show different values from the calculation results, because total nuclide did not accumulate. This analysis showed the isomer ratio was not identified by experiments. The value is...

  9. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  10. Does low-dose CCK-8 injection produce abdominal pain in 'truly normal' individuals?

    International Nuclear Information System (INIS)

    Ramsay, S.; Webb, B.; Hille, N.

    1999-01-01

    Full text: The development of abdominal pain following cholecystokinin (CCK) injection is not specific for biliary disease. Patients can develop abdominal pain with CCK during hepatobiliary studies and have normal gallbladder function. Does this non-biliary pain indicate pathology? High doses of CCK induce pain in functional bowel syndromes, but may also produce pain in normals. Pain is less common at lower CCK doses, and hence may be more significant. This study aimed to determine the rate at which the low dose of CCK used in hepatobiliary scans causes abdominal pain and other side-effects in 'truly normal' individuals. Some preliminary results of CCK-induced pain in gastro-oesophageal reflux (GOR) patients are also discussed. Six 'truly normal' subjects were studied. 'Truly normal' was defined as: no current history of abdominal pain; no biliary or gallbladder disease; no significant GIT pathology; not currently on medication designed to be pharmacologically active in the GIT. Each patient was given an intravenous dose of 0.01 μg-kg -1 of CCK8 over 3 min, and side-effects were recorded for 30 min. No subject had abdominal pain. Two developed nausea, 1 moderate and 1 mild. An identical dose of CCK was given to 2 patients with endoscopically proven GOR. Anti-reflux medication had been ceased for 12 h. After CCK, 1 patient developed typical 'reflux' pain and 1 was asymptomatic. In conclusion, none of our 'truly normal' patients had abdominal pain with low-dose CCK. This suggests that patients developing pain following injection of this dose of CCK are indeed abnormal. The literature infers these patients may have irritable bowel syndrome; however, this hypothesis is complicated by our preliminary results indicating that CCK can reproduce pain in some patients with GOR

  11. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  12. Survey of the distributions of population and agricultural produce, etc. and the application for population dose evaluation

    International Nuclear Information System (INIS)

    Iijima, Toshinori

    1978-07-01

    The computer model CARIEN to calculate the population doses due to all LWRs in Japan needs the distributions of population and agricultural produce around the nuclear installations. These distributions were presumed to be obtainable from national censuses, and a case-study survey was carried out in 1976 for the area up to 1000 km from the JAERI Tokai Research Establishment. The present report describes the survey and its results, and then discusses applicability of the censuses for population dose evaluation. The national censuses of population and foodstuffs were found to be sufficient for determining these distributions and predicting the future population changes. Results indicated the following: a) the population and agricultural produce around little contribute to the population doses, b) the contributions of leafy vegetables and cow's milk are important compared with inhalation, and c) if such as rice, egg and pork concentrate radionuclides to the same extent as leafy vegetables or milk, these are also important. (auth.)

  13. Measurement and properties of the dose-area product ratio in external small-beam radiotherapy.

    Science.gov (United States)

    Niemelä, Jarkko; Partanen, Mari; Ojala, Jarkko; Sipilä, Petri; Björkqvist, Mikko; Kapanen, Mika; Keyriläinen, Jani

    2017-06-21

    In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR 20,10 , using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR 20,10 . With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR 20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR 20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR 20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR 20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR 20,10 value.

  14. Measurement and properties of the dose-area product ratio in external small-beam radiotherapy

    Science.gov (United States)

    Niemelä, Jarkko; Partanen, Mari; Ojala, Jarkko; Sipilä, Petri; Björkqvist, Mikko; Kapanen, Mika; Keyriläinen, Jani

    2017-06-01

    In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR20,10. With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR20,10 value.

  15. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  16. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio

    International Nuclear Information System (INIS)

    Hess, R.; Neitzel, U.

    2012-01-01

    Purpose: To investigate the influence of X-ray tube voltage and filtration on image quality in terms of contrast-to-noise ratio (CNR) and dose for digital radiography of distal pediatric extremities and to determine conditions that give the best balance of CNR and patient dose. Materials and Methods: In a phantom study simulating the absorption properties of distal extremities, the CNR and the related patient dose were determined as a function of tube voltage in the range 40 - 66 kV, both with and without additional filtration of 0.1 mm Cu/1 mm Al. The measured CNR was used as an indicator of image quality, while the mean absorbed dose (MAD) - determined by a combination of measurement and simulation - was used as an indicator of the patient dose. Results: The most favorable relation of CNR and dose was found for the lowest tube voltage investigated (40 kV) without additional filtration. Compared to a situation with 50 kV or 60 kV, the mean absorbed dose could be lowered by 24 % and 50 %, respectively, while keeping the image quality (CNR) at the same level. Conclusion: For digital radiography of distal pediatric extremities, further CNR and dose optimization appears to be possible using lower tube voltages. Further clinical investigation of the suggested parameters is necessary. (orig.)

  17. Dose variations caused by setup errors in intracranial stereotactic radiotherapy: A PRESAGE study

    International Nuclear Information System (INIS)

    Teng, Kieyin; Gagliardi, Frank; Alqathami, Mamdooh; Ackerly, Trevor; Geso, Moshi

    2014-01-01

    Stereotactic radiotherapy (SRT) requires tight margins around the tumor, thus producing a steep dose gradient between the tumor and the surrounding healthy tissue. Any setup errors might become clinically significant. To date, no study has been performed to evaluate the dosimetric variations caused by setup errors with a 3-dimensional dosimeter, the PRESAGE. This research aimed to evaluate the potential effect that setup errors have on the dose distribution of intracranial SRT. Computed tomography (CT) simulation of a CIRS radiosurgery head phantom was performed with 1.25-mm slice thickness. An ideal treatment plan was generated using Brainlab iPlan. A PRESAGE was made for every treatment with and without errors. A prescan using the optical CT scanner was carried out. Before treatment, the phantom was imaged using Brainlab ExacTrac. Actual radiotherapy treatments with and without errors were carried out with the Novalis treatment machine. Postscan was performed with an optical CT scanner to analyze the dose irradiation. The dose variation between treatments with and without errors was determined using a 3-dimensional gamma analysis. Errors are clinically insignificant when the passing ratio of the gamma analysis is 95% and above. Errors were clinically significant when the setup errors exceeded a 0.7-mm translation and a 0.5° rotation. The results showed that a 3-mm translation shift in the superior-inferior (SI), right-left (RL), and anterior-posterior (AP) directions and 2° couch rotation produced a passing ratio of 53.1%. Translational and rotational errors of 1.5 mm and 1°, respectively, generated a passing ratio of 62.2%. Translation shift of 0.7 mm in the directions of SI, RL, and AP and a 0.5° couch rotation produced a passing ratio of 96.2%. Preventing the occurrences of setup errors in intracranial SRT treatment is extremely important as errors greater than 0.7 mm and 0.5° alter the dose distribution. The geometrical displacements affect dose delivery

  18. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    Science.gov (United States)

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  19. KERMA ratios in pediatric CT dosimetry

    International Nuclear Information System (INIS)

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M.

    2012-01-01

    Patient organ doses may be estimated from CTDI values. More accurate estimates may be obtained by measuring KERMA (Kinetic Energy Released in Matter) in anthropomorphic phantoms and referencing these values to free-in-air X-ray intensity. To measure KERMA ratios (R K ) in pediatric phantoms at CT. CT scans produce an air KERMA K in a phantom and an air KERMA K CT at isocenter. KERMA ratios (R K ) are defined as (K/K CT ), measured using TLD chips in phantoms representing newborns to 10-year-olds. R K in the newborn is approximately constant. For the other phantoms, there is a peak R K value in the neck. The median R K values for the GE scanner at 120 kV were 0.92, 0.83, 0.77 and 0.76 for newborns, 1-year-olds, 5-year-olds and 10-year-olds, respectively. Organ R K values were 0.91 ± 0.04, 0.84 ± 0.07, 0.74 ± 0.09 and 0.72 ± 0.10 in newborns, 1-year-olds, 5-year-olds and 10-year-olds, respectively. At 120 kV, a Siemens Sensation 16 scanner had R K values 5% higher than those of the GE LightSpeed Ultra. KERMA ratios may be combined with air KERMA measurements at the isocenter to estimate organ doses in pediatric CT patients. (orig.)

  20. Clinical uses of I-123 produced by 127I(p, 5n)123Xe to 123I reaction in NIRS

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Uchiyama, Guio; Tateno, Yukio; Rikitake, Tomoyuki.

    1978-01-01

    123 I capsules produced by NIRS which are believed to be uncontaminated by radioactive impurities other than 125 I were compared with commercial 123 I capsules regarding gamma-ray spectra, thyroid phantoms and clinical scintigrams. Absorbed radiation doses of 123 I contaminated with nuclides other than 123 I to thyroid and whole body were also estimated. Regarding gamma-ray spectra, any nuclides other than 125 I(0.53%) did not contaminate in 123 I produced by NIRS, and it was superior to commercial capsules. Regarding phantoms and clinical scintigrams, background counts around the thyroid gland seemed to be slightly higher in commercial capsules than that produced by NIRS because of contamination with other nuclides. Exposed doses in thyroid and whole body were counted. Ratios in thyroid and whole body were increased by 30% and 9%, respectively in 123 I produced by NIRS because of contamination with 0.53% of 125 I in the event that the intake ratio of thyroid was determined as 25%. In commercial capsules the doses in thyroid and whole body were increased by 500% and 150%, respectively. Doses of commercial capsules and NIRS capsules were 7.87 rad and 1.72 rad, respectively per 100 μCi in thyroid. The ratio of NIRS capsules to commercial capsules in thyroid was 1/4.6, and that in the whole body was less than 1/2. (Ichikawa, K.)

  1. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  2. Experimental ratio between the 'real' dose per organ and the calculated dose determined by means of the Embalse nuclear power plant's personal dosimeter

    International Nuclear Information System (INIS)

    Thomasz, E.; Salas, C.A.

    1987-01-01

    The specific purpose of the study was to determine the experimental ratio between the reading of dosimeters used by the personnel of the Embalse nuclear power plant and the 'real' dose absorbed by the worker in different organs. An anthropomorphic phantom ALDERSON internal and externally loaded with approximately 150 TLD crystals was used. This phantom was placed in five enclosures that were usually occupied by workers of the Embalse nuclear power plant. In this way, the average dose per organ and the effective equivalent dosis in each enclosure could be calculated and compared with the personal dosimeters placed over the thorax and the conversion factor rem/rem for each enclosure was determined. The average factor resulting from the five considered enclosures was 0.73 rem/rem. This means that the personal dosimeters over value the real dosis absorbed by the personnel of the Embalse nuclear power plant in approximately 37%. (Author)

  3. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  4. Oxygen enhancement ratio for negative pi mesons

    International Nuclear Information System (INIS)

    Hall, E.J.; Astor, M.

    1979-01-01

    Experiments were performed at the Los Alamos Meson Physics Facility (LAMPF) to determine the oxygen enhancement ratio (OER) for the clinically used beam of negative pi mesons. V79 Chinese hamster cells, cultured in vitro, were used as the biological test system; hypoxia was produced by metabolic depletion as a result of sealing 2 million cells in 1 ml glass ampules. The Bragg peak of the pion depth dose curve was spread out to cover 10 cm by using a dynamic range shifter. Cells were irradiated at the center of the spead out Bragg peak, where the dose/rate was 0.1 Gy/min over a 6 x 6 cm field. The OER obtained was 2.2, compared with 3.8 obtained for γ rays under the same conditions

  5. Antiproton Radiotherapy Peripheral Dose from Secondary Neutrons produced in the Annihilation of Antiprotons in the Target

    CERN Document Server

    Fahimian, Benjamin P; Keyes, Roy; Bassler, Niels; Iwamoto, Keisuke S; Zankl, Maria; Holzscheiter, Michael H

    2009-01-01

    The AD-4/ACE collaboration studies the biological effects of antiprotons with respect to a possible use of antiprotons in cancer therapy. In vitro experiments performed by the collaboration have shown an enhanced biological effectiveness for antiprotons relative to protons. One concern is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose was tallied as a function of energy and organ.

  6. Predicted versus observed cosmic-ray-produced noble gases in lunar samples: improved Kr production ratios

    International Nuclear Information System (INIS)

    Regnier, S.; Hohenberg, C.M.; Marti, K.; Reedy, R.C.

    1979-01-01

    New sets of cross sections for the production of krypton isotopes from targets of Rb, Sr, Y, and Zr were constructed primarily on the bases of experimental excitation functions for Kr production from Y. These cross sections were used to calculate galactic-cosmic-ray and solar-proton production rates for Kr isotopes in the moon. Spallation Kr data obtained from ilmenite separates of rocks 10017 and 10047 are reported. Production rates and isotopic ratios for cosmogenic Kr observed in ten well-documented lunar samples and in ilmenite separates and bulk samples from several lunar rocks with long but unknown irradiation histories were compared with predicted rates and ratios. The agreements were generally quite good. Erosion of rock surfaces affected rates or ratios for only near-surface samples, where solar-proton production is important. There were considerable spreads in predicted-to-observed production rates of 83 Kr, due at least in part to uncertainties in chemical abundances. The 78 Kr/ 83 Kr ratios were predicted quite well for samples with a wide range of Zr/Sr abundance ratios. The calculated 80 Kr/ 83 Kr ratios were greater than the observed ratios when production by the 79 Br(n,γ) reaction was included, but were slightly undercalculated if the Br reaction was omitted; these results suggest that Br(n,γ)-produced Kr is not retained well by lunar rocks. The productions of 81 Kr and 82 Kr were overcalculated by approximately 10% relative to 83 Kr. Predicted-to-observed 84 Kr/ 83 ratios scattered considerably, possibly because of uncertainties in corrections for trapped and fission components and in cross sections for 84 Kr production. Most predicted 84 Kr and 86 Kr production rates were lower than observed. Shielding depths of several Apollo 11 rocks were determined from the measured 78 Kr/ 83 Kr ratios of ilmenite separates. 4 figures, 5 tables

  7. Telemedicine-guided, very low-dose international normalized ratio self-control in patients with mechanical heart valve implants.

    Science.gov (United States)

    Koertke, Heinrich; Zittermann, Armin; Wagner, Otto; Secer, Songuel; Sciangula, Alfonso; Saggau, Werner; Sack, Falk-Udo; Ennker, Jürgen; Cremer, Jochen; Musumeci, Francesco; Gummert, Jan F

    2015-06-01

    To study in patients performing international normalized ratio (INR) self-control the efficacy and safety of an INR target range of 1.6-2.1 for aortic valve replacement (AVR) and 2.0-2.5 for mitral valve replacement (MVR) or double valve replacement (DVR). In total, 1304 patients undergoing AVR, 189 undergoing MVR and 78 undergoing DVR were randomly assigned to low-dose INR self-control (LOW group) (INR target range, AVR: 1.8-2.8; MVR/DVR: 2.5-3.5) or very low-dose INR self-control once a week (VLO group) and twice a week (VLT group) (INR target range, AVR: 1.6-2.1; MVR/DVR: 2.0-2.5), with electronically guided transfer of INR values. We compared grade III complications (major bleeding and thrombotic events; primary end-points) and overall mortality (secondary end-point) across the three treatment groups. Two-year freedom from bleedings in the LOW, VLO, and VLT groups was 96.3, 98.6, and 99.1%, respectively (P = 0.008). The corresponding values for thrombotic events were 99.0, 99.8, and 98.9%, respectively (P = 0.258). The risk-adjusted composite of grade III complications was in the per-protocol population (reference: LOW-dose group) as follows: hazard ratio = 0.307 (95% CI: 0.102-0.926; P = 0.036) for the VLO group and = 0.241 (95% CI: 0.070-0.836; P = 0.025) for the VLT group. The corresponding values of 2-year mortality were = 1.685 (95% CI: 0.473-5.996; P = 0.421) for the VLO group and = 4.70 (95% CI: 1.62-13.60; P = 0.004) for the VLT group. Telemedicine-guided very low-dose INR self-control is comparable with low-dose INR in thrombotic risk, and is superior in bleeding risk. Weekly testing is sufficient. Given the small number of MVR and DVR patients, results are only valid for AVR patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  8. Fixed ratio dosing of pramlintide with regular insulin before a standard meal in patients with type 1 diabetes.

    Science.gov (United States)

    Riddle, M C; Yuen, K C J; de Bruin, T W; Herrmann, K; Xu, J; Öhman, P; Kolterman, O G

    2015-09-01

    Amylin is co-secreted with insulin and is therefore lacking in patients with type 1 diabetes. Replacement with fixed ratio co-administration of insulin and the amylin analogue pramlintide may be superior to separate dosing. This concept was evaluated in a ratio-finding study. Patients with type 1 diabetes were enrolled in a randomized, single-masked, standard breakfast crossover study using regular human insulin injected simultaneously with pramlintide 6, 9 or 12 mcg/unit insulin or placebo. Insulin dosage was reduced by 30% from patients' usual estimates. Plasma glucose, glucagon and pramlintide and adverse events were assessed. All ratios reduced 0-3-h glucose and glucagon increments by >50%. No hypoglycaemia occurred. Adverse events were infrequent and generally mild. All pramlintide/insulin ratios markedly and safely reduced glycaemic excursions and suppressed glucagon secretion in the immediate postprandial state. Further study using one of these ratios to explore the efficacy and safety of longer-term meal-time and basal hormone replacement is warranted. © 2015 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  9. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    Science.gov (United States)

    Chen, Xi; Hung, Yen-Con

    2018-05-22

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  10. Effects of gamma radiation on development, sterility, fecundity, and sex ratio of Dermanyssus gallinae (DeGeer) (Acari: Dermanyssidae)

    International Nuclear Information System (INIS)

    Entrekin, D.L.; Oliver, J.H. Jr.; Pound, J.M.

    1987-01-01

    Protonymphal Dermanyssus gallinae were irradiated with 0.50, 0.75, 1.0, 3.0, and 6.0 krad of gamma radiation and subsequently monitored regarding their developmental, feeding, and mating success. Also, sex ratios of adults treated as protonymphs were recorded as were sex ratios of embryos and F1 adults produced by these adults. Doses up to 1.0 krad did not prevent development of treated protonymphs to the adult stage or stop mating. Three krad reduced the number of treated protonymphs attaining adulthood and 6.0-krad treatment prevented all mites from developing to the adult stage. Egg (embryo) production was normal for mites treated with 0.50 krad, but significantly curtailed by doses of 0.75 krad and greater. Radiation doses used in this study did not appear to affect the normal variable sex ratios observed in untreated mites

  11. Validation of calculated tissue maximum ratio obtained from measured percentage depth dose (PPD) data for high energy photon beam ( 6 MV and 15 MV)

    International Nuclear Information System (INIS)

    Osei, J.E.

    2014-07-01

    During external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficiency in treatment. This leads to the consideration of treatment parameters such as percentage depth dose (PDD), tissue air ratio (TAR) and tissue phantom ratio (TPR), which show the dose distribution in the patient. Nevertheless, tissue air ratio (TAR) for treatment time calculation, calls for the need to measure in-air-dose rate. For lower energies, measurement is not a problem but for higher energies, in-air measurement is not attainable due to the large build-up material required for the measurement. Tissue maximum ratio (TMR) is the quantity required to replace tissue air ratio (TAR) for high energy photon beam. It is known that tissue maximum ratio (TMR) is an important dosimetric function in radiotherapy treatment. As the calculation methods used to determine tissue maximum ratio (TMR) from percentage depth dose (PDD) were derived by considering the differences between TMR and PDD such as geometry and field size, where phantom scatter or peak scatter factors are used to correct dosimetric variation due to field size difference. The purpose of this study is to examine the accuracy of calculated tissue maximum ratio (TMR) data with measured TMR values for 6 MV and 15 MV photon beam at Sweden Ghana Medical Centre. With the help of the Blue motorize water phantom and the Omni pro-Accept software, Pdd values from which TMRs are calculated were measured at 100 cm source-to-surface distance (SSD) for various square field sizes from 5x5 cm to 40x40 cm and depth of 1.5 cm to 25 cm for 6 MV and 15 MV x-ray beam. With the same field sizes, depths and energies, the TMR values were measured. The validity of the calculated data was determined by making a comparison with values measured experimentally at some selected field sizes and depths. The results show that; the reference depth of maximum

  12. High-dose dextromethorphan produces myelinoid bodies in the hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Hai-Quyen Tran

    2016-10-01

    Full Text Available Dextromethorphan (DM administered at supra-antitussive doses produce psychotoxic and neurotoxic effects in humans. We administered DM (80 mg/kg to rats intraperitoneally to determine the ultrastructural change induced by DM, because intraperitoneal route is sensitive for the behavioral responses. Treatment with DM resulted in mitochondrial dysfunction and formation of myelinoid bodies in the hippocampus. MK-801 [(+-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] attenuated DM-induced cytosolic oxidative burdens. However, neither MK-801 nor naloxone affected DM-induced mitochondrial dysfunction and formation of myelinoid bodies, indicating that the neurotoxic mechanism needs to be further elucidated. Therefore, the spectrum of toxicological effects associated with DM need to be reassessed.

  13. Inclusive semileptonic branching ratios of b hadrons produced in Z decays

    CERN Document Server

    Heister, A.; Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schneider, O.; Tejessy, W.; Teubert, F.; Tournefier, E.; Ward, J.; Ajaltouni, Z.; Badaud, F.; Falvard, A.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Halley, A.W.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Aleppo, M.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Lefrancois, J.; Veillet, J.J.; Videau, I.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Ngac, A.; Prange, G.; Sieler, U.; Giannini, G.; Rothberg, J.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2002-01-01

    A measurement of the inclusive semileptonic branching ratios of b hadrons produced in Z decay is presented, using four million hadronic events collected by the ALEPH detector from 1991 to 1995. Electrons and muons are selected opposite to b-tagged hemispheres. Two different methods are explored to distinguish the contributions from direct $\\bl$ and cascade $\\bcl$ dec ays to the total lepton yield. One is based on the lepton transverse momentum spectrum, the other makes use of the correlation between the charge of the lepton and charge estimators built from tracks in the opposite hemisphere of the event. The latter method reduces the dependence on the modelling of semileptonic b decays. The results obtained by averaging the two techniques are BR(b->l) = 0.1070 +- 0.0010 +- 0.0023 +- 0.0026 BR(b->c->l) = 0.0818 +- 0.0015 +- 0.0022 + 0.0022 -0.0014

  14. Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio

    Science.gov (United States)

    Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2016-01-01

    Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336

  15. Method of dosing H2SO4 in uranium ores leaching

    International Nuclear Information System (INIS)

    Jusko, J.; Skocny, J.

    1977-01-01

    A description is presented of the control circuit and its function. Dosing is controlled in a discontinuous manner using H 2 SO 4 and slurry ratio control. The flow volume of each fraction is measured by an induction flowmeter. The control circuit mostly consists of mass produced instruments and is very reliable while requiring minimum attendance. The principle of the system is suitable for any discontinuous dosing where the output fraction concentration is difficult to analyze automatically. (M.K.)

  16. High-dose dextromethorphan produces myelinoid bodies in the hippocampus of rats.

    Science.gov (United States)

    Tran, Hai-Quyen; Chung, Yoon Hee; Shin, Eun-Joo; Kim, Won Ki; Lee, Jae-Chul; Jeong, Ji Hoon; Wie, Myung Bok; Jang, Choon-Gon; Yamada, Kiyofumi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-10-01

    Dextromethorphan (DM) administered at supra-antitussive doses produce psychotoxic and neurotoxic effects in humans. We administered DM (80 mg/kg) to rats intraperitoneally to determine the ultrastructural change induced by DM, because intraperitoneal route is sensitive for the behavioral responses. Treatment with DM resulted in mitochondrial dysfunction and formation of myelinoid bodies in the hippocampus. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] attenuated DM-induced cytosolic oxidative burdens. However, neither MK-801 nor naloxone affected DM-induced mitochondrial dysfunction and formation of myelinoid bodies, indicating that the neurotoxic mechanism needs to be further elucidated. Therefore, the spectrum of toxicological effects associated with DM need to be reassessed. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  18. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  19. Sterilization of melon flies: mating competitiveness after treatment with tepa or gamma irradiation and ratios of treated to untreated flies producing population suppression

    International Nuclear Information System (INIS)

    Ashraf, M.; Keiser, I.; Harris, E.J.

    1976-01-01

    Male melon flies, Dacus cucurbitae Coquillett, treated with a single dose of the chemosterilant tepa (tris(l-aziridinyl) phosphine oxide), or with gamma irradiation, either single or fractionated doses, did not differ significantly in sexual competitiveness as determined by percentage hatch of eggs. Mating competitiveness of males treated by either method ranged from 53 to 66 percent of that of untreated males. In another study, melon flies (males and females) sterilized with 0.0125 percent tepa, the threshold dose for both sexes, completely suppressed a population when the ratio was 16:16:1:1 (sterile males-sterile females-untreated males-untreated females) as determined by no egg hatch

  20. Three dimensional measurement of dose distributions produced by a robot-mounted linac using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Wong, S.P.; Garwood, D.P.; Clarke, G.D.; McColl, R.W.; Maryanski, M.J.; Gore, J.C.

    1996-01-01

    Purpose/Objective: A novel image-guided robotic radiosurgical system, capable of irradiating 102 non-coplanar nodes in 3 π geometry, produces complex dose distributions which are difficult or impractical to measure with conventional dosimetry instrumentation. The recently developed BANG polymer gel dosimetry system provides accurate, high resolution and three dimensional dose distributions data and is ideally suited for the task described above. In this study, the polymer gels were used for imaging the dose distributions produced by this extremely flexible radiosurgical system. Materials and Methods: The dosimeter materials consist of 2-liter BANG polymer gels in spherical, clear glass flasks, closed with ground glass stoppers, with glass rods extending to the center of the gel that serve as a target for the frameless robotic radiosurgery. A compact 6 MV x-band linac (285 lbs) is mounted and maneuvered by a 6 degree-of-freedom robotic arm. The gels were irradiated using a 25 mm circular insert. A total of 10 Gy was delivered at isocenter at a dose rate of 300 cGy/min using all of the available 102 nodes. The gels were then imaged by MRI(GE Signa) at 1.5 T, using a series of Hahn spin echoes of TR = 3s, TE = 20,100,200,400 ms. Transverse relaxation rate (R 2 ) maps were constructed from those multiple images, using the non-linear least-squares Lavenberg-Marquardt algorithm and a data analysis and display program 'DoseMap' which was written using the scientific computational program MATLAB. R 2 maps were converted to dose maps using an R 2 -to-dose calibration curve. Dose maps and isodose curves were then compared with corresponding data from the treatment planning computer software. Results: The dose dependence of the NMR transverse relaxation rate, R 2 , is reproducible (less than 2 % variation) and is linear up to about 10 Gy, with a slope of 0.25 s -1 Gy -1 at 1.5 Tesla. Isodose curves in three orthogonal (axial, sagittal and coronal) planes show excellent

  1. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  2. Behavioral and physiological changes produced by a supralethal dose of ionizing radiation: evidence for hormone-influenced sex differences in the rat

    International Nuclear Information System (INIS)

    Mickley, G.A.

    1980-01-01

    A sufficiently large and rapid dose of ionizing radiation produces an immediate but transient behavioral incapacitation. Acute hypotension often accompanies the disorder. Although the etiology of this syndrome is unclear, it has been suggested that an increase in histamine excretion contributes to it. Since histamine is known to interact with the endocrine system and since estrogens have been shown to prolong the life of animals exposed to potentially lethal doses of radiation, it was also hypothesized that females might be relatively less affected by an acute, large dose of ionizing radiation. Male and female rats were trained on an avoidance task, irradiated, and then retested. Females showed a less severe decrement after radiation exposure than males. Likewise, females did not suffer the severe hypotension normally associated with male radiogenic early transient incapacitation (ETI); rather, an acute hypertension was produced in females. A second series of experiments revealed that differences in male and female radiation response were eliminated by gonadectomy. Systemic estradiol injection produced strikingly feminine (i.e., superior) postirradiation avoidance responses as well as hypertension in neutered rats. Testosterone injections had no effect on either measure. Central nervous system alterations have been correlated with the ETI. Therefore, final experiments sought a possible central locus of the action of estradiol. It was found that exposure of the nucleus peopticus medialis to estrogens produces postirradiation benefits in avoidance performance and blood pressure similar to those seen after systemic estradiol treatments. Nucleus amygdaloideus medialis implants produced no such benefits

  3. Monte Carlo assessment of the dose rates produced by spent fuel from CANDU reactors

    International Nuclear Information System (INIS)

    Pantazi, Doina; Mateescu, Silvia; Stanciu, Marcela

    2003-01-01

    One of the technical measures considered for biological protection is radiation shielding. The implementation process of a spent fuel intermediate storage system at Cernavoda NPP includes an evolution in computation methods related to shielding evaluation: from using simpler computer codes, like MicroShield and QAD, to systems of codes, like SCALE (which contains few independent modules) and the multipurpose and multi-particles transport code MCNP, based on Monte Carlo method. The Monte Carlo assessment of the dose rates produced by CANDU type spent fuel, during its handling for the intermediate storage, is the main objective of this paper. The work had two main features: -establishing of geometrical models according to description mode used in code MCNP, capable to account for the specific characteristics of CANDU nuclear fuel; - confirming the correctness of proposed models, by comparing MCNP results and the related results obtained with other computer codes for shielding evaluation and dose rates calculations. (authors)

  4. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  5. Analytic Investigation Into Effect of Population Heterogeneity on Parameter Ratio Estimates

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Carlone, Marco; Warkentin, Brad; Fallone, B. Gino

    2007-01-01

    Purpose: A homogeneous tumor control probability (TCP) model has previously been used to estimate the α/β ratio for prostate cancer from clinical dose-response data. For the ratio to be meaningful, it must be assumed that parameter ratios are not sensitive to the type of tumor control model used. We investigated the validity of this assumption by deriving analytic relationships between the α/β estimates from a homogeneous TCP model, ignoring interpatient heterogeneity, and those of the corresponding heterogeneous (population-averaged) model that incorporated heterogeneity. Methods and Materials: The homogeneous and heterogeneous TCP models can both be written in terms of the geometric parameters D 50 and γ 50 . We show that the functional forms of these models are similar. This similarity was used to develop an expression relating the homogeneous and heterogeneous estimates for the α/β ratio. The expression was verified numerically by generating pseudo-data from a TCP curve with known parameters and then using the homogeneous and heterogeneous TCP models to estimate the α/β ratio for the pseudo-data. Results: When the dominant form of interpatient heterogeneity is that of radiosensitivity, the homogeneous and heterogeneous α/β estimates differ. This indicates that the presence of this heterogeneity affects the value of the α/β ratio derived from analysis of TCP curves. Conclusions: The α/β ratio estimated from clinical dose-response data is model dependent-a heterogeneous TCP model that accounts for heterogeneity in radiosensitivity will produce a greater α/β estimate than that resulting from a homogeneous TCP model

  6. Analysis of the NAEG model of transuranic radionuclide transport and dose

    International Nuclear Information System (INIS)

    Kercher, J.R.; Anspaugh, L.R.

    1984-01-01

    We analyze the model for estimating the dose FR-om /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion. Leafy vegetable ingestion accounts for 70% of the dose FR-om the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables

  7. Analysis of the NAEG model of transuranic radionuclide transport and dose

    International Nuclear Information System (INIS)

    Kercher, J.R.; Anspaugh, L.R.

    1984-11-01

    We analyze the model for estimating the dose from 239 Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion. Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables

  8. Radiotherapy dose compensation for lung patients

    International Nuclear Information System (INIS)

    Piyaratna, N.; Arnold, A.; Metcalfe, P.

    1999-01-01

    The purpose of the present paper is to provide a more homogeneous dose distribution in the target volume from compensated anterior and posterior fields while the healthy lung is spared by de-weighting the lateral fields. A compensation computation which used linear iterations to compute the most homogeneous dose distribution across the target volume was applied to produce optimum compensator designs. The equivalent tissue-air ratio (E-TAR) inhomogeneity correction was applied for the computations using a GE target series 11 planning computer. The compensators designed were tested for accuracy in a modified water/lung phantom using a scanning diode and an anthropomorphic phantom using thermoluminescent dosimeters. A comparison has been made between the compensated and uncompensated plans for the first nine patients who we have treated with this technique. The dose profiles produced by the computation agreed with the prediction of the computed isodose plans to within ± 2% at the target depth. The thermoluminescent dosimeter (TLD)-measured results in the anthropomorphic phantom agreed with the planning computer within ± 3%. A comparison of nine compensated plans of radiotherapy patients for large-volume targets in the lung region showed a maximum variation in the target to be 19% uncompensated versus 10% compensated. By providing compensated treatment fields from anterior and posterior treatment portals, a homogeneous dose that conforms well to the target volume is provided. As an added bonus, this enables the lateral lung fields to be significantly de-weighted and the healthy lung is spared considerable dose. Copyright (1999) Blackwell Science Pty Ltd

  9. A unique experiment. Measurement of radiation doses at Vinca

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    For the first time in the history of the peaceful applications of atomic energy, an experiment was conducted to determine the exact levels of radiation exposure resulting from a reactor incident. The experiment was made at Vinca, Yugoslavia, wherein October 1958 six persons had been subjected to high doses of neutron and gamma radiation during a brief uncontrolled run of a zero-power reactor. One of them died but the other five were successfully treated at the Curie Hospital in Paris. In the case of four of them, the treatment involved the grafting of healthy bone marrow to counteract the effects of radiation on blood-forming tissues. It was recognized that if the effects produced on the irradiated persons could be related to the exact doses of radiation they had received, it would be possible to gain immensely valuable knowledge about the biological consequences of acute and high level radiation exposure on a quantitative basis. It was suggested to the Yugoslav authorities that a dosimetry experiment be conducted at Vinca. The most accurate modern techniques of dosimetry developed at the Oak Ridge National Laboratory were employed during the experiment. Simultaneous measurements of the neutron and gamma doses were made at points where the people had been located. At these points the effects of the radiation on the salt solution in the phantoms were studied. In particular, the energy distribution of the radiation was investigated.It was the ratio between the various components of the radiation that was of special interest in these measurements because this ratio itself would help in determining the exact doses. The dose of one of the components, viz. slow neutrons, had already been determined during the treatment of the patients. If the ratio of the components could be ascertained, the doses of the fast neutrons and gamma rays could also be established because the ratio would not be affected by the power level at which the reactor was operated

  10. Determination of the dose equivalents due to neutrons produced during therapeutic irradiations with a Varian CLINAC 2500

    International Nuclear Information System (INIS)

    Carrillo, Ricardo E.

    1991-01-01

    This experiment it was designed to quantify that so important it is the dose equivalent deposited by the neutron flow that is generated by photonuclear reactions during therapeutic irradiations with X rays of produced high-energy for an accelerator Varian CLINAC 2500. This accelerator type is routinely used in the Department of Radiotherapy of the Hospital of the University of Wisconsin, E.U. The equivalent dose was measured in diverse towns of the room of irradiations using the activation of thin sheets of gold put in the center of plastic recipients full with water. In general, the recipients were 1 m or more than the floor and at distances still bigger than the walls. The irradiations were made using photons with the highest energy that you can select with this team - 24 MeV. The due equivalent dose to neutrons taken place here by the energy photons used they were measured and reported. (author)

  11. Alternative method to detect compounds produced by Gambierdiscus spp.

    Directory of Open Access Journals (Sweden)

    Jon Andoni Sánchez

    2014-06-01

    Full Text Available Ciguatoxins (CTXs and CTX precursors are produced by several Gambierdiscus spp. These polyether toxins are associated to ciguatera fish poisoning (CFP. In addition to CTX, maitotoxins (MTX and gambierol are also produced by these dinoflagellates. MTX mechanism of action is strictly Ca2+ dependent, since the toxin induces a massive cytoplasmatic Ca2+ entrance. However, CTX activates the voltage-dependent sodium channels and no relation with calcium fluxes has been showed. The aim of this work was to study the effect of both toxins in the cytoplasmic calcium levels in the SH-SY5Y neuroblastoma cell line by using the fluorescent probe Fura-2 AM. Two completely different calcium profiles were obtained. While, MTX induces a sustained dose-dependent increase in Fura-2 ratio, CTX produces a light increase in dye ratio. From MTX results a calibration curve concentration versus Fura-2 ratio was obtained where the toxin concentration of an unknown sample can be calculated. Then, the effect of four samples from Gambierdiscus cultures was studied and different calcium profiles were obtained. A high increase in Fura-2 ratio was observed in two samples. The calcium profile was similar to MTX and by using the calibration curve the amount of toxin was calculated (4.9 and 1.8 nM of MTX. In the other samples, from the Fura-2 results the presence of CTX like compounds can be established.

  12. Radiation sources providing increased UVA/UVB ratios induce photoprotection dependent on the UVA dose in hairless mice.

    Science.gov (United States)

    Reeve, Vivienne E; Domanski, Diane; Slater, Michael

    2006-01-01

    In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.

  13. A mutant with riboflavin productivity obtained from non-riboflavin-producing ashbya gossypii by γ-induction

    International Nuclear Information System (INIS)

    Yang Suhong; Ge Zhongliang

    1993-01-01

    60 Co γ-ray was used to irradiate Ashbya gossypii, which does not produce riboflavin originally, and mutants were obtained with colonial colour changing from white into yellow. Mutant ratio was high at the absorption dose of 90 Gy. Results of reverse phase-HPLC, high performance-TLC and fluoroscopic analysis proved that riboflavin is produced by the mutant fermentation. The mutant remained after generations of culture, indicating that the induced new properties are stably inheritable

  14. Dose due to 40K

    International Nuclear Information System (INIS)

    Escareno J, E.; Vega C, H. R.

    2011-10-01

    The dose due to 40 K has been estimated. Potassium is one of the most abundant elements in nature, being approximately 2% of the Earth's crust. Potassium has three isotopes 39 K, 40 K and 41 K, two are stable while 40 K is radioactive with a half life of 1.2x10 9 years; there is 0.0117% 40 K-to-K ratio. Potassium plays an important role in plants, animals and humans growth and reproduction. Due to the fact that K is an essential element for humans, 40 K is the most abundant radioisotope in human body. In order to keep good health conditions K must be intake at daily basis trough food and beverages, however when K in ingested above the requirements produce adverse health effects in persons with renal, cardiac and hypertension problems or suffering diabetes. In 89.3% 40 K decays to 40 C through β-decay, in 10.3% decays through electronic capture and emitting 1.46 MeV γ-ray. K is abundant in soil, construction materials, sand thus γ-rays produced during 40 K decay contribute to external dose. For K in the body practically all 40 K decaying energy is absorbed by the body; thus 40 K contributes to total dose in humans and it is important to evaluate its contribution. In this work a set of 40 K sources were prepared using different amounts of KCl salt, a γ-ray spectrometer with a NaI(Tl) was characterized to standardized the sources in order to evaluate the dose due to 40 K. Using thermoluminescent dosemeters the dose due to 40 K was measured and related to the amount of 40 K γ-ray activity. (Author)

  15. Radiosensitive target in the early mouse embryo exposed to very low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Wiley, Lynn M.; Raabe, Otto G.; Khan, Rakhshi; Straume, Tore

    1994-01-01

    We exposed mouse preimplantation embryos in vitro to either tritiated water (HTO) or tritiated thymidine (TdR) to determine whether the radiosensitive target was nuclear or extranuclear for embryonic cell proliferation disadvantage in the mouse embryo chimera assay. 8-cell embryos were incubated in either HTO or TdR for 2 h and paired with non-irradiated control embryos to form chimeras. Chimeras were cultured for an average of 20.2 h to allow for 2-3 cell cycles and then partially dissociated to obtain the number of progeny cells contributed by the two partner embryos for each chimera. These values were expressed as a 'proliferation ratio' (number of cells from the irradiated embryo: total number of cells in the chimera). A ratio significantly less than 0.50 indicates that the experimental embryo expressed an embryonic cell proliferation disadvantage, which is the endpoint of this assay. The activity concentrations of HTO and TdR were adjusted so that both would deliver comparable mean absorbed nuclear doses during the combined initial 2-h irradiation incubation and subsequent 20.2 h chimera incubation periods. Although nuclear doses were comparable under these conditions, the extranuclear dose delivered by the uniformly distributed HTO was about 100 times greater than the extranuclear dose delivered by TdR for each given nuclear dose. Consequently, obtaining mean TdR proliferation ratios≤mean HTO proliferation ratios would be evidence for a nuclear target while obtaining mean HTO proliferation ratios< mean TdR proliferation ratios would be evidence for an extranuclear target. TdR consistently produced lower mean proliferation ratios over a range of doses from 0.14 Gy to 0.43 Gy. Therefore, we conclude that the radiosensitive target for this endpoint is nuclear

  16. Suitability of new anode materials in mammography: Dose and subject contrast considerations using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-01-01

    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation.The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  17. Analysis of the Nevada-Applied-Ecology-Group model of transuranic radionuclide transport and dose

    International Nuclear Information System (INIS)

    Kercher, J.R.; Anspaugh, L.R.

    1991-01-01

    The authors analyze the model for estimating the dose from 239 Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the inhalation pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The inhalation pathway accounts for 100% of the dose to lung, upper respiratory tract and thoracic lymph nodes; and 95% of the dose to liver, bone, kidney and total body. The GI tract receives 99% of its dose via ingestion. Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5% ingestion of beef liver 4%; beef muscle 1%. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph nodes. (author)

  18. Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis

    International Nuclear Information System (INIS)

    Wang Mingxing; Wang Sanjun; Liu Zhiyong; Liu Zhongxia; Song Tianfu; Zuo Xiurong

    2006-01-01

    The effect of B/Ti mass ratio on grain refining of the low-titanium aluminum produced by electrolysis was investigated by adding AlB master alloy to the melt of the low-titanium aluminum. The results show that the addition of titanium by electrolysis is an effective way of grain refining of aluminum, and addition of boron to the melt of the low-titanium aluminum can further increase the grain refining efficiency. And the best grain refining efficiency is obtained when the B/Ti mass ratio is 1:10. However, when the B/Ti mass ratio is 1:2.22 (the stoichiometric value for TiB 2 ), the grain refining efficiency vanishes almost completely. It means that all of the solute titanium atoms in the melt of the low-titanium aluminum react with boron atoms that come from AlB master alloy to form TiB 2 particles, and TiB 2 particles have not grain refining ability. The grain refining efficiency seems to increase with addition of more boron to the melt after the B/Ti mass ratio exceeds 1:2.22. But the grain refining efficiency is very poor, and similar to that of pure Al refined by AlB master alloy. It further shows that TiB 2 particles do not participate in grain refining, and that the excess boron atoms in the melt also cannot turn TiB 2 particles into the effective nuclei for aluminum as the solute titanium atoms do

  19. Stopping-power ratios for dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    1988-01-01

    The determination of the absorbed dose at a specified location in a medium irradiated with an electron or photon beam normally consists of two steps: (1) the determination of the mean absorbed dose to a detector by using a calibration factor or performing an absolute measurement, (2) the determination of the absorbed dose to the medium at the point of interest by calculations based on the knowledge of the absorbed dose to the detector and the different stopping and scattering properties of the medium and the detector material. When the influence of the detector is so small that the electron fluence in the medium is not modified, the ratio of the mass collision stopping power of the two materials accounts for the differences in energy deposition, and provides a conversion factor to relate the absorbed dose in both materials. Today, all national and international dosimetry protocols and codes of practice are based on such procedures, and the user easily can carry out these steps using tabulated data to convert a measured quantity to absorbed dose in the irradiated medium at the location of interest. Effects due to the spatial extension of the detector are taken into account using perturbation correction factors. The Monte Carlo method has become the most common and powerful calculational technique for determining the electron fluence (energy spectra) under different irradiation conditions. Cavity theory is then used to calculate stopping-power ratios. In this chapter, the different steps needed to evaluate s-ratios will be considered, emphasizing the different types of cavity-theory integrals and the Monte Carlo techniques used to derive the necessary electron spectra in the range of energies commonly used in radiation dosimetry, i.e., photon and electron beams with energies up to 50 MeV

  20. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  1. Multiple dose study of the combined radiosensitizers Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole)

    International Nuclear Information System (INIS)

    Bleehen, N.M.; Newman, H.F.; Maughan, T.S.; Workman, P.

    1989-01-01

    The hypoxic cell radiosensitizers Ro 03-8799 and SR 2508 have different clinical toxicities. The former produces an acute but transient central nervous system syndrome, whereas the latter produces cumulative peripheral neuropathy. Following single dose studies, an escalating multiple dose schedule using both drugs in combination showed no unexpected adverse reactions at lower doses. This study identifies the clinical tolerance and pharmacokinetics when doses in the region of the maximal tolerated dose are given to 26 patients receiving infusions of 0.75 g/m2 Ro 03-8799 and 2 g/m2 SR 2508 three times per week. At 15 doses, 3/4 patients experienced WHO grade 2 peripheral neuropathy, whereas at 12 doses 1/9 developed grade 2 and 6/9 developed grade 1 neuropathies. This represents a lower dose of SR 2508 than can be given alone suggesting that some interaction between the two drugs does exist in terms of chronic peripheral neurotoxicity. Pharmacokinetic studies show no adverse interactions between the two drugs and minimal inter-patient variation. From bivariate analysis, cumulative AUC for Ro 03-8799 has the most significant correlation with the development of peripheral neuropathy. Tumor drug concentrations normalized to the administered dose show mean values of 34 micrograms/g Ro 03-8799 and 76 micrograms/g SR 2508 30 minutes after infusion. These could be expected to produce a single dose sensitizer enhancement ratio of 1.5. The combination of the two sensitizers at the maximum tolerable dose may be expected to give an increased therapeutic efficacy over either drug alone

  2. Gamma-Dose rate above uranium mineralization areas in western sudan

    International Nuclear Information System (INIS)

    Sam, A.K; Sirelkhatim, D.A; Hassona, R.K.

    2003-01-01

    Absorbed dose rate received from natural external irradiation in uranium mineralisation areas at Uro, Kurun and Jebel Mun was evaluated from the measured activity concentrations of 238 U, 232 Th and 40 K in rock samples.The analyses were performed using alpha-spectrometry and high-resolution gamma-ray spectrometry. A great spatial variability was observed in activity concentration of the primordial radionuclides indicating complexity in geological features. Converses to Jebel Mun, Uro and Kurun deposits exhibit very high U:Th mass ratio. The resulting absorbed dose rate in air as estimated using DRCF's fall within the range of 70-522 (Mun), 569-349 (Uro) and 84-320 n Gy/h (Kurun). At maximum, they correspond to annual effective dose of 0.64, 7.78 and 0.39 mSv, respectively. Uranium is the principal producer of the surface radioactivity at Uro and Kurun as it contributes 99.6% and 95% of the total absorbed dose whereas, in Jebel Mun the cause of radioactive anomaly is due to 40 K and 232 Th. In Uro and Kurun deposits, daughter/parent activity ratios along uranium series, Viz. 234 U: 238 U, 230 Th:U, 210 Po:U, are not differ from the equilibrium value of unity.(Author)

  3. A Monte Carlo Study of dose enhancement according to the enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-03-15

    Dose enhancement effects at megavoltage (MV) X and γ-ray energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide (Fe2O3) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co60 γ-ray were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

  4. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio

    Science.gov (United States)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.

    2017-10-01

    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  5. Dose due to {sup 40}K

    Energy Technology Data Exchange (ETDEWEB)

    Escareno J, E.; Vega C, H. R., E-mail: edmundoej@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    The dose due to {sup 40}K has been estimated. Potassium is one of the most abundant elements in nature, being approximately 2% of the Earth's crust. Potassium has three isotopes {sup 39}K, {sup 40}K and {sup 41}K, two are stable while {sup 40}K is radioactive with a half life of 1.2x10{sup 9} years; there is 0.0117% {sup 40}K-to-K ratio. Potassium plays an important role in plants, animals and humans growth and reproduction. Due to the fact that K is an essential element for humans, {sup 40}K is the most abundant radioisotope in human body. In order to keep good health conditions K must be intake at daily basis trough food and beverages, however when K in ingested above the requirements produce adverse health effects in persons with renal, cardiac and hypertension problems or suffering diabetes. In 89.3% {sup 40}K decays to {sup 40}C through {beta}-decay, in 10.3% decays through electronic capture and emitting 1.46 MeV {gamma}-ray. K is abundant in soil, construction materials, sand thus {gamma}-rays produced during {sup 40}K decay contribute to external dose. For K in the body practically all {sup 40}K decaying energy is absorbed by the body; thus {sup 40}K contributes to total dose in humans and it is important to evaluate its contribution. In this work a set of {sup 40}K sources were prepared using different amounts of KCl salt, a {gamma}-ray spectrometer with a NaI(Tl) was characterized to standardized the sources in order to evaluate the dose due to {sup 40}K. Using thermoluminescent dosemeters the dose due to {sup 40}K was measured and related to the amount of {sup 40}K {gamma}-ray activity. (Author)

  6. Accurate assessment of the distortions produced by the transit dose in HDR brachytherapy

    International Nuclear Information System (INIS)

    Nani, E.K.; Kyere, A.W.K.; Tetteh, K.

    2001-01-01

    Current polynomial methods used in the modelling of the dose distributions in HDR brachytherapy have been reformulated to improve accuracy. An example is provided to show the effects of the transit dose on the output. The transit dose, which is neglected by current computer software for calculating doses, can result in significant dosimetric errors. These additional unrecognised doses imply over-dosing and distortions in the dose distributions within the irradiated volume. Assessment of dose to critical and radiosensitive organs is therefore inaccurate. These could increase late tissue complications as predicted by the Linear Quadratic Model. Our model works very well for straight catheters and is highly recommended for the evaluation of the transit dose around such catheters. (author)

  7. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  8. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  9. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms

    DEFF Research Database (Denmark)

    Mari, Xavier

    1999-01-01

    The carbon content of transparent exopolymeric particles (TEP) was measured in the laboratory in particles produced by bubbling exudates of the diatom Thalassiosira weissflogii, grown under nitrogen non-limited conditions (N:P = 7). The carbon content of these particles (TEP-C) appears to vary...... a coastal area (Kattegat, Denmark), TEP carbon concentration in the surface mixed layer was on the order of 230 ± 150 µg C l-1. This is high relative to other sources of particulate organic carbon (e.g. phytoplankton) and depending on TEP turnover rates, suggests that TEP is an important pathway...... for dissolved organic carbon in coastal seas. The carbon to nitrogen ratio of TEP was measured from particles formed by bubbling exudates of the diatoms T. weissflogii, Skeletonema costatum, Chaetoceros neogracile and C. affinis. Each of these diatom species was grown under various N:P ratios, from N...

  10. Dose modulated retrospective ECG-gated versus non-gated 64-row CT angiography of the aorta at the same radiation dose: Comparison of motion artifacts, diagnostic confidence and signal-to-noise-ratios

    International Nuclear Information System (INIS)

    Schernthaner, Ruediger E.; Stadler, Alfred; Beitzke, Dietrich; Homolka, Peter; Weber, Michael; Lammer, Johannes; Czerny, Martin; Loewe, Christian

    2012-01-01

    Purpose: To compare ECG-gated and non-gated CT angiography of the aorta at the same radiation dose, with regard to motion artifacts (MA), diagnostic confidence (DC) and signal-to-noise-ratios (SNRs). Materials and methods: Sixty consecutive patients prospectively randomized into two groups underwent 64-row CT angiography, with or without dose-modulated ECG-gating, of the entire aorta, due to several pathologies of the ascending aorta. MA and DC were both assessed using a four-point scale. SNRs were calculated by dividing the mean enhancement by the standard deviation. The dose-length-product (DLP) of each examination was recorded and the effective dose was estimated. Results: Dose-modulated ECG-gating showed statistically significant advantages over non-gated CT angiography, with regard to MA (p < 0.001) and DC (p < 0.001), at the aortic valve, at the origin of the coronary arteries, and at the dissection membrane, with a significant correlation (p < 0.001) between MA and DC. At the aortic wall, however, ECG-gated CT angiography showed statistically significant fewer MA (p < 0.001), but not a statistically significant higher DC (p = 0.137) compared to non-gated CT angiography. At the supra-aortic vessels and the descending aorta, the ECG-triggering showed no statistically significant differences with regard to MA (p = 0.861 and 0.526, respectively) and DC (p = 1.88 and 0.728, respectively). The effective dose of ECG-gated CT angiography (23.24 mSv; range, 18.43–25.94 mSv) did not differ significantly (p = 0.051) from that of non-gated CT angiography (24.28 mSv; range, 19.37–29.27 mSv). Conclusion: ECG-gated CT angiography of the entire aorta reduces MA and results in a higher DC with the same SNR, compared to non-gated CT angiography at the same radiation dose.

  11. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  12. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir

    International Nuclear Information System (INIS)

    Berger, T.; Hajek, M.; Schoener, W.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.; Kartashov, D.

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems, Moscow, Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities, Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LET ( ) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. (author)

  13. Comparison of measured and calculated contralateral breast doses in whole breast radiotherapy for VMAT and standard tangent techniques

    International Nuclear Information System (INIS)

    Tse, T.L.J; Bromley, R.; Booth, J.; Gray, A.

    2011-01-01

    Full text: Objective This study aims to evaluate the accuracy of calculated dose with the Eclipse analytical anisotropic algorithm (AAA) for contralateral breast (CB) in left-sided breast radiotherapy for dual-arc VMA T and standard wedged tangent (SWT) techniques. Methods and materials Internal and surface CB doses were measured with EBT2 film in an anthropomorphic phantom mounted with C-cup and D-cup breasts. The measured point dose was approximated by averaging doses over the 4 x 4 mm 2 central region of each 2 x 2 cm2 piece of film. The dose in the target region of the breast was also measured. The measured results were compared to AAA calculations with calculation grids of I, 2.5 and 5 mm. Results In SWT plans, the average ratios of calculation to measurement for internal doses were 0.63 ± 0.081 and 0.5 I ± 0.28 in the medial and lateral aspects, respectively. Corresponding ratios for surface doses were 0.88 ± 0.22 and 0.38 ± 0.38. In VMAT plans, however, the calculation accuracies showed little dependence on the measurement locations, the ratios were 0.78 ± O. I I and 0.81 ± 0.085 for internal and surface doses. In general, finer calculation resolutions did not inevitably improve the dose estimates of internal doses. For surface doses, using smaller grid size I mm could improve the calculation accuracies on the medial but not the lateral aspects of CB. Conclusion In all plans, AAA had a tendency to underestimate both internal and surface CB doses. Overall, it produces more accurate results in VMAT than SWT plans.

  14. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  15. The choice of individual dose criterion at which to restrict agricultural produce following an unplanned release of radioactive material to atmosphere

    International Nuclear Information System (INIS)

    Dionian, J.; Simmonds, J.R.

    1985-06-01

    In the event of an accidental release of radioactive material to atmosphere, the introduction of emergency countermeasures will be based on the need to limit the risk to individuals. However, it has been suggested that a form of cost-benefit analysis may be used as an input to decisions on the withdrawal of countermeasures, although it is recognised that these decisions may be influenced by factors other than those directly related to radiological protection. In this study, a method based on cost-benefit analysis is illustrated for assessing the optimum level of individual dose at which restrictions on agricultural production may be considered. This requires monetary values to be assigned to both the lost food production and to the health detriment, expressed as the collective effective dose equivalent commitment. It has been assumed in this analysis that food-supply restrictions are both introduced and withdrawn at the same projected level of annual individual dose. The effect on the optimum dose level of the following parameters is examined: the type of produce restricted; the size of the release; the site and direction of the release; the weather conditions; and the cost assigned to unit collective dose. It is shown that the optimum dose criterion, based on the effective dose equivalent received by an individual from a years intake of food, varies over practically the whole range of individual dose considered, i.e., 0.1 to 50 mSv. However, it is concluded that 5 mSv would represent the optimum dose criterion in a substantial number of cases. (author)

  16. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  17. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of dose reporting modes in Acuros XB for prostate, lung and breast cancer

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-12-01

    Full Text Available Purpose: Acuros XB (AXB dose calculation algorithm is available for external beam photon dose calculations in Eclipse treatment planning system (TPS. The AXB can report the absorbed dose in two modes: dose-to-water (Dw and dose-to-medium (Dm. The main purpose of this study was to compare the dosimetric results of the AXB_Dm with that of AXB_Dw on real patient treatment plans. Methods: Four groups of patients (prostate cancer, stereotactic body radiation therapy (SBRT lung cancer, left breast cancer, and right breast cancer were selected for this study, and each group consisted of 5 cases. The treatment plans of all cases were generated in the Eclipse TPS. For each case, treatment plans were computed using AXB_Dw and AXB_Dm for identical beam arrangements. Dosimetric evaluation was done by comparing various dosimetric parameters in the AXB_Dw plans with that of AXB_Dm plans for the corresponding patient case. Results: For the prostate cancer, the mean planning target volume (PTV dose in the AXB_Dw plans was higher by up to 1.0%, but the mean PTV dose was within ±0.3% for the SBRT lung cancer. The analysis of organs at risk (OAR results in the prostate cancer showed that AXB_Dw plans consistently produced higher values for the bladder and femoral heads but not for the rectum. In the case of SBRT lung cancer, a clear trend was seen for the heart mean dose and spinal cord maximum dose, with AXB_Dw plans producing higher values than the AXB_Dm plans. However, the difference in the lung doses between the AXB_Dm and AXB_Dw plans did not always produce a clear trend, with difference ranged from -1.4% to 2.9%. For both the left and right breast cancer, the AXB_Dm plans produced higher maximum dose to the PTV for all cases. The evaluation of the maximum dose to the skin showed higher values in the AXB_Dm plans for all 5 left breast cancer cases, whereas only 2 cases had higher maximum dose to the skin in the AXB_Dm plans for the right breast cancer

  18. Minimum monitor unit per segment IMRT planning and over-shoot-ratio

    International Nuclear Information System (INIS)

    Grigorov, G.; Barnett, R.; Chow, J.

    2004-01-01

    The aim of this work is to describe the modulation quality for dose delivery of small Multi-Leaf Collimator (MLC) fields and MU/segment. The results were obtained with Pinnacle (V6) and a Varian Clinac 2100 EX (Varis 6.2) linear accelerator. The over-shoot effect was investigated by comparing integrated multiple segmented exposures to a single exposure with the same number of total MU (1, 2, 3,4, 5 and 6 MU). To present the OS effect the Over-Shoot-Ratio (OSR) was defined as the ratio of the segmented dose for a 1 cm 2 field at depth to the static dose for the same field size and depth. OSR was measured as a function of MU/segment and dose rate. Measured results can be used to optimise IMRT planning and also to calculate the surface dose. The dependence of the dose in depth with 1, 2, 3, 4, and 5 MU/segments for 6 MV photon beam, dose rate of 100 MU/min and 1 cm 2 beam field at the central axis is presented, where the argument of the function is the depth and parameter of the function is the number of minimum MU/segment. The dependence of the overshoot ratio on the MU/segment with a parameter of the dose rates (100, 400 and 600 MU/min) is also shown. The effect increases with the dose rate and decreases with the increasing of the minimum number of MU/segment. Having measured OSR for the 2100 EX linac it is possible to do correction and calibration of the dose of the first segment of IMRT beam, where the dose to the target and on the surface can increase over the planed dose of 1 MU by 40% and 70% for dose rate of 400 and 600 MU/min respectively. The Over-Shoot-Ratio is an important parameter to be determined as part of the routine quality assurance for IMRT and can be used to significantly improve the agreement between planned and delivered doses to the patient

  19. Liquefied Residue of Kenaf Core Wood Produced at Different Phenol-Kenaf Ratio

    International Nuclear Information System (INIS)

    Saiful Bahari Bakarudin; Sarani Zakaria; Chia, C.H.; Jani, S.M.

    2012-01-01

    Liquefactions of kenaf core wood were carried out at different phenol-kenaf (P/ k) ratios. Characterizations of kenaf core wood liquefied residue were carried out to measure the degree of liquefaction. This provides a new approach to understand some fundamental aspects of the liquefaction reaction. Functional groups on the raw kenaf core wood and liquefied residue were examined using Fourier transform infrared spectroscopy (FTIR). The crystallinity index of the kenaf wood liquefied residue, which represents crystallinity changes of the cellulose component after the liquefaction process, was studied using X-ray diffraction (XRD). The surface morphology of the wood residue was observed using scanning electron microscopy (SEM). The thermal behavior of the residues was analyzed using thermogravimetric analysis (TGA). Abroad peak around 3450-3400 cm -1 representing OH stretching in lignin start to disappear as P/K ratio increases. The results showed that the higher the P/K ratio the greater the liquefaction of the lignin component in the kenaf core wood. The crystallinity index (CrI) on the kenaf liquefied residues increased with the increase in P/K ratio. SEM images showed that the small fragments attached on the liquefied kenaf residue surface were gradually removed as the P/K ratio was increased from 1.5/ 1.0 to 2.5/ 1.0, which is mainly attributed to the greater chemical penetration toward reactive site of the kenaf fibres. Residue content decreased as the P/K ratio increased from 1.5/ 1.0 to 2.5/ 1.0. TGA results showed the increase of heat resistance in the residue as the P/K ratio was increased. (author)

  20. The cost-effectiveness and cost-utility of high-dose palliative radiotherapy for advanced non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Coy, Peter; Schaafsma, Joseph; Schofield, John A.

    2000-01-01

    Purpose: To compute cost-effectiveness/cost-utility (CE/CU) ratios, from the treatment clinic and societal perspectives, for high-dose palliative radiotherapy treatment (RT) for advanced non-small-cell lung cancer (NSCLC) against best supportive care (BSC) as comparator, and thereby demonstrate a method for computing CE/CU ratios when randomized clinical trial (RCT) data cannot be generated. Methods and Materials: Unit cost estimates based on an earlier reported 1989-90 analysis of treatment costs at the Vancouver Island Cancer Centre, Victoria, British Columbia, Canada, are updated to 1997-1998 and then used to compute the incremental cost of an average dose of high-dose palliative RT. The incremental number of life days and quality-adjusted life days (QALDs) attributable to treatment are from earlier reported regression analyses of the survival and quality-of-life data from patients who enrolled prospectively in a lung cancer management cost-effectiveness study at the clinic over a 2-year period from 1990 to 1992. Results: The baseline CE and CU ratios are $9245 Cdn per life year (LY) and $12,836 per quality-adjusted life year (QALY), respectively, from the clinic perspective; and $12,253/LY and $17,012/QALY, respectively, from the societal perspective. Multivariate sensitivity analysis for the CE ratio produces a range of $5513-28,270/LY from the clinic perspective, and $7307-37,465/LY from the societal perspective. Similar calculations for the CU ratio produce a range of $7205-37,134/QALY from the clinic perspective, and $9550-49,213/QALY from the societal perspective. Conclusion: The cost effectiveness and cost utility of high-dose palliative RT for advanced NSCLC compares favorably with the cost effectiveness of other forms of treatment for NSCLC, of treatments of other forms of cancer, and of many other commonly used medical interventions; and lies within the US $50,000/QALY benchmark often cited for cost-effective care

  1. Tacrolimus concentration to dose ratio in solid organ transplant patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection.

    Science.gov (United States)

    Woodworth, Michael H; Kraft, Colleen S; Meredith, Erika J; Mehta, Aneesh K; Wang, Tiffany; Mamo, Yafet T; Dhere, Tanvi; Sitchenko, Kaitlin L; Patzer, Rachel E; Friedman-Moraco, Rachel J

    2018-04-01

    Fecal microbiota transplantation (FMT) is increasingly being performed for Clostridium difficile infection in solid organ transplant (SOT) patients; however, little is known about the potential pharmacokinetic or pharmacomicrobial effects this may have on tacrolimus levels. We reviewed the medical records of 10 SOT patients from September 2012-December 2016 who were taking tacrolimus at time of FMT for recurrent C. difficile infection. We compared the differences in tacrolimus concentration/dose ratio (C/D ratio) 3 months prior to FMT vs 3 months after FMT. The mean of the differences in C/D ratio calculated as (ng/mL)/(mg/kg/d) was -17.65 (95% CI -1.25 to 0.58) (ng/mL)/(mg/kg/d), P-value .43 by Wilcoxon signed-rank test. The mean of the differences in C/D ratio calculated as (ng/mL)/(mg/d) was -0.33 (95% CI -1.25 to 0.58) (ng/mL)/(mg/d), P-value .28 by Wilcoxon signed-rank test. Of these patients, 2/10 underwent allograft biopsy for allograft dysfunction in the year after FMT, with no evidence of allograft rejection on pathology. These preliminary data suggest that FMT may not predictably alter tacrolimus levels and support its safety for SOT patients however further study in randomized trials is needed. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Analysis of dose in heterogeneity adjuvant radiotherapy after surgical treatment of cases of breast cancer; Analise da heterogeneidade de dose em radioterapia adjuvante apos tratamento cirurgico de casos de cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Grechi, Bruna E.; Schwarz, Ana Paula, E-mail: anapaulaschwarz@yahoo.com.br [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil); Teston, Adriano; Rodrigues, Joanilso S. [Clinica de Radioterapia Santa Maria, Santa Maria, RS (Brazil)

    2013-12-15

    Assuming the systems planning radiotherapy recognize all body structures of the same density (d=1 g/cm³), variations in electron density within the irradiated area, as is the case of patients who undergo reconstruction mammary processes and use tissue expanders, may influence the dose distribution in the treatment and may produce heterogeneities which are not measured by changing its actual distribution into healthy tissues or in the target volume to be irradiated. Through the calculation of the algorithms' dose distribution of the XiO® planning system (Fast Fourier Transform, Convolution, Superposition, Fast Superposition e Clarkson), when using correction of heterogeneity between tissues of different densities, there was obtained a percentage ratio of dose increase in the structures of interest, and of the amount of absorbed dose by healthy organs adjacent to the target volume. (author)

  3. Data storage on Russian pesticide producers exposed to dioxin. Sex ratios of third generation of Russian cohort

    Energy Technology Data Exchange (ETDEWEB)

    Amirova, Z.; Kruglov, E. [Environmental Research and Protection Center, Ufa (Russian Federation); Dardynskaia, I. [Univ. of Illinois, School of Public Health, Chicago (United States)

    2004-09-15

    A cohort of Russian workers who produced 2,4,5-T and 2,4,5-TrCP at a chemical factory in Ufa was brought to light in the papers of A. Schecter, J. Ryan and O. Papke. Dioxin exposure was experimentally confirmed by PCDD/Fs determination in blood samples first for a small group of workers and their children. This study permitted to connect the information of medical institutions about chloracne from which a group of young 2,4,5-T workers suffered in 1965-67 with exposure to dioxin. This report presents the results of the detailed study of the third generation of the Russian cohort (247 workers, 314 children and 260 grandchildren). We also present the data on the sex ratio of the second generation for the initial group enlarged by 25% as compared with the group of workers analyzed by J. Ryan et al. (198 workers and 227 children). Besides, as skewed sex ratio had earlier been stated only for paternal descendants, genealogical branches of the cohort representatives were studied.

  4. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  5. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  6. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  7. Single-dose and multiple-dose pharmacokinetics and dose proportionality of intravenous and intramuscular HPβCD-diclofenac (Dyloject) compared with other diclofenac formulations.

    Science.gov (United States)

    Mermelstein, Fred; Hamilton, Douglas A; Wright, Curtis; Lacouture, Peter G; Ramaiya, Atulkumar; Carr, Daniel B

    2013-10-01

    To evaluate single- and repeated-dose pharmacokinetics (PK) and dose proportionality of hydroxypropyl-β-cyclodextrin (HPβCD)-diclofenac compared with Voltarol after intravenous (IV) and intramuscular (IM) administration. Study 1: Single-dose randomized four-way crossover study. Study 2: Multiple-dose randomized three-way crossover study. Clinical research center. Healthy adult volunteers. Study 1: Subjects received HPβCD-diclofenac and Voltarol, IV and IM, with a 5-day washout between treatment periods. Study 2: Subjects received two doses of IV HPβCD-diclofenac and oral Cataflam once every 6 hours for four doses with a 48-hour washout period between treatment periods. Study 1: IV HPβCD-diclofenac had a higher peak plasma concentration (Cmax ) and earlier time to reach maximum plasma concentration (Tmax ), but equivalent plasma exposure (area under the curve from time zero to t [AUC0-t ]) to IV Voltarol. The geometric mean ratio of HPβCD-diclofenac (IV) to Voltarol (IV) for AUC0-t was 106.27%. The geometric mean ratio of HPβCD-diclofenac (IM) to Voltarol (IM) for AUC0-t was 110.91%. The geometric mean ratio of HPβCD-diclofenac (IV) to HPβCD-diclofenac (IM) for AUC0-t was 101.25%. The geometric mean ratio of HPβCD-diclofenac (IM) to Voltarol (IV) for AUC0-t was 104.96%. Study 2: Cmax for diclofenac was 2904 and 6031 ng/ml after the first IV dose of 18.75 and 37.5 mg HPβCD-diclofenac, respectively, and was 3090 and 5617 ng/ml after the fourth dose, indicating no accumulation. Plasma exposures to 18.75 mg (866 ng·hour/ml) and 37.5 mg (1843 ng·hour/ml) IV HPβCD-diclofenac bracketed that of oral Cataflam 50 mg (1473 ng·hour/ml). Study 1: Bioavailability in terms of AUC after IV administration was equivalent for HPβCD-diclofenac compared with Voltarol and after IM administration of HPβCD-diclofenac and Voltarol. Bioavailability in terms of AUC after IM administration of HPβCD-diclofenac was equivalent to IV administration of HP

  8. Assessment of the efficacy of a novel tailored vitamin K dosing regimen in lowering the International Normalised Ratio in over-anticoagulated patients: a randomised clinical trial.

    Science.gov (United States)

    Kampouraki, Emmanouela; Avery, Peter J; Wynne, Hilary; Biss, Tina; Hanley, John; Talks, Kate; Kamali, Farhad

    2017-09-01

    Current guidelines advocate using fixed-doses of oral vitamin K to reverse excessive anticoagulation in warfarinised patients who are either asymptomatic or have minor bleeds. Over-anticoagulated patients present with a wide range of International Normalised Ratio (INR) values and response to fixed doses of vitamin K varies. Consequently a significant proportion of patients remain outside their target INR after vitamin K administration, making them prone to either haemorrhage or thromboembolism. We compared the performance of a novel tailored vitamin K dosing regimen to that of a fixed-dose regimen with the primary measure being the proportion of over-anticoagulated patients returning to their target INR within 24 h. One hundred and eighty-one patients with an index INR > 6·0 (asymptomatic or with minor bleeding) were randomly allocated to receive oral administration of either a tailored dose (based upon index INR and body surface area) or a fixed-dose (1 or 2 mg) of vitamin K. A greater proportion of patients treated with the tailored dose returned to within target INR range compared to the fixed-dose regimen (68·9% vs. 52·8%; P = 0·026), whilst a smaller proportion of patients remained above target INR range (12·2% vs. 34·0%; P vitamin K dosing is more accurate than fixed-dose regimen in lowering INR to within target range in excessively anticoagulated patients. © 2017 John Wiley & Sons Ltd.

  9. [Clinical applications of dosing algorithm in the predication of warfarin maintenance dose].

    Science.gov (United States)

    Huang, Sheng-wen; Xiang, Dao-kang; An, Bang-quan; Li, Gui-fang; Huang, Ling; Wu, Hai-li

    2011-12-27

    To evaluate the feasibility of clinical application for genetic based dosing algorithm in the predication of warfarin maintenance dose in Chinese population. The clinical data were collected and blood samples harvested from a total of 126 patients undergoing heart valve replacement. The genotypes of VKORC1 and CYP2C9 were determined by melting curve analysis after PCR. They were divided randomly into the study and control groups. In the study group, the first three doses of warfarin were prescribed according to the predicted warfarin maintenance dose while warfarin was initiated at 2.5 mg/d in the control group. The warfarin doses were adjusted according to the measured international normalized ratio (INR) values. And all subjects were followed for 50 days after an initiation of warfarin therapy. At the end of a 50-day follow-up period, the proportions of the patients on a stable dose were 82.4% (42/51) and 62.5% (30/48) for the study and control groups respectively. The mean durations of reaching a stable dose of warfarin were (27.5 ± 1.8) and (34.7 ± 1.8) days and the median durations were (24.0 ± 1.7) and (33.0 ± 4.5) days in the study and control groups respectively. Significant differences existed in the durations of reaching a stable dose between the two groups (P = 0.012). Compared with the control group, the hazard ratio (HR) for the duration of reaching a stable dose was 1.786 in the study group (95%CI 1.088 - 2.875, P = 0.026). The predicted dosing algorithm incorporating genetic and non-genetic factors may shorten the duration of achieving efficiently a stable dose of warfarin. And the present study validates the feasibility of its clinical application.

  10. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  11. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-01-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the 10 B(n,α) 7 Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the 'B(n,a)'Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the 10 B(n,α) 7 Li reaction. To distinguish these differences from true RBEs we have used the term open-quotes compound biological effectivenessclose quotes (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a open-quotes boron localization factorclose quotes, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq)

  12. Evaluation of methods to produce an image library for automatic patient model localization for dose mapping during fluoroscopically guided procedures

    Science.gov (United States)

    Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.

    2017-03-01

    The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.

  13. Clarifying the Role of Reactive Oxygen Species and Reported Effects of Low-Dose Ionizing Radiation on Cells - Clarifying the Role of Reactive Oxygen Species in Producing the Reported Effects of Low-Dose Ionizing Radiation on Cells

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Neil J. [Centre for Research In Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    Chronic low doses of ionizing radiation (IR) to cells, such as those that occur in contaminated environments, are widely reported to produce a variety of effects, from adverse effects to no effects to positive effects. In addition, bystander effects have been reported in some studies. For only relatively few of these effects have mechanistic explanations been reported but in many of those for which they have, reactive oxygen species (ROS) and/or the anti-oxidants that help to control their effects, have often been suggested to have a role. In general, it is assumed that either radiolysis of water or stress due to IR cause an increase in ROS and/or anti-oxidant activity, and hence the observed effects. The role of ROS in producing the effects reported at chronic low doses of radiation has infrequently been tested at either a theoretical or experimental level. Here we use a dynamic model of anti-oxidant capacity in cells to test the theoretical underpinnings of the ROS hypothesis together with genomic and proteomic experiments using Arabidopsis thaliana to test the molecular effects of IR in cells. The published model we have constructed for testing the interaction of IR and anti-oxidant systems (Smith et al, 2012) first calculates the amount of ROS produced by IR. Overall, at the dose rates that occur in contaminated environments the amount of ROS produced by IR is extremely small, certainly much smaller than is routinely produced in a cell during many metabolic processes. ROS from respiration leak out of mitochondria at significant rates and in plant cells ROS also leak out of photo-synthesizing chloroplasts. Although there is a variety of anti-oxidants in many cells, the nexus of their capacity is glutathione (GSH) which ultimately derives its reducing power from NADPH. We thus modeled the anti-oxidative capacity of a cell from the activity GSH and used predicted concentrations of ROS from IR to calculate the oxidative stress that they would cause via the

  14. Comparison of the bronchodilatation produced by inhalation of ipratropium bromide and salbutamol sequentially and in fixed dose combination in stable bronchial asthma patients

    Directory of Open Access Journals (Sweden)

    Mohan A

    2006-01-01

    Full Text Available Objectives : The combination of a 43-2 agonist and an anticholinergic agent is of-ten used to manage bronchial asthma. However, it is unclear whether these drugs should be given separately in sequence or in a fixed dose combination for maximum effect. Methods : 27 patients with stable bronchial asthma were given the above two drugs in two separate sessions one week apart. In one session they were given the above two drugs as a fixed dose combination and in the other session, they were given se-quentially with salbutamol following ipratropium after 30 minutes. Spirometry was performed at baseline and 15, 30 and 60 minutes after inhaling the second drug. Results : Both groups showed significant improvement in forced vital capacity (FVC, forced expiratory time in one second (FEV 1 , peak expiratory flow rate (PEFR and forced expiratory flow (FEF 25-75 from baseline upto one hour. FVC increased initially and then stabilized; however, the increase was more sustained in the group getting combination treatment. This group also showed a higher rise in FEV 1 (p=0.02. Both FEV 1 and FEF 25-75 decreased after 30 minutes in the group that received sequential therapy. PEFR increased continuously till 60 minutes in both groups and there was no significant difference between them (p=0.98. Interpretation and Conclusion: Both methods of drug dosing produce equivalent bronchodilation. Fixed dose combinations produced a more sustained rise in FVC and higher increase in FEV 1 . Hence fixed dose combinations are more effective short-term bronchodilators and give an added advantage of reducing the number of inhalers required, thus improv-ing compliance.

  15. Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron

    International Nuclear Information System (INIS)

    Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi

    1990-01-01

    The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)

  16. Alpha-particle doses to human organs and tissues from internally-deposited 226Ra and 228Ra

    International Nuclear Information System (INIS)

    Keane, A.T.; Schlenker, R.A.

    1981-01-01

    Estimation of radiation doses to the soft tissues from internally-deposited 226 Ra and 228 Ra is relevant to an investigation of soft-tissue malignancies in radium-exposed persons being conducted at the Center for Human Radiobiology. Alpha-particle doses in a 50-year period following a single injection of 226 Ra or 228 Ra are presented for 31 soft tissues and organs of the adult human. The dose estimates were derived from the ICRP alkaline earth model fitted to data on retention of 226 Ra in soft tissues and bone, combined with reported ratios of 226 Ra to Ca in soft tissue and bone at natural levels and the distribution of Ca in the tissues of Reference Man (ICRP23). The median of the 31 organ and tissue doses from the α-particles of 226 Ra itself is 0.08 rad per injected μCi. An additional average dose of 0.01 rad per μCi 226 Ra daughter products produced in soft tissue or transferred from bone to soft tissue. Soft-tissue doses from α-particles of the 228 Ra decay series are about six times those from 226 Ra α-particles for equal injected activities of 228 Ra and 226 Ra, with the assumption that 228 Ra daughter products do not transfer from the organ in which they are produced. The 50-year dose to the red marrow of bone from α-particles originating in bone is 0.55 rad per μCi 226 Ra injected and 1.0 rad per μCi 228 Ra injected. For ingestion by dial painters of luminous compound containg 226 Ra or 228 Ra with a daughter-to-parent activity ratio of 0.5, the dose to the mucosal alyer of the lower large intestine from α-particles originating in the gut contents is about 0.1 rad per μCi systemic intake of 226 Ra or 228 Ra

  17. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  18. The comparison of microdose flare-up and multiple dose antagonist protocols based on hCG day estradiol (E2), progesterone (P) and P/E2 ratio among poor responder patients in ICSI-ET cycles.

    Science.gov (United States)

    Cicek, M N; Kahyaoglu, I; Kahyaoglu, S

    2015-02-01

    Elevated progesterone levels surpassing exact treshold values impede endometrial receptivity and decrease clinical pregnancy rates in different responder patients during assisted reproductive techniques. A progesterone (P): estradiol (E2) ratio of > 1 on the day of hCG administration has also been suggested to be a manifestation of low ovarian reserve. The clinical significance of P/E2 ratio on the day of hCG administration was investigated among poor responder patients. Based on the ESHRE Bologna consensus criteria related to poor ovarian response diagnosis, 48 poor responder patients were treated with the microdose flare-up regimen and 34 patients were treated with the multiple-dose GnRH antagonist protocol. All patients were destined to perform a ICSI-ET procedure at the end of the stimulation protocols. Progesterone levels and P/E2 ratios have been detected during controlled ovarian hyperstimulation. In the microdose flare-up group; the duration of stimulation, total gonadotropin dose used and hCG day E2 levels were significantly higher than the multiple dose antagonist group. However, the mean hCG day P/E2 rate in the microdose flare-up group was less than that in the multiple-dose antagonist group. The clinical pregnancy rates were non significantly higher in the multiple dose antagonist protocol group than in microdose flare-up group. Impaired endometrial receptivity caused by elevated P levels results with lower pregnancy rates. Regardless of the selected stimulation protocol, poor responder patients are not prone to exhibit high P and E2 secretion. Increased P/E2 ratio of > 1 on hCG day has limited value to predict cycle outcomes in poor responder patients because of ovarian follicle depletion.

  19. The effects of lower than conventional doses of oral nadolol on relative beta 1/beta 2-adrenoceptor blockade.

    Science.gov (United States)

    Wheeldon, N M; McDevitt, D G; Lipworth, B J

    1994-08-01

    1. The aim of the present study was to evaluate the relative beta 1/beta 2 antagonist selectivity of the beta-adrenoceptor blocker nadolol, in lower than conventional clinical doses. 2. Eight normal volunteers received single oral doses of either placebo (PL), nadolol 5 mg (N5), 20 mg (N20) or 80 mg (N80) in a single-blind, randomised crossover design. beta 1-adrenoceptor antagonism was assessed by attenuation of exercise tachycardia, and beta 2-adrenoceptor blockade by effects on salbutamol-induced chronotropic, hypokalaemic and finger tremor responses. The relative percentage attenuation of beta 2 and beta 1-mediated responses was calculated and expressed as beta 2:beta 1 selectivity ratios. 3. Nadolol produced dose-related reductions in exercise tachycardia in keeping with increasing beta 1-adrenoceptor blockade; mean % reduction (95% CI) compared with placebo: N5 10.7 (6.6 to 14.8), N20 21.4 (17.3 to 25.4), N80 38.9 (34.8 to 42.9). However, even the lowest dose of nadolol (5 mg) produced almost complete blunting of beta 2-mediated effects and significantly increase exercise hyperkalaemia; peak exercise hyperkalaemia (mmol l-1) (means and 95% CI): PL 4.88 (4.68 to 5.07), N5 5.36 (5.17 to 5.55), N20 5.48 (5.28 to 5.67), N80 5.42 (5.22 to 5.61). beta 2:beta 1 selectivity ratios significantly increased as the dose of nadolol was reduced. 4. These data suggest that whereas in the clinical dose range nadolol behaves as a non-selective beta-adrenoceptor antagonist, as the dose is reduced this drug demonstrates an increasing degree of selectivity for the beta 2-adrenoceptor.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  1. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel

    International Nuclear Information System (INIS)

    Liu Pengfei; Peng Jing; Li Jiuqiang; Wu Jilan

    2005-01-01

    The slight radiation-crosslinked CMC-Na as a substitute for hydrogel was prepared by gamma irradiation below gelation dose. The effects of various parameters such as absorbed dose, concentration of inorganic salts, pH, swelling temperature and swelling time on the swelling ratio in water were investigated in detail. This kind of slight crosslinked CMC-Na showed good water absorption below 60 deg. C, whereas, it became solution when heated up to 70 deg. C. Such CMC-Na gel is different from the true gel that is insoluble in boiled water; nevertheless, it can be used as hydrogel at room temperature and produced at low dose. Due to its low cost, it might be useful for its application in agriculture or others

  2. Ratio of late to early radionuclide uptake: a method for distinguishing osteoporosis from osteomalacia in animal models

    International Nuclear Information System (INIS)

    Wilson, J.S.; Genant, H.K.; Hattner, R.S.; Hoffer, P.B.

    1978-01-01

    The ratio of late to early uptake of several radionuclides was examined as a method for distinguishing states of abnormal bone metabolism. Nutritional osteoporosis (secondary hyperparathyroidism) and osteomalacia were produced in young rats and compared to a control group. The ratio of early (3 to 6 hrs) to late (4 to 6 days) uptake of barium-131, nitrate, indium-111 EDTMP, and lead-203 were studied, as was that of strontium-85 chloride, a calcium analogue. Ratios of late to early uptake were found to distinguish osteomalacia from osteoporosis in the models when strontium-85 or barium-131 were used. Barium-131 may be a clinically useful alternative to strontium-85 in the evaluation of metabolic bone disease due to its shorter half-life and lower radiation dose

  3. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  4. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Steciw, S.; Fallone, B. G.

    2015-01-01

    Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully

  5. Process and device for automatic control of air ratio in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rohr, F J; Holick, H

    1976-06-24

    The device concerns a process for the automatic control of the air ratio in combustion, by setting the fuel-air mixture for combustion depending on the air number lambda. The control of the air ratio of combustion engines is carried out using a zirconium dioxide measuring probe, which is situated in the exhaust gas. It is a disadvantage that this is only sensitive for an air number lambda of 1. In order to achieve control of the air ratio for air numbers greater or smaller than 1, according to the invention an auxiliary gas is mixed with the hot exhaust gas, or a component of the gas is withdrawn, so that a corrected exhaust gas flow is produced, whose air number is detected by the measuring sensor and controlled to a value of about 1. The auxiliary gas flow is chosen so that an air ratio differing from lambda equals 1 is formed when the air number of the corrected exhaust gas flow is regulated to a value of lambda equals 1 approximately. In order to keep the demand for auxiliary gas low, only part of the exhaust gas flow is used for the measurement. The exhaust gas part flow is kept constant while the auxiliary gas flow or the removed component of gas flow are altered. Hydrogen or oxygen are used as auxiliary gases, depending whether excess or reduced air is required. Instead of hydrogen, fuel or its combustion products can be used. According to the invention, the hydrogen or oxygen can be produced electrolytically. Dosing takes place by the current used for electrolysis.

  6. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  7. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  8. Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost–variable-payoff fixed-ratio cocaine self-administration in rats

    Science.gov (United States)

    Xi, Zheng-Xiong; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Heidbreder, Christian A.; Gardner, Eliot L.

    2013-01-01

    In rats, acute administration of SB-277011A, a highly selective dopamine (DA) D3 receptor antagonist, blocks cocaine-enhanced brain stimulation reward, cocaine-seeking behaviour and reinstatement of cocaine-seeking behaviour. Here, we investigated whether SB-277011A attenuates cocaine reinforcement as assessed by cocaine self-administration under variable-cost–variable-payoff fixed-ratio (FR) and progressive-ratio (PR) reinforcement schedules. Acute i.p. administration of SB-277011A (3–24 mg/kg) did not significantly alter cocaine (0.75 mg/kg/infusion) self-administration reinforced under FR1 (one lever press for one cocaine infusion) conditions. However, acute administration of SB-277011A (24 mg/kg, i.p.) progressively attenuated cocaine self-administration when: (a) the unit dose of self-administered cocaine was lowered from 0.75 to 0.125–0.5 mg/kg, and (b) the work demand for cocaine reinforcement was increased from FR1 to FR10. Under PR (increasing number of lever presses for each successive cocaine infusion) cocaine reinforcement, acute administration of SB-277011A (6–24 mg/kg i.p.) lowered the PR break point for cocaine self-administration in a dose-dependent manner. The reduction in the cocaine (0.25–1.0 mg/kg) dose–response break-point curve produced by 24 mg/kg SB-277011A is consistent with a reduction in cocaine’s reinforcing efficacy. When substituted for cocaine, SB-277011A alone did not sustain self-administration behaviour. In contrast with the mixed DA D2/D3 receptor antagonist haloperidol (1 mg/kg), SB-277011A (3, 12 or 24 mg/kg) failed to impede locomotor activity, failed to impair rearing behaviour, failed to produce catalepsy and failed to impair rotarod performance. These results show that SB-277011A significantly inhibits acute cocaine-induced reinforcement except at high cocaine doses and low work requirement for cocaine. If these results extrapolate to humans, SB-277011A or similar selective DA D3 receptor antagonists may be

  9. Calorimetric and ionometric dosimetry for cyclotron produced fast neutrons

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.C.; Laughlin, J.S.

    1977-01-01

    A portable tissue equivalent (TE) calorimeter, constructed of A-150 plastic, has been employed for the measurement of absorbed dose in two fast neutron fields produced by the 9 Be( 3 He,n) and 9 Be(d,n) interactions. A disc shaped ionization chamber has also been constructed of A-150 plastic and has a collecting volume geometrically equivalent to the calorimeter core (2 cm in diameter and 0.2 cm thick). A flow of methane compounded TE gas was maintained through the chamber at a rate of approximately 5 cc/min during the measurements. The ionization chamber was mounted within an irradiation enclosure which simulated the outer dimensions of the calorimeter housing. In this way, both detectors were placed at the same depth in TE plastic and each received approximately the same scattered radiation. The gamma-ray component of absorbed dose has been determined by the use of a miniature Geiger-Mueller dosimeter. It was found that the response sensitivity ratio for the TE ionization chamber in the two neutron fields relative to the 60 Co gamma-ray field, when normalized to the absorbed dose measured by the TE calorimeter, was approximately 1.07. Uncertainties in these calorimetric and ionometric methods for the measurements of the absorbed dose will be discussed along with measurements of the thermal defect for A-150 TE plastic

  10. effect of effect of blend ratio on blend ratio on characteristics

    African Journals Online (AJOL)

    User

    properties, cassava-soybean composite, wheat, bread, blend ratio ... dily growing population, an in eating and ... thermodynamic variables can produce an effect on .... these conditions. ..... Ragaee, S. et al., Pasting properties of starch and.

  11. Dose reduction using a dynamic, piecewise-linear attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  12. A model for dose estimation in therapy of liver with intraarterial microspheres

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.

    1996-01-01

    Therapy with intraarterial microspheres is a technique which involves incorporation of radioisotope-labelled microspheres into a capillary bed of tumour and normal tissue. Beta-emitters such as 90 Y and 166 Ho are used for this purpose. This technique provides tumour to normal tissue (TNT) dose ratios in the range of 2-10 and demonstrates significant clinical benefit, which could potentially be increased with more accurate dose predictions and delivery. However, dose calculations in this modality face the difficulties associated with nonuniform and inhomogeneous activity distribution. Most of the dose calculations used clinically do not account for the nonuniformity and assume uniform activity distribution. This paper is devoted to the development of a model which would allow more accurate prediction of dose distributions from microspheres. The model calculates dose assuming that microspheres are aggregated into randomly distributed clusters, and using precomputed dose kernels for the clusters. The dose kernel due to a microsphere cluster was found by numerical integration of a point source dose kernel over the volume of the cluster. It is shown that a random distribution of clusters produces an intercluster distance distribution which agrees well with the one measured by Pillai et al in liver. Dose volume histograms (DVHs) predicted by the model agree closely with the results of Roberson et al for normal tissue and tumour. Dose distributions for different concentrations and types of radioisotope, as well as for tumours of different radii, have been calculated to demonstrate the model's possible applications. (author)

  13. The patient dose survey and dose reduction in diagnostic radiology

    International Nuclear Information System (INIS)

    Dang Thanh Luong; Duong Van Vinh; Ha Ngoc Thach

    2000-01-01

    This paper presented the results of the patient dose survey in some hospitals in Hanoi from 1995 to 1997. The main investigated types of the X-ray examination were: Chest PA, LAT; Skull PA/AP, LAT; Lumbar spine AP, LAT; and Pelvis AP. The fluctuation of the entrance surface doses (ESD) was too large, even in the same type of X-ray examination and X-ray facility. It was found that the ratio of maximum and minimum ESD were ranged from 1.5 to 18. The mean values of ESD for chest and skull were higher than CEC recommended values, while the mean values of lumbar spine and pelvis were smaller than that of CEC recommended values. The result of dose intercomparison was also reported. Some methods of dose reduction were applied for improving the patient dose in X-ray departments such as a high kV technique, high sensitive screen-film combination. (author)

  14. Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20)†,.

    Science.gov (United States)

    Kaufhold, N; Schaller, S J; Stäuble, C G; Baumüller, E; Ulm, K; Blobner, M; Fink, H

    2016-02-01

    The aim of this dose-finding study was to evaluate the dose-response relationship of sugammadex and neostigmine to reverse a commonly observed level of incomplete recovery from rocuronium-induced neuromuscular block, that is, a train-of-four ratio (TOFR) ≥0.2. Ninety-nine anaesthetized patients received rocuronium 0.6 mg kg(-1) i.v. for tracheal intubation and, if necessary, incremental doses of 0.1-0.2 mg kg(-1). Neuromuscular monitoring was performed by calibrated electromyography. Once the TOFR recovered to 0.2, patients were randomized to receive sugammadex (0.25, 0.5, 0.75, 1.0, or 1.25 mg kg(-1) i.v.), neostigmine (10, 25, 40, 55, or 70 µg kg(-1) i.v.), or saline (n=9 per group). Primary and secondary end points were the doses necessary to restore neuromuscular function to a TOFR≥0.9 with an upper limit of 5 and 10 min for 95% of patients, respectively. Neostigmine was not able to fulfil the end points. Based on the best-fitting model, the sugammadex dose estimation for recovery to a TOFR≥0.9 for 95% of patients within 5 and 10 min was 0.49 and 0.26 mg kg(-1), respectively. A residual neuromuscular block of a TOFR of 0.2 cannot be reversed reliably with neostigmine within 10 min. In the conditions studied, substantially lower doses of sugammadex than the approved dose of 2.0 mg kg(-1) may be sufficient to reverse residual rocuronium-induced neuromuscular block at a recovery of TOFR≥0.2. NCT01006720. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Patient dose measurement and dose reduction in chest radiography

    Directory of Open Access Journals (Sweden)

    Milatović Aleksandra A.

    2014-01-01

    Full Text Available Investigations presented in this paper represent the first estimation of patient doses in chest radiography in Montenegro. In the initial stage of our study, we measured the entrance surface air kerma and kerma area product for chest radiography in five major health institutions in the country. A total of 214 patients were observed. We reported the mean value, minimum and third quartile values, as well as maximum values of surface air kerma and kerma area product of patient doses. In the second stage, the possibilities for dose reduction were investigated. Mean kerma area product values were 0.8 ± 0.5 Gycm2 for the posterior-anterior projection and 1.6 ± 0.9 Gycm2 for the lateral projection. The max/min ratio for the entrance surface air kerma was found to be 53 for the posterior-anterior projection and 88 for the lateral projection. Comparing the results obtained in Montenegro with results from other countries, we concluded that patient doses in our medical centres are significantly higher. Changes in exposure parameters and increased filtration contributed to a dose reduction of up to 36% for posterior-anterior chest examinations. The variability of the estimated dose values points to a significant space for dose reduction throughout the process of radiological practice optimisation.

  16. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  17. Six steps to a successful dose-reduction strategy

    International Nuclear Information System (INIS)

    Bennett, M.

    1995-01-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3) prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management

  18. Six steps to a successful dose-reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M. [Rolls-Royce & Associates Ltd., Derby (United Kingdom)

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3) prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.

  19. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  20. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Scott, A; Allahverdian, J [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80, 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT.

  1. SU-F-18C-12: On the Relationship of the Weighted Dose to the Surface Dose In Abdominal CT - Patient Size Dependency

    International Nuclear Information System (INIS)

    Zhou, Y; Scott, A; Allahverdian, J

    2014-01-01

    Purpose: It is possible to measure the patient surface dose non-invasively using radiolucent dosimeters. However, the patient size specific weighted dose remains unknown. We attempted to study the weighted dose to surface dose relationship as the patient size varies in abdominal CT. Methods: Seven abdomen phantoms (CIRS TE series) simulating patients from an infant to a large adult were used. Size specific doses were measured with a 100 mm CT chamber under axial scans using a Siemens Sensation 64 (mCT) and a GE 750 HD. The scanner settings were 120 kVp, 200 mAs with fully opened collimations. Additional kVps (80, 100, 140) were added depending on the phantom sizes. The ratios (r) of the weighted CT dose (Dw) to the surface dose (Ds) were related to the phantom size (L) defined as the diameter resulting the equivalent cross-sectional area. Results: The Dw versus Ds ratio (r) was fitted to a linear relationship: r = 1.083 − 0.007L (R square = 0.995), and r = 1.064 − 0.007L (R square = 0.953), for Siemens Sensation 64 and GE 750 HD, respectively. The relationship appears to be independent of the scanner specifics. Conclusion: The surface dose to the weighted dose ratio decreases linearly as the patient size increases. The result is independent of the scanner specifics. The result can be used to obtain in vivo CT dosimetry in abdominal CT

  2. Small dose multi-fractionation therapy, its radiobiological aspects and clinics

    International Nuclear Information System (INIS)

    Iwai, Hiroshi; Katagiri, Shiro; Furuhata, Akihiko; Fukusi, Itsuhisa

    1979-01-01

    Recent radiobiological data reveal that cell killings by small dose fractionation are almost due to nonrepairable damage with low oxygen enhancement ratio. Then, Small dose multi-fractionation method suggests a higher therapeutic-ratio than that in conventional high dose fractionated irradiation. Using these data of radiobiology, intermittent irradiations three times a day, four hours interval, with 60 - 80 rads for multi-fractionation, with high total doses of 7,200 - 7,500 rads/6.5 - 7 weeks mainly on bladder, laryngeal and esophageal tumour are applied. The results obtained are slightly improved. (author)

  3. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  4. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes.

    Science.gov (United States)

    Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier

    2018-01-01

    To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Damage to the surface of the small intestinal villus: an objective scale of assessment of the effects of single and fractionated radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Carr, K.E.; Watt, C. (Glasgow Univ. (UK). Dept. of Anatomy); Hamlet, R.; Nias, A.H.W. (Glasgow Inst. of Radiotherapeutics and Oncology (UK))

    1983-07-01

    Scanning electron microscopy has been used to compare damage to mouse small intestinal mucosa after irradiation with different doses of photons and neutrons. Various stages of the collapse of villous structure seen after radiation include the production of conical and rudimentary villi and a flattened mucosa. A scale is proposed to relate radiation to villous damage. Points from this scale are taken to produce comparative ratios for equivalent damage produced by different radiation conditions. RBE values are quoted for neutron, X and gamma radiation given as single or fractionated irradiation doses and as whole or partial body irradiation. The relationship between the stroma in intravillous pegs and that of the pericryptal compartment is explored.

  6. Damage to the surface of the small intestinal villus: an objective scale of assessment of the effects of single and fractionated radiation doses

    International Nuclear Information System (INIS)

    Carr, K.E.; Watt, C.

    1983-01-01

    Scanning electron microscopy has been used to compare damage to mouse small intestinal mucosa after irradiation with different doses of photons and neutrons. Various stages of the collapse of villous structure seen after radiation include the production of conical and rudimentary villi and a flattened mucosa. A scale is proposed to relate radiation to villous damage. Points from this scale are taken to produce comparative ratios for equivalent damage produced by different radiation conditions. RBE values are quoted for neutron, X and gamma radiation given as single or fractionated irradiation doses and as whole or partial body irradiation. The relationship between the stroma in intravillous pegs and that of the pericryptal compartment is explored. (author)

  7. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  8. Comparative study of eye dose and chest dose received during radiopharmaceutical production processes

    International Nuclear Information System (INIS)

    Chindarkar, A.S.; Chavan, S.V.; Sawant, D.K.; Sahoo, L.; Gopalakrishnan, R.K.; Sneha, C.; Sachdev, S.S.; Dey, A.C.

    2018-01-01

    Radiopharmaceutical laboratory, BRIT, Vashi produces different radiopharmaceuticals of 131 I, 153 Sm, 99 Mo/ 99m Tc and 177 Lu. Principle gamma energies of these isotopes vary from 103 to 740 KeV and their maximum beta energies vary from 384 to 1214 KeV. In the light of the revised eye lens dose limit recommended in IAEA Basic Safety Standard Interim Edition No. GSR Part 3 (IAEA-2011), the study of radiation dose for eye lens was carried out using CaSO 4 : Dy based Thermo luminescence dosimeter (TLD). This TLD was worn at center of the forehead to measure eye lens dose. This TLD dose was then compared with chest TLD dose to deduce any correlation between these TLD doses. These TLD doses were assessed on quarterly basis. Eight quarter data of these TLD doses were compared

  9. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  10. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  11. Analysis of occupational doses of workers on the dose registry of the Federal Radiation Protection Service in 2000 and 2001

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Balogun, F.A.

    2003-01-01

    In 2000 and 2001 about 279 and 221 radiation workers, respectively, were monitored by the Federal Radiation Protection Service, University of Ibadan, in Nigeria. The distribution of the occupational doses shows that the majority of workers received doses below 4 mSv in each of the two years. The radiation workers in the two years are classified into two occupational categories: medicine and industry. The mean annual effective doses, collective doses and the collective dose distribution ratios for workers in each category and the entire monitored workers were calculated. The mean annual effective doses were compared with their corresponding worldwide values quoted by UNSCEAR. In each of the two years, a few workers in industry received doses higher than 50 mSv. The collective dose distribution ratio was found to be about 0.49, which is very close to the highest value of 0.5 in the range of values considered by UNSCEAR as normal for this parameter. This suggests that extra measures have to be taken, particularly in industry, to ensure that the proportion of workers at risk does not go outside this normal range. The occupational doses were also modelled by both the log-normal and Weibull distributions. Both distributions were found to describe the data in almost the same way. (author)

  12. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    International Nuclear Information System (INIS)

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R 50% ); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D 2cm ) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ 2 test was used to examine the difference in parameters between groups. The PTV V 100% PD ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V 90% PD ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D 2cm , 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives

  13. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  14. Evaluation of internal and external doses from $^{11}C$ produced in the air in high energy proton accelerator tunnels

    CERN Document Server

    Endo, A; Kanda, Y; Oishi, T; Kondo, K

    2001-01-01

    Air has been irradiated with high energy protons at the 12 GeV proton synchrotron to obtain the following parameters essential for the internal dose evaluation from airborne /sup 11/C produced through nuclear spallation reactions: the abundance of gaseous and particulate /sup 11/C, chemical forms, and particle size distribution. It was found that more than 98% of /sup 11/C is present as gas and the rest is aerosol. The gaseous components were only /sup 11/CO and /sup 11/CO/sub 2/ and their proportions were approximately 80% and 20%, respectively. The particulate /sup 11/C was found to be sulphate and/or nitrate aerosols having a log-normal size distribution; the measurement using a diffusion battery showed a geometric mean radius of 0.035 mu m and a geometric standard deviation of 1.8 at a beam intensity of 6.8*10/sup 11/ proton.pulse /sup -1/ and an irradiation time of 9.6 min. By taking the chemical composition and particle size into account, effective doses both from internal and from external exposures pe...

  15. On the determination of the water energy dose for X-rays produced with high voltages up to 100 kV

    International Nuclear Information System (INIS)

    Engelke, B.A.; Grosswendt, B.

    1989-01-01

    For X-rays produced with high-tensions up to 100 kV the absorbed dose to water in water can be determined by measuring the exposure or air kerma and by means of the calibration factor of the dosemeter for these quantities and a conversion factor and a correction factor. For this procedure it is necessary that the exposure or air kerma measured and the correction factor are referred to the same diameter of the X-ray beam and the same measuring distance as used for the determination of the calibration factor. If they do not agree, an additional correction factor for the influence of this discrepancy in the measuring geometry is needed. The paper gives the values of this correction factor. Furthermore, it informs on new values of the backscattering factor in water and of the correction k a→w required for the determination of the absorbed dose to water in water. (orig.) [de

  16. Influence of dose rate on the induction of simple and complex chromosome exchanges by gamma rays.

    Science.gov (United States)

    Loucas, Bradford D; Eberle, Richard; Bailey, Susan M; Cornforth, Michael N

    2004-10-01

    Single-color painting of whole chromosomes, or protocols in which only a few chromosomes are distinctively painted, will always fail to detect a proportion of complex exchanges because they frequently produce pseudosimple painting patterns that are indistinguishable from those produced by bona fide simple exchanges. When 24-color multi-fluor FISH (mFISH) was employed for the purpose of distinguishing (truly) simple from pseudosimple exchanges, it was confirmed that the acute low-LET radiation dose-response relationship for simple exchanges lacked significant upward curvature. This result has been interpreted to indicate that the formation of simple exchanges requires only one chromosome locus be damaged (e.g. broken) by radiation to initiate an exchange-not two, as classical cytogenetic theory maintains. Because a one-lesion mechanism implies single-track action, it follows that the production of simple exchanges should not be influenced by changes in dose rate. To examine this prediction, we irradiated noncycling primary human fibroblasts with graded doses of (137)Cs gamma rays at an acute dose rate of 1.10 Gy/min and compared, using mFISH, the yield of simple exchanges to that observed after exposure to the same radiation delivered at a chronic dose rate of 0.08 cGy/min. The shape of the dose response was found to be quasi-linear for both dose rates, but, counter to providing support for a one-lesion mechanism, the yield of simple aberrations was greatly reduced by protracted exposure. Although chronic doses were delivered at rates low enough to produce damage exclusively by single-track action, this did not altogether eliminate the formation of complex aberrations, an analysis of which leads to the conclusion that a single track of low-LET radiation is capable of inducing complex exchanges requiring up to four proximate breaks for their formation. For acute exposures, the ratio of simple reciprocal translocations to simple dicentrics was near unity.

  17. An assessment of effective dose to staff in external beam radiotherapy

    International Nuclear Information System (INIS)

    Rawlings, D.J.; Nicholson, L.

    1997-01-01

    Radiation safety in external beam radiotherapy is governed by national legislation. Annual doses recorded by radiographers and others associated with external beam radiotherapy are typically much lower than the relevant dose limit. However, it is possible that larger doses might be received as a result of an accidental irradiation. In the event of a significant exposure resulting in a dose at or near a relevant dose limit, an accurate conversion has to be made from the dose meter reading to the limiting quantity. A method was devised to demonstrate ratios of effective dose to personal dose equivalent which might be anticipated in the even of an individual other than the patient being irradiated within a radiotherapy treatment room consisting of a linear accelerator. The variation of ratios obtained under different conditions is discussed. (author)

  18. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  19. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  20. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  1. Method of Poisson's ratio imaging within a material part

    Science.gov (United States)

    Roth, Don J. (Inventor)

    1996-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.

  2. Dose sculpting with generalized equivalent uniform dose

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-01-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD 0 and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD 0 was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD 0 was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n could lead to

  3. Paediatric urological investigations - dose comparison between urology-related and CT irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Mark; Florescu, Cosmin [Southern Health, Diagnostic Imaging, Melbourne (Australia); Johnstone, Lilian [Monash Children' s Hospital, Department of Paediatrics, Melbourne (Australia); Habteslassie, Daniel [Monash University, Department of Medicine, Melbourne (Australia); Ditchfield, Michael [Southern Health, Diagnostic Imaging, Melbourne (Australia); Monash Children' s Hospital, Diagnostic Imaging, Melbourne (Australia); Monash University, Department of Medicine, Melbourne (Australia)

    2013-07-15

    Urological investigation in children frequently involves high radiation doses; however, the issue of radiation for these investigations receives little attention compared with CT. To compare the radiation dose from paediatric urological investigations with CT, which is commonly regarded as the more major source of radiation exposure. We conducted a retrospective audit in a tertiary paediatric centre of the number and radiation dose of CT scans, micturating cystourethrography exams and urological nuclear medicine scans from 2006 to 2011. This was compared with radiation doses in the literature and an audit of the frequency of these studies in Australia. The tertiary centre audit demonstrated that the ratio of the frequency of urological to CT examinations was 0.8:1 in children younger than 17 years. The ratio of the radiation dose of urological to CT examinations was 0.7:1. The ratio in children younger than 5 years was 1.9:1. In Australia the frequency of urological procedures compared with CT was 0.4:1 in children younger than 17 years and 3.1:1 in those younger than 5 years. The ratio of radiation-related publications was 1:9 favouring CT. The incidence and radiation dose of paediatric urological studies is comparable to those of CT. Nevertheless the radiation dose of urological procedures receives considerably less attention in the literature. (orig.)

  4. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  5. An investigation into the effect of protective devices on the dose to radiosensitive organs in the head and neck

    International Nuclear Information System (INIS)

    Marshall, N.W.; Faulkner, K.; Clarke, P.

    1992-01-01

    A series of experiments were performed to determine the dose reduction afforded to radiosensitive organs in the head and neck by various protective devices. These included spectacles with plastic, standard glass, photochromic and lead-glass lenses, a thyroid collar and a lead-acrylic face mask. The measurements were performed using an anthropomorphic phantom loaded with lithium fluoride thermoluminescent dosemeters, in conditions realistic of clinical practice. Irradiations were performed using scattered radiation produced by a pelvic phantom, for X-ray beams generated at 80 kVp and 110 KVp. Also presented is the ratio of organ dose to dose to the bridge of the nose for thyroid, oesophagus, brain and sinuses, as measured for the case of no head or neck protection. (author)

  6. New values of some physical interaction coefficients for dose measurements

    International Nuclear Information System (INIS)

    Eisenlohr, H.H.; Zsdanszky, K.

    1986-01-01

    At its 8th meeting in 1985 Section I of the ''Comite Consultatif pour les Etalons de Mesure des Rayonnements lonisants'' (CCEMRI) to the ''Comite International des Poids et Mesures'' (CIPM) has put forward a recommendation on new values of some physical constants to be used for exposure and absorbed dose determinations (see Annex I). Implementation of this recommendation has some impact on the measurement of exposure, air kerma and absorbed dose, and may result in changes in calibration factors of dosimeters. This subject will be discussed in detail at the IAEA Workshop on Calibration Procedures in Dosimetry, to be held in Quito in October 1986. The following information may assist SSDLs in preparing themselves for the expected changes of calibration factors. The recommendation has been caused by new numerical values of some physical constants which have become available recently. The two most important changes concern: a) S m,a , the ratio of the mean restricted collision mass stopping powers of the chamber material to that of air for electrons crossing the cavity, and b) W air /e, the mean energy required to produce an ion pair in air per electron charge, for electrons emitted by radioactive sources or produced by photon absorption

  7. Dose Measurement and Calculation of Asymmetric X-Ray Fields from Therapeutic Linac

    International Nuclear Information System (INIS)

    El-Attar, A. L.; Abdel-Wanees, M. E.; Hashem, M. A.

    2011-01-01

    Linear accelerators with x-ray collimators that move independently are becoming increasingly common for treatment with asymmetric fields. In this paper we present a simplified approach to the calculation of dose for asymmetric fields. A method is described for calculating the beam profiles, depth doses and output factors for asymmetric fields of radiation produced by linear accelerators (siemens mevatron M2) with independent jaws. Values are calculated from data measured for symmetric fields. Symmetric field data are modified using opened off-axis factors (OAFs) and primary off-centre ratios (POCRs) which are obtained from in air measurements of the largest possible opened field. Beam hardening occurring within the flattening filter is taken into account using of attenuation coefficients for opened field and used to generate the opened POCR at different depths. A full investigation to compare measured and calculated profiles demonstrates favorable agreement.

  8. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men: (specific-locus mutations/dose-rate effect/doubling dose/risk estimation)

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Estimation of the genetic hazards of ionizing radiation in men is based largely on the frequency of transmitted specific-locus mutations induced in mouse spermatogonial stem cells at low radiation dose rates. The publication of new data on this subject has permitted a fresh review of all the information available. The data continue to show no discrepancy from the interpretation that, although mutation frequency decreases markedly as dose rate is decreased from 90 to 0.8 R/min (1 R = 2.6 X 10 -4 coulombs/kg) there seems to be no further change below 0.8 R/min over the range from that dose rate to 0.0007 R/min. Simple mathematical models are used to compute: (a) a maximum likelihood estimate of the induced mutation frequency at the low dose rates, and (b) a maximum likelihood estimate of the ratio of this to the mutation frequency at high dose rates in the range of 72 to 90 R/min. In the application of these results to the estimation of genetic hazards of radiation in man, the former value can be used to calculate a doubling dose - i.e., the dose of radiation that induces a mutation frequency equal to the spontaneous frequency. The doubling dose based on the low-dose-rate data compiled here is 110 R. The ratio of the mutation frequency at low dose rate to that at high dose rate is useful when it becomes necessary to extrapolate from experimental determinations, or from human data, at high dose rates to the expected risk at low dose rates. The ratio derived from the present analysis is 0.33

  9. Carbohydrate-to-insulin ratio is estimated from 300-400 divided by total daily insulin dose in type 1 diabetes patients who use the insulin pump.

    Science.gov (United States)

    Kuroda, Akio; Yasuda, Tetsuyuki; Takahara, Mitsuyoshi; Sakamoto, Fumie; Kasami, Ryuichi; Miyashita, Kazuyuki; Yoshida, Sumiko; Kondo, Eri; Aihara, Ken-ichi; Endo, Itsuro; Matsuoka, Taka-aki; Kaneto, Hideaki; Matsumoto, Toshio; Shimomura, Iichiro; Matsuhisa, Munehide

    2012-11-01

    To optimize insulin dose using insulin pump, basal and bolus insulin doses are widely calculated from total daily insulin dose (TDD). It is recommended that total daily basal insulin dose (TBD) is 50% of TDD and that the carbohydrate-to-insulin ratio (CIR) equals 500 divided by TDD. We recently reported that basal insulin requirement is approximately 30% of TDD. We therefore investigated CIR after adjustment of the proper basal insulin rate. Forty-five Japanese patients with type 1 diabetes were investigated during several weeks of hospitalization. The patients were served standard diabetes meals (25-30 kcal/kg of ideal body weight). Each meal omission was done to confirm basal insulin rate. Target blood glucose level was set at 100 and 150 mg/dL before and 2 h after each meal, respectively. After the basal insulin rate was fixed and target blood glucose levels were achieved, TBD, CIR, TDD, and their products were determined. Mean (±SD) blood glucose levels before and 2 h after meals were 121±47 and 150±61 mg/dL, respectively. TDD was 31.5±9.0 U, and TBD was 27.0±6.5% of TDD. CIR×TDD of breakfast was significantly lower than those of lunch and supper (288±73 vs. 408±92 and 387±83, respectively; Plunch and supper in type 1 diabetes patients. These results indicate that the insulin dose has been underestimated by using previously established calculations.

  10. Comparison between the chest dose and the neck dose of workers with protective aprons at PNC plutonium fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Momose, Takumaro; Shinohara, Kunihiko [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1996-06-01

    The dose equivalents recorded by a chest dosemeter under the protective apron and a neck dosemeter above the apron, worn by workers in the fabrication process of MOX fuels at PNC Tokai works, are compared. The ratio of the chest and neck dose equivalent is from 3 to 4. The effective dose equivalent calculated from a weighted combination of the dosemeter readings is about 2 times of the dose under protective aprons. (author)

  11. Comparison between the chest dose and the neck dose of workers with protective aprons at PNC plutonium fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Momose, Takumaro; Shinohara, Kunihiko

    1996-01-01

    The dose equivalents recorded by a chest dosemeter under the protective apron and a neck dosemeter above the apron, worn by workers in the fabrication process of MOX fuels at PNC Tokai works, are compared. The ratio of the chest and neck dose equivalent is from 3 to 4. The effective dose equivalent calculated from a weighted combination of the dosemeter readings is about 2 times of the dose under protective aprons. (author)

  12. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    Science.gov (United States)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  13. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model.

    Science.gov (United States)

    Jit, Mark; Brisson, Marc; Laprise, Jean-François; Choi, Yoon Hong

    2015-01-06

    To investigate the incremental cost effectiveness of two dose human papillomavirus vaccination and of additionally giving a third dose. Cost effectiveness study based on a transmission dynamic model of human papillomavirus vaccination. Two dose schedules for bivalent or quadrivalent human papillomavirus vaccines were assumed to provide 10, 20, or 30 years' vaccine type protection and cross protection or lifelong vaccine type protection without cross protection. Three dose schedules were assumed to give lifelong vaccine type and cross protection. United Kingdom. Males and females aged 12-74 years. No, two, or three doses of human papillomavirus vaccine given routinely to 12 year old girls, with an initial catch-up campaign to 18 years. Costs (from the healthcare provider's perspective), health related utilities, and incremental cost effectiveness ratios. Giving at least two doses of vaccine seems to be highly cost effective across the entire range of scenarios considered at the quadrivalent vaccine list price of £86.50 (€109.23; $136.00) per dose. If two doses give only 10 years' protection but adding a third dose extends this to lifetime protection, then the third dose also seems to be cost effective at £86.50 per dose (median incremental cost effectiveness ratio £17,000, interquartile range £11,700-£25,800). If two doses protect for more than 20 years, then the third dose will have to be priced substantially lower (median threshold price £31, interquartile range £28-£35) to be cost effective. Results are similar for a bivalent vaccine priced at £80.50 per dose and when the same scenarios are explored by parameterising a Canadian model (HPV-ADVISE) with economic data from the United Kingdom. Two dose human papillomavirus vaccine schedules are likely to be the most cost effective option provided protection lasts for at least 20 years. As the precise duration of two dose schedules may not be known for decades, cohorts given two doses should be closely

  14. The role of dose inhomogeneity in biological models of dose response

    International Nuclear Information System (INIS)

    Crawford-Brown, D.J.

    1989-01-01

    The paper focuses on the semi-empirical functions proposed by NAS (1980), ICRP (1977), in which terms for initiation and cell killing appear. The extent is not to produce a new model of carcinogenesis, or to reanalyse existing epidemiological data, but to explore whether an existing extrapolation function (proposed by the NAS) can be shown to have coherent theoretical support, while at the same time reproducing (however reasonably) the features of epidemiological data. Attention is restricted to irradiation by high LET radiations such as alpha particles, which may produce large inhomogeneities in both emission density and dose in cellular populations. Particular interest is directed towards epidemiological studies of uranium miners (Hornung and Meinhardt, 1987) and persons injected with 224 Ra (Spiess and Mays, 1970), although the results of the radium dial studies are included since they are discussed in the NAS report. Both populations are characterized by large uncertainties in dose estimation (mean organ dose) and by highly inhomogeneous patterns of irradiation within a single organ (Arnold and Jee, 1959; Diel, 1978; Singh, Bennettee and Wrenn, 1987; Rowland and Marshall, 1959). (author)

  15. On dose distribution comparison

    International Nuclear Information System (INIS)

    Jiang, Steve B; Sharp, Greg C; Neicu, Toni; Berbeco, Ross I; Flampouri, Stella; Bortfeld, Thomas

    2006-01-01

    In radiotherapy practice, one often needs to compare two dose distributions. Especially with the wide clinical implementation of intensity-modulated radiation therapy, software tools for quantitative dose (or fluence) distribution comparison are required for patient-specific quality assurance. Dose distribution comparison is not a trivial task since it has to be performed in both dose and spatial domains in order to be clinically relevant. Each of the existing comparison methods has its own strengths and weaknesses and there is room for improvement. In this work, we developed a general framework for comparing dose distributions. Using a new concept called maximum allowed dose difference (MADD), the comparison in both dose and spatial domains can be performed entirely in the dose domain. Formulae for calculating MADD values for various comparison methods, such as composite analysis and gamma index, have been derived. For convenience in clinical practice, a new measure called normalized dose difference (NDD) has also been proposed, which is the dose difference at a point scaled by the ratio of MADD to the predetermined dose acceptance tolerance. Unlike the simple dose difference test, NDD works in both low and high dose gradient regions because it considers both dose and spatial acceptance tolerances through MADD. The new method has been applied to a test case and a clinical example. It was found that the new method combines the merits of the existing methods (accurate, simple, clinically intuitive and insensitive to dose grid size) and can easily be implemented into any dose/intensity comparison tool

  16. Responses of Juvenile Black-tailed Prairie Dogs ( Cynomys ludovicianus ) to a Commercially Produced Oral Plague Vaccine Delivered at Two Doses.

    Science.gov (United States)

    Cárdenas-Canales, Elsa M; Wolfe, Lisa L; Tripp, Daniel W; Rocke, Tonie E; Abbott, Rachel C; Miller, Michael W

    2017-10-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs ( Cynomys ludovicianus ) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×10 7 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×10 7 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34-69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11-42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3-48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  17. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Campos, L.L.; Rosa, L.A.R. da.

    1988-07-01

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137 Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO 4 : Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author) [pt

  18. Glucorticoids/insulin ratio in irradiated animal blood

    International Nuclear Information System (INIS)

    Mizina, T.Yu.

    1990-01-01

    Similar changes in blood levels of immunoreactive insulin (IRI) and glucocorticoids (GC) were observed in rats, mice and dogs after X-irradiation with lethal doses. The use of the blood GC/IRI ratio indices in estimating the functional status of the exposed organism is discussed

  19. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  20. A modified method of calculating the lateral build-up ratio for small electron fields

    International Nuclear Information System (INIS)

    Tyner, E; McCavana, P; McClean, B

    2006-01-01

    This note outlines an improved method of calculating dose per monitor unit values for small electron fields using Khan's lateral build-up ratio (LBR). This modified method obtains the LBR directly from the ratio of measured, surface normalized, electron beam percentage depth dose curves. The LBR calculated using this modified method more accurately accounts for the change in lateral scatter with decreasing field size. The LBR is used along with Khan's dose per monitor unit formula to calculate dose per monitor unit values for a set of small fields. These calculated dose per monitor unit values are compared to measured values to within 3.5% for all circular fields and electron energies examined. The modified method was further tested using a small triangular field. A maximum difference of 4.8% was found. (note)

  1. Dose response of rat retinal microvessels to proton dose schedules used clinically: a pilot study

    International Nuclear Information System (INIS)

    Archambeau, John O.; Mao, Xiao W.; McMillan, Paul J.; Gouloumet, Vanessa L.; Oeinck, Steven C.; Grove, Roger; Yonemoto, Leslie T.; Slater, Jerry D.; Slater, James M.

    2000-01-01

    Purpose: This preclinical rat pilot study quantifies retinal microvessel, endothelial, and pericyte population changes produced by proton irradiation Methods and Materials: The left eyes of rats were irradiated with single doses of 8, 14, 20, and 28 Gy protons; right eyes, with two fractions. Animals were euthanized, and eyes were removed; elastase digests were prepared, and cell populations were counted in sample fields. Results were compared with unirradiated controls. Results: Progressive time- and dose-dependent endothelial cell loss occurred following all schedules. Cell loss was significantly different from control values (p 0 phase of the mitotic cycle. 28 Gy produced photoreceptor cell loss. Conclusion: The retinal digest is an elegant bioassay to quantify the microvessel population response. Single- and split-dose schedules appear to yield similar outcomes, in terms of endothelial cell density

  2. Skin dose variation: influence of energy

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This research aimed to quantitatively evaluate the differences in percentage dose of maximum for 6MV and 18MV x-ray beams within the first lcm of interactions. Thus provide quantitative information regarding the basal, dermal and subcutaneous dose differences achievable with these two types of high-energy x-ray beams. Percentage dose of maximum build up curves are measured for most clinical field sizes using 6MV and 18MV x-ray beams. Calculations are performed to produce quantitative results highlighting the percentage dose of maximum differences delivered to various depths within the skin and subcutaneous tissue region by these two beams Results have shown that basal cell layer doses are not significantly different for 6MV and 18Mv x-ray beams At depths beyond the surface and basal cell layer there is a measurable and significant difference in delivered dose. This variation increases to 20% of maximum and 22% of maximum at Imm and 1cm depths respectively. The percentage variations are larger for smaller field sizes where the photon in phantom component of the delivered dose is the most significant contributor to dose By producing graphs or tables of % dose differences in the build up region we can provide quantitative information to the oncologist for consideration (if skin and subcutaneous tissue doses are of importance) during the beam energy selection process for treatment. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  3. Dose reduction in evacuation proctography

    International Nuclear Information System (INIS)

    Hare, C.; Halligan, S.; Bartram, C.I.; Gupta, R.; Walker, A.E.; Renfrew, I.

    2001-01-01

    The goal of this study was to reduce the patient radiation dose from evacuation proctography. Ninety-eight consecutive adult patients referred for proctography to investigate difficult rectal evacuation were studied using a digital imaging system with either a standard digital program for barium examinations, a reduced dose digital program (both with and without additional copper filtration), or Video fluoroscopy. Dose-area products were recorded for each examination and the groups were compared. All four protocols produced technically acceptable examinations. The low-dose program with copper filtration (median dose 382 cGy cm 2 ) and Video fluoroscopy (median dose 705 cGy cm 2 ) were associated with significantly less dose than other groups (p < 0.0001). Patient dose during evacuation proctography can be reduced significantly without compromising the diagnostic quality of the examination. A digital program with added copper filtration conveyed the lowest dose. (orig.)

  4. Determination of the carbon content of domestic farm produces to estimate offsite C-14 ingestion dose

    International Nuclear Information System (INIS)

    Jung, Y. G.; Kim, M. J.; Lee, G. B.

    2003-01-01

    The carbon content of grains, leafy and root vegetables, and fruits which the Koreans usually eat were calculated to use in the estimation of offsite C-14 ingestion dose. With the data of food intake per day in the Report on 1998 national health and nutrition survey- dietary intake survey, 5 age-group integrate d intake of the 4 farm produce groups were extracted for food items and the amount. Intake percentage in each food group were taken as food weighing factor for the foods. Carbon content was calculated using protein, fat, and carbohydrate content of the foods, and multiplied by the corresponding food weighing factor to derive the content of the food groups. The calculated carbon content of grains, leafy and root vegetables, and fruits were 39.%, 4.2%, 8.0%, and 5.9% respectively. Grains and fruits were not much different from ODCM for carbon content, but vegetables were higher by 0.7%∼4.5%

  5. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  6. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  7. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  8. Gonadal dose in routine diagnostic examinations

    International Nuclear Information System (INIS)

    Weber, J.; Koen, J.A.; Akkermans, J.A.

    1974-01-01

    Gonadal doses caused by stray radiation produced during radiodiagnostic investigations were measured with thermoluminescent dosemeters in various hospitals in the Netherlands. Significantly different gonadal doses were measured depending upon the hospital where the investigations were carried out. The mean dose of an examination type in one country can only be determined with any accuracy if measurements in a large number of hospitals are performed

  9. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  10. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  11. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Taboaco, R.C.

    1982-02-01

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author) [pt

  13. Oxygen enhancement ratio (OER) to Neutron and Co-60 γ ray

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Ji, Young Hoon; Lee, Yong Min; Kim Kyeoung Jung

    1997-01-01

    Experiments in vitro, using human cell lines was carried out in order to establish whether or not there was a difference between oxygen enhancement ratio (OER) of neutron and Co-60 γ-ray and to determine OER dependence on radiation dose. MG-63 cell line and H-460 cell line were defined as the most sensitive cell line to neutron among our laboratory holding cell lines through preliminary study. Anoxia as was produced in glove box. The box was flushed for one hour with a mixture of 5 % CO 2 in ultrapure N 2 (total oxygen concentration < 10 ppm) and irradiated with neutron and Co-60 γ-ray. Oxic condition was same as anoxic condition except being irradiated in general air condition. The lower OER was observed in neutron than in Co-60 γ-ray. The dose dependence of OER was observed in neutron and Co-60 γ-ray all. But the dose dependence of the OER is somewhat larger for Co-60 γ-ray than for neutron. In the range of 1 to 8 Gy, the OER for photon and neutron range from 1.54 to 1.94 and 1.23 to 1.26 in MG-63 cell line. In case of H-460 the OER for Co-60 γ-ray and neutron range from 1.24 to 1.60 and 1.06 to 1.07 respectively. (author). 19 refs., 5 tabs., 5 figs

  14. Simulation of dose reduction in tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus

    2010-01-01

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  15. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  16. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  17. Eye lens dose correlations with personal dose equivalent and patient exposure in paediatric interventional cardiology performed with a fluoroscopic biplane system.

    Science.gov (United States)

    Alejo, L; Koren, C; Corredoira, E; Sánchez, F; Bayón, J; Serrada, A; Guibelalde, E

    2017-04-01

    To analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose. The eye lens dose was estimated in terms of H p (0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The H p (0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (P KA ) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions. The annual eye lens doses estimated on goggles were 4.13±0.93 and 4.98±1.28mSv. Over the aprons, the doses obtained were 10.83±0.99 and 11.97±1.44mSv. The correlation between the goggles and the apron dose was R 2 =0.89, with a ratio of 0.38. The correlation with the patient dose was R 2 =0.40, with a ratio of 1.79μSvGy -1 cm -2 . The dose per procedure obtained over the aprons was 102±16μSv, and on goggles 40±9μSv. The eye lens dose normalized to P KA was 2.21±0.58μSvGy -1 cm -2 . Measurements of personal dose equivalent over the paediatric cardiologist's apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.

    Science.gov (United States)

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.

  19. Factors affecting radiation D-values (D₁₀) of an Escherichia coli cocktail and Salmonella Typhimurium LT2 inoculated in fresh produce.

    Science.gov (United States)

    Moreira, Rosana G; Puerta-Gomez, Alex F; Kim, Jongsoon; Castell-Perez, M Elena

    2012-04-01

    This study evaluated the effect of produce type, resuspension medium, dose uniformity ratio (DUR), and sample preparation conditions (tissue exposure, MAP, anoxia) on the D₁₀ -value of an Escherichia coli cocktail (BAA-1427, BAA-1428, and BAA-1430) and Salmonella Typhimurium LT2 inoculated on the surfaces of tomato, cantaloupe, romaine lettuce, and baby spinach. Produce at room temperature were irradiated using a 1.35 MeV Van de Graaf electron beam accelerator at 0.2 to 0.9 kGy. The D₁₀-values for E. coli and Salmonella were 0.20 ± 0.01 kGy and 0.14 ± 0.01 kGy, respectively. Bacterial inactivation was not affected by produce type as long as the samples were irradiated in unsealed bags, the bacteria were suspended in broth, and the sample tissue was exposed. Sample location in front of the e-beam source during exposure is crucial. A 20% increase in DUR yielded a 53% change in the D₁₀- values. Variations in sample preparation, microbiological methods and irradiation set-up, result in variable D₁₀-values for different microorganisms on fresh produce. Most irradiation studies disregard the effect of sample handling and processing parameters on the determination of the D₁₀-value of different microorganisms in fresh and fresh-cut produce. This study shows the importance of exposure of sample, resuspension medium, available oxygen, and dose uniformity ratio. D₁₀-values can differ by 35% to 53% based on these factors, leading to considerable under- or over-estimation of the irradiation treatment. Results from this study will help to lay firm groundwork for future studies on D₁₀-values determination for different pathogens on fruits and vegetables. © 2012 Institute of Food Technologists®

  20. Low-dose respiratory-gated PET/CT: based on 30 mA tube current

    International Nuclear Information System (INIS)

    Wu Ping; Li Sijin; Zhang Yanlan; Hao Xinzhong; Qin Zhixing; Yan Min; Cheng Pengliang; Wu Zhifang

    2013-01-01

    Objective: To establish a low-dose but image-comparable respiratory-gated PET/CT (RG PET/CT) protocol based on 30 mA tube current plus other improved scanning parameters, such as the tube current, the number of respiratory phase and length of breathing cycle. Methods: Twenty-six patients with 18 F-FDG-intaking lung nodules underwent one-bed standard-dose PET/CT (120 mA, 2 min/bed) and low dose RG PET/CT (30 mA, 6 respiratory phases, 1 min/phase). The radiation dose and image quality were analyzed subsequently with signal to noise ratio (SNR) for PET and the homogeneity, noise level for CT in the water phantom respectively. Otherwise the CT images were both visual evaluated by two experienced doctors. In addition, different respiratory cycle was simulated to observe its relation with radiation dose. Results: The effective dose of low-dose RG PET/CT was 4.88∼7.69 mSv [mean (5.68±0.83) mSv]. The PET SNR showed no significance between groups. The homogeneity of 30 mA is good (< 5 HU), although noise level was high, the visual character like lobulation, speculation of lung nodule was superior in some respiratory phases. The radiation dose was positively correlated with respiratory cycle. Conclusions: The performance of low-dose RG PET/CT was comparable to those of standard-dose PET/CT based on a protocol with 30 mA tube current, 6 respiratory phases and breathing state of eupnoea. It produced a much lower radiation exposure and the image quality was enough for clinical use such as delineation of tumor active target, characterization and staging of lung nodules, etc. (authors)

  1. Pharmacokinetics of sulfamethoxazole and trimethoprim in Pacific white shrimp, Litopenaeus vannamei, after oral administration of single-dose and multiple-dose.

    Science.gov (United States)

    Ma, Rongrong; Wang, Yuan; Zou, Xiong; Hu, Kun; Sun, Beibei; Fang, Wenhong; Fu, Guihong; Yang, Xianle

    2017-06-01

    The tissue distribution and depletion of sulfamethoxazole (SMZ) and trimethoprim (TMP) were studied in Pacific white shrimp, Litopenaeus vannamei, after single-dose and multiple-dose oral administration of SMZ-TMP (5:1) via medicated feed. In single-dose oral administration, shrimps were fed once at a dose of 100 mg/kg (drug weight/body weight). In multiple-dose oral administration, shrimps were fed three times a day for three consecutive days at a dose of 100mg/kg. The results showed the kinetic characteristic of SMZ was different from TMP in Pacific white shrimp. In the single-dose administration, the SMZ was widely distributed in the tissues, while TMP was highly concentrated in the hepatopancreas. The t 1/2z values of SMZ were larger and persist longer than TMP in Pacific white shrimp. In the multiple-dose administration, SMZ accumulated well in the tissues, and reached steady state level after successive administrations, while TMP did not. TMP concentration even appeared the downward trend with the increase of drug times. Compared with the single dose, the t 1/2z values of SMZ in hepatopancreas (8.22-11.33h) and muscle (6.53-10.92h) of Pacific white shrimps rose, but the haemolymph dropped (13.76-11.03) in the multiple-dose oral administration. Meanwhile, the corresponding values of TMP also rose in hepatopancreas (4.53-9.65h) and muscle (2.12-2.71h), and declined in haemolymph (7.38-5.25h) following single-dose and multiple-dose oral administration in Pacific white shrimps. In addition, it is worth mentioning that the ratios of SMZ and TMP were unusually larger than the general aim ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke

    International Nuclear Information System (INIS)

    Othman, Ahmed E.; Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikobashman, Omid; Brockmann, Marc A.; Wiesmann, Martin; Yang, Zepa; Kim, Changwon; Kim, Jong Hyo

    2015-01-01

    To examine the influence of radiation dose reduction on image quality and sensitivity of Volume Perfusion CT (VPCT) maps regarding the detection of ischemic brain lesions. VPCT data of 20 patients with suspected ischemic stroke acquired at 80 kV and 180 mAs were included. Using realistic reduced-dose simulation, low-dose VPCT datasets with 144 mAs, 108 mAs, 72 mAs and 36 mAs (80 %, 60 %, 40 % and 20 % of the original levels) were generated, resulting in a total of 100 datasets. Perfusion maps were created and signal-to-noise-ratio (SNR) measurements were performed. Qualitative analyses were conducted by two blinded readers, who also assessed the presence/absence of ischemic lesions and scored CBV and CBF maps using a modified ASPECTS-score. SNR of all low-dose datasets were significantly lower than those of the original datasets (p <.05). All datasets down to 72 mAs (40 %) yielded sufficient image quality and high sensitivity with excellent inter-observer-agreements, whereas 36 mAs datasets (20 %) yielded poor image quality in 15 % of the cases with lower sensitivity and inter-observer-agreements. Low-dose VPCT using decreased tube currents down to 72 mAs (40 % of original radiation dose) produces sufficient perfusion maps for the detection of ischemic brain lesions. (orig.)

  3. Radiographic film: surface dose extrapolation techniques

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW; Currie, M.

    2004-01-01

    Full text: Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate 2 dimensional map of surface dose if required. Results have shown that surface % dose can be estimated within ±3% of parallel plate ionisation chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10cm, 20cmand 30cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. Corresponding parallel plate ionisation chamber measurement are 16%, 27% and 37% respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  4. Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Perry B; Bahadori, Amir A [Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Eckerman, Keith F [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Lee, Choonsik [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892 (United States); Bolch, Wesley E, E-mail: wbolch@ufl.edu [Nuclear and Radiological/Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R{sup 2} = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  5. Isotope ratio mass spectrometry (IRMS) versus laser-assisted ratio analyzer (LARA): a comparative study using two doses of.

    Science.gov (United States)

    Savarino, V; Landi, F; Dulbecco, P; Ricci, C; Tessieri, L; Biagini, R; Gatta, L; Miglioli, M; Celle, G; Vaira, D

    2000-11-01

    This study was carried out to compare the measurements and the diagnostic accuracy of the traditional expensive IRMS and the new economical LARA system using two doses of [13C]urea + two different test meals in patients undergoing upper gastrointestinal endoscopy, both before and after anti-Helicobacter treatment. A total of 354 dyspeptic patients underwent endoscopy with gastric biopsies to diagnose H. pylori infection by CLO-test and histology. No patients had taken antibiotics, bismuth, or antisecretory drugs in the 4 weeks before testing. After overnight fasting, breath samples were collected simultaneously in both plastic and glass tubes at baseline and at 30 and 60 min after urea ingestion. In 237 patients 100 mg [13C]urea + Ensure and in 117 patients 75 mg [13C]urea + citric acid were given. The test was also performed with the two urea dosages and meals in 67 and 64 infected patients, respectively, four weeks after anti-Helicobacter therapy. H. pylori was considered eradicated when both biopsy-based tests were negative. A delta value >5 per thousand was considered positive. Breath samples with insufficient CO2 levels at both 30 and 60 min were excluded from final analysis (N = 37 in pre- and N = 8 in posttreatment). There was excellent agreement between overall delta values of the two machines with both [13C]urea 100 mg + Ensure and [13C]urea 75 mg + citric acid. The 95% CI of the difference against the mean was wider with the former (mean -1.3, +6.3, and -9.4) than with the latter urea dosage and test meal (mean -1.2, +5.2 and -8.1). LARA and IRMS were equally effective (P = NS) in distinguishing infected from uninfected patients before therapy using both doses of [13C]urea and test meals (sensitivity ranged from 95% to 99% and specificity from 95% to 97%). This good performance was maintained in the posttreatment phase (sensitivity ranged from 90% to 100% and specificity from 90% to 97%), without any statistical difference among the various combinations

  6. DOZIM - evaluation dose code for nuclear accident

    International Nuclear Information System (INIS)

    Oprea, I.; Musat, D.; Ionita, I.

    2008-01-01

    During a nuclear accident an environmentally significant fission products release can happen. In that case it is not possible to determine precisely the air fission products concentration and, consequently, the estimated doses will be affected by certain errors. The stringent requirement to cope with a nuclear accident, even minor, imposes creation of a computation method for emergency dosimetric evaluations needed to compare the measurement data to certain reference levels, previously established. These comparisons will allow a qualified option regarding the necessary actions to diminish the accident effects. DOZIM code estimates the soil contamination and the irradiation doses produced either by radioactive plume or by soil contamination. Irradiations either on whole body or on certain organs, as well as internal contamination doses produced by isotope inhalation during radioactive plume crossing are taken into account. The calculus does not consider neither the internal contamination produced by contaminated food consumption, or that produced by radioactive deposits resuspension. The code is recommended for dose computation on the wind direction, at distances from 10 2 to 2 x 10 4 m. The DOZIM code was utilized for three different cases: - In air TRIGA-SSR fuel bundle destruction with different input data for fission products fractions released into the environment; - Chernobyl-like accident doses estimation; - Intervention areas determination for a hypothetical severe accident at Cernavoda Nuclear Power Plant. For the first case input data and results (for a 60 m emission height without iodine retention on active coal filters) are presented. To summarize, the DOZIM code conception allows the dose estimation for any nuclear accident. Fission products inventory, released fractions, emission conditions, atmospherical and geographical parameters are the input data. Dosimetric factors are included in the program. The program is in FORTRAN IV language and was run on

  7. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  8. Biomedical applications of pion-producing accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, L [Los Alamos Scientific Lab., NM (USA)

    1980-01-01

    It was proved by the Los Alamos Scientific Laboratory of the U. S. that applications of pi-mesons in the treatment of cancer could eliminate the problem of dose localization attendant upon conventional radiation therapy. A negative pi-meson, once it is produced from energy, behaves quantum mechanically like an electron and executes orbits around a nucleus. Because its mass is 300 times that of an electron, the orbits are smaller in that ratio. Hence, on achieving the innermost orbit, the pi-meson is captured by the nucleus and causes it to explode. The resultant nuclear shrapnel travel very short distances, about 1 mm on the average, and are very effective in rendering afflicted cells non-productive without causing any damages to healthy cells in the vicinity of the tumor. Given pion therapy, over 100 patients showed encouraging results. The laboratory, sponsored by the National Cancer Institute, is now developing a small facility for pion therapy. Tests on the critical components of the pion generator are expected to be conducted within the next 12 - 16 months.

  9. WE-FG-BRA-05: Potential Clinical Benefit of LINAC Flattening-Filter-Free (FFF) Mode - Improvement of Treatment Therapeutic Ratio

    International Nuclear Information System (INIS)

    Chang, S; Rivera, J; Tian, H; Price, A; Santos, C; Zhang, Y

    2016-01-01

    Purpose: Ultrahigh dose-rate radiation at >40Gy/s has demonstrated astonishing normal-tissue sparing and tumor control in recent preclinical naive and tumor-bearing rodent studies when compared to the same radiation dose at a conventional dose-rate. The working mechanism of this fascinating dose-rate effect is currently under investigation. The aims of this work include investigating 1) whether LINAC FFF mode radiation at approximately 1Gy/s also has an improved therapeutic ratio compared to the same radiation dose at the conventional dose-rate of 0.05Gy/s, and 2) the dose-rate effect’s potential working mechanism by studying the expression of the P53 gene, linked to tumor suppression and cell regulation after radiation damage. Methods: We used mouse model C57BL/6J, the same as that used in the ultrahigh dose-rate studies, and exposed them to total body irradiation (TBI) using the Elekta Versa accelerator 10MV photons. Mice (N=20) were given a total dose of 12Gy in both the high dose-rate group (n=10) using the FFF-mode and the conventional dose-rate group (n=10) using the conventional does rate mode. The FFF-mode treatment setup consisted of a 15cm×15cm field size setting at 53.2cm SSD while the conventional-mode set-up consisted of a 10cm×10cm field size at 100SSD. Post-radiation, animals were monitored daily for survival analysis and signs of moribundity requiring euthanasia. In addition, mouse spleens were harvested for P53 analysis at different time points. Results: For 12Gy TBI, the 1.3Gy/s FFF-mode high dose-rate produced a statistically significant (p=0.02) improvement in mouse survival compared to the 0.05Gy/s conventional dose-rate. An initial P53 study at the time of death time-point indicates that high dose-rate radiation induced a stronger expression of P53 than conventional dose-rate radiation. Conclusion: Our pilot study indicates that the FFF-mode high dose-rate radiation, which has been used largely to improve clinical throughput, may provide

  10. WE-FG-BRA-05: Potential Clinical Benefit of LINAC Flattening-Filter-Free (FFF) Mode - Improvement of Treatment Therapeutic Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S [Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC (United States); Department of Biomedical Engineering, University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, North Carolina (United States); Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC (United States); Rivera, J [Department of Biomedical Engineering, University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, North Carolina (United States); Tian, H [Xuzhou Medical College, Xuzhou, Jiangsu (China); Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC (United States); Price, A [Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC (United States); Santos, C [Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC (United States); Zhang, Y [Department of Radiation Oncology, UNC School of Medicine, Chapel Hill, NC (United States); Xuzhou Medical College, Xuzhou, Jiangsu (China); Lineberger Clinical Cancer Center, University of North Carolina, Chapel Hill, NC (United States)

    2016-06-15

    Purpose: Ultrahigh dose-rate radiation at >40Gy/s has demonstrated astonishing normal-tissue sparing and tumor control in recent preclinical naive and tumor-bearing rodent studies when compared to the same radiation dose at a conventional dose-rate. The working mechanism of this fascinating dose-rate effect is currently under investigation. The aims of this work include investigating 1) whether LINAC FFF mode radiation at approximately 1Gy/s also has an improved therapeutic ratio compared to the same radiation dose at the conventional dose-rate of 0.05Gy/s, and 2) the dose-rate effect’s potential working mechanism by studying the expression of the P53 gene, linked to tumor suppression and cell regulation after radiation damage. Methods: We used mouse model C57BL/6J, the same as that used in the ultrahigh dose-rate studies, and exposed them to total body irradiation (TBI) using the Elekta Versa accelerator 10MV photons. Mice (N=20) were given a total dose of 12Gy in both the high dose-rate group (n=10) using the FFF-mode and the conventional dose-rate group (n=10) using the conventional does rate mode. The FFF-mode treatment setup consisted of a 15cm×15cm field size setting at 53.2cm SSD while the conventional-mode set-up consisted of a 10cm×10cm field size at 100SSD. Post-radiation, animals were monitored daily for survival analysis and signs of moribundity requiring euthanasia. In addition, mouse spleens were harvested for P53 analysis at different time points. Results: For 12Gy TBI, the 1.3Gy/s FFF-mode high dose-rate produced a statistically significant (p=0.02) improvement in mouse survival compared to the 0.05Gy/s conventional dose-rate. An initial P53 study at the time of death time-point indicates that high dose-rate radiation induced a stronger expression of P53 than conventional dose-rate radiation. Conclusion: Our pilot study indicates that the FFF-mode high dose-rate radiation, which has been used largely to improve clinical throughput, may provide

  11. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  12. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  13. Determination of water, hydrogen, and carbon content of Korean main farm produces for the calculation of H-3 and C-14 ingestion dose

    International Nuclear Information System (INIS)

    Chung, Yang Geun; Lee, Gab Bock; Kim, Mi Ja; Eum, Hee Moon

    2003-01-01

    Water, hydrogen, and carbon content of grains, leafy vegetable, root vegetable, and fruits in Korea were determined to be used in the calculation of HTO, OBT, C-14 offsite ingestion dose. The individual items and the weighting factors of the 4 groups were based on the results of nationwide dietary intake survey in Korea. Items produced in an island or imported were excluded for the reason that they would not be affected directly by the nuclear power plants in the nation. On the same assumption, cooked and instant foods also were excluded. Items within 95% of the cumulative percentage of intake in each category were selected as the main farm produces, and then each intake percentage was taken as the weighting factor. Water, Hydrogen, and carbon content were determined using the data in Food Composition TABLE of Korea. H and C content were calculated from protein, fat, and carbohydrate content in the TABLE, and multiplied by each weighting factor to make the group-representative value. Grains, lefty and root vegetable, and fruits of Korea had 11.0%, 93.6%, 87.9%, 86.2% of water, 5.6%, 0.4%. 0.7%, 0.9% of hydrogen, and 39.6%, 2.5%, 5.2%, 6.0% of carbon, respectively. This is different from those in the ODCM from AECL data. Over ODCM, water content of grains and vegetable were 0.92-0.98 times ODCM, and fruits 1.03 times ODCM, which would result in the change of HTO ingestion dose as much. Hydrogen content of grains and vegetables are 1.02-2.33 times ODCM, but fruits 0.9 times ODCM. Carbon content of grains, leafy vegetables, and fruits are 0.7-0.98 times ODCM, but root vegetables 1.49 times ODCM. This would result in the change of ingestion dose as much

  14. Effect of administered radioactive dose level on image quality of brain perfusion imaging with 99mTc-HMPAO

    Directory of Open Access Journals (Sweden)

    I.Armeniakos

    2008-01-01

    Full Text Available Brain perfusion imaging by means of 99mTc-labeled hexamethyl propylene amine oxime (HMPAO is a well-established Nuclear Medicine diagnostic procedure. The administered dose range recommended by the supplying company and reported in bibliography is rather wide (approximately 9.5-27 mCi. This fact necessitates further quantitative analysis of the technique, so as to minimise patient absorbed dose without compromising the examination diagnostic value. In this study, a quantitative evaluation of the radiopharmaceutical performance for different values of administered dose (10, 15, 20 mCi was carried out. Subsequently, a generic image quality index was correlated with the administered dose, to produce an overall performance indicator. Through this cost-to-benefit type analysis, the necessity of administration of higher radioactive dose levels in order to perform the specific diagnostic procedure was examined.Materials & methods: The study was based on a sample of 78 patients (56 administered with 10 mCi, 10 with 15 mCi and 12 with 20 mCi. Some patients were classified as normal, while others presented various forms of pathology. Evaluation of image quality was based on contrast, noise and contrast-to-noise ratio indicators, denoted CI, NI and CNR respectively. Calculation of all indicators was based on wavelet transform. An overall performance indicator (denoted PI, produced by the ratio of CNR by administered dose, was also calculated.Results: Calculation of skewness parameter revealed the normality of CI, NI and non-normality of CNR, PI populations. Application of appropriate statistical tests (analysis of variance for normal and Kruskal-Wallis test for non-normal populations showed that there is a statistically significant difference in CI (p0.05 values. Application of Tukey test for normal populations CI, NI led to the conclusion that CI(10 mCi = CI(20 mCiNI(20 mCi, while NI(15 mCi can not be characterised. Finally, application of non

  15. Population dose assessment from radiodiagnosis in Portugal

    International Nuclear Information System (INIS)

    Serro, R.; Carreiro, J.V.; Galvao, J.P.; Reis, R.

    1992-01-01

    A survey of radiodiagnostic installations was carried out in Portugal covering 75 premises including public hospitals, local and regional public health centres. A total of 175 X ray tubes was surveyed using the new NEXT methodology covering data on premises, tube and operator, and projection. Average value of voltage, current-time product, HVL, ratio of beam area to film area and source to film distance for the eleven most frequent projections are reported as well as the skin entrance exposure and the doses to some organs. The weighted average dose values per projection and for the different organs allowed an estimate of the whole-body dose per caput. From the gonadal doses the genetic significant dose was also estimated

  16. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  17. Feasibility study on an integrated AEC-grid device for the optimization of image quality and exposure dose in mammography

    Science.gov (United States)

    Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang

    2017-10-01

    Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.

  18. Management of pediatric radiation dose using GE's Revolution digital radiography systems

    International Nuclear Information System (INIS)

    Jabri, K.N.; Uppaluri, R.; Xue Ping

    2004-01-01

    Digital flat-panel X-ray detectors offer excellent image quality and dose efficiency in addition to clinical productivity, connectivity, and adaptability to advanced clinical applications. GE's Revolution systems provide two modes of exposure control for setting the dose operating point, fixed time and automatic exposure control, the latter of which maintains high image signal-to-noise ratio for the given technique settings. In addition to enhancing detail contrast and compressing the dynamic range, postprocessing automatically determines the best window level and width for display, taking into account the dose at which the image was acquired. Several studies have examined the reduction in patient dose achievable with Revolution systems as compared to competing technologies, and results indicate significant dose savings with equivalent or superior image quality. For pediatric exams, pediatric default techniques provide for a lower patient dose as compared to adult techniques. Therefore, GE's Revolution systems can achieve a high image quality-to-dose ratio for pediatric imaging using the combined advantages of dose-efficient detection, advanced postprocessing, and independently adjustable pediatric techniques. (orig.)

  19. Single exposure simultaneous acquisition of digital and conventional radiographs utilizing unaltered dose

    International Nuclear Information System (INIS)

    Oestmann, J.W.; Greene, R.

    1988-01-01

    We describe the simultaneous acquisition of digital and conventional radiographs with a single standard radiographic exposure. A digitizable storage phosphor (ST Imaging Plate, Fuji) is sandwiched into a radiographic cassette (X-Omatic, Kodak) behind a conventional radiographic film-screen combination (Lanex medium screens, OC film, Kodak). The barium fluorohalide storage phosphor is digitized with a helium-neon laser scanner (TCR 201, Toshiba), and the conventional radiograph is processed in the standard fashion (M7B, Kodak). The storage phosphor is exposed by the 'wasted' radiation normally exiting the back of the film-screen combination (32% of the cassette entrance dose at 141 kVp). At a standard exposure (6.3 mAs), the conventional radiograph is of unaltered quality, and the digital image appears to have an adequate signal-to-noise ratio for chest studies despite the lower exposure dose. This technique produces twin images of identical spatial and temporal registration and avoids the added radiation exposure normally required to carry out comparative studies. (orig.)

  20. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    Directory of Open Access Journals (Sweden)

    Rafiza Abdul Razak

    2015-05-01

    Full Text Available This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA using LUSI (Sidoarjo mud and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.

  1. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    Science.gov (United States)

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  2. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  3. Radioisotopes produced by neutron irradiation of food

    International Nuclear Information System (INIS)

    Albright, S.; Seviour, R.

    2016-01-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of "2"4Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that "2"4Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. - Highlights: • We show that neutron interrogation of food can produce many radioisotopes. • We show a strong dependance between food and certain radioisotopes. • Some isotopes are shown to have an energy dependence. • Previous claims that 24Na is the main threat is shown to only apply in special cases.

  4. Deposition of 90Sr in bone and the relevant dose

    International Nuclear Information System (INIS)

    Kawamura, Hisao

    1976-01-01

    The deposition of fallout 90 Sr in bone and radiation dose from the nuclide in Japan is reviewed with special reference to (i) the intraskeletal distribution of 90 Sr and reference bone, (ii) bone models for predicting 90 Sr level and (iii) possible problems in applying dose rate factors to Japanese, especially to infants and adolescents. An evidence is presented for the assumption that the ratio of the 90 Sr concentration in a particular bone to that in vertebra will reach the ratio observed for stable strontium under the virtually constant intake of 90 Sr. The importance of surveying 90 Sr levels in different bones is stressed. Observed Ratios (bone/diet) found for Japanese are noticeably lower than those reported for Europeans and Americans. The recently presented model for the retention of alkaline earth elements in man by ICRP will be useful if only adults are concerned. Dose rate factors for 90 Sr in bone should be given as a function of age for the purpose of better estimation of dose commitments. The cumulative absorbed doses to bone tissues calculated with the Palmley-Mays model and with the Spiers model show remarkably higher levels in school children and young adults than the mean level. (auth.)

  5. Water-soluble quercetin modulates the choleresis and bile lipid ratio in rats.

    Science.gov (United States)

    Vovkun, Tatiana; Yanchuk, Petro; Shtanova, Lidiya; Veselskiy, Stanislav; Filimonova, Natalia; Shalamay, Anatoly; Vedmid, Volodymyr

    2018-01-01

    Water-soluble analogue of quercetin, corvitin is used in patients with myocardial infarction as blocker of 5-lipoxygenase. However, its effects on secretion, lipid content and physico-chemical properties of bile have not been understood yet. We investigated the effect of corvitin, applied in different doses, on the level of bile flow, the content of bile free and esterified cholesterol, phospholipids, triacylglycerols, and free fatty acids. In order to determine stability of the bile colloidal system, we examined the relationship between different lipid components. The rats were injected intraportally with a bolus of corvitin. At doses of 2.5, 5, and 10 mg/kg, the latter increased bile flow and concentration of total cholates, as well as free fatty acids. Corvitin (5 mg/kg) elevated phospholipids and cholesterol content, but at a dose of 10 mg/kg it increased the concentration of bile cholesterol esters and triacylglycerols. Corvitin applied at doses of 2.5 and 10 mg/kg increased total cholates/cholesterol ratio, but at a dose of 10 mg/kg, the drug reduced cholesterol / esterified cholesterol ratio. The results suggest that corvitin exerts choleretic effect and improves stability of bile colloidal system.

  6. Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats

    International Nuclear Information System (INIS)

    Zilversmit, D.B.; Hughes, L.B.

    1974-01-01

    Several methods for measuring cholesterol absorption in the rat have been compared. After administration of an oral dose of labeled cholesterol ( 14 C or 3 H) and an intravenous dose of colloidal labeled cholesterol ( 3 H or 14 C) the ratio of the two labels in plasma or whole blood 48 hr or more after dosing compared closely to the ratio of areas under the respective specific activity-time curves. The area ratio method is independent of a time lag between the appearance of oral and intravenous label in the bloodstream. Both measures of cholesterol absorption agree fairly well with a method based on measuring the unabsorbed dietary cholesterol in a pooled fecal sample. The plasma isotope ratio method gave more reproducible results than the fecal collection method when the measurement was repeated in the same animals 5 days after the first measurement. Cholesterol absorption was overestimated by the use of Tween 20-solubilized labeled cholesterol for the intravenous dose. The plasma disappearance curves of injected labeled colloidal cholesterol and cholesterol-labeled chylomicrons infused intravenously over a 3.5-h period in the same animal coincided within experimental error from the first day until 75 days after injection. The plasma isotope ratio method for cholesterol absorption gave the same results in rats practicing coprophagy as in those in which this practice was prevented. The addition of sulfaguanidine to the diet lowered cholesterol absorption as measured by the plasma isotope ratio to the same degree as that measured by the fecal collection method. (U.S.)

  7. Radiation doses during chest examinations using dose modulation techniques in multislice CT scanner

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Pradip, Joe; Dinakran, Paul M.; Srikanth, B.

    2010-01-01

    Objectives: To evaluate the radiation dose and image quality using a manual protocol and dose modulation techniques in a 6-slice CT scanner. Materials and Methods: Two hundred and twenty-one patients who underwent contrast-enhanced CT of the chest were included in the study. For the manual protocol settings, constant tube potential (kV) and tube current-time product (mAs) of 140 kV and 120 mAs, respectively, were used. The angular and z-axis dose modulation techniques utilized a constant tube potential of 140 kV; mAs values were automatically selected by the machine. Effective doses were calculated using dose-length product (DLP) values and the image quality was assessed using the signal-to-noise (SNR) ratio values. Mean effective doses using manual protocol for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 8.58 mSv, 8.54 mSv, and 9.07 mSv, respectively. Mean effective doses using z-axis dose modulation for patients of weights 40-60 kg, 61-80 kg, and 81 kg and above were 4.95 mSv, 6.87 mSv, and 10.24 mSv, respectively. The SNR at the region of the liver for patients of body weight of 40-60 kg was 5.1 H, 6.2 H, and 8.8 H for manual, angular, and z-axis dose modulation, respectively. Conclusion: Dose reduction of up to 15% was achieved using angular dose modulation and of up to 42% using z-axis dose modulation, with acceptable diagnostic image quality compared to the manual protocol. (author)

  8. CONDOS-II, Radiation Dose from Consumer Product Distribution Chain

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Description of problem or function: This code was developed under sponsorship of the Nuclear Regulatory Commission to serve as a tool for assessing radiation doses that may be associated with consumer products that contain radionuclides. The code calculates radiation dose equivalents resulting from user-supplied scenarios of exposures to radionuclides contained in or released from sources that contain radionuclides. Dose equivalents may be calculated to total body, skin surface, skeletal bone, testes, ovaries, liver, kidneys, lungs, and maximally exposed segments of the gastrointestinal tract from exposures via (1) direct, external irradiation by photons (including Bremsstrahlung) emitted from the source, (2) external irradiation by photons during immersion in air containing photon-emitting radionuclides that have escaped from the source, (3) internal exposures by all radiations emitted by inhaled radionuclides that have escaped from the source, and (4) internal exposures by all radiations emitted by ingested radionuclides that have escaped from the source. 2 - Method of solution: Organ dose equivalents are approximated in two ways, depending on the exposure type. For external exposures, energy specific organ-to-skin-surface dose conversion ratios are used to approximate dose equivalents to specific organs from doses calculated to a point on the skin surface. The organ-to-skin ratios are incorporated in organ- and nuclide-specific dose rate factors, which are used to approximate doses during immersion in contaminated air. For internal exposures, 50 year dose equivalents are calculated using organ- and nuclide-specific, 50 year dose conversion factors. Doses from direct, external exposures are calculated using the energy-specific dose conversion ratios, user supplied exposure conditions, and photon flux approximations for eleven source geometries. Available source geometries include: point, shielded and unshielded; line, shielded and unshielded; disk, shielded

  9. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices

    International Nuclear Information System (INIS)

    Pellmar, T.C.; Schauer, D.A.; Zeman, G.H.

    1990-01-01

    A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction

  11. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  12. A method for producing uniform dose distributions in the junction regions of large hinge angle electrol fields

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.

    1996-01-01

    The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)

  13. Dose properties of a laser accelerated electron beam and prospects for clinical application

    International Nuclear Information System (INIS)

    Kainz, K.K.; Hogstrom, K.R.; Antolak, J.A.; Almond, P.R.; Bloch, C.D.; Chiu, C.; Fomytskyi, M.; Raischel, F.; Downer, M.; Tajima, T.

    2004-01-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25x25 cm2 field. An energy window (ΔE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to ΔE. However, since the falloff of the depth-dose curve (R 10 -R 90 ) and the dose rate both increase with ΔE, a tradeoff between minimizing (R 10 -R 90 ) and maximizing dose rate is implied. If ΔE is constrained so that R 10 -R 90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min-1

  14. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  15. Producing metallurgic coke

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T.; Isida, K.; Vada, Y.

    1982-11-18

    A mixture of power producing coals with coal briquets of varying composition is proposed for coking in horizontal chamber furnaces. The briquets are produced from petroleum coke, coal fines or semicoke, which make up less than 27 percent of the mixture to be briquetted and coals with a standard coking output of volatile substances and coals with high maximal Gizeler fluidity. The ratio of these coals in the mixture is 0.6 to 2.1 or 18 to 32 percent, respectively. Noncaking or poorly caking coals are used as the power producing coals. The hardness of the obtained coke is DJ15-30 = 90.5 to 92.7 percent.

  16. Ionising energy treatment for fresh horticultural produce -mandarins and other produce, Trials 1 and 2, May-July 1987

    International Nuclear Information System (INIS)

    McLauchlan, R.L.; Brown, B.I.; Mitchell, G.E.; Aston, J.W.; Wood, A.F.; Isaacs, A.R.; Williams, S.M.; Nottingham, S.M.; Wilson, P.R.; Juffs, H.S.; Johnson, G.I.; Heather, N.W.; Giles, J.E.; Wills, P.A.

    1988-01-01

    Two trials are described on the effect of ionising energy treatment, or irradiation, on the quality, shelf-life and composition of fresh produce, mainly at doses consistent with disinfestation treatment for quarantine purposes. Trial 1, carried out in May 1987, deals with replicated treatments of Imperial mandarins and preliminary observation treatments on a range of other produce. Trial 2 deals with replicated treatments of Ellendale mandarins and preliminary observation treatments on other produce

  17. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  18. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  19. Does inverse planning applied to Iridium192 high dose rate prostate brachytherapy improve the optimization of the dose afforded by the Paris system?

    International Nuclear Information System (INIS)

    Nickers, Philippe; Lenaerts, Eric; Thissen, Benedicte; Deneufbourg, Jean-Marie

    2005-01-01

    Background and purpose: The purpose of the work is to analyse for 192 Ir prostate brachytherapy (BT) some of the different steps in optimizing the dose delivered to the CTV, urethra and rectum. Materials and methods: Between 07/1998 and 12/2001, 166 patients were treated with 192 Ir wires providing a low dose rate, according to the Paris system philosophy and with the 2D version of the treatment planning Isis R . 40-45 Gy were delivered after an external beam radiotherapy of 40 Gy. The maximum tolerable doses for BT were 25 Gy to the anterior third of the rectum on the whole length of the implant (R dose) and 52 Gy to the urethra on a 1 cm length (U max ). A U max /CTV dose ratio >1.3 represented a pejorative value as the planned dose of 40-45 Gy could not be achieved. On the other side a ratio ≤1.25 was considered optimal and the intermediate values satisfactory. A R/CTV dose ratio 192 Ir sources. Results: At the end of a learning curve reaching a plateau after the first 71 patients, 90% of the implants with 192 Ir wires were stated at least satisfactory for a total rate of 82% for the whole population. When the 3D dosimetry for SST was used, the initial values >1.25 decreased significantly with optimization required on CTV contours and additional constraints on urethra while the R/CTV ratio was maintained under 0.55. For initial U max /CTV >1.3 or >1.25 but ≤1.3 indeed, the mean respective values of 1.41±0.16 and 1.28±0.01 decreased to 1.28±0.24 and 1.17±0.09 (P<0.001), allowing to increase the total dose to the CTV by 4 Gy. Conclusions: The Paris system which assumes a homogeneous distribution of a minimum number of catheters inside the CTV allowed to anticipate a satisfactory dosimetry in 82% of cases. However, this precision rate could be improved until 95% with an optimization approach based on an inverse planning philosophy. These new 3D optimization methods, ideally based on good quality implants at first allow to deliver the highest doses with

  20. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  1. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  2. Effect of heterogeneity of human population in cell radiosensitivity on the extrapolation of dose-response relationships to low doses

    International Nuclear Information System (INIS)

    Filyushkin, I.V.; Bragin, Yu.N.; Khandogina, E.K.

    1989-01-01

    Presented are the results of an investigation of the dose-response relationship for the yield of chromosome aberrations in peripheral blood lymphocytes of persons with some hereditary diseases which represent the high risk group with respect to the increased incidence of malignant tumors and decreased life span. Despite substantially different absolute radiosensitivities of chromosomes, the variations of the alpha/beta ratio determining the extrapolation of experimental dose-response relationships to low doses did not prove to be too high, the mean deviation from the control being 15%. This points to the possible practical use of the dose-response relationships averaged over the human population as a whole

  3. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  4. Benchmark studies of induced radioactivity and remanent dose rates produced in LHC materials

    International Nuclear Information System (INIS)

    Brugger, M.; Mayer, S.; Roesler, S.; Ulrici, L.; Khater, H.; Prinz, A.; Vincke, H.

    2005-01-01

    Samples of materials that will be used for elements of the LHC machine as well as for shielding and construction components were irradiated in the stray radiation field of the CERN-EU high-energy Reference Field facility. The materials included various types of steel, copper, titanium, concrete and marble as well as light materials such as carbon composites and boron nitride. Emphasis was put on an accurate recording of the irradiation conditions, such as irradiation profile and intensity, and on a detailed determination of the elemental composition of the samples. After the irradiation, the specific activity induced in the samples as well as the remanent dose rate were measured at different cooling times ranging from about 20 minutes to two months. Furthermore, the irradiation experiment was simulated using the FLUKA Monte Carlo code and specific activities. In addition, dose rates were calculated. The latter was based on a new method simulating the production of various isotopes and the electromagnetic cascade induced by radioactive decay at a certain cooling time. In general, solid agreement was found, which engenders confidence in the predictive power of the applied codes and tools for the estimation of the radioactive nuclide inventory of the LHC machine as well as the calculation of remanent doses to personnel during interventions. (authors)

  5. Organ dose estimates for the Japanese atomic-bomb survivors

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1978-10-01

    Recent studies concerning radiation risks to man by the Committee on Biological Effects of Ionizing Radiation of the National Academy of Sciences-National Research Council and the United Nations Scientific Committee on the Effects of Atomic Radiation have emphasized the need for estimates of dose to organs of the Japanese atomic-bomb survivors. Shielding of internal organs by the body has been investigated for fission-weapon gamma rays and neutrons, and ratios of mean absorbed dose in a number of organs to survivors' T65D assignments of tissue kerma in air are provided for adults. Ratios of mean absorbed dose to tissue kerma in air are provided also for the thyroid and active bone marrow of juveniles. These organ dose estimates for juveniles are of interest in studies of radiation risks due to an elevated incidence of leukemia and thyroid cancer in survivors exposed as children compared to survivors exposed as adults

  6. The gonad dose produced by a 60Co irradiation of peripheral, interpleural, and retroperitoneal lymph node groups

    International Nuclear Information System (INIS)

    Hassenstein, E.; Nuesslin, F.; Medizinische Hochschule Hannover

    1976-01-01

    A telecobalt therapy of lymph node groups was simulated on the Alderson phantom and the gonad dose caused by each irradiation field was measured with LiF dosimeters. When the supradiaphragmatic and the para-aortal lymph nodes were irradiated, the ovary dose showed rates up to 20 per thousand of the dose maximum. The irradiation of the same zones brought about a testicle dose of less than 5 per thousand of the dose maximum, and only 1/20 of this rate was achieved when a lead plate of about four cm was used in order to protect the testicles. The results are discussed under the point of view of the genetic risk. (orig.) [de

  7. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  8. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  9. Neutron fluence produced in medical accelerators

    International Nuclear Information System (INIS)

    Castro, R.C.; Silva, A.X. da; Crispim, V.R.

    2004-01-01

    Radiotherapy with photon and electron beams still represents the most diffused technique to control and treat tumour diseases. To increase the treatment efficiency, accelerators of higher energy are used, the increase of electron and photon energy is joined with generation of undesired fast neutron that contaminated the therapeutic beam and give a non-negligible contribution to the patient dose. In this work we have simulated with the MCNP4B code the produced neutron spectra in the interaction between the beam and the head to the accelerator and estimating the equivalent dose for neutrons by x-ray dose for aims far from the targets. (author)

  10. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  11. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  12. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  13. Clinical and cardiovascular alterations produced by scorpion envenomation in dogs

    Directory of Open Access Journals (Sweden)

    F. F. Cordeiro

    2006-01-01

    Full Text Available Scorpionism is a common problem that occurs in tropical and subtropical countries and assumes great medical-sanitary importance due to its fatal effect on sensitive individuals, being able to lead children and aged people to death. The envenomation lethal potential is responsible for the serious cardiopulmonary alterations the scorpion toxin produces in its victims. The present research evaluated the effects of Tityus serrulatus venom on dogs, using two distinct doses: a dose that simulates natural envenomation (0.4 mg/total dose, and an experimental dose (0.25 mg/kg. General clinical signs were observed at different moments after envenomation, and specific data related to the cardiopulmonary system were evaluated by systemic arterial pressure measurement, CK-MB enzymatic activity dosage, and radiographic, electrocardiographic and echocardiographic examinations. Results demonstrated that the scorpion venom, in experimental doses, was able to cause acute and reversible cardiac injury in few days, and, in the dose that simulated natural accident, it produced clinical signs of light envenomation, such as local pain, hyperesthesia, sialorrhea, vomiting, diarrhea, sneeze and prostration.

  14. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    Science.gov (United States)

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups 80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (PAfrican ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (PAfrican ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  16. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  17. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  18. Intraoperative use of low-dose recombinant activated factor VII during thoracic aortic operations.

    Science.gov (United States)

    Andersen, Nicholas D; Bhattacharya, Syamal D; Williams, Judson B; Fosbol, Emil L; Lockhart, Evelyn L; Patel, Mayur B; Gaca, Jeffrey G; Welsby, Ian J; Hughes, G Chad

    2012-06-01

    Numerous studies have supported the effectiveness of recombinant activated factor VII (rFVIIa) for the control of bleeding after cardiac procedures; however safety concerns persist. Here we report the novel use of intraoperative low-dose rFVIIa in thoracic aortic operations, a strategy intended to improve safety by minimizing rFVIIa exposure. Between July 2005 and December 2010, 425 consecutive patients at a single referral center underwent thoracic aortic operations with cardiopulmonary bypass (CPB); 77 of these patients received intraoperative low-dose rFVIIa (≤60 μg/kg) for severe coagulopathy after CPB. Propensity matching produced a cohort of 88 patients (44 received intraoperative low-dose rFVIIa and 44 controls) for comparison. Matched patients receiving intraoperative low-dose rFVIIa got an initial median dose of 32 μg/kg (interquartile range [IQR], 16-43 μg/kg) rFVIIa given 51 minutes (42-67 minutes) after separation from CPB. Patients receiving intraoperative low-dose rFVIIa demonstrated improved postoperative coagulation measurements (partial thromboplastin time 28.6 versus 31.5 seconds; p=0.05; international normalized ratio, 0.8 versus 1.2; pproduct transfusions (2.5 versus 5.0 units; p=0.05) compared with control patients. No patient receiving intraoperative low-dose rFVIIa required postoperative rFVIIa administration or reexploration for bleeding. Rates of stroke, thromboembolism, myocardial infarction, and other adverse events were equivalent between groups. Intraoperative low-dose rFVIIa led to improved postoperative hemostasis with no apparent increase in adverse events. Intraoperative rFVIIa administration in appropriately selected patients may correct coagulopathy early in the course of refractory blood loss and lead to improved safety through the use of smaller rFVIIa doses. Appropriately powered randomized studies are necessary to confirm the safety and efficacy of this approach. Copyright © 2012 The Society of Thoracic Surgeons

  19. Dose-Response—A Challenge for Allelopathy?

    Science.gov (United States)

    Belz, Regina G.; Hurle, Karl; Duke, Stephen O.

    2005-01-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions. PMID:19330161

  20. Dose-response-a challenge for allelopathy?

    Science.gov (United States)

    Belz, Regina G; Hurle, Karl; Duke, Stephen O

    2005-04-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions.

  1. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  2. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Orton, Nigel; Tome, Wolfgang A.; Chappell, Rick; Ritter, Mark A.

    2003-01-01

    , respectively. Averaged over all conditions, inflation of the rectal balloon resulted in a significant reduction in rectal volume receiving ≥65 Gy to a mean ratio of 0.61 (P=0.01) or, in other words, a mean fractional high dose rectal sparing of 39%. There was a slight overall increase to 1.13 in the relative volume of bladder receiving at least 65 Gy; however, this was not significant (P=0.6). Use of an endorectal balloon with a non-image-guided 3D-CRT plan produced about as much rectal dose sparing as a highly conformal, image-guided IMRT approach without a balloon. However, inclusion of a balloon with IMRT produced further rectal sparing still. Conclusion: These results indicate that use of a rectal balloon with a 3D-CRT plan incorporating typical treatment margins will produce significant high dose rectal sparing that is comparable to that achieved by a highly conformal IMRT with ultrasound localization. Further sparing is achieved with the inclusion of a balloon catheter in an IMRT plan. Thus, in addition to a previously reported advantage of prostate immobilization, the use of a rectal displacement balloon during daily treatment results in high dose rectal wall sparing during both modestly and highly conformal radiotherapy. Such sparing could assist in controlling and limiting rectal toxicity during increasingly aggressive dose escalation

  3. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  4. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  5. CT dose reduction in children

    International Nuclear Information System (INIS)

    Vock, Peter

    2005-01-01

    World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure. (orig.)

  6. The effect of CT dose on glenohumeral joint congruency measurements using 3D reconstructed patient-specific bone models

    International Nuclear Information System (INIS)

    Lalone, Emily A; Fox, Anne-Marie V; Jenkyn, Thomas R; King, Graham J W; Johnson, James A; Peters, Terry M; Kedgley, Angela E; Athwal, George S

    2011-01-01

    The study of joint congruency at the glenohumeral joint of the shoulder using computed tomography (CT) and three-dimensional (3D) reconstructions of joint surfaces is an area of significant clinical interest. However, ionizing radiation delivered to patients during CT examinations is much higher than other types of radiological imaging. The shoulder represents a significant challenge for this modality as it is adjacent to the thyroid gland and breast tissue. The objective of this study was to determine the optimal CT scanning techniques that would minimize radiation dose while accurately quantifying joint congruency of the shoulder. The results suggest that only one-tenth of the standard applied total current (mA) and a pitch ratio of 1.375:1 was necessary to produce joint congruency values consistent with that of the higher dose scans. Using the CT scanning techniques examined in this study, the effective dose applied to the shoulder to quantify joint congruency was reduced by 88.9% compared to standard clinical CT imaging techniques.

  7. Dose contribution from metabolized organically bound tritium after chronic tritiated water intakes in humans

    International Nuclear Information System (INIS)

    Trivedi, A.; Lamothe, E.; Galeriu, D.

    2001-01-01

    Our earlier study of acute tritiated water intakes in humans has demonstrated that the dose contribution from metabolized organically bound tritium is less than 10% of the body water dose. To further demonstrate that the dose contribution from the organically bound tritium per unit intake of tritiated water is the same, regardless of whether the intake is acute (all at once) or chronic (spread over time), urine samples from six male radiation workers with chronic tritiated water intakes were collected and analyzed for tritium. These workers have a well-documented dose history and a well-controlled tritium bioassay database, providing assurance that their tritium intakes were in the form of tritiated water. Each month for a full calendar year, urine samples were collected from each exposed worker. The monthly concentration of tritium-in-urine for each exposed worker was no lower than 104 Bq L -1 but no higher than 105 Bq L -1 . These urine samples were analyzed for tritiated water and organically bound tritium to determine the ratio of these tritiated species in urine. The average ratio of tritiated water to organically bound tritium in urine for each exposed worker was 330-129 (range, 297-589). In calculating the dose to these workers, we assumed that, under steady-state conditions, the ratio of the specific activity of tritium ( 3 H activity per gH) in the organic matter and water fractions of urine is representative of the ratio of the specific activity of tritium in the organic matter and water fractions of soft tissue. A mathematical model was developed and used to estimate the dose increase from the metabolized organically bound tritium based on the ratio of tritiated water to organically bound tritium in urine. The resulting average dose from the organically bound tritium was 6.9-3.1% (range, 4.7-9.9%) of the body water dose for the six male workers, and agrees well with the value obtained from our acute tritiated water intakes study in humans. The observed

  8. The ciprofloxacin target AUC : MIC ratio is not reached in hospitalized patients with the recommended dosing regimens.

    Science.gov (United States)

    Haeseker, Michiel; Stolk, Leo; Nieman, Fred; Hoebe, Christian; Neef, Cees; Bruggeman, Cathrien; Verbon, Annelies

    2013-01-01

    The aim of this study was to determine the ciprofloxacin serum concentrations in hospitalized patients and to determine which percentage reached the efficacy target of AUC : MIC > 125. Additionally, the influence of demographic anthropomorphic and clinical parameters on the pharmacokinetics and pharmacodynamics of ciprofloxacin were investigated. In serum of 80 hospitalized patients ciprofloxacin concentrations were measured with reverse phase high performance liquid chromatography with fluorescence detection. The ciprofloxacin dose was 400-1200 mg day(-1) i.v. in two or three doses depending on renal function and causative bacteria. Pharmacokinetic parameters were calculated with maximum a posteriori Bayesian estimation (MW\\PHARM 3.60). A two compartment open model was used. Mean (± SD) age was 66 (± 17) years, the mean clearance corrected for bodyweight was 0.24 l h(-1) kg(-1) and the mean AUC was 49 mg l(-1) h. Ciprofloxacin clearance and thus AUC were associated with both age and serum creatinine. Of all patients, 21% and 75% of the patients, did not reach the proposed ciprofloxacin AUC : MIC > 125 target with MICs of 0.25 and 0.5 mg l(-1), respectively. A computer simulated increase in the daily dose from 800 mg to 1200 mg, decreased these percentages to 1% and 37%, respectively. A substantial proportion of the hospitalized patients did not reach the target ciprofloxacin AUC : MIC and are suboptimally dosed with recommended doses. Taking into account the increasing resistance to ciprofloxacin worldwide, a ciprofloxacin dose of 1200 mg i.v. daily in patients with normal renal function is necessary to reach the targeted AUC : MIC > 125. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  9. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  10. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    International Nuclear Information System (INIS)

    Yang, Lin; Liang, Changhong; Zhuang, Jian; Huang, Meiping; Liu, Hui

    2017-01-01

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose"4 and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose"4 levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose"4-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose"4 level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose"4 level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose"4 level 4 was optimal for both the full- and half-dose groups. Protocols with iDose"4 level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  11. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  12. Odor concentration invariance by chemical ratio coding

    Directory of Open Access Journals (Sweden)

    Naoshige Uchida

    2008-08-01

    Full Text Available Many animal species rely on chemical signals to extract ecologically important information from the environment. Yet in natural conditions chemical signals will frequently undergo concentration changes that produce differences in both level and pattern of activation of olfactory receptor neurons. Thus, a central problem in olfactory processing is how the system is able to recognize the same stimulus across different concentrations. To signal species identity for mate recognition, some insects use the ratio of two components in a binary chemical mixture to produce a code that is invariant to dilution. Here, using psychophysical methods, we show that rats also classify binary odor mixtures according to the molar ratios of their components, spontaneously generalizing over at least a tenfold concentration range. These results indicate that extracting chemical ratio information is not restricted to pheromone signaling and suggest a general solution for concentration-invariant odor recognition by the mammalian olfactory system.

  13. Some major deviations for biomass determination by indirect method and estimation based on alkali consumption. [Ratio of cell mass produced and alkali consumed; diesel fuel culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Concone, B R.V.; Doin, P A; Pinto, A G

    1978-01-01

    Some factors like the variation of the liquid volume, the variation of cellular nitrogen content and the mass of cells taken with the samples during batch cultivation of microorganisms on diesel oil, were considered for the computation of the ratio between cell mass produced and the mass of alkali consumed to maintain constant the pH of the fermentation medium. The results obtained showed that if such ratios are computed with cell concentration instead of cell mass the deviations can be of the order of 27% caused by the variation of the liquid medium volume. Otherwise, the results showed also that those ratios are variable during batch cultivation on diesel oil probably because of the variations on the nitrogen content of microorganisms. The relative difference between the mass of cells measured and the mass of cells calculated from the alkali consumption curve can be of the order of 63%.

  14. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  15. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  16. The real-world dose-relativity of sevelamer hydrochloride and lanthanum carbonate monotherapy in patients with end-stage renal disease.

    Science.gov (United States)

    Wilson, Rosamund J; Keith, Michael S; Preston, Peter; Copley, J Brian

    2013-12-01

    Sevelamer hydrochloride (SH) and lanthanum carbonate (LC) are calcium-free phosphate binders used for the management of hyperphosphatemia in patients with end-stage renal disease (ESRD). The objective of this analysis was to evaluate the real-world dose-relativity between SH and LC monotherapy in US patients with ESRD. This was a post hoc analysis of a 16-week, real-world study (Vemuri et al. in BMC Nephrol 12:49, 2011) of the efficacy of conversion to LC monotherapy from other phosphate binders. The SH:LC dose-relativity ratio, based on the mean daily dose, was calculated in the subset of patients from the Vemuri study who converted from SH to LC monotherapy and had available SH and LC dose data. A total of 950 patients converted from SH to LC monotherapy and had recorded dose data. The post hoc analysis population comprised 691 patients with available dose data for both SH at baseline and LC at week 16. The mean (SD) serum phosphate level at baseline was 5.91 (1.66) mg/dL. After conversion to LC monotherapy for 16 weeks, the mean (SD) serum phosphate level was 5.93 (1.85) mg/dL. The mean (SD) daily baseline SH dose was 7,703 (3,642) mg and the mean (SD) daily LC dose at week 16 was 2,800 (939) mg (9.6 versus 2.8 tablets, respectively; P relativity ratio of 2.8. The median individual patient SH:LC dose-relativity ratio was 2.6 (95% CI 2.6-2.8). Across baseline SH dose subgroups (2,400-4,800, >4,800-7,200, >7,200-9,600, and >9,600 mg/day), the mean daily SH dose was 4,051, 7,047, 9,253, and 13,150 mg, respectively. In comparison, the mean daily LC dose was 2,445-3,156 mg. Thus, patients requiring baseline SH doses >7,200 mg/day (41% of the analysis population) had higher SH:LC dose-relativity ratios of 3.1-4.2 (median individual patient ratios 3.1-4.0). In this post hoc analysis of real-world dose-relativity, the overall SH:LC dose-relativity ratio was 2.8 (median individual patient ratio 2.6 (95% CI 2.6-2.8). These findings are consistent with the World Health

  17. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  18. Dose rate effects during damage accumulation in silicon

    International Nuclear Information System (INIS)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates

  19. Sex allocation and secondary sex ratio in Cuban boa ( Chilabothrus angulifer): mother's body size affects the ratio between sons and daughters

    Science.gov (United States)

    Frynta, Daniel; Vejvodová, Tereza; Šimková, Olga

    2016-06-01

    Secondary sex ratios of animals with genetically determined sex may considerably deviate from equality. These deviations may be attributed to several proximate and ultimate factors. Sex ratio theory explains some of them as strategic decisions of mothers improving their fitness by selective investment in sons or daughters, e.g. local resource competition hypothesis (LRC) suggests that philopatric females tend to produce litters with male-biased sex ratios to avoid future competition with their daughters. Until now, only little attention has been paid to examine predictions of sex ratio theory in snakes possessing genetic sex determination and exhibiting large variance in allocation of maternal investment. Cuban boa is an endemic viviparous snake producing large-bodied newborns (˜200 g). Extremely high maternal investment in each offspring increases importance of sex allocation. In a captive colony, we collected breeding records of 42 mothers, 62 litters and 306 newborns and examined secondary sex ratios (SR) and sexual size dimorphism (SSD) of newborns. None of the examined morphometric traits of neonates appeared sexually dimorphic. The sex ratio was slightly male biased (174 males versus 132 females) and litter sex ratio significantly decreased with female snout-vent length. We interpret this relationship as an additional support for LRC as competition between mothers and daughters increases with similarity of body sizes between competing snakes.

  20. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  1. Dose reduction according to the exposure condition in intervention procedure: Focus on the change of dose area and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jun Ho; Jung, Ku Min; Lee, Kyung Bae [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Kim, Hyun Soo; Kang, Byung Sam [Dept. of Radiological Technology, Shingu University, Seungnam (Korea, Republic of)

    2017-09-15

    The purpose of this study is to suggest a method to reduce the dose by Analyzing the dose area product (DAP) and image quality according to the change of tube current using NEMA Phantom. The spatial resolution and low contrast resolution were used as evaluation criteria in addition to signal to noise ratio (SNR) and contrast to noise ratio (CNR), which are important image quality parameters of intervention. Tube voltage was fixed at 80 kVp and the amount of tube current was changed to 20, 30, 40, and 50 mAs, and the dose area product and image quality were compared and analyzed. As a result, the dose area product increased from 1066 mGycm2 to 6160 mGycm2 to 6 times as the condition increased, while the spatial resolution and low contrast resolution were higher than 20 mAs and 30 mAs, Spatial resolution and low contrast resolution were observed below the evaluation criteria. In addition, the SNR and CNR increased up to 30 mAs, slightly increased at 40 mAs, but not significantly different from the previous one, and decreased at 50 mAs. As a result, the exposure dose significantly increased due to overexposure of the test conditions and the image quality deteriorated in all areas of spatial resolution, low contrast resolution, SNR and CNR.

  2. Nebivolol/valsartan: Fixed-dose combination for treatment of hypertension.

    Science.gov (United States)

    Paton, D M

    2017-01-01

    Clinical trials demonstrated that a fixed-dose combination (FDC) of the beta-blocker nebivolol (5 mg) and the angiotensin II antagonist valsartan (80 mg) produced a significant reduction of both diastolic and systolic blood pressure in patients with hypertension. Both nebivolol and valsartan contributed to this effect, partial additivity of 86.6% and 82.2% being observed for diastolic and systolic blood pressure, respectively. These values are very similar to the additivity ratios of other recently approved FDCs for hypertension. Use of the FDC nebivolol 5 mg/valsartan 80 mg formulation was associated with a low incidence of treatment-related adverse effects and of serious adverse effects. There was no evidence of adverse effects due to beta2-adrenoceptor blockade. The FDC (Byvalson) was approved and launched in 2016 in the U.S. for the treatment of hypertension. Copyright 2017 Clarivate Analytics.

  3. Electron beam dose measurements with alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    Rodrigues, O. Jr.; Galante, O.L.; Campos, L.L.

    2001-01-01

    When the aminoacid alanine, CH 3 -CH(NH 2 )-COOH, is exposed to radiation field, stable free radicals are produced. The predominant paramagnetic specie found at room temperature is the CH 3 -CH-COOH. Electron Spin Resonance - ESR is a technique used for quantification and analysis of radicals in solid and liquid samples. The evaluation of the amount of produced radicals can be associated with the absorbed dose . The alanine/ESR is an established dosimetry method employed for high doses evaluation, it presents good performance for X-rays, gamma, electrons, and protons radiation detection. The High Doses Dosimetry Laboratory of Ipen developed a dosimetric system based on alanina/ESR that presents good characteristics for use in gamma fields such as: wide dose range from 10 to 10 5 Gy, low fading, low uncertainty (<5%), no dose rate dependence and non-destructive ESR single readout. The detector is encapsulated in a special polyethylene tube that reduces the humidity problems and improves the mechanical resistance. The IPEN dosimeter was investigated for application in electron beam fields dosimetry

  4. Charge ratio of muons from atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    2003-05-22

    We calculate the intensities and angular distributions of positive and negative muons produced by atmospheric neutrinos. We comment on some sources of uncertainty in the charge ratio. We also draw attention to a potentially interesting signature of neutrino oscillations in the muon charge ratio, and we discuss the prospects for its observation (which are not quite within the reach of currently planned magnetized detectors)

  5. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  6. Ratios between effective doses for tomographic and mathematician models due to internal exposure of photons

    International Nuclear Information System (INIS)

    Lima, F.R.A.; Kramer, R.; Khoury, H.J.; Santos, A.M.; Loureiro, E.C.M.

    2005-01-01

    The development of new and sophisticated Monte Carlo codes and tomographic human phantoms or voxels motivated the International Commission on Radiological Protection (ICRP) to revise the traditional models of exposure, which have been used to calculate effective dose coefficients for organs and tissues based on mathematician phantoms known as MIRD5. This paper shows the results of calculations using tomographic phantoms MAX (Male Adult voXel) and FAX (Female Adult voXel), recently developed by the authors as well as with the phantoms ADAM and EVA, of specific genres, type MIRD5, coupled to the EGS4 Monte Carlo and MCNP4C codes, for internal exposure with photons of energies between 10 keV and 4 MeV to several organs sources. Effective Doses for both models, tomographic and mathematician, will be compared separately as a function of the Monte Carlo code replacement, of compositions of human tissues and the anatomy reproduced through tomographs. The results indicate that for photon internal exposure, the use of models of exposure based in voxel, increases the values of effective doses up to 70% for some organs sources considered in this study, when compared with the corresponding results obtained with phantoms of MIRD-5 type

  7. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  8. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  9. Alternate day treatment and late effects: The concept of an effective dose per fraction

    International Nuclear Information System (INIS)

    Courdi, A.; Hery, M.; Gabillat, J.M.

    1990-01-01

    Although most institutions treat all fields each day, some radiotherapists continue to adopt an alternate day schedule. The resulting daily variations of the dose per fraction in laterally located targets have been analyzed using the linear-quadratic model. Patients with breast carcinoma treated with definitive radiotherapy in 1974-1975 with one field a day were studied. An effective dose per fraction was derived, with a value higher than the average dose per fraction received by the reference point. The greater the fluctuations between the doses per fraction on successive days, the higher the effective dose per fraction. The corresponding cell survival due to alternate treatment as compared to survival with daily treatment depends on the alpha/beta ratio. For a late effect with low alpha/beta ratio, an alternate treatment may lead to almost 10-fold increase in cell kill in these lateral targets such as those responsible for subcutaneous sclerosis as compared to daily treatment of all fields with the same total dose. Taking the average effective dose per fraction in our series, the increase in cell kill was 4-fold. Acute effects would suffer less damage due to alternate treatment because of a high alpha/beta ratio. Treatment on an alternate schedule should be restricted to palliative radiotherapy

  10. A 28-day repeat dose toxicity study of steroidal glycoalkaloids, alpha-solanine and alpha-chaconine in the Syrian Golden hamster

    DEFF Research Database (Denmark)

    Langkilde, Søren; Mandimika, T.; Schrøder, Malene

    2009-01-01

    of the glycoalkaloids. The Syrian Golden hamster was given daily doses of alpha-solanine and alpha-chaconine by gavage for 28 days. Doses of up to 33.3 mg total glycoalkaloids/kg body weight were applied in ratios of 1:3.7 and 1:70 (alpha-solanine:alpha-chaconine). Administration of the highest doses of both ratios...... intestines of the hamsters administered the highest doses of the glycoalkaloid treatments. In general, more differential gene expression was observed in the epithelial scrapings of the hamsters fed the ratio of 1:3.7. Mostly, pathways involved in lipid and energy metabolism were affected by the ratio of 1:3.7....

  11. Iso-effect tables and therapeutic ratios for epidermoid cancer and normal tissue stroma

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on radiation injury to normal tissue stroma and ablation of epidermoid carcinoma was surveyed. Computer programs (RAD3 and RAD1) were then used to derive cell kinetic parameters and generate iso-effect tables for the relevant tissues. The two tables provide a set of limiting doses for tolerance of normal connective tissue (16% risk of injury) and for ablation of epidermoid cancer (16% risk of recurrence) covering a wide range of treatment schedules. Calculating the ratios of normal tissue tolerance to tumor control doses for each treatment scheme provides an array of therapeutic ratios, from which appropriate treatment schemes can be selected

  12. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  13. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  14. Peripheral doses from pediatric IMRT

    International Nuclear Information System (INIS)

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-01-01

    Peripheral dose (PD) data exist for conventional fields (≥10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10 -10 scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from

  15. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Tedgren, Åsa Carlsson; Nilsson, Josef; Persson, Maria; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Dose calculation in high dose rate brachytherapy with 192 Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (D m,m ) and dose-to-water-in-medium (D w,m ). The relation between D m,m and D w,m for 192 Ir is the main goal of this study, in particular the dependence of D w,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: D m,m, D w,m (LCT), mean photon energy and photon fluence. D w,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between D m,m and D w,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between D w,m (SCT) and D w,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between D m,m and D w,m (SCT) mainly depend on tissue type, differences between D m,m and D w,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources. (paper)

  16. Cu filtration for dose reduction in neonatal chest imaging

    International Nuclear Information System (INIS)

    Smans, K.; Struelens, L.; Smet, M.; Bosmans, H.; Vanhavere, F.

    2010-01-01

    As neonatal chest images are frequently acquired to investigate the life-threatening lung diseases in prematurely born children, their optimisation in terms of X-ray exposure is required. The aim of this study was to investigate whether such dose-optimisation studies could be performed using a Monte Carlo computer model. More specifically, a Monte Carlo computer model was used to investigate the influence of Cu filtration on image quality and dose in neonatal chest imaging. Monte Carlo simulations were performed with the MCNPX code and used with voxel models representing prematurely born babies (590 and 1910 g). Physical image quality was derived from simulated images in terms of the signal difference-to-noise ratio and signal-to-noise ratio (SNR). To verify the simulation results, measurements were performed using the Gammex 610 Neonatal Chest Phantom, which represents a 1-2 kg neonate. A figure of merit was used to assist in evaluating the optimum balance between the image quality and the patient dose. The results show that the Monte Carlo computer model to investigate dose and image quality works well and can be used in dose-optimisation studies for real clinical practices. Furthermore, working at a specific constant incident air kerma (K a,I ), additional filtration proved to increase SNR with 30%, whereas working at a specific constant detector dose, extra Cu filtration reduces the lung dose with 25%. Optimum balance between patient dose and image quality is found to be 60 kVp (using extra filtration). (authors)

  17. Synchronized dynamic dose reconstruction

    International Nuclear Information System (INIS)

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-01

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined

  18. Calculation of cobalt-60 primary and scatter dose in layered heterogeneous phantoms using primary and scatter dose spread arrays

    International Nuclear Information System (INIS)

    Iwasaki, Akira

    1993-01-01

    A method of making 60 Co γ-ray primary and scatter dose spread arrays in water is described. The primary dose spread array is made using forward and backward primary dose spread equations (h 1 and h 2 ), where both equations contain a laterally spread primary dose equation (G), made from measured dose data in a cork phantom. The scatter dose spread array is made using differential scatter-maximum ratio (dSMR) and differential backscatter factor (dBSF) equations (k 1 and k 2 ), where both equations are made to be continuous on the boundary. Primary and scatter dose calculations are performed along the beam axis in layered cork heterogeneous phantoms. It is found, even for 60 Co γ-rays, that when a small tumor in the lung is irradiated with a field that just surrounds the tumor, the beam entrance surface and lateral side of the tumor may obtain no therapeutic dose, because of loss of longitudinal and lateral electronic equilibrium, and when a large tumor in the lung is irradiated with a field just surrounding the tumor, the lateral side of the tumor may obtain no therapeutic dose due to loss of lateral electronic equilibrium. (author)

  19. Influence of low dose ionizing radiation on amplification and antitumor activity of LAK/TIL cells

    International Nuclear Information System (INIS)

    Liu Wei; Hou Dianjun; Qiao Jianwei; Shang Ximei; Li Jieqing

    2000-01-01

    Objective: To study the influence of low dose ionization on amplification and antitumor activity of LAK/TIL cells. Methods: TIL cells isolated from Lewis lung cancer tissues and LAK cells from spleen of tumor-bearing mouse were irradiated with different low doses of X-rays and were cultured after irradiation. Results: Low dose ionizing radiation improved the amplification volume of LAK/TIL cells, decreased the cell death ratio in amplification process, and increased the toxicity of LAK/TIL cells, Conclusions: Low dose ionizing radiation can result in amplification of biologically activated lymphocytes, and decreases the death ratio of the cells in amplification process

  20. Estimate of the therapeutic ratio for charged particle beams

    International Nuclear Information System (INIS)

    Phillips, T.S.; Goldstein, L.S.

    1980-01-01

    To establish the RBE in normal and tumor tissue of heavy ion beams, the dose response for normal tissues, tumors and hypoxic and euoxic cells in vitro to single fraction irradiation and their ability to recover has been studied. The data demonstrate that the therapeutic ratio (RBE in tumor/RBE in normal tissue) of the murine systems increases with increasing LET up to the LET of the peak of the modulated neon beam. Although the argon beam has some features which make it attractive for therapy, its application may be limited because of its unfavorable biological depth-dose distribution

  1. Warfarin Dosing Algorithms Underpredict Dose Requirements in Patients Requiring ≥7 mg Daily: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Saffian, S M; Duffull, S B; Wright, Dfb

    2017-08-01

    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I 2 = 24%). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  2. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  3. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  4. High frequencies of chromatid aberrations produced during G/sub 2/ in human lymphocytes by very low doses (0. 025-0. 4 Gy) of X-rays in combination with inhibitors of DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.C.; Kihlman, B.A. (Uppsala Univ. (Sweden). Dept. of Genetics)

    1984-09-01

    Whole-blood cultures of human lymphocytes were exposed in the G/sub 2/-phase (3.5 h before harvesting) to various doses of X-rays and post-treated for 3 h with inhibitors of DNA synthesis. The inhibitors used were 2'-deoxyadenosine (dAdo), hydroxyurea (HU) and 1-..beta..-D-arabinofuranosylcytosine (ara-C). To prevent deamination of dAdo by adenosine deaminase (ADA), the dAdo treatments were carried out in the presence of the ADA inhibitor coformycin. HU and ara-C were used either alone or in combination. After the 3-h inhibitor treatments, the cultures were harvested and slides prepared and analyzed for chromatid aberrations in metaphase. When the inhibitors were used at concentrations high enough to cause marked chromosome damage by themselves, very low doses of X-rays (0.025-0.2 Gy) were sufficient to produce a dramatic increase in the frequency of chromatid aberrations. High frequencies of chromatid aberrations were also obtained when cultures that had received moderate doses of X-rays (0.4-0.8 Gy) were post-treated with low inhibitor concentrations that produce no or only a few aberrations by themselves.

  5. A new method to assess the gonadal doses in women during radiation treatment

    International Nuclear Information System (INIS)

    Agrawal, M.S.; Pant, G.C.

    1977-01-01

    The relative inaccessibility of the ovaries renders direct measurement of the gonadal doses difficult. A relatively simple method is described to tackle this problem - using the upper margin of the public symphysis as a reference point. Measurement of Radiation doses were done in a Masonite human phantom using T.L.D. and a Co-60 teletherapy unit. The accompanying figures document the observations made. The distance between the lower edge of the treatment port and the reference point is denoted by 'd'. First figure relates observed ratios of the radiation doses at the ovary and the reference point to 'd' for various port sizes and the second figure shows the relationship between the area of the port and the dose ratio (ovary: reference-point) for various values of 'd'. The advantage of this documentation is that it serves as a 'Ready Reckoner' to assess the ovarian doses under different treatment situations-once the doses at the reference point is measured

  6. Calibration curve to establish the exposure dose at Co60 gamma radiation

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2000-01-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  7. Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    Full Text Available Radiation has negative effects on survival of animals including humans, although the generality of this claim is poorly documented under low-dose field conditions. Because females may suffer disproportionately from the effects of radiation on survival due to differences in sex roles during reproduction, radiation-induced mortality may result in male-skewed adult sex ratios.We estimated the effects of low-dose radiation on adult survival rates in birds by determining age ratios of adults captured in mist nets during the breeding season in relation to background radiation levels around Chernobyl and in nearby uncontaminated control areas. Age ratios were skewed towards yearlings, especially in the most contaminated areas, implying that adult survival rates were reduced in contaminated areas, and that populations in such areas could only be maintained through immigration from nearby uncontaminated areas. Differential mortality in females resulted in a strongly male-skewed sex ratio in the most contaminated areas. In addition, males sang disproportionately commonly in the most contaminated areas where the sex ratio was male skewed presumably because males had difficulty finding and acquiring mates when females were rare. The results were not caused by permanent emigration by females from the most contaminated areas because none of the recaptured birds had changed breeding site, and the proportion of individuals with morphological abnormalities did not differ significantly between the sexes for areas with normal and higher levels of contamination.These findings are consistent with the hypothesis that the adult survival rate of female birds is particularly susceptible to the effects of low-dose radiation, resulting in male skewed sex ratios at high levels of radiation. Such skewed age ratios towards yearlings in contaminated areas are consistent with the hypothesis that an area exceeding 30,000 km(2 in Chernobyl's surroundings constitutes an

  8. Hydrocortisone dose in adrenal insufficiency : Balancing harms and benefits

    NARCIS (Netherlands)

    Werumeus Buning, Jorien

    2017-01-01

    Patients with secondary adrenal insufficiency do not produce cortisol and are therefore treated with hydrocortisone tablets. The optimal substitution dose for hydrocortisone is unknown. We therefore performed this study, in which two different doses of hydrocortisone and its effect on cognition

  9. Risk equivalent of exposure versus dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems

  10. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liang, Changhong [Southern Medical University, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Zhuang, Jian [Guangdong Academy of Medical Sciences, Dept. of Cardiac Surgery, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Huang, Meiping [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Catheterization Lab, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Liu, Hui [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China)

    2017-01-15

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose{sup 4} and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose{sup 4} levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose{sup 4}-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose{sup 4} level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose{sup 4} level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose{sup 4} level 4 was optimal for both the full- and half-dose groups. Protocols with iDose{sup 4} level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  11. Bremsstrahlung doses from natural uranium ingots

    International Nuclear Information System (INIS)

    Anderson, J. L.; Hertel, N. E.

    2005-01-01

    In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and Bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and Bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from ∼51-84 μSv h -1 and 17-95 μSv h -1 using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and Bremsstrahlung were the same order of magnitude for each object. (authors)

  12. Bremsstrahlung doses from natural uranium ingots.

    Science.gov (United States)

    Anderson, Jeri L; Hertel, Nolan E

    2005-01-01

    In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from approximately 51-84 microSv h(-1) and 17-95 microSv h(-1) using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and bremsstrahlung were the same order of magnitude for each object.

  13. Mechanical and Physical Studies on Different Doses of Radiation Pre vulcanized Natural Rubber Latex (RVNRL)

    International Nuclear Information System (INIS)

    Syuhada Ramli; Sofian Ibrahim; Muhammad Saiful Omar; Mohd Noorwadi Mat Lazim; Khairul Hisyam Mohamed Yusof; Najib Mohammmad Zakey; Hafizuddin Maseri

    2014-01-01

    RVNRL mixture of 12 kGy (RVNRL12) and 25 kGy (RVNRL25) at different blending ratios were prepared by stirring the mixture using a magnetic stirrer RVNRL at a speed of 1-3 rpm overnight to get the dough consistency. RVNRL12 with RVNRL25 attendance at a ratio of 90:10, 80:20, 70:30, 60:40 and 50:50 investigated. The study of physical and mechanical properties of 12/ 25 blends RVNRL performed on film samples prepared by immersion method coagulant. RVNRL25 result of the addition of the mixture RVNRL12 showed an increase in tensile strength mixture ratio of 90:10 RVNRL12 / RVNRL25 and tensile strength are declining at a ratio higher RVNRL25 content. Increase the tensile strength was found to increase due to the impact of lower doses of dough RVNRL12 and RVNRL25. This shows that blending RVNRL lower doses help improve the physical properties of latex due to exposure dose exceeding the dose required RVNRL. (author)

  14. Peripheral doses of cranial pediatric IMRT performed with attenuator blocks; Doses perifericas de IMRT cranial pediatrica realizada com blocos atenuadores

    Energy Technology Data Exchange (ETDEWEB)

    Soboll, Danyel Scheidegger; Schitz, Ivette; Schelin, Hugo Reuters, E-mail: soboll@utfpr.edu.b, E-mail: iveteschitz@yahoo.com.b, E-mail: schelin@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Silva, Ricardo Goulart da, E-mail: ricardo.goulart@ymail.co [Hospital Angelina Caron, Campina Grande do Sul, PR (Brazil); Viamonte, Alfredo, E-mail: aviamonte@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    This paper presents values of peripheral doses measured at six vital points of simulator objects which represent the ages of 2, 5 and 10 years old, submitted to a cranial IMRT procedure that applied compensator blocks interposed to 6 MV beams. The found values indicate that there is independence of dose with position of measurements and age of the patient, as the peripheral dose at the points nearest and the 2 year old simulator object where larger. The doses in thyroid reached the range of 1.4 to 2.9% of the dose prescribed in the isocenter, indicating that the peripheral doses for IMRT that employ compensator blocks can be greater than for the IMRT produced with sliding window technique

  15. Model-based calculations of off-axis ratio of conic beams for a dedicated 6 MV radiosurgery unit

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. N.; Ding, X.; Du, W.; Pino, R. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Methodist Hospital, Houston, Texas 77030 (United States)

    2010-10-15

    Purpose: Because the small-radius photon beams shaped by cones in stereotactic radiosurgery (SRS) lack lateral electronic equilibrium and a detector's finite cross section, direct experimental measurement of dosimetric data for these beams can be subject to large uncertainties. As the dose calculation accuracy of a treatment planning system largely depends on how well the dosimetric data are measured during the machine's commissioning, there is a critical need for an independent method to validate measured results. Therefore, the authors studied the model-based calculation as an approach to validate measured off-axis ratios (OARs). Methods: The authors previously used a two-component analytical model to calculate central axis dose and associated dosimetric data (e.g., scatter factors and tissue-maximum ratio) in a water phantom and found excellent agreement between the calculated and the measured central axis doses for small 6 MV SRS conic beams. The model was based on that of Nizin and Mooij [''An approximation of central-axis absorbed dose in narrow photon beams,'' Med. Phys. 24, 1775-1780 (1997)] but was extended to account for apparent attenuation, spectral differences between broad and narrow beams, and the need for stricter scatter dose calculations for clinical beams. In this study, the authors applied Clarkson integration to this model to calculate OARs for conic beams. OARs were calculated for selected cones with radii from 0.2 to 1.0 cm. To allow comparisons, the authors also directly measured OARs using stereotactic diode (SFD), microchamber, and film dosimetry techniques. The calculated results were machine-specific and independent of direct measurement data for these beams. Results: For these conic beams, the calculated OARs were in excellent agreement with the data measured using an SFD. The discrepancies in radii and in 80%-20% penumbra were within 0.01 cm, respectively. Using SFD-measured OARs as the reference data, the

  16. A comparison of HDR brachytherapy and IMRT techniques for dose escalation in prostate cancer: A radiobiological modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Williamson, J. F.; Dogan, N.; Todor, D.; Siebers, J. V.; George, R.; Barani, I.; Hagan, M. [Department of Radiation Oncology, Virginia Commonwealth University Medical Center, 401 College Street, Richmond, Virginia 23298 (United States)

    2009-09-15

    A course of one to three large fractions of high dose rate (HDR) interstitial brachytherapy is an attractive alternative to intensity modulated radiation therapy (IMRT) for delivering boost doses to the prostate in combination with additional external beam irradiation for intermediate risk disease. The purpose of this work is to quantitatively compare single-fraction HDR boosts to biologically equivalent fractionated IMRT boosts, assuming idealized image guided delivery (igIMRT) and conventional delivery (cIMRT). For nine prostate patients, both seven-field IMRT and HDR boosts were planned. The linear-quadratic model was used to compute biologically equivalent dose prescriptions. The cIMRT plan was evaluated as a static plan and with simulated random and setup errors. The authors conclude that HDR delivery produces a therapeutic ratio which is significantly better than the conventional IMRT and comparable to or better than the igIMRT delivery. For the HDR, the rectal gBEUD analysis is strongly influenced by high dose DVH tails. A saturation BED, beyond which no further injury can occur, must be assumed. Modeling of organ motion uncertainties yields mean outcomes similar to static plan outcomes.

  17. Dose Response for Radiation Cataractogenesis: A Meta-Regression of Hematopoietic Stem Cell Transplantation Regimens

    International Nuclear Information System (INIS)

    Hall, Matthew D.; Schultheiss, Timothy E.; Smith, David D.; Nguyen, Khanh H.; Wong, Jeffrey Y.C.

    2015-01-01

    Purpose/Objective(s): To perform a meta-regression on published data and to model the 5-year probability of cataract development after hematopoietic stem cell transplantation (HSCT) with and without total body irradiation (TBI). Methods and Materials: Eligible studies reporting cataract incidence after HSCT with TBI were identified by a PubMed search. Seventeen publications provided complete information on radiation dose schedule, fractionation, dose rate, and actuarial cataract incidence. Chemotherapy-only regimens were included as zero radiation dose regimens. Multivariate meta-regression with a weighted generalized linear model was used to model the 5-year cataract incidence and contributory factors. Results: Data from 1386 patients in 21 series were included for analysis. TBI was administered to a total dose of 0 to 15.75 Gy with single or fractionated schedules with a dose rate of 0.04 to 0.16 Gy/min. Factors significantly associated with 5-year cataract incidence were dose, dose times dose per fraction (D•dpf), pediatric versus adult status, and the absence of an ophthalmologist as an author. Dose rate, graft versus host disease, steroid use, hyperfractionation, and number of fractions were not significant. Five-fold internal cross-validation showed a model validity of 83% ± 8%. Regression diagnostics showed no evidence of lack-of-fit and no patterns in the studentized residuals. The α/β ratio from the linear quadratic model, estimated as the ratio of the coefficients for dose and D•dpf, was 0.76 Gy (95% confidence interval [CI], 0.05-1.55). The odds ratio for pediatric patients was 2.8 (95% CI, 1.7-4.6) relative to adults. Conclusions: Dose, D•dpf, pediatric status, and regimented follow-up care by an ophthalmologist were predictive of 5-year cataract incidence after HSCT. The low α/β ratio indicates the importance of fractionation in reducing cataracts. Dose rate effects have been observed in single institution studies but not in the

  18. Dose Response for Radiation Cataractogenesis: A Meta-Regression of Hematopoietic Stem Cell Transplantation Regimens

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew D. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Schultheiss, Timothy E., E-mail: schultheiss@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Smith, David D. [Division of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Nguyen, Khanh H. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Department of Radiation Oncology, Bayhealth Cancer Center, Dover, Delaware (United States); Wong, Jeffrey Y.C. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States)

    2015-01-01

    Purpose/Objective(s): To perform a meta-regression on published data and to model the 5-year probability of cataract development after hematopoietic stem cell transplantation (HSCT) with and without total body irradiation (TBI). Methods and Materials: Eligible studies reporting cataract incidence after HSCT with TBI were identified by a PubMed search. Seventeen publications provided complete information on radiation dose schedule, fractionation, dose rate, and actuarial cataract incidence. Chemotherapy-only regimens were included as zero radiation dose regimens. Multivariate meta-regression with a weighted generalized linear model was used to model the 5-year cataract incidence and contributory factors. Results: Data from 1386 patients in 21 series were included for analysis. TBI was administered to a total dose of 0 to 15.75 Gy with single or fractionated schedules with a dose rate of 0.04 to 0.16 Gy/min. Factors significantly associated with 5-year cataract incidence were dose, dose times dose per fraction (D•dpf), pediatric versus adult status, and the absence of an ophthalmologist as an author. Dose rate, graft versus host disease, steroid use, hyperfractionation, and number of fractions were not significant. Five-fold internal cross-validation showed a model validity of 83% ± 8%. Regression diagnostics showed no evidence of lack-of-fit and no patterns in the studentized residuals. The α/β ratio from the linear quadratic model, estimated as the ratio of the coefficients for dose and D•dpf, was 0.76 Gy (95% confidence interval [CI], 0.05-1.55). The odds ratio for pediatric patients was 2.8 (95% CI, 1.7-4.6) relative to adults. Conclusions: Dose, D•dpf, pediatric status, and regimented follow-up care by an ophthalmologist were predictive of 5-year cataract incidence after HSCT. The low α/β ratio indicates the importance of fractionation in reducing cataracts. Dose rate effects have been observed in single institution studies but not in the

  19. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  20. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  1. A comparison of anti-tumor effects of high dose rate fractionated and low dose rate continuous irradiation in multicellular spheroids

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Omura, Motoko; Matsubara, Sho.

    1997-01-01

    In a clinical experience, high dose rate (HDR) fractionated interstitial radiotherapy can be an alternative to traditional low dose rate (LDR) continuous interstitial radiotherapy for head and neck cancers. To investigate biological effect of HDR, compared to LDR, comparisons have been made using spheroids of human squamous carcinoma cells. Both LDR and HDR were delivered by 137 Cs at 37degC. Dose rate of LDR was 8 Gy/day and HDR irradiations of fraction size of 4, 5 or 6 Gy were applied twice a day with an interval time of more than 6 hr. We estimated HDR fractionated dose of 31 Gy with 4 Gy/fr to give the same biological effects of 38 Gy by continuous LDR for spheroids. The ratio of HDR/LDR doses to control 50% spheroids was 0.82. (author)

  2. Effects of Indole-Butyric Acid Doses, Different Rooting Media and Cutting Thicknesses on Rooting Ratios and Root Qualities of 41B, 5 BB and 420A American Grapevine Rootstocks

    OpenAIRE

    DOĞAN, Adnan; UYAK, Cüneyt; KAZANKAYA, Ahmet

    2016-01-01

    The present study was conducted to investigate the effects of different rooting media [perlite, perlite+sand (1:1), perlite+sand+soil (1:1:1)], different indole butyric acid (IBA) doses (control, 1000, 2000, 3000 and 4000 ppm) and different cutting thicknesses [thin (4-7 mm), medium (8-10 mm) and thick (10-12 mm)] on rooting and root qualities of 41B, 5BB and 420A American grapevine rootstocks adapted to Van region of Turkey. Within the scope of the study, rooting ratios (%), number of roots,...

  3. Planned Enhanced Wakefield Transformer Ratio Experiment at Argonne Wakefield Accelerator

    CERN Document Server

    Kanareykin, Alex; Gai, Wei; Jing, Chunguang; Konecny, Richard; Power, John G

    2005-01-01

    In this paper, we present a preliminary experimental study of a wakefield accelerating scheme that uses a carefully spaced and current ramped electron pulse train to produce wakefields that increases the transformer ratio much higher than 2. A dielectric structure was designed and fabricated to operate at 13.625 GHz with dielectric constant of 15.7. The structure will be initially excited by two beams with first and second beam charge ratio of 1:3. The expected transformer ratio is 3 and the setup can be easily extend to 4 pulses which leads to a transformer ratio of more than 6. The dielectric structure cold test results show the tube is within the specification. A set of laser splitters was also tested to produce ramped bunch train of 2 - 4 pulses. Overall design of the experiment and initial results will be presented.

  4. SU-F-T-93: Breast Surface Dose Enhancement Using a Clinical Prone Breast Board

    International Nuclear Information System (INIS)

    Guerra, M; Jozsef, G

    2016-01-01

    Purpose: The use of specialized patient set-up devices in radiotherapy, such as prone breast boards, may have unwanted dosimetric effects. The goal of this study was to evaluate the effect of a clinically used prone breast board on skin dose due to buildup. Methods: GafChromic film (EBT3) was used for dose measurements on the surface of a solid water phantom shaped to mimic the curvature of the breast. We investigated two setup scenarios: the medial field border placed at the medial edge of the board and 1 cm contralaterally from that edge. A strip of film was taped to the medial surface of the phantom. Gantry angles varied from 10 to 30 degrees below the lateral gantry position, representing anterior oblique fields. The measurements were performed with and without the presence of the board; the ratio of their corresponding doses (dose enhancement) was evaluated. Results: For the cases where the field edge is at the edge of the board, the dose enhancement is negligible for all the tested angles. When the field edge is 1 cm inside the board, the maximum surface dose enhancement varies depending on the gantry angle between 2.2 for 30 degrees and 3.2 for 20 degrees. The length on the film at which the presence of the board is detectable (i.e. where there is dose enhancement) is longer for the shallower angles. Conclusion: Even the low-density, thin carbon fiber board with a thin soft foam pad on the top can produce significant dose enhancement on the skin in prone breast treatment due to loss of buildup. However, it happens only when the patient mid-sternum is over the board, i.e. the medial edge of the field traverses through the board and pad. Even then, the effect occurs only at the field edge, i.e. the penumbral region.

  5. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    Science.gov (United States)

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P  .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  6. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  7. The problem of the population dose

    International Nuclear Information System (INIS)

    Belyaev, V.A.

    1976-08-01

    This report investigates methods of calculating the population dose due to emissions from nuclear reactors. The exposure of the local population is considered as well as the exposure of the population of the remote area where food produced near the reactor site is consumed. Units of measurement for the population dose are discussed. A concrete example is given for calculating the contribution of isotopes of radioactive noble gases, 131 I and 137 Cs. (orig.) [de

  8. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    Energy Technology Data Exchange (ETDEWEB)

    Stranden, E.; Widmark, A.; Sekse, T. (Buskerud Univ. College, Drammen (Norway))

    2008-05-15

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  9. Assessing Doses to Interventional Radiologists Using a Personal Dosimeter Worn Over a Protective Apron

    International Nuclear Information System (INIS)

    Stranden, E.; Widmark, A.; Sekse, T.

    2008-01-01

    Background: Interventional radiologists receive significant radiation doses, and it is important to have simple methods for routine monitoring of their exposure. Purpose: To evaluate the usefulness of a dosimeter worn outside the protective apron for assessments of dose to interventional radiologists. Material and Methods: Assessments of effective dose versus dose to dosimeters worn outside the protective apron were achieved by phantom measurements. Doses outside and under the apron were assessed by phantom measurements and measurements on eight radiologists wearing two routine dosimeters for a 2-month period during ordinary working conditions. Finger doses for the same radiologists were recorded using thermoluminescent dosimeters (TLD; DXT-RAD Extremity dosimeters). Results: Typical values for the ratio between effective dose and dosimeter dose were found to be about 0.02 when the radiologist used a thyroid shield and about 0.03 without. The ratio between the dose to the dosimeter under and outside a protective apron was found to be less than 0.04. There was very good correlation between finger dose and dosimeter dose. Conclusion: A personal dosimeter worn outside a protective apron is a good screening device for dose to the eyes and fingers as well as for effective dose, even though the effective dose is grossly overestimated. Relatively high dose to the fingers and eyes remains undetected by a dosimeter worn under the apron

  10. Time-dose modifications

    International Nuclear Information System (INIS)

    Kian Ang, K.

    1987-01-01

    Changes in fractionation schedule can be made by various approaches. However, from the first principle, it is anticipated that strategies of hyperfractionation and/or accelerated fractionation offer the most promised in improving the therapeutic ratio. Hyperfractionation is defined as a treatment schedule in which a large number of significantly reduced dose fractions (--1.2 Gy/fraction) is used to give a greater total dose in a conventional overall time period. The results of the pilot studies testing the efficacy of hyperfractionation have been encouraging. The most valid clinical trial of pure hyperfractionation, however, is that conducted by the EORTC. This study compared 70 Gy in 35 fractions or 80.5 Gy in 70 fractions over 7 weeks in the treatment of patients with oropharyngeal carcinomas. The local tumor control was significantly improved in the hyperfractionated arm without increasing the morbidity. Accelerated fractionation is defined as a schedule in which the overall time of treatment is reduced without significant changes in the total dose and fraction size. The strategy has been used to treat patients with malignant gliomas, melanomas and Head and Neck cancers. The data in Head and Neck Cancers seem to be promising

  11. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  12. Survey of literature on dispersion ratio and collection ratio of radioisotopes in animal study using radioisotopes

    International Nuclear Information System (INIS)

    Tozuka, Zenzaburo; Doi, Masahiro; Miyazawa, Eiji; Kawakami, Takeo

    1998-01-01

    A survey of literature in the title was performed to know the actual status of the dispersion from excretion and expiration studies of radioisotopes since, at present, the probable dispersion ratio is assumed to be 100% in calculation for legally permitted use of radioisotopes which conceivably being far from the real status and being incompatible with the guideline for pharmacokinetic studies requiring the recovery of >95% of dosed radioactivity in balance study. There are two interpretations for the dispersion; it is the expiration ratio and it is the fraction unrecovered. Survey was done on 11 Japanese and foreign journals in 1985-1996 publishing most of pharmacokinetic studies and on 650 compounds in 358 facilities with 1,975 experiments in total. In those experiments, the total recovery of radioactivity was 95% in average, unrecovered fraction, 5% and expiration ratio, 2%. As for unclide, 14 C, 3 H, 125 I and 35 S were surveyed since they occupied 99.4% of the experiments and their dispersion was <5%. Rats were used in 70% of the experiments and the dispersion in all animal experiments was about 5%. Administration route was regardless of the dispersion. (K.H.)

  13. Bleeding Risk with Long-Term Low-Dose Aspirin: A Systematic Review of Observational Studies

    Science.gov (United States)

    García Rodríguez, Luis A.; Martín-Pérez, Mar; Hennekens, Charles H.; Rothwell, Peter M.; Lanas, Angel

    2016-01-01

    Background Low-dose aspirin has proven effectiveness in secondary and primary prevention of cardiovascular events, but is also associated with an increased risk of major bleeding events. For primary prevention, this absolute risk must be carefully weighed against the benefits of aspirin; such assessments are currently limited by a lack of data from general populations. Methods Systematic searches of Medline and Embase were conducted to identify observational studies published between 1946 and 4 March 2015 that reported the risks of gastrointestinal (GI) bleeding or intracranial hemorrhage (ICH) with long-term, low-dose aspirin (75–325 mg/day). Pooled estimates of the relative risk (RR) for bleeding events with aspirin versus non-use were calculated using random-effects models, based on reported estimates of RR (including odds ratios, hazard ratios, incidence rate ratios and standardized incidence ratios) in 39 articles. Findings The incidence of GI bleeding with low-dose aspirin was 0.48–3.64 cases per 1000 person-years, and the overall pooled estimate of the RR with low-dose aspirin was 1.4 (95% confidence interval [CI]: 1.2–1.7). For upper and lower GI bleeding, the RRs with low-dose aspirin were 2.3 (2.0–2.6) and 1.8 (1.1–3.0), respectively. Neither aspirin dose nor duration of use had consistent effects on RRs for upper GI bleeding. The estimated RR for ICH with low-dose aspirin was 1.4 (1.2–1.7) overall. Aspirin was associated with increased bleeding risks when combined with non-steroidal anti-inflammatory drugs, clopidogrel and selective serotonin reuptake inhibitors compared with monotherapy. By contrast, concomitant use of proton pump inhibitors decreased upper GI bleeding risks relative to aspirin monotherapy. Conclusions The risks of major bleeding with low-dose aspirin in real-world settings are of a similar magnitude to those reported in randomized trials. These data will help inform clinical judgements regarding the use of low-dose aspirin

  14. Optimal dose-response relationships in voice therapy.

    Science.gov (United States)

    Roy, Nelson

    2012-10-01

    Like other areas of speech-language pathology, the behavioural management of voice disorders lacks precision regarding optimal dose-response relationships. In voice therapy, dosing can presumably vary from no measurable effect (i.e., no observable benefit or adverse effect), to ideal dose (maximum benefit with no adverse effects), to doses that produce toxic or harmful effects on voice production. Practicing specific vocal exercises will inevitably increase vocal load. At ideal doses, these exercises may be non-toxic and beneficial, while at intermediate or high doses, the same exercises may actually be toxic or damaging to vocal fold tissues. In pharmacology, toxicity is a critical concept, yet it is rarely considered in voice therapy, with little known regarding "effective" concentrations of specific voice therapies vs "toxic" concentrations. The potential for vocal fold tissue damage related to overdosing on specific vocal exercises has been under-studied. In this commentary, the issue of dosing will be explored within the context of voice therapy, with particular emphasis placed on possible "overdosing".

  15. Right dose, right now: using big data to optimize antibiotic dosing in the critically ill.

    Science.gov (United States)

    Elbers, Paul W G; Girbes, Armand; Malbrain, Manu L N G; Bosman, Rob

    2015-01-01

    Antibiotics save lives and are essential for the practice of intensive care medicine. Adequate antibiotic treatment is closely related to outcome. However this is challenging in the critically ill, as their pharmacokinetic profile is markedly altered. Therefore, it is surprising that critical care physicians continue to rely on standard dosing regimens for every patient, regardless of the actual clinical situation. This review outlines the pharmacokinetic and pharmacodynamic principles that underlie the need for individualized and personalized drug dosing. At present, therapeutic drug monitoring may be of help, but has major disadvantages, remains unavailable for most antibiotics and has produced mixed results. We therefore propose the AutoKinetics concept, taking decision support for antibiotic dosing back to the bedside. By direct interaction with electronic patient records, this opens the way for the use of big data for providing the right dose at the right time in each patient.

  16. Dose dependency of the frequency of micronucleated binucleated clone cells and of division related median clone sizes difference. Pt. 2

    International Nuclear Information System (INIS)

    Hagemann, G,; Kreczik, A.; Treichel, M.

    1996-01-01

    Following irradiation of the progenitor cells the clone growth of CHO cells decreases as a result of cell losses. Lethally acting expressions of micronuclei are produced by heritable lethal mutations. The dependency of the frequency of micronucleated binucleated clone cells and of the median clone sizes difference on the radiation dose was measured and compared to non-irradiated controls. Using the cytokinesis-block-micronucleus-method binucleated cells with micronuclei were counted as ratio of all binucleated cells within a clone size distribution. This ratio (shortened: micronucleus yield) was determined for all clone size distributions, which had been exposed to different irradiation doses and incubation times. The micronucleus yields were compared to the corresponding median clone sizes differences. The micronucleus yield is linearly dependent on the dose and is independent of the incubation time. The same holds true for the division related median clone sizes difference, which as a result is also linearly dependent on the micronucleus yield. Due to the inevitably errors of the cell count of micronucleated binucleated cells, an automatic measurement of the median clone sizes differences is the preferred method for evaluation of cellular radiation sensitivity for heritable lethal mutations. This value should always be determined in addition, if clone survival fractions are used as predictive test because it allows for an estimation of the remission probability of surviving cells. (orig.) [de

  17. A 3-lever discrimination procedure reveals differences in the subjective effects of low and high doses of MDMA.

    Science.gov (United States)

    Harper, David N; Langen, Anna-Lena; Schenk, Susan

    2014-01-01

    Drug discrimination studies have suggested that the subjective effects of low doses of (±)3,4-methylenedioxymethamphetamine (MDMA) are readily differentiated from those of d-amphetamine (AMPH) and that the discriminative stimulus properties are mediated by serotonergic and dopaminergic mechanisms, respectively. Previous studies, however, have primarily examined responses to doses that do not produce substantial increases in extracellular dopamine. The present study determined whether doses of MDMA that produce increases in synaptic dopamine would also produce subjective effects that were more like AMPH and were sensitive to pharmacological manipulation of D1-like receptors. A three-lever drug discrimination paradigm was used. Rats were trained to respond on different levers following saline, AMPH (0.5mg/kg, IP) or MDMA (1.5mg/kg, IP) injections. Generalization curves were generated for a range of different doses of both drugs and the effect of the D1-like antagonist, SCH23390 on the discriminative stimulus effects of different doses of MDMA was determined. Rats accurately discriminated MDMA, AMPH and saline. Low doses of MDMA produced almost exclusive responding on the MDMA lever but at doses of 3.0mg/kg MDMA or higher, responding shifted to the AMPH lever. The AMPH response produced by higher doses of MDMA was attenuated by pretreatment with SCH23390. The data suggest that low doses and higher doses of MDMA produce distinct discriminative stimuli. The shift to AMPH-like responding following administration of higher doses of MDMA, and the decrease in this response following administration of SCH23390 suggests a dopaminergic component to the subjective experience of MDMA at higher doses. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A patient dose survey for femoral arteriogram diagnostic radiographic examinations using a dose-area product meter

    International Nuclear Information System (INIS)

    Thwaites, J.H.; Rafferty, M.W.; Gray, N.; Black, J.; Stock, B.

    1996-01-01

    A patient dose survey was carried out for femoral arteriogram procedures at the Sir Charles Gairdner Hospital. The procedure involves fluoroscopy to the pelvic region to locate a guide wire and catheter, followed by a series of radiographs extending from the pelvic area to the feet to form a collage image of the entire arterial system. Radiographs are taken whilst a bolus of contrast media is injected into the arterial system. A dose-area product meter was used to determine the dose-area product delivered to patients. Radiographic and patient details were logged with dose-area product for each part of each procedure. Mean energy imparted, mean effective dose and effective dose equivalent are calculated for the examinations. Calculated effective doses are shown to produce results consistent with those of other authors. We present a method for dealing with a complex radiographic procedure including multiple radiographs and fluoroscopy in an attempt to provide a simple way of calculating effective dose from which a general risk factor can be determined. The effective dose varies considerably from examination to examination due to the large range in the number of radiographs taken in any one procedure. A useful index can be obtained by logging the number of radiographs in each region, and fluoroscopy time, from which the effective dose may be easily calculated. These measurements extend a continuing survey of doses for common diagnostic radiographic examinations which previously included the simple examinations: lumbar spine, abdoment and pelvis. (author)

  19. K$^{-}$ over K$^{+}$ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy

    CERN Document Server

    Akhunzyanov, R.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtsev, V.E.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr., M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pesaro, G.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmieden, H.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veit, B.M.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Wilfert, M.; Windmolders, R.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.

    2018-01-01

    The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, the results contradict expectations obtained using the formalism of (next-to-)leading order perturbative quantum chromodynamics. This may imply that cross-section factorisation or/and universality of (kaon) fragmentation functions do not hold. Our studies suggest that within this formalism an additional correction may be required, which takes into account th...

  20. Zero crossing and ratio spectra derivative spectrophotometry for the dissolution tests of amlodipine and perindopril in their fixed dose formulations

    Directory of Open Access Journals (Sweden)

    Maczka Paulina

    2014-06-01

    Full Text Available Dissolution tests of amlodipine and perindopril from their fixed dose formulations were performed in 900 mL of phosphate buffer of pH 5.5 at 37°C using the paddle apparatus. Then, two simple and rapid derivative spectrophotometric methods were used for the quantitative measurements of amlodipine and perindopril. The first method was zero crossing first derivative spectrophotometry in which measuring of amplitudes at 253 nm for amlodipine and 229 nm for perindopril were used. The second method was ratio derivative spectrophotometry in which spectra of amlodipine over the linearity range were divided by one selected standard spectrum of perindopril and then amplitudes at 242 nm were measured. Similarly, spectra of perindopril were divided by one selected standard spectrum of amlodipine and then amplitudes at 298 nm were measured. Both of the methods were validated to meet official requirements and were demonstrated to be selective, precise and accurate. Since there is no official monograph for these drugs in binary formulations, the dissolution tests and quantification procedure presented here can be used as a quality control test for amlodipine and perindopril in respective dosage forms.

  1. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  2. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  3. Risk of low-doses in radiodiagnosis; Risque des faibles doses en radiodiagnostic. Mythes, reglementation et rationalite

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Sarrazin, J.L.; Le Frian, G.; Soulie, D.; Leveque, C. [Hopital d`Instruction des Armees du Val-de-Grace, 75 - Paris (France)

    1997-12-31

    The effect of low doses of X-rays is inferred from the indubitable effects of high doses in human carcinogenesis, Genetic and teratogenic effects are mainly inferred from animal experimentation because clinical surveys of irradiated pregnant women have failed to demonstrate such consequences in the children, except for mental retardation after Japanese atomic bombing. Since no evidence of carcinogenic effect has been produced by epidemiological studies for doses lower than 500 mSv. the estimation of the risk due to low doses has been extrapolated from the linear relation between dose and cancers at high doses. Such an extrapolation gives a maximal risk which is falsely used as a probability of cancer. The actual risk lies between zero and this maximal number, and many epidemiologic surveys in people receiving doses much higher than the mean level of background irradiation failed to demonstrate higher rate of cancer. The explanation of this fact, which is supported by the most recent biological data, is the efficacy of the DNA repair system at low level of exposure to ionizing radiations. We expose the principles of regulation of radioprotection for workers, and give estimations of the doses delivered to the patients and the personnel by diagnostic investigations, by comparing these doses with those of natural irradiation. Practical aspect for conventional and computed radiology are exposed for patients and workers. (authors)

  4. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Tahmasebi-Birgani

    2014-04-01

    Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.

  5. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    It is necessary to use reproducible and stable indicators to evaluate biological responses to long term irradiation at low dose-rate. They should be simple and quantitative enough to produce the results statistically accurate, because we have to analyze the subtle changes of biological responses around background level at low dose. For these purposes we chose micronucleus formation of U2OS, a human osteosarcoma cell line, as indicators of biological responses. Cells were exposed to gamma ray in irradiation rom bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide, respectively. the number of binuclear cells bearing micronuclei was counted under a fluorescence microscope. Dose rate in the irradiation room was measured with PLD. Dose response of PLD is linear between 1 mGy to 10 Gy, and standard deviation of triplicate count was several percent of mean value. We fitted statistically dose response curves to the data, and they were plotted on the coordinate of linearly scale response and dose. The results followed to the straight line passing through the origin of the coordinate axes between 0.1-5 Gy, and dose and does rate effectiveness factor (DDREF) was less than 2 when cells were irradiated for 1-10 min. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose above 0.1 Gy when 5,000 binuclear cells were analyzed. In contrast, dose response curves never followed LNT, when cells were irradiated for 7 to 124 days. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose below 6 Gy, when cells were continuously irradiated for 124 days. These results suggest that dose response curve of biological reaction is remarkably affected by exposure

  6. Implementation of three-dimensional planning in brachytherapy of high dose rate for gynecology therapies; Implementacao de planejamento tridimensional em braquiterapia de alta taxa de dose para tratamentos ginecologicos

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Camila Pessoa de

    2015-09-01

    This work aims to implement the three-dimensional (3D) planning for gynecological brachytherapy treatments. For this purpose, tests of acceptance and commissioning of brachytherapy equipment were performed to establish a quality and periodic assurance program. For this purpose, an important step was searching for a material to be used as a dummy source, since the applicators do not have any specific dummy. In addition, the validation of the use of applicators library was made for reconstruction in computed tomography (CT) and magnetic resonance imaging (MRI). In order to validate 3D planning, comparison of doses in dose assessment points used in bidimensional (2D) plans have been performed with volumetric doses to adjacent organs to the tumor. Finally, a protocol was established for 3D brachytherapy planning alternately using magnetic resonance image (MRI) and CT images, making evaluation of the dose in the tumor through the recording of MR and CT images. It was not possible to find a suitable material that could be used as dummy in MRI. However, the acquisition of the license's library for the applicators made possible the 3D planning based on MRI. No correlation was found between volumetric and specific doses analyzed, showing the importance of the implementation of 3D planning. The average ratio between D{sub 2cc} and ICRU{sub Bladder} dose was 1,74, 22% higher than the ratio found by others authors. For the rectum, D{sub 2cc} was less than dose point for 60% of fractions; the average difference was 12,5%. The average ratio between D{sub 2cc} and point dose rectum, 0,85, is equivalent to the value showed by Kim et al, 0,91. The D{sub 2cc} for sigmoid was 69% higher than point dose used, unless it was not possible compare this value, since the sigmoid point used in the 2D procedures is not used in others institutes. Relative dose in 2 cc of sigmoid was 57% of the prescription dose, the same value was found by in literature. This work enabled the

  7. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    Science.gov (United States)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  9. Beta Bremsstrahlung dose in concrete shielding

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C., E-mail: manjunatha@rediffmail.com [Department of Physics, Government college for women, Kolar 563101, Karnataka (India); Chandrika, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India); Rudraswamy, B. [Department of Physics, Bangalore University, Bangalore 560056, Karnataka (India); Sankarshan, B.M. [Shravana, 592, Ist Cross, Behind St.Anne s School, PC Extension, Kolar 563101, Karnataka (India)

    2012-05-11

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides ({sup 32}P, {sup 89}Sr, {sup 90}Sr-{sup 90}Y, {sup 90}Y, {sup 91}Y, {sup 208}Tl, {sup 210}Bi, {sup 234}Pa and {sup 40}K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to {sup 90}Sr-{sup 90}Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Z{sub mod}) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study. - Highlights: Black-Right-Pointing-Pointer Betas released in a nuclear reactor interact with shielding concrete and produces Bremsstrahlung. Black-Right-Pointing-Pointer The present work formulated a new method to evaluate the Bremsstrahlung spectrum and dose in concrete. Black-Right-Pointing-Pointer Presented data in concrete provide a quick and convenient reference for radiation protection.

  10. Dose reduction strategies for cardiac CT

    International Nuclear Information System (INIS)

    Midgley, S.M.; Einsiedel, P.; Langenberg, F.; Lui, E.

    2010-01-01

    Full text: Recent advances in CT technology have produced brighter X-ray sources. gantries capable of increased rotation speeds, faster scintil lation materials arranged into multiple rows of detectors, and associated advances in 3D reconstruction methods. These innovations have allowed multi-detector CT to be turned to the diagnosis of cardiac abnormalities and compliment traditional imaging techniques such as coronary angiography. This study examines the cardiac imaging solution offered by the Siemens Somatom Definition Dual Source 64 slice CT scanner. Our dose reduction strategies involve optimising the data acquisition protocols according to diagnostic task, patient size and heart rate. The relationship between scan parameters, image quality and patient dose is examined and verified against measurements with phantoms representing the standard size patient. The dose reduction strategies are reviewed with reference to survey results of patient dose. Some cases allow the insertion of shielding to protect radiosensitive organs, and results are presented to quantify the dose saving.

  11. Radical radiotherapy for invasive bladder cancer: What dose and fractionation schedule to choose?

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hart, Guus; Schneider, Christoph; Sminia, Peter

    2006-01-01

    Purpose: To establish the α/β ratio of bladder cancer from different radiotherapy schedules reported in the literature and provide guidelines for the design of new treatment schemes. Methods and Materials: Ten external beam radiotherapy (EBRT) and five brachytherapy schedules were selected. The biologically effective dose (BED) of each schedule was calculated. Logistic modeling was used to describe the relationship between 3-year local control (LC3y) and BED. Results: The estimated α/β ratio was 13 Gy (95% confidence interval [CI], 2.5-69 Gy) for EBRT and 24 Gy (95% CI, 1.3-460 Gy) for EBRT and brachytherapy combined. There is evidence for an overall dose-response relationship. After an increase in total dose of 10 Gy, the odds of LC3y increase by a factor of 1.44 (95% CI, 1.23-1.70) for EBRT and 1.47 (95% CI, 1.25-1.72) for the data sets of EBRT and brachytherapy combined. Conclusion: With the clinical data currently available, a reliable estimation of the α/β ratio for bladder cancer is not feasible. It seems reasonable to use a conventional α/β ratio of 10-15 Gy. Dose escalation could significantly increase local control. There is no evidence to support short overall treatment times or large fraction sizes in radiotherapy for bladder cancer

  12. Effects of area postrema lesions on taste aversions produced by treatment with WR-2721 in the rat

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1986-01-01

    The conditioned taste aversion procedure was used to further assess some behavioral effects of treatment with the putative radioprotectant WR-2721 and the role of the area postrema in mediating the behavioral effects of treatment. Treatment with 40, 150 or 300 mg/kg WR-2721 produced dose-dependent changes in sucrose intake in both control rats and rats with area postrema lesions. The effectiveness of the lesion in disrupting the acquisition of an aversion varied as a function of the dose administered, with the lesions producing the greatest disruption of aversion learning at the lowest dose and little disruption at the highest dose tested. At all dose levels, sucrose intake was greater for the rats with area postrema lesions than for the sham-operated control rats. Treatment with WR-2721 also produced significant decreases in total fluid intake, particularly at the higher dose levels. The results are discussed as indicating that treatment with WR-2721 produces highly toxic effects on behavior and that the use of the compound as a radioprotectant for radiotherapy requires additional assessment of its effects on brain function and behavior

  13. Performance evaluation using bootstrapping DEA techniques: Evidence from industry ratio analysis

    OpenAIRE

    Halkos, George; Tzeremes, Nickolaos

    2010-01-01

    In Data Envelopment Analysis (DEA) context financial data/ ratios have been used in order to produce a unified measure of performance metric. However, several scholars have indicated that the inclusion of financial ratios create biased efficiency estimates with implications on firms’ and industries’ performance evaluation. There have been several DEA formulations and techniques dealing with this problem including sensitivity analysis, Prior-Ratio-Analysis and DEA/ output–input ratio analysis ...

  14. Positron annihilation studies of silicon-rich SiO2 produced by high dose ion implantation

    International Nuclear Information System (INIS)

    Ghislotti, G.; Nielsen, B.; Asoka-Kumar, P.; Lynn, K.G.; Di Mauro, L.F.; Corni, F.; Tonini, R.

    1997-01-01

    Positron annihilation spectroscopy (PAS) is used to study Si-rich SiO 2 samples prepared by implantation of Si (160 keV) ions at doses in the range 3x10 16 endash 3x10 17 cm -2 and subsequent thermal annealing at high temperature (up to 1100 degree C). Samples implanted at doses higher than 5x10 16 cm -2 and annealed above 1000 degree C showed a PAS spectrum with an annihilation peak broader than the unimplanted sample. We discuss how these results are related to the process of silicon precipitation inside SiO 2 . copyright 1997 American Institute of Physics

  15. Effective dose in abdominal digital radiography: Patient factor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Sung; Koo, Hyun Jung; Park, Jung Hoon; Cho, Young Chul; Do, Kyung Hyun [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of); Yang, Hyung Jin [Dept. of Medical Physics, Korea University, Seoul (Korea, Republic of)

    2017-08-15

    To identify independent patient factors associated with an increased radiation dose, and to evaluate the effect of patient position on the effective dose in abdominal digital radiography. We retrospectively evaluated the effective dose for abdominal digital radiography in 222 patients. The patients were divided into two groups based on the cut-off dose value of 0.311 mSv (the upper third quartile of dose distribution): group A (n = 166) and group B (n = 56). Through logistic regression, independent factors associated with a larger effective dose were identified. The effect of patient position on the effective dose was evaluated using a paired t-test. High body mass index (BMI) (≥ 23 kg/m2), presence of ascites, and spinal metallic instrumentation were significantly associated with a larger effective dose. Multivariate logistic regression analysis revealed that high BMI [odds ratio (OR), 25.201; p < 0.001] and ascites (OR, 25.132; p < 0.001) were significantly associated with a larger effective dose. The effective dose was significantly lesser (22.6%) in the supine position than in the standing position (p < 0.001). High BMI and ascites were independent factors associated with a larger effective dose in abdominal digital radiography. Significant dose reduction in patients with these factors may be achieved by placing the patient in the supine position during abdominal digital radiography.

  16. Energy dependence of contrast-detail-dose and object-detectability-dose curves for CT scanners

    International Nuclear Information System (INIS)

    Wagner, L.K.; Cohen, G.

    1982-01-01

    The energy dependence of contrast-detail-dose (CdD) and object-detectability-dose (OdD) curves for computed tomographic scanners is investigated. The effects of changes in beam energy on perceptibility are shown to be due to changes in signal-to-noise ratio resulting from changes in contrast and photon statistics. Energy-dependence analysis of OdD curves is shown to depend on the atomic composition of the phantom used to generate the curves, while such an analysis of CdD curves is independent of the atomic composition of the phantom. It is also shown that any OdD curve can be generated from CdD curves and that use of this fact rectifies any potential energy-dependent interpretation of CdD curves

  17. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  18. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  19. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  20. TU-G-204-04: A Unified Strategy for Bi-Factorial Optimization of Radiation Dose and Contrast Dose in CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sahbaee, P; Zhang, Y; Solomon, J; Becchetti, M; Segars, P; Samei, E [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To substantiate the interdependency of contrast dose, radiation dose, and image quality in CT towards the patient- specific optimization of the imaging protocols Methods: The study deployed two phantom platforms. A variable sized (12, 18, 23, 30, 37 cm) phantom (Mercury-3.0) containing an iodinated insert (8.5 mgI/ml) was imaged on a representative CT scanner at multiple CTDI values (0.7–22.6 mGy). The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast-to-noise ratio (CNR), were calculated for 16 iodine-concentration levels (0–8.5 mgI/ml). The analysis was extended to a recently developed suit of 58 virtual human models (5D XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was “imaged” using a simulation platform (CatSim, GE). 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The ratios of change in iodine-concentration versus dose (IDR) to yield a constant change in CNR were calculated for each patient size. Results: Mercury phantom results show the image-quality size- dependence on CTDI and IC levels. For desired image-quality values, the iso-contour-lines reflect the trade off between contrast-material and radiation doses. For a fixed iodine-concentration (4 mgI/mL), the IDR values for low (1.4 mGy) and high (11.5 mGy) dose levels were 1.02, 1.07, 1.19, 1.65, 1.54, and 3.14, 3.12, 3.52, 3.76, 4.06, respectively across five sizes. The simulation data from XCAT models confirmed the empirical results from Mercury phantom. Conclusion: The iodine-concentration, image quality, and radiation dose are interdependent. The understanding of the relationships between iodine-concentration, image quality, and radiation dose will allow for a more comprehensive optimization of CT imaging devices and techniques

  1. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  2. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  3. The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range

    International Nuclear Information System (INIS)

    Wieser, A.; Lettau, C.; Fill, U.; Regulla, D.F.

    1993-01-01

    The yield of radicals induced by ionizing radiation in the amino acid alanine and its quantification by ESR spectroscopy has proven excellent reproducibility. Those radicals trapped in the crystal lattice are prevented from recombination providing a thermally very stable system. This allows alanine to be applied as a transfer dosemeter. With paraffin-alanine probes ESR dosimetry can be performed with a standard deviation of ± 0.5% in the dose range from 20 Gy up to 100 kGy. At 1 Gy dose level the error increases to ± 6%. This dose level is three orders of magnitude higher than the calculated detection threshold for alanine with modern X-band ESR spectrometers. It was found that the poor standard deviation at the 1 Gy dose level, is not mainly produced by a bad signal-to-noise ratio but by a variable non-radiation induced ESR background signal from the alanine probes within a batch. In the present study the main sources of error for ESR dosimetry in the dose range below 20 Gy were analyzed. The influences of the production process, UV light and humidity upon the ESR background signal from paraffin-alanine probes were investigated. Measurements are shown indicating a second stable structure of the alanine radical at room temperature. (author)

  4. Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography

    International Nuclear Information System (INIS)

    Boos, Johannes; Kroepil, Patric; Klee, Dirk; Heusch, Philipp; Schimmoeller, Lars; Schaper, Joerg; Antoch, Gerald; Lanzman, Rotem S.

    2014-01-01

    Organ-specific dose reduction significantly reduces the radiation exposure of radiosensitive organs. The purpose of this study was to assess the impact of a novel organ-specific dose reduction algorithm on image quality of pediatric chest CT. We included 28 children (mean age 10.9 ± 4.8 years, range 3-18 years) who had contrast-enhanced chest CT on a 128-row scanner. CT was performed at 100 kV using automated tube current modulation and a novel organ-specific dose-reduction algorithm (XCare trademark; Siemens, Forchheim, Germany). Seven children had a previous chest CT performed on a 64-row scanner at 100 kV without organ-specific dose reduction. Subjective image quality was assessed using a five-point scale (1-not diagnostic; 5-excellent). Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were assessed in the descending aorta. Overall mean subjective image quality was 4.1 ± 0.6. In the subgroup of the seven children examined both with and without organ-specific dose reduction, subjective image quality was comparable (score 4.4 ± 0.5 with organ-specific dose reduction vs. 4.4 ± 0.7 without it; P > 0.05). There was no significant difference in mean signal-to-noise ratio and contrast-to-noise ratio with organ-specific dose reduction (38.3 ± 10.1 and 28.5 ± 8.7, respectively) and without the reduction (35.5 ± 8.5 and 26.5 ± 7.8, respectively) (P > 0.05). Volume computed tomography dose index (CTDI vol ) and size-specific dose estimates did not differ significantly between acquisitions with the organ-specific dose reduction (1.7 ± 0.8 mGy) and without the reduction (1.7 ± 0.8 mGy) (P > 0.05). Organ-specific dose reduction does not have an impact on image quality of pediatric chest CT and can therefore be used in clinical practice to reduce radiation dose of radiosensitive organs such as breast and thyroid gland. (orig.)

  5. The National Dose Registration and Information System: Dose distributions in the Netherlands over the period 1989-1993

    International Nuclear Information System (INIS)

    Dijk, J.W.E. van; Julius, H.W.; Bogaerde, M.A. van de

    1994-01-01

    In 1988 the Ministry of Social Affairs and Employment commissioned TNO Radiological Service to set up a National Dose REgistration and Information System (NDRIS). The government had three reasons in view to build NDRIS: To improve radiation protection by supervising the occupational doses of radiation workers by using one central database system; To improve the reliability of long term storage of dose data; To improve the possibilities for statistical analysis of occupational doses to guide policy making. Each approved dosimetry service (ADS) in the country sends its dose information to NDRIS on a monthly basis. IN its turn NDRIS sends back for each worker monitored by that ADS, the integrated dose as measured by any ADS. This creates the possibility for each ADS to report to the workers their total annual dose irrespectively whether they work for more than one employer or are monitored by more than one ADS, either simultaneously or successively in the course of the year. European legislation requires that the occupational dose should be controlled in this way. The availability of the centralized database replaces the need of a radiation passbook for national use. The passbook that is needed by radiation workers during interstate travelling can be produced using data from NDRIS

  6. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  7. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  8. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  9. How to optimize therapeutic ratio in brachytherapy of head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Simon, J.M.; Hardiman, C.; Gerbaulet, A.

    1998-01-01

    Considerable experience has been accumulated with low dose rate (LDR) brachytherapy in the treatment of squamous cell carcinoma of the oral cavity and oropharynx, 4 cm or less in diameter. Recent analysis of large clinical series provided data indicating that modalities of LDR brachytherapy should be optimized in treating these tumours for increasing therapeutic ratio. LDR brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with the last two modalities are discussed in comparison with those achieved with LDR brachytherapy. (orig.)

  10. Standard Guide for Irradiation of Fresh Agricultural Produce as a Phytosanitary Treatment

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide provides procedures for the radiation processing of fresh agricultural produce, for example, fruits, vegetables, and cut flowers, as a phytosanitary treatment. This guide is directed primarily toward the treatment needed to control regulated pests commonly associated with fresh agricultural produce. 1.2 The typical absorbed dose range used for phytosanitary treatments is between 150 gray (Gy) and 600 gray (Gy). The practical minimum or maximum dose of a treatment may be higher or lower than this range, depending on the type of pest to be controlled and the radiation tolerance of a particular type of fruit. If the minimum effective dose necessary to achieve the desired phytosanitary effect is greater than the radiation tolerance of the produce, then irradiation is not an appropriate treatment (see ). This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and hea...

  11. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  12. Effect of Temperature on Reproduction and Sex Ratio of Guppy (Poecilia reticulata Peters)

    OpenAIRE

    H. Arfah; S. Mariam; . Alimuddin

    2007-01-01

    Water temperature could affect the reproduction of broodstock and sex ratio of progeny.  In this study, broodstock of guppy (Poecilia reticulata Peters) was reared in different temperature to determine its effect on reproduction of broodstock and sex ratio of their progeny. The result of study show that broodstock reared at 27°C produced more fry (16 males mean) than that of 30°C (10 males), while broodstock reared at 33°C produced no progeny.  Percentage of male fish produced by broodstock r...

  13. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    Ostrouchov, G.

    2001-01-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the amount of bias also varies

  14. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses (yearly dose of record). It is usually assumed that the dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. In our previous work with weekly data, a probability distribution was used to describe an individual's dose during a specific period of time and statistical methods were developed for estimating it from weekly film dosimetry data. This study showed that the yearly dose of record systematically underestimates doses for Oak Ridge National Laboratory (ORNL) workers. This could result in biased estimates of dose-response coefficients and their standard errors. The results of this evaluation raise serious questions about the suitability of the yearly dose of record for direct use in low-dose studies of nuclear industry workers. Here, we extend our previous work to use full information in Pocket meter data and develop the Data Synthesis for Individual Dose Estimation (DSIDE) methodology. Although the DSIDE methodology in this study is developed in the context of daily and weekly data to produce a cumulative yearly dose estimate, in principle it is completely general and can be extended to other time period and measurement combinations. The new methodology takes into account the ''measurement error'' that is produced by the film and pocket-meter dosimetry systems, the biases introduced by policies that lead to recording left-censored doses as zeros, and other measurement and recording practices. The DSIDE method is applied to a sample of dose histories obtained from hard copy dosimetry records at ORNL for the years 1945 to 1955. First, the rigorous addition of daily pocket-meter information shows that the negative bias is generally more severe than was reported in our work based on weekly film data only, however, the

  15. Dose and image quality in low-dose CT for urinary stone disease: added value of automatic tube current modulation and iterative reconstruction techniques

    International Nuclear Information System (INIS)

    Soenen, Olivier; Balliauw, Christophe; Oyen, Raymond; Zanca, Federica

    2017-01-01

    The aim of this study was to compare dose and image quality (IQ) of a baseline low-dose computed tomography (CT) (fix mAs) vs. an ultra-low-dose CT (automatic tube current modulation, ATCM) in patients with suspected urinary stone disease and to assess the added value of iterative reconstruction. CT examination was performed on 193 patients (103 baseline low-dose, 90 ultra-low-dose). Filtered back projection (FBP) was used for both protocols, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) was used for the ultra-low-dose protocol only. Dose and ureter stones information were collected for both protocols. Subjective IQ was assessed by two radiologists scoring noise, visibility of the ureter and overall IQ. Objective IQ (contrast-to-noise ratio, CNR) was assessed for the ultra-low-dose protocol only (FBP and SAFIRE). The ultra-low-dose protocol (ATCM) showed a 22% decrease in mean effective dose ( p < 0.001) and improved visibility of the pelvic ureter (p = 0.02). CNR was higher for SAFIRE (p < 0.0001). SAFIRE improves the objective IQ, but not the subjective IQ for the chosen clinical task. (authors)

  16. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  17. Rotator Cuff Strength Ratio and Injury in Glovebox Workers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Amelia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-30

    Rotator cuff integrity is critical to shoulder health. Due to the high workload imposed upon the shoulder while working in an industrial glovebox, this study investigated the strength ratio of the rotator cuff muscles in glovebox workers and compared this ratio to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forces produced in the motions of shoulder internal and external rotation. Results showed this population to have shoulder strength ratios that were significantly different from the healthy norm. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature of glovebox workers in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development.

  18. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  19. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    Science.gov (United States)

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  20. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    Science.gov (United States)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-07-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  1. Tissue classifications in Monte Carlo simulations of patient dose for photon beam tumor treatments

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Chao, Tsi-Chian; Lee, Chung-Chi; Tung-Chieh Chang, Joseph; Tung, Chuan-Jong

    2010-01-01

    The purpose of this work was to study the calculated dose uncertainties induced by the material classification that determined the interaction cross-sections and the water-to-material stopping-power ratios. Calculations were made for a head- and neck-cancer patient treated with five intensity-modulated radiotherapy fields using 6 MV photon beams. The patient's CT images were reconstructed into two voxelized patient phantoms based on different CT-to-material classification schemes. Comparisons of the depth-dose curve of the anterior-to-posterior field and the dose-volume-histogram of the treatment plan were used to evaluate the dose uncertainties from such schemes. The results indicated that any misassignment of tissue materials could lead to a substantial dose difference, which would affect the treatment outcome. To assure an appropriate material assignment, it is desirable to have different conversion tables for various parts of the body. The assignment of stopping-power ratio should be based on the chemical composition and the density of the material.

  2. Dose reduction through an ALARA program at Almaraz NPP

    International Nuclear Information System (INIS)

    Leal, A.; Sustacha, D.; Aneiros, J.M.

    1987-01-01

    Radiation exposure is in keeping with the rate at which nuclear power production is increased. Therefore, it becomes more and more important that nuclear power producing plants develop an effective dose optimization and minimization [as-low-as-rasonably-achievable (ALARA)] program. Although radiation exposure suffered by the workers is carefully kept below administrative limits, there is a moral obligation to keep these exposures as low as possible. This requirement becomes apparent in the ALARA principle, supported and accepted by all countries with nuclear power plants in operation. Empresarios Agrupados (a Spanish architect engineer company) collaborates with nuclear power producing plants in an effort to maintain the collective ALARA doses through the efforts of a group of engineers specializing in dose minimization and optimization techniques. This group is organized as a radiation protection and maintenance team (ALARA team)

  3. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  4. Contribution of maternal radionuclide burdens to prenatal radiation doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 μCi into a woman's blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors

  5. Contribution of maternal radionuclide burdens to prenatal radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Hui, T.E.

    1996-05-01

    This report describes approaches to calculating and expressing radiation doses to the embryo/fetus from internal radionuclides. Information was obtained for selected, occupationally significant radioelements that provide a spectrum of metabolic and dosimetric characteristics. Evaluations are also presented for inhaled inert gases and for selected radiopharmaceuticals. Fractional placental transfer and/or ratios of concentration in the embryo/fetus to that in the woman were calculated for these materials. The ratios were integrated with data from biokinetic transfer models to estimate radioactivity levels in the embryo/fetus as a function of stage of pregnancy and time after entry into the transfer compartment or blood of the pregnant woman. These results are given as tables of deposition and retention in the embryo/fetus as a function of gestational age at exposure and elapsed time following exposure. Methodologies described by MIRD were extended to formalize and describe details for calculating radiation absorbed doses to the embryo/fetus. Calculations were performed using a model situation that assumed a single injection of 1 {mu}Ci into a woman`s blood; independent calculations were performed for administration at successive months of pregnancy. Gestational -stage-dependent dosimetric tabulations are given together with tables of correlations and relationships. Generalized surrogate dose factors and categorizations are provided in the report to provide for use in operational radiological protection situations. These approaches to calculation yield radiation absorbed doses that can be converted to dose equivalent by multiplication by quality factor. Dose equivalent is the most common quantity for stating prenatal dose limits in the United States and is appropriate for the types of effect that are usually associated with prenatal exposure. If it is desired to obtain alternatives for other purposes, this value can be multiplied by appropriate weighting factors.

  6. Altered operant responding for motor reinforcement and the determination of benchmark doses following perinatal exposure to low-level 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Markowski, V P; Zareba, G; Stern, S; Cox, C; Weiss, B

    2001-06-01

    Pregnant Holtzman rats were exposed to a single oral dose of 0, 20, 60, or 180 ng/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the 18th day of gestation. Their adult female offspring were trained to respond on a lever for brief opportunities to run in specially designed running wheels. Once they had begun responding on a fixed-ratio 1 (FR1) schedule of reinforcement, the fixed-ratio requirement for lever pressing was increased at five-session intervals to values of FR2, FR5, FR10, FR20, and FR30. We examined vaginal cytology after each behavior session to track estrous cyclicity. Under each of the FR values, perinatal TCDD exposure produced a significant dose-related reduction in the number of earned opportunities to run, the lever response rate, and the total number of revolutions in the wheel. Estrous cyclicity was not affected. Because of the consistent dose-response relationship at all FR values, we used the behavioral data to calculate benchmark doses based on displacements from modeled zero-dose performance of 1% (ED(01)) and 10% (ED(10)), as determined by a quadratic fit to the dose-response function. The mean ED(10) benchmark dose for earned run opportunities was 10.13 ng/kg with a 95% lower bound of 5.77 ng/kg. The corresponding ED(01) was 0.98 ng/kg with a 95% lower bound of 0.83 ng/kg. The mean ED(10) for total wheel revolutions was calculated as 7.32 ng/kg with a 95% lower bound of 5.41 ng/kg. The corresponding ED(01) was 0.71 ng/kg with a 95% lower bound of 0.60. These values should be viewed from the perspective of current human body burdens, whose average value, based on TCDD toxic equivalents, has been calculated as 13 ng/kg.

  7. Bone cancer from radium: canine dose response explains data for mice and humans

    International Nuclear Information System (INIS)

    Raabe, O.G.; Book, S.A.; Parks, N.J.

    1980-01-01

    Analysis of lifetime studies of 243 beagles with skeletal burdens of radium-226 shows that the distribution of bone cancers clusters about a linear function of the logarithms of radiation dose rate to the skeleton and time from exposure until death. Similar relations displaced by species-dependent response ratios also provide satisfactory descriptions of the reported data on deaths from primary bone cancers in people and mice exposed to radium-226. The median cumulative doses (or times) leading to death from bone tumors are 2.9 times larger for dogs than for mice and 3.6 times larger for people than for dogs. These response ratios are well correlated with the normal life expectancies. The cumulative radiation dose required to give significant risk of bone cancer is found to be much less at lower dose rates than at higher rates, but the time required for the tumors to be manifested is longer. At low dose rates, this time exceeds the normal life-span and appears as a practical threshold, which for bone cancer is estimated to occur at an average cumulative radiation dose to the skeleton of about 50 to 110 rads for the three species

  8. Transformer ratio enhancement experiment

    International Nuclear Information System (INIS)

    Gai, W.; Power, J. G.; Kanareykin, A.; Neasheva, E.; Altmark, A.

    2004-01-01

    Recently, a multibunch scheme for efficient acceleration based on dielectric wakefield accelerator technology was outlined in J.G. Power, W. Gai, A. Kanareykin, X. Sun. PAC 2001 Proceedings, pp. 114-116, 2002. In this paper we present an experimental program for the design, development and demonstration of an Enhanced Transformer Ratio Dielectric Wakefield Accelerator (ETR-DWA). The principal goal is to increase the transformer ratio R, the parameter that characterizes the energy transfer efficiency from the accelerating structure to the accelerated electron beam. We present here an experimental design of a 13.625 GHz dielectric loaded accelerating structure, a laser multisplitter producing a ramped bunch train, and simulations of the bunch train parameters required. Experimental results of the accelerating structure bench testing and ramped pulsed train generation with the laser multisplitter are shown as well. Using beam dynamic simulations, we also obtain the focusing FODO lattice parameters

  9. Effect on therapeutic ratio of planning a boosted radiotherapy dose to the dominant intraprostatic tumour lesion within the prostate based on multifunctional MR parameters

    Science.gov (United States)

    Payne, G S; deSouza, N M; Dearnaley, D; Morgan, V A; Morgan, S C; Partridge, M

    2014-01-01

    Objective: To demonstrate the feasibility of an 8-Gy focal radiation boost to a dominant intraprostatic lesion (DIL), identified using multiparametric MRI (mpMRI), and to assess the potential outcome compared with a uniform 74-Gy prostate dose. Methods: The DIL location was predicted in 23 patients using a histopathologically verified model combining diffusion-weighted imaging, dynamic contrast-enhanced imaging, T2 maps and three-dimensional MR spectroscopic imaging. The DIL defined prior to neoadjuvant hormone downregulation was firstly registered to MRI-acquired post-hormone therapy and subsequently to CT radiotherapy scans. Intensity-modulated radiotherapy (IMRT) treatment was planned for an 8-Gy focal boost with 74-Gy dose to the remaining prostate. Areas under the dose–volume histograms (DVHs) for prostate, bladder and rectum, the tumour control probability (TCP) and normal tissue complication probabilities (NTCPs) were compared with those of the uniform 74-Gy IMRT plan. Results: Deliverable IMRT plans were feasible for all patients with identifiable DILs (20/23). Areas under the DVHs were increased for the prostate (75.1 ± 0.6 vs 72.7 ± 0.3 Gy; p < 0.001) and decreased for the rectum (38.2 ± 2.5 vs 43.5 ± 2.5 Gy; p < 0.001) and the bladder (29.1 ± 9.0 vs 36.9 ± 9.3 Gy; p < 0.001) for the boosted plan. The prostate TCP was increased (80.1 ± 1.3 vs 75.3 ± 0.9 Gy; p < 0.001) and rectal NTCP lowered (3.84 ± 3.65 vs 9.70 ± 5.68 Gy; p = 0.04) in the boosted plan. The bladder NTCP was negligible for both plans. Conclusion: Delivery of a focal boost to an mpMRI-defined DIL is feasible, and significant increases in TCP and therapeutic ratio were found. Advances in knowledge: The delivery of a focal boost to an mpMRI-defined DIL demonstrates statistically significant increases in TCP and therapeutic ratio. PMID:24601648

  10. On the correctness of the thermoluminescent high-temperature ratio (HTR) method for estimating ionization density effects in mixed radiation fields

    International Nuclear Information System (INIS)

    Bilski, Pawel

    2010-01-01

    The high-temperature ratio (HTR) method which exploits changes in the LiF:Mg,Ti glow-curve due to high-LET radiation, has been used for several years to estimate LET in an unknown radiation field. As TL efficiency is known to decrease after doses of densely ionizing radiation, a LET estimate is used to correct the TLD-measured values of dose. The HTR method is purely empirical and its general correctness is questionable. The validity of the HTR method was investigated by theoretical simulation of various mixed radiation fields. The LET eff values estimated with the HTR method for mixed radiation fields were found in general to be incorrect, in some cases underestimating the true values of dose-averaged LET by an order of magnitude. The method produced correct estimates of average LET only in cases of almost mono-energetic fields (i.e. in non-mixed radiation conditions). The value of LET eff found by the HTR method may therefore be treated as a qualitative indicator of increased LET, but not as a quantitative estimator of average LET. However, HTR-based correction of the TLD-measured dose value (HTR-B method) was found to be quite reliable. In all cases studied, application of this technique improved the result. Most of the measured doses fell within 10% of the true values. A further empirical improvement to the method is proposed. One may therefore recommend the HTR-B method to correct for decreased TL efficiency in mixed high-LET fields.

  11. SU-E-T-611: Photon and Neutron Peripheral Dose Ratio for Low (6 MV) and High (15 MV) Energy for Treatment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Sanchez-Doblado, F [Departamento de Fisiologia Medica y Biofisica, Universidad de Seville (Spain); Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Seville (Spain); Terron, J; Ortiz-Seidel, M [Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Seville (Spain); Departamento de Fisiologia Medica y Biofisica, Universidad de Seville (Spain); Sanchez-Nieto, B [Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile)

    2015-06-15

    Purpose: Differences between radiotherapy techniques and energies, can offer improvements in tumor coverage and organs at risk preservation. However, a more complete decision should include peripheral doses delivered to the patient. The purpose of this work is the balance of photon and neutron peripheral doses for a prostate case solved with 6 different treatment modalities. Methods: Inverse and Forward IMRT and 3D-CRT in 6 and 15 MV for a Siemens Primus linac, using the same CT data set and contours. The methodology described in [1], was used with the TNRD thermal neutron detector [2] for neutron peripheral dose estimation at 7 relevant organs (colon, esophagus, stomach, liver, lung, thyroid and skin). Photon doses were estimated for these organs by terms of the algorithm proposed in [3]. Plans were optimized with the same restrictions and limited to 30 segments in the Inverse case. Results: A similar photon peripheral dose was found comparing 6 and 15 MV cases with slightly higher values of (1.9 ± 1.6) % in mean, for the 6 MV cases. Neutron presence when using 15 MV, represents an increase in peripheral dose of (18 ± 17) % in average. Due to the higher number of MU used in Inverse IMRT, an increasing of (22 ± 3) % in neutron dose is found related to Forward and 3D-CRT plans. This corresponds to photon doses within 44 and 255 mSv along the organs, for a dose prescription of 68 Gy at the isocenter. Conclusion: Neutron and photon peripheral doses for a prostate treatment planified in 6 different techniques have been analyzed. 6 MV plans are slightly more demanding in terms of photon peripheral doses. Inverse technique in 15 MV has Result to be the most demanding one in terms of total peripheral doses, including neutrons and photons.

  12. Selection of daunorubicin-producing strain S. Coeruleorubidus by plasma radiation technology

    International Nuclear Information System (INIS)

    Jiang Shichun; Wu Jianping; Bai Hua

    2001-01-01

    The authors reported the results of mutagenesis by nitrogen plasma radiation with energy from 65 to 80 keV and dose from 9.6 x 10 9 to 1.5 x 10 11 /cm 2 in antineoplastic antibiotics daunorubicin-producing S. Coeruleorubidus. The relationship between death rate and radiation dose was formulated by computer and the formula. It was fit to a biological single-hit curve. The obtained high-producing mutagenic strain 137 was tested for its production property. The result showed that it could increase the daunorubicin potency by 25.8% in productive tanks of fermentation

  13. Ethanol does not delay muscle recovery but decreases testosterone/cortisol ratio.

    Science.gov (United States)

    Haugvad, Anders; Haugvad, Lars; Hamarsland, Håvard; Paulsen, Gøran

    2014-11-01

    This study investigated the effects of ethanol consumption on recovery from traditional resistance exercise in recreationally trained individuals. Nine recreationally trained volunteers (eight males and one female, 26 ± 4 yr, 81 ± 4 kg) conducted four resistance exercise sessions and consumed a low (0.6 (females) and 0.7 (males) g · kg(-1) body mass) or a high dose (1.2 or 1.4 g · kg(-1) body mass) of ethanol 1-2.5 h after exercise on two occasions. The first session was for familiarization with the tests and exercises and was performed without ethanol consumption. As a control trial, alcohol-free drinks were consumed after the exercise session. The sequence of trials, with low and high ethanol doses and alcohol-free drinks (control), was randomized. Maximal voluntary contractions (MVC) (knee extension), electrically stimulated contractions (knee extension), squat jumps, and hand grip strength were assessed 10-15 min and 12 and 24 h after the ethanol/placebo drinks. In addition to a baseline sample, blood was collected 1, 12, and 24 h after the ethanol/placebo drinks. The exercise session comprised 4 × 8 repetition maximum of squats, leg presses, and knee extensions. MVC were reduced by 13%-15% immediately after the exercise sessions (P squat jump performance were recovered 24 h after ethanol drinks. MVC was not fully recovered at 24 h in the control trial. Compared with those in the control, cortisol increased and the free testosterone/cortisol ratio were reduced after the high ethanol dose (P < 0.01). Neither a low nor a high dose of ethanol adversely affected recovery of muscle function after resistance exercise in recreationally strength-trained individuals. However, the increased cortisol levels and reduced testosterone/cortisol ratio after the high ethanol dose could translate into long-term negative effects.

  14. Doses from Hiroshima mass radiologic gastric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, S; Sawada, S; Russell, W J [Radiation Effects Research Foundation, Hiroshima (Japan)

    1980-05-01

    Doses to examinees from mass radiologic surveys of the stomach in Hiroshima Perfecture were estimated by surveying for the frequency of the examinations, and for the technical factors used in them, and by phantom dosimetry. The average surface, active bone marrow and male and female gonad doses per examination were 5.73 rad, 231 mrad, and 20.6 and 140 mrad, respectively. These data will be used in estimating doses from medical X-rays among atomic bomb survivors. By applying them to the Hiroshima population, the genetically significant, per caput mean marrow, and leukemia significant doses were 0.14,8.6 and 7.4 mrad, respectively. There was a benefit-to risk ratio of about 50 for mass gastric surveys performed in 1976. However, the calculated risk was greater than the benefit for examinees under 29 years of age because of the lower incidence of gastric cancer in those under 29 years.

  15. Regulatory requirements for marketing fixed dose combinations

    Directory of Open Access Journals (Sweden)

    B G Jayasheel

    2010-01-01

    Full Text Available The development of fixed-dose combinations (FDCs is becoming increasingly important from a public health perspective. FDCs have advantages when there is an identifiable patient population for whom treatment with a particular combination of actives in a fixed ratio is safe and effective and when all of the actives contribute to the overall therapeutic effect. Such combinations of drugs are particularly useful in the management of chronic diseases. In addition, there can be real clinical benefits in the form of increased efficacy and/or a reduced incidence of adverse effects. Additional advantages of FDCs are potentially lower costs of manufacturing compared to the costs of producing separate products administered concurrently, simpler logistics of distribution and reduced development of resistance in the case of antimicrobials. Above all, FDC therapy reduces pill burden and improves medication compliance. Although, FDCs seem to be ideal under certain pre-defined circumstances, if a dosing adjustment is warranted, there may not be an FDC available in the most appropriate strength for the patient and if an adverse drug reaction occurs from using an FDC, it may be difficult to identify the active ingredient responsible for causing the reaction. Appendix VI of Schedule Y (Drugs & Cosmetics Rules 1945, India states the requirements for marketing approval of various types of FDCs. The same is further elaborated in this article to provide a detailed guidance including the clinical trial requirements. However, the heterogeneity of the therapeutic field makes it difficult to develop a standard guidance document.

  16. Transmission dose estimation algorithm for in vivo dosimetry

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings

  17. Transmission dose estimation algorithm for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)

    2002-07-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

  18. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  19. Dose requirements for UVC disinfection of catheter biofilms

    DEFF Research Database (Denmark)

    Bak, Jimmy; Ladefoged, Søren D.; Tvede, Michael

    2009-01-01

    Bacterial biofilms on permanent catheters are the major sources of infection. Exposure to ultraviolet-C (UVC) light has been proposed as a method for disinfecting the inner surface of catheters. Specification of a UVC-based device for in vivo disinfection is based on the knowledge of the required...... doses to kill catheter biofilm. Given these doses and the power of available UVC light sources, calculation of the necessary treatment times is then possible. To determine the required doses, contaminated urinary catheters were used as test samples and UVC treated in vitro. Patient catheters (n = 67......) were collected and cut into segments of equal size and treated with various UVC doses. After treatment, the biofilm was removed by scraping and quantified by counting colony forming units. Percentage killing rates were determined by calculating ratios between UVC-treated samples and controls (no UVC...

  20. Safety, tolerability and pharmacokinetics of doravirine, a novel HIV non-nucleoside reverse transcriptase inhibitor, after single and multiple doses in healthy subjects.

    Science.gov (United States)

    Anderson, Matt S; Gilmartin, Jocelyn; Cilissen, Caroline; De Lepeleire, Inge; Van Bortel, Luc; Dockendorf, Marissa F; Tetteh, Ernestina; Ancona, June K; Liu, Rachael; Guo, Ying; Wagner, John A; Butterton, Joan R

    2015-01-01

    Doravirine is a novel non-nucleoside inhibitor of HIV-1 reverse transcriptase with potent activity against wild-type virus (95% inhibitory concentration 19 nM, 50% human serum). Doravirine has low potential to cause drug-drug interactions since it is primarily eliminated by oxidative metabolism and does not inhibit or significantly induce drug-metabolizing enzymes. The pharmacokinetics and safety of doravirine were investigated in two double-blind, dose-escalation studies in healthy males. Thirty-two subjects received single doses of doravirine (6-1,200 mg) or matching placebo tablets; 40 subjects received doravirine (30-750 mg) or matching placebo tablets once daily for 10 days. In addition, the effect of doravirine (120 mg for 14 days) on single-dose pharmacokinetics of the CYP3A substrate midazolam was evaluated (10 subjects). The maximum plasma concentration (Cmax) of doravirine was achieved within 1-5 h with an apparent terminal half-life of 12-21 h. Consistent with single-dose pharmacokinetics, steady state was achieved after approximately 7 days of once daily administration, with accumulation ratios (day 10/day 1) of 1.1-1.5 in the area under the plasma concentration-time curve during the dosing interval (AUC0-24 h), Cmax and trough plasma concentration (C24 h). All dose levels produced C24 h>19 nM. Administration of 50 mg doravirine with a high-fat meal was associated with slight elevations in AUC time zero to infinity (AUC0-∞) and C24 h with no change in Cmax. Midazolam AUC0-∞ was slightly reduced by coadministration of doravirine (geometric mean ratio 0.82, 90% CI 0.70, 0.97). There was no apparent relationship between adverse event frequency or intensity and doravirine dose. No rash or significant central nervous system events other than headache were reported. Doravirine is generally well tolerated in single doses up to 1,200 mg and multiple doses up to 750 mg once daily for up to 10 days, with a pharmacokinetic profile supportive of once

  1. Elemental ratios and lipid classes in a coral reef food web under river influence

    Science.gov (United States)

    Carreón-Palau, Laura; Parrish, Christopher C.; Pérez-España, Horacio; Aguiñiga-Garcia, Sergio

    2018-05-01

    Coral reefs in the Caribbean and Gulf of Mexico are increasingly suffering from anthropogenic nutrient inputs principally from fertilizers as identified by their δ15N signatures. To determine if primary producers are passively affected by anthropogenic nitrogen enrichment in a coral reef community, carbon: nitrogen ratios (C:N mol mol-1) were measured. The C:N ratio was used as a proxy for nitrogen enrichment in primary producers when the ratio decreases, and for lipid plus carbohydrate in terms of C, and protein in terms of N in primary producers and consumers. Lipid classes and the triacylglycerol to sterol (TAG:ST) ratio were used to evaluate energy storage as an indication of nutritional quality in the six most abundant primary producers, and of nutritional condition in ten ubiquitous consumers in a coral reef in the Gulf of Mexico under river influence. A low C:N ratio revealed nitrogen enrichment in primary producers. Among the lipids, high TAG proportions were detected in phytoplankton and zooxanthellae suggesting that they have a higher nutritional quality in terms of energy, followed by sea grass, mangrove, and macroalgae. During the rainy season TAG:ST increased in primary consumers such as echinoderms, and top predators such as the perciform fish Bodianus rufus, Ocyurus chrysurus and Caranx hippos, suggesting an increase in energy storage. In contrast, TAG:ST decreased in the principal habitat providing coral Montastrea cavernosa, along with a decrease in the phospholipid proportion suggesting a poor nutritional condition. There were three species with no change in their TAG:ST ratio: the sponge Aplysina sp., the masked goby Coryphopterus personatus and the surgeon fish Achanturus chirurgus. The lower value of TAG, TAG:ST ratio and phospholipid proportion in the coral M. cavernosa suggests that the reported abundance of zooplankton does not satisfy the energy demand of M. cavernosa during the rainy season.

  2. Avoiding mandatory hospital nurse staffing ratios: an economic commentary.

    Science.gov (United States)

    Buerhaus, Peter I

    2009-01-01

    The imposition of mandatory hospital nurse staffing ratios is among the more visible public policy initiatives affecting the nursing profession. Although the practice is intended to address problems in hospital nurse staffing and quality of patient care, this commentary argues that staffing ratios will lead to negative consequences for nurses involving the equity, efficiency, and costs of producing nursing care in hospitals. Rather than spend time and effort attempting to regulate nurse staffing, this commentary offers alternatives strategies that are directed at fixing the problems that motivate the advocates of staffing ratios.

  3. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  4. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry; Effets sanitaires des faibles doses a faibles debits de dose: modelisation de la relation dose-reponse dans une cohorte de travailleurs du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, Camille

    2011-09-19

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  5. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  6. Survival of spermatogonial stem cells in the rat after split dose irradiation during LH-RH analogue treatment

    International Nuclear Information System (INIS)

    Kroonenburgh, M.J.P.G. van; Daal, W.A.J. van; Beck, J.L.; Vemer, H.M.; Rolland, R.

    1987-01-01

    A rat model has been created in which a single injection of an LH-RH analogue depot preparation (Zoladex, ICI 118630) produced a temporary interruption of the pituitary-gonadal axis. This effect applied during irradiation was investigated as a possible mechanism to protect the testis from radiation damage. A local testicular irradiation dose of 6.0 Gy was given either as a single dose or as a fractionated (2 x 3.0 Gy) dose at different time intervals ranging from 8 to 72 h. Stem cell survival was measured 11 weeks after irradiation by means of the repopulation index and the number of haploid cells (spermatids) measured by flow cytometry. Serum gonadotrophins and testosterone concentrations were measured to evaluate hormonal recovery. No significant differences were observed between serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone and the duration of the fractionation interval. Stem cell survival was higher following fractionated irradiation in comparison with the single dose. For the 8 h interval an increase in recovery ratio was found, amounting to a factor of 5 of the single dose value. The fluctuating pattern of the recovery curves indicated changes in radiosensitivity of stem cells. The combination of hormonal inhibition of spermatogenesis and fractionated irradiation led to a decrease in the absolute numbers of stem cells. However, the stem cell recovery curves were identical to those seen without hormonal inhibition. It was concluded that hormonal pretreatment with Zoladex during split dose irradiation had no protective effect on stem cell survival. 37 refs.; 4 figs

  7. Preparation and dosimetry of reactor-produced Xe-125 for ventilation scintigraphy

    International Nuclear Information System (INIS)

    Junker, D.; Cordes, H.

    1978-01-01

    Xe-125 is produced in the reactor by the (n, γ)-reaction from Xe-124. The natural abundance of Xe-124, however, is only 0,1 percent. As the costs for Xe-124 enriched Xenon are considerable, natural Xenon is activated in the epithermal energy region. In contrast to the other stable isotopes of Xenon, Xe-124 shows a large resonance cross section in this energy region. The main activation product is Xe-125. In addition, a few nuclides (e.g. Xe-125m, Xe-127m, Xe-137) are produced, which due to their short half lives give no contribution to radiation dose. Radiocontaminants originating from parent-daughter decay (e.g. Cs-135 and Cs-137) are separated by filtration of the gas. I-125 produced by the decay of Xe-125 is removed by filtering of the gas before administration to the patient. Typical yields of a sample capsule are 20 to 30 mCi Xe-125 after irradiation of 4 hours in an epithermal flux of approximately 2.10 -11 s -1 cm -2 . The residual contaminants contributing to the radiation dose are Xe-135 and Xe-129m. Depending on the irradiation time they amount to a few percent of the total activity. Using Xe-125 for lung ventilation studies results in considerable reduction of radiation dose as compared to Xe-133. An additional advantage is the better tissue penetration of Xe-125 (γ-energies at 188 keV (55%) and 243 keV (29%)) permitting the reduction of the dose for a study. The daughter nuclide I-125 generated during the study causes only a few mrem of radiation dose if the thyroid is blocked. Altogether Xe-125 as compared to Xe-133 offers more suitable γ-energies for lung ventilation studies and in addition a reduced radiation dose to the patient. (author)

  8. Radiation dose and image quality for paediatric interventional cardiology

    Science.gov (United States)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  9. Radiation dose and image quality for paediatric interventional cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E [Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, 28040 Madrid (Spain); Ubeda, C [Clinical Sciences Department, Faculty of the Science of Health, Tarapaca University, 18 de Septiembre 2222, Arica (Chile); Leyton, F [Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago (Chile); Miranda, P [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Avenida Antonio Varas 360, Providencia, Santiago (Chile)], E-mail: eliseov@med.ucm.es

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 {mu}Gy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 {mu}Gy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  10. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  11. Analysis of parameters for the off-site dose calculation due to HTO, OBT, and radioactive carbon ingestion

    International Nuclear Information System (INIS)

    Lee, G. B.; Jeung, Y. K.; Bang, S. Y.; Um, H. M.

    2004-01-01

    For assessment of tritium and radiocarbon ingestion dose to off site individuals, water, hydrogen, and carbon content of main farm produce of Korea were investigated to replace the existing data in K-DOSE60, the Offsite Dose Calculation Manual(ODCM) of Korea Hydro and Nuclear Power Co. Ltd. (KHNP). Main items and weighting factors of farm produce were determined with the nationwide food intake data in 2001, 2002. Main farm produce were sampled around Kori, Wolsong, Ulchin, Yonggwang nuclear power sites. Content of each produce was multiplied by weighting factor and summed up to make the weighted mean group value. For grains, water, hydrogen, and carbon content was not much different from the existing data currently used in K-DOSE60, but root vegetables had 3.5 times more hydrogen, and leafy vegetables and fruits had 0.7 - 1.3 times more or less water, hydrogen, and carbon contents than K-DOSE60

  12. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    Science.gov (United States)

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  13. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  14. Fetal doses from plutonium-239 and polonium-210

    International Nuclear Information System (INIS)

    Harrison, J.D.; Morgan, A.; Stather, J.W.

    1992-01-01

    The transfer of 239 Pu and 210 Po from the maternal circulation to the developing embryo and fetus was studied in rodents. The highest concentrations of both isotopes were measured in the yolk sac. In utero doses to haemopoietic tissue have been calculated taking account of transfer to the blastocyst/egg cylinder, yolk sac, liver and bone marrow. From animal data, the concentration ratios relative to maternal liver for these tissues were taken to be 0.1, 2, 0.01 and o.02, respectively for 239 Pu; and 1, 2, 0.1 and 0.1, respectively, for 210 Po. These concentration ratios were applied to periods of human gestation of 0-2.5 weeks, 2.5-6 weeks, 6-12 weeks and 12-38 weeks, and used to calculate fetal tissue doses for chronic maternal intake by ingestion of 1 kBq 239 Pu or 2 kBq 210 Po in the year of pregnancy (1 ALI for a member of the public). On this basis, the total in utero dose to haemopoietic tissue was about 1 μSv from 239 Pu and 60 μSv from 210 Po compared with red bone marrow doses to the mother in the year of 19 μSv from 239 Pu and 160 μSv from 210 Po. The yolk sac and bone marrow dominated in utero doses from both nuclides. For 239 Pu, because of its long half life, an important consideration was activity present in the offspring at birth and committed dose equivalents to red bone marrow in the child and mother. The total dose to haemopoietic tissue in the offspring to age 70 years, including in utero doses, was calculated as 13 μSv compared with a maternal dose to red bone marrow of 1400 μSv. For both isotopes the risk of leukaemia in the year of pregnancy was estimated to be of the same order for mother and fetus. For 239 Pu, the overall risk to 70 years of age was two orders of magnitude higher for the mother than her offspring. For 239 Pu, an acute intake of 1 kBq by ingestion during the period of yolk sac haemopoiesis would result in the highest in utero dose, estimated at about 20 μSv. However, activity at birth would be lower and the overall

  15. Dose point kernels for beta-emitting radioisotopes

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Chan, L.B.; Kwok, C.S.; Wilson, B.

    1986-01-01

    Knowledge of the dose point kernel corresponding to a specific radionuclide is required to calculate the spatial dose distribution produced in a homogeneous medium by a distributed source. Dose point kernels for commonly used radionuclides have been calculated previously using as a basis monoenergetic dose point kernels derived by numerical integration of a model transport equation. The treatment neglects fluctuations in energy deposition, an effect which has been later incorporated in dose point kernels calculated using Monte Carlo methods. This work describes new calculations of dose point kernels using the Monte Carlo results as a basis. An analytic representation of the monoenergetic dose point kernels has been developed. This provides a convenient method both for calculating the dose point kernel associated with a given beta spectrum and for incorporating the effect of internal conversion. An algebraic expression for allowed beta spectra has been accomplished through an extension of the Bethe-Bacher approximation, and tested against the exact expression. Simplified expression for first-forbidden shape factors have also been developed. A comparison of the calculated dose point kernel for 32 P with experimental data indicates good agreement with a significant improvement over the earlier results in this respect. An analytic representation of the dose point kernel associated with the spectrum of a single beta group has been formulated. 9 references, 16 figures, 3 tables

  16. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  17. Long-term tissue distribution and steady state activity ratios of 232Th and its daughters in rats after intravascular injection of thorotrast

    International Nuclear Information System (INIS)

    Norimura, Toshiyuki; Tsuchiya, Takehiko; Hatakeyama, Satoru; Yamamoto, Hisao; Okajima, Shunzo.

    1989-01-01

    To estimate the absorbed dose in the critical organs of Thorotrast patients, it is necessary to know not only the distribution and concentration of 232 Th but also its daughter nuclides in the body. The present investigation was undertaken in order to clarify the long-term 232 Th tissue distribution and steady state activity ratios between subsequent daughters in the critical tissues, using about 30 Wister male rats, as a basis for estimating absorbed doses. The tissue distribution of thorium was examined by means of an autoradiographty of the whole body and/or the gamma-ray spectrometry at various times during 2 to 24 months following injection. The concentrations of daughter nuclides in tissues were determined by repetitive gamma examination over a period from 1 hr to 35 days after being sacrificed. The data indicate (1) that approximately 90% of injected Thorotrast is retained in the body for a prolonged period, but about 50% of radium and 10% of radon produced from thorium are eliminated from the body, (2) that the mean steady state activity ratios of 224 Ra and 212 Pb to 228 Th for liver are 0.56 and 0.28, and 0.54 and 0.16 for spleen, 0.58 and 0.82 for lungs, respectively, and (3) that the parent 228 Th is translocated to the bone. (author)

  18. Effect of single dose, fractionated, and hyperfractionated trunk irradiation on weight gain, respiration frequency, and survival in rats

    International Nuclear Information System (INIS)

    Kimler, B.F.; Giri, P.G.S.; Giri, U.P.; Cox, G.G.

    1986-01-01

    It is concluded that, in this rat trunk irradiation model, fractionation of a single dose into two equal doses separated by 4-6 h produced a sparing effect of approx. 5Gy as measured by delay in weight gain; approx. 4Gy as measured by increased respiration frequency; and approx. 6Gy as measured by survival. Fractionation into daily doses or hyperfractionation into twice-daily doses permitted an approximate doubling of the dose required for the same suppression of weight gain. For the respiration rates and survival endpoints, fractionation or hyperfractionation produced an even greater sparing effect since there was no increase in the respiration frequency at twice the doses that would produce changes if delivered within a few hours; and since essentially no lethality was observed at twice the doses that would kill 70%-100% of animals if delivered in one day. (UK)

  19. Methods and systems for producing syngas

    Science.gov (United States)

    Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  20. New way of dosing sugammadex for termination of vecuronium induced neuromuscular block

    Directory of Open Access Journals (Sweden)

    Blaž Peček

    2015-06-01

    Full Text Available Background and Goal of Study: Sugammadex is a selective binding agent that bindsaminosteroid muscle relaxants. Each molecule of sugammadex binds one molecule of musclerelaxant. To produce the same depth of the neuromuscular block (NMB much less molecules ofvecuronium are needed than molecules of rocuronium. In theory less sugammadex would beneeded to neutralise the neuromuscular block if vecuronium was used to produce the neuromuscular block. Our aim was to compare reversal of vecuronium induced muscle relaxation between a new way of dosing sugammadex, which takes into account TOF value at the end of the surgery and the amount of vecuronium given during the surgery with neostigmine atropine combination. We also wanted to know how much this dosage regime can save compared to standard per kg dosage.Materials and Methods: 20 adult patients requiring a general anesthesia for surgery were analysed. The first group of 11 patients (SUG received sugammadex at the end of the surgery according to the table one for NMB reversal. The second group of 9 patients (NEO received neostigmine and atropine. Train of four (TOF value was recorded at the end of the surgery and then continuously until the TOF value reached more than 0.9 and the patient was extubated. The time required for the TOF value reaching 0.9 was compared between the groups. For economical evaluation we compared the amount of sugammadex used in the SUG group to standard sugammadex per kg dosage.Results and Discussion: Mean time to recovery to a TOF ratio of 0.9 with sugammadex was 5.12min versus 12.6 min with neostigmine atropine (P < 0.05. No sign of postoperative residual curarisation was observed in the SUG group. For patients in our study 530 mg of sugammadex were used to neutralise the NMB. If standard per kg sugammadex dosing had been used we would have used 2420 mg for the NMB reversal.Conclusion(s: New dosing for sugammadex was successful in neutralising the NMB regardlessof the TOF value

  1. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhang, Geoffrey G.; Finkelstein, Steven E.; Biagioli, Matthew C.

    2011-01-01

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken with each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 ± 0.002 for contrast/saline solution and 0.808 ± 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 ± 0.010 and 0.781 ± 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.

  2. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  3. Feed Supplementation with Thermo-Tolerant, Lactic Acid-Producing Bacteria as Probiotics for Swine Husbandry

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Khammeng, Terdsak; Luanthisong, Pirat; Sakai, Kenji; Piadang, Nattayana

    2006-09-01

    This research work had an objective to employ the thermo tolerant, lactic acid-producing bacteria, Bacillus coagulans strain NF 1 7 as feed additive for swine raising. The bacterial isolate NF 1 7, kept in the culture collection of Khon Kaen University that could tolerate high temperature and produce lactic acid, was employed in this experiment. Cell suspension of isolate NF 1 7 was exposed to gamma irradiation at various doses (1-5 KGy). The isolated survivors were screened on the basis of forming larger colonies and clear zones than the parent strain NF 1 7 when grown on Glucose- Yeast extract-Peptone (GYP) containing CaCO 3 . We obtained 55 effective isolates which the isolate L 5 I2 to 14(5), designated as K 1 4 was chosen for further experiments. Isolate K 1 4 together with the parent strain were characterized using morphological, physiological and biochemical tests. They were all identified as Bacillus coagulans. All isolates had optimal growth pH of 6.5 and grew best at 42.50 o C. The strain K 1 4 could tolerate the temperature as high as 59 o C and was then employed in the fermentation of food waste that collected from the university cafeteria. It was found that food waste could support growth of Bacillus K 1 4 and produce about 107 to 108 CFU/g food waste within 1-3 days. Nutritional value of the fermented food waste in the form of protein was also increased. When mixing this selected bacterium as feed additive in daily pig rations, it was found that Bacillus K 1 4 helped increase feed conversion ratio and reduced the mortality in weaned piglets. Experiments were also performed with the growing pigs. It showed that Bacillus Sp. K 1 4 significantly improved the feed conversion ratio

  4. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  5. Evaluation of doses from radiodiagnostic procedures performed in veterinary medicine and assessing of the doses of secondary radiation in the medical staff and animal owners; Avaliacao das doses resultantes de procedimentos radiodiagnosticos realizados em medicina veterinaria e avaliacao das doses secundarias de radiacao espalhada no corpo clinico e nos proprietarios dos animais

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Glauco Rogerio

    2012-07-01

    The primary goal in veterinary radiography is to produce radiographs of diagnostic quality on the first attempt. This goal serves three purposes: (1) to decrease radiation exposure to the patient and veterinary personnel; (2) to decrease the cost of the study for the client; and (3) to produce diagnostic data for rapid interpretation and treatment of the patient. This work aimed to determine the doses in dogs submitted to chest and abdomen X rays using the technique of thermoluminescence (TL) dosimetry. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) and lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti). The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (author)

  6. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  7. Effects of prescription depth, cylinder size, treatment length, tip space, and curved end on doses in high-dose-rate vaginal brachytherapy

    International Nuclear Information System (INIS)

    Li Shidong; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin

    2007-01-01

    Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach

  8. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  9. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  10. REM sleep deprivation produces a motivational deficit for food reward that is reversed by intra-accumbens amphetamine in rats.

    Science.gov (United States)

    Hanlon, Erin C; Benca, Ruth M; Baldo, Brian A; Kelley, Ann E

    2010-10-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome of increase in food intake accompanied by, paradoxically, decrease in weight, suggesting a potential alteration in motivation for food reward. Using the multiple platform method to produce REM sleep deprivation (REMSD), we investigated the effect of REMSD on motivation for food reinforcement with a progressive ratio operant task, which yields a measure of the motor effort that a hungry animal is willing to expend to obtain food (the point at which the animal quits responding is termed the "break-point"). We found that REMSD rats decreased the break point for sucrose pellet reinforcement in comparison to controls, as revealed by a within-session decline in responding. This behavioral deficit is similar to that observed in rats with diminished dopamine transmission within the nucleus accumbens (Acb), and, considering that stimulants are frequently used in the clinical setting to reverse the effects of sleepiness, we examined the effect of systemic or intra-Acb amphetamine on break point in REMSD rats. Animals were given either systemic or intra-Acb amphetamine injections on days 3 and 5 of REMSD. Systemic amphetamine (0.1, 0.5, or 2.5mg/kg) did not increase break point in REMSD rats. In contrast, intra-Acb infusions of amphetamine (1, 10, or 30μg/0.5μl bilaterally) reversed the REMSD-induced suppression of progressive ratio responding. Specifically, the two higher doses of intra-Acb amphetamine were able to prolong responding within the session (resulting in an increased break point) on day 3 of REMSD while only the highest dose was sufficient following 5 days of REMSD. These data suggest that decreased motivation for food reward caused by REMSD may result from a suppression of dopamine function in the Acb. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  12. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    Science.gov (United States)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  13. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  14. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  15. Required ozone doses for removing pharmaceuticals from wastewater effluents

    DEFF Research Database (Denmark)

    Antoniou, Maria; Hey, Gerly; Rodríguez Vega, Sergio

    2013-01-01

    of each investigated API (DDO3) was determined for each effluent by fitting a first order equation to the remaining concentration of API at each applied ozone dose. Ozone dose requirements were found to vary significantly between effluents depending on their matrix characteristics.The specific ozone dose...... was then normalized to the dissolved organic carbon (DOC) of each effluent. The DDO3/DOC ratios were comparable for each API between the effluents.15 of the 42 investigated APIs could be classified as easily degradable (DDO3/DOC≤0.7), while 19 were moderately degradable (0.71.4). Furthermore, we predict...... that a reasonable estimate of the ozone dose required to remove any of the investigated APIs may be attained by multiplying the experimental average DDO3/DOC obtained with the actual DOC of any effluent....

  16. Studies on adaptive response of lymphocyte transformation induced by low-dose irradiation

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Tian Hailin; Zou Huawei

    1995-10-01

    Human peripheral blood lymphocytes stimulated by mitogen in vitro for 24 h were exposed to low-dose γ-ray irradiation (0.5∼4.0 cGy, adaptive dose). They showed an adaptive response to the inhibition of 3 H-TdR incorporation by subsequent higher acute doses of γ-ray (challenge dose). At the interval of 24 h between adaptive dose and challenge dose, the strongest adaptive response induced by low-dose irradiation was found. It is also found that the response induced by 1.0 cGy of adaptive dose was more obvious than that by other doses and that 3.0 Gy of challenge dose produced the strongest adaptive response. As the challenge doses increased, the adaptive response reduced. (2 figs., 2 tabs.)

  17. Low-dose caffeine discrimination and self-reported mood effects in normal volunteers.

    Science.gov (United States)

    Silverman, K; Griffiths, R R

    1992-01-01

    A caffeine versus placebo discrimination procedure was used to determine the lowest caffeine dose that could produce discrimination and self-reported mood effects in normal volunteers. During daily sessions under double-blind conditions, caffeine-abstinent subjects orally ingested a capsule containing 178 mg caffeine or placebo. Before beginning discrimination training, the compounds were identified to subjects by letter codes. Fifteen, 30, and 45 min after capsule ingestion, subjects guessed the capsule's letter code. Correct guesses at 45 min earned money. After each session, subjects received a supplementary capsule containing caffeine or placebo to ensure that, within each phase of the study, subjects received the same daily dose of caffeine equal to the training dose. Five of the 15 subjects acquired the caffeine versus placebo discrimination within the first 20 sessions (greater than or equal to 75% correct); 6 other subjects acquired the discrimination with additional training. Nine subjects who acquired the discrimination were subsequently trained at progressively lower caffeine doses. In general, the lowest dose to produce discrimination (greater than or equal to 75% correct) was also the lowest dose to produce self-reported mood effects: 4 subjects showed discrimination and self-reported mood effects at 100 mg caffeine, 2 at 56 mg, 1 at 32 mg, and 1 at 18 mg. One of these subjects also showed self-reported mood effects at 10 mg. The present study documents discriminative stimulus and self-reported mood effects of caffeine at doses below those previously shown to affect any behavior in normal volunteers. PMID:1548451

  18. Performance evaluation of domestic prototype dose area product meter SFT-1

    International Nuclear Information System (INIS)

    Lee, Ho Sun; Han, Seong Gyu; Roh, Young Roh; Lim, Hyun Jong; Kim, Jung Min; Kim, Jong Uk; Chae, Hyun Sik; Yoon, Yong Su

    2016-01-01

    The importance of radiation dose display of medical X-ray equipment was emphasized, while third edition of IEC(International Electrotechnical Commission) 60601 started to apply. The existing medical X-ray equipment selected a method for attaching the DAP(Dose Area Product) meter when the dose display. However, because the DAP meter was dependent on all of the income, And it did not yet produced in Korea. So, we received the support of Seoul R and BD Program(Grants No. C1152055) to produce DAP meter prototype of the Domestically technology. In this study, the performance of this prototype was evaluated by comparing the German company's product. Evaluation item was an electronic capture performance, radiation dose dependence, radiation quality dependence, energy transmittance, repeatability, light transmittance of 6 entries. And IEC 60580 was based on this evaluation. Evaluation results were electronic capture performance intrinsic error 9.5%, radiation dose dependence limits of variation 1%, repeatabilit y coefficient of variation 2%, energy transmittance 91% each assessment was passed. However radiation quality dependence limits of variation 29%, light transmittance 55% was less than acceptance criteria

  19. Feasibility of low-dose CT with model-based iterative image reconstruction in follow-up of patients with testicular cancer

    International Nuclear Information System (INIS)

    Murphy, Kevin P.; Crush, Lee; O’Neill, Siobhan B.; Foody, James; Breen, Micheál; Brady, Adrian; Kelly, Paul J.; Power, Derek G.; Sweeney, Paul; Bye, Jackie; O’Connor, Owen J.; Maher, Michael M.; O’Regan, Kevin N.

    2016-01-01

    •Radiologists should endeavour to minimise radiation exposure to patients with testicular cancer.•Iterative reconstruction algorithms permit CT imaging at lower radiation doses.•Image quality for reduced-dose CT–MBIR is at least comparable to conventional dose.•No loss of diagnostic accuracy apparent with reduced-dose CT–MBIR. Radiologists should endeavour to minimise radiation exposure to patients with testicular cancer. Iterative reconstruction algorithms permit CT imaging at lower radiation doses. Image quality for reduced-dose CT–MBIR is at least comparable to conventional dose. No loss of diagnostic accuracy apparent with reduced-dose CT–MBIR. We examine the performance of pure model-based iterative reconstruction with reduced-dose CT in follow-up of patients with early-stage testicular cancer. Sixteen patients (mean age 35.6 ± 7.4 years) with stage I or II testicular cancer underwent conventional dose (CD) and low-dose (LD) CT acquisition during CT surveillance. LD data was reconstructed with model-based iterative reconstruction (LD–MBIR). Datasets were objectively and subjectively analysed at 8 anatomical levels. Two blinded clinical reads were compared to gold-standard assessment for diagnostic accuracy. Mean radiation dose reduction of 67.1% was recorded. Mean dose measurements for LD–MBIR were: thorax – 66 ± 11 mGy cm (DLP), 1.0 ± 0.2 mSv (ED), 2.0 ± 0.4 mGy (SSDE); abdominopelvic – 128 ± 38 mGy cm (DLP), 1.9 ± 0.6 mSv (ED), 3.0 ± 0.6 mGy (SSDE). Objective noise and signal-to-noise ratio values were comparable between the CD and LD–MBIR images. LD–MBIR images were superior (p < 0.001) with regard to subjective noise, streak artefact, 2-plane contrast resolution, 2-plane spatial resolution and diagnostic acceptability. All patients were correctly categorised as positive, indeterminate or negative for metastatic disease by 2 readers on LD–MBIR and CD datasets. MBIR facilitated a 67% reduction in radiation dose whilst

  20. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  1. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  2. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  3. The reconstruction of thyroid dose following Chernobyl

    International Nuclear Information System (INIS)

    Stepanenko, V.; Kondrashov, A.; Yaskova, E.; Petin, D.; Skvortsov, V.; Parshkov, E.; Gavrilin, Yu.; Khrousch, V.; Shinkarev, S.; Makarenkova, I.; Volkov, V.; Zvonova, I.; Bratilova, A.; Kaidanovsky, J.; Minenko, V.; Drozdovich, V.; Ulanovsky, A.; Korneev, S.; Heinemann, K.; Pomplun, E.; Hille, R.; Bailiff, A.

    1996-01-01

    The report presents the overview of several approaches in working out the methods of thyroid internal dose reconstruction following Chernobyl. One of these approaches was developed (IBPh, Moscow; MRRC, Obninsk; IRM, Minsk) using the correlations between the mean dose calculation based on I 131 thyroid content measurements and Cs 137 contamination of territories. The available data on I 131 soil contamination were taken into account. The lack of data on I 131 soil contamination was supposed to be compensated by I 129 measurements in soil samples from contaminated territories. The semiempiric model was developed for dose reconstruction. The comparison of the results obtained by semiempiric model and empirical values are presented. The estimated values of average dose according semiempiric model were used for individual dose reconstruction. The IRH (St.-Petersburg) has developed the following method for individual dose reconstruction: correlation between the total I 131 radioiodine incorporation in thyroid and whole body Cs 137 content during first months after accident. The individual dose reconstruction is also mentioned to be performed using the data on individual milk consumption during first weeks after accident. For evaluation of average doses it is suggested to use the linear correlation: thyroid dose values based on radioiodine thyroid measurements vs Cs 137 contamination, air kerma rate, mean I 131 concentration in the milk. The method for retrospective reconstruction of thyroid dose caused by short-living iodine nuclides released after the Chernobyl accident has been developed by Research Centre, Juelich, Germany. It is based on the constant ratio that these nuclides have with the long-living I 129 . The contamination of soil samples by this nuclide can be used to assess thyroid doses. First results of I 129 contamination values and derived thyroid doses are to be presented

  4. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    Science.gov (United States)

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  5. Therapeutic ratio and fractionation in cancer of the lung

    International Nuclear Information System (INIS)

    Cox, J.D.; Bauer, M.

    1988-01-01

    Bronchopulmonary carcinomas have long been considered among the most frustrating problems in radiation oncology. In spite of the reasonably favorable results reported over 30 years ago with conventional X-irradiation of patients with operable carcinoma of the lung, the patients usually referred for radiation therapy with unresectable tumors permit few opportunities for successful treatment and thus lead to a general nihilism about this disease. The potential damage that can occur from radiation therapy to the normal lung can be life-threatening. Such damage was thought, erroneously, to be increased dramatically with even moderately high doses, e.g.; more than 50 Gy in 5 weeks. Therefore, few attempts were made to deliver the same high doses of radiations that would be considered mandatory for epithelial tumors of other locations such as the upper respiratory and digestive tract or the female genital tract. The therapeutic ratio was altered in an unfavorable direction with the use of small numbers of large fractions. Based on the earliest RTOG studies of carcinoma of the lung, the therapeutic ratio is at an acceptable level with 60 Gy in 30 fractions of 2.0 Gy in 6 weeks. It is encouraging that there is no evidence of an increased rate of morbidity in the hyperfractionation trials of the RTOG. The data are too preliminary with regard to therapeutic effect to know if there will truly be an increase in therapeutic ratio. It was evident that 12-24 months of follow-up are necessary before definitive answers are available

  6. Action of 50 R X-ray doses on the breeding function of C3H strain mice - effect of splitting the dose, action of repeated irradiations on successive generations

    International Nuclear Information System (INIS)

    Alix, D.

    1965-01-01

    X-rays exposure effect was studied on C3H strain mice, at the standpoint of the effects produced on breeding function. The method used with this purpose was the following: single doses 20 - 30 - 40 and 50 R/dose, fractional doses: 50 R/total dose, divided in 2 - 5 - 10 or 25 irradiations distributed in one month duration. The offsprings were irradiated at the same doses than the parents, consanguinity being maintained. Statistical treatment of results was carried out, that led at the following conclusions: 1) Couples receiving single exposure of 50 R or two exposures of 25 R at one month interval give comparable results. Fractional doses do not involve the slightest diminution of X-rays effect. 2) 30 R exposure brings about a decrease in fertility, with an increase in abortions. Fertility of 20 R irradiated couples remains below controls. 3) After ten times 5 R and twenty-five 2 R, the number of abortions is the largest. Ovarian function is particularly sensitive to X-rays; one may think that twenty-five 2 R give injuries conditioning non-viability of conception products, smaller doses should produce mutations and yield births of altered genotype individuals. (author) [fr

  7. SPECIAL CONSIDERATIONS REGARDING WARFARIN DOSE TITRATION IN PATIENTS WITH ATRIAL FIBRILLATION DEPENDING ON CLINICAL FACTORS

    OpenAIRE

    E. L. Artanova; E. V. Saleeva; I. M. Sokolov; Y. G. Shvarts

    2011-01-01

    Aim. To study the relations of clinical characteristics and individual warfarin dose titration in patients with atrial fibrillation. Material and methods. Period of warfarin dose titration was analyzed in 68 patients with atrial fibrillation due to ischemic heart disease. Adjusted warfarin dose in milligram, duration of dose titration in days and maximal international normalized ratio (INR) were taken into account. Sex, age, history of myocardial infarction and stroke, concomitant diseases, a...

  8. HDR- and LDR-interstitial irradiation (IRT) in rat spinal cord: the effect of decreasing the dose rate and the impact of a rapid dose fall off over the spinal cord

    International Nuclear Information System (INIS)

    Pop, L.A.M.; Plas, M. van der; Hanssen, A.E.J.; Kogel, A.J. van der

    1996-01-01

    Introduction: Detailed knowledge of radiobiological parameters of the different tissues involved are warranted before HDR- and recently PDR-brachytherapy can be successfully introduced in clinical practice as an alternative to LDR- brachytherapy. The purpose of this study is to determine the α/β ratio and half time of repair of rat spinal cord during continuous irradiation at different dose rates and to investigate the impact of a rapid dose fall off over the spinal cord thickness. Material and methods: Two parallel catheters are inserted on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters were afterloaded with two 192 Ir- wires of 4 cm length each (activity 1- 10 mCi/cm) or connected to the HDR-microSelectron. Serial experiments have been carried out to obtain complete dose response curves at 5 different dose rates, resp. 0.5, 0.9, 1.6, 2.6 and 120 Gy/h. Paralysis of the hindlegs after 5-6 months and histopathological examination of the spinal cord of each animal are used as experimental endpoints. Dose-volume histograms of each irradiated rat have been analysed to evaluate the correlation between dose distribution and biological response and the histopathological damage seen. Results: The distribution of the histological damage was a good reflection of the rapid dose fall-off over the spinal cord, with white matter necrosis or demyelination predominantly seen in the dorsal tracts of the spinal cord or dorsal roots. With each reduction of the dose rate, spinal cord tolerance was significantly increased, with a maximum dose rate factor of 4.3 if the dose rate was reduced from 120 Gy/h to 0.53 Gy/h. Estimates of the repair parameters using different types of analysis revealed an α/β ratio of 2.44 Gy and a (mono- exponential) half time of repair (=t (1(2)) ) of 1.43 hours; for the maximum of 150 % of the prescribed dose these values were 3.67 Gy and 1.43 hours respectively. Conclusions: Spinal cord radiation tolerance is

  9. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  10. Tissue dose in thorotrast patients

    International Nuclear Information System (INIS)

    Kaul, A.; Noffz, W.

    1978-01-01

    Absorbed doses to the liver, spleen, red marrow, lungs, kidneys, and to various parts of bone tissue were calculated for long-term burdens of intravascularly injected Thorotrast. The estimates were performed for typical injection levels of 10, 30, 50 and 100 ml, based upon best estimates of 232 Th tissue distribution, and steady state activity ratios between the subsequent daughters. Correcting for the α-particle self absorption within Thorotrast aggregates, the mean α-dose to a standard 70-kg man at 30 yr after the injection 0f 25 ml of Thorotrast is 750 rad to the liver, 2100 rad to the spleen, 270 rad to the red marrow, 60-620 rad in various parts of the lung, and 13 rad to the kidneys. Dose rates to various parts of bone tissue (bone surface, compact, and cancellous bone) were estimated by applying the ICRP model on alkaline earth metabolism to the continuous translocation of thorium daughters to bone and to the formation of thorium daughters by decay within bone tissue. The average dose to calcified bone from translocated 224 Ra with its daughters is 18 rad at 30 yr after the injection of 25 ml of Thorotrast. Considering the Spiess-Mays risk coefficient of 0.9-1.7% bone sarcoma/ 100 rad of average skeletal dose from 224 Ra and its daughters, the induction of 1.6-3.1 bone sarcomas per 1000 Thorotrast patients is predicted. (author)

  11. Research on dose setting for radiation sterilization of medical device

    International Nuclear Information System (INIS)

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping

    2002-01-01

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  12. Extremity doses to interventional radiologists

    International Nuclear Information System (INIS)

    Wihtby, M.; Martin, C. J.

    2002-01-01

    Radiologists performing interventional procedures are often required to stand close to the patient's side when carrying out manipulations under fluoroscopic control. This can result in their extremities receiving a high radiation dose, due to scattered radiation. These doses are sometimes high enough to warrant that the radiologist in question be designated a classified radiation worker. Classification in the UK is a result of any worker receiving or likely to receive in the course of their duties in excess of 3/10ths of any annual dose limit (500mSv to extremities, skin). The doses to the legs of radiologists have received less attention than those to the hands, however the doses may be high, due to the proximity of the legs and feet to scattered radiation. The legs can be exposed to a relatively high level of scattered radiation as the radiation in produced from scatter of the un attenuated beam from the bottom of the patient couch. The routine monitoring of extremity doses in interventional radiology is difficult due to several factors. Firstly a wide range of interventional procedures in undertaken in every radiology department, and these procedures require many different techniques, equipment and skills. This means that the position the radiologist adopts in relation to scattering medium and therefore their exposure, depends heavily on the type of procedure. As the hands which manipulate the catheters within the patient are often located close to the patients side and to the area under irradiation, the distribution of dose across the hands can be variable, with very high localised doses, making routine monitoring difficult. The purpose of this study was to determine the magnitude and distribution of dose to the hands and legs of interventional radiologists carrying out a wide range of both diagnostic and therapeutic interventional procedures. To ascertain the most effective method of monitoring the highest dose in accordance with the Basic safety standards

  13. Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications

    DEFF Research Database (Denmark)

    Grabitz, Stephanie D; Farhan, Hassan N; Ruscic, Katarina J

    2017-01-01

    OBJECTIVES: Inhalational anesthetics are bronchodilators with immunomodulatory effects. We sought to determine the effect of inhalational anesthetic dose on risk of severe postoperative respiratory complications. DESIGN: Prospective analysis of data on file in surgical cases between January 2007...... with endotracheal intubation. INTERVENTIONS: Median effective dose equivalent of inhalational anesthetics during surgery (derived from mean end-tidal inhalational anesthetic concentrations). MEASUREMENTS AND MAIN RESULTS: Postoperative respiratory complications occurred in 6,979 of 124,497 cases (5.61%). High...... inhalational anesthetic dose of 1.20 (1.13-1.30) (median [interquartile range])-fold median effective dose equivalent versus 0.57 (0.45-0.64)-fold median effective dose equivalent was associated with lower odds of postoperative respiratory complications (odds ratio, 0.59; 95% CI, 0.53-0.65; p

  14. Assessment of dose received by organ in lumbosacral examination

    International Nuclear Information System (INIS)

    Eltyeib, Nashwa Kheirallah

    2014-11-01

    The biological damage produced by radiation is closely related to the amount of energy absorbed in the case x- rays. Measurement of produced ionizing provides a useful assessment of the total energy absorbed. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study was performed to assess the effective dose (ED) received in lumbosacral radiography examination and to analyze effective dose distributions among radiological department under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded: age weight, height, body mass index (BMI) derived from mass (kg) and (height. (m)) and exposure factors. The dose was measured for lumbosacral x- rays examination. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for lumbosacral spine A P and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were than calculated from energy imported using ED conversion factors by IAEA. The results of ED values calculated showed that patient exposures were within the normal range of exposure. The mean ED values calculated were (2.49 ±0.03) mGy and (5.5.60 ± 0.0.22) mGy for Lumbosacral spine A P and lateral examinations, respectively. Further studies are recommended with more number of patients and using more modalities for comparison.(Author)

  15. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  16. Utilization of urea micro dose with 14 C in breath test to detect the Helicobacter pylori

    International Nuclear Information System (INIS)

    Chausson, Yvon; Coelho, Luiz Gonzaga V.; Passos, Maria do Carmo F.; Andrade, Angela A.M.; Simal, Carlos J.R.; Paula Castro, Luiz de; Fernandes, M.L.; Yazaki, F.R.

    1995-01-01

    A lower dose is used in the 14 C-urea breath test to detect the Helicobacter pylori (Hp). Such dose produce trivial radiation doses. The results shown that the use of this desirable dose is possible. (author). 4 refs., 1 fig

  17. Split-dose recovery in epithelial and vascular-connective tissue of pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Simmonds, R.H.; Dodd, P.; Meistrich, M.L.

    1984-01-01

    In the first 16 weeks after irradiation, two distinct waves of reaction can be observed in pig skin; the first wave (3-9 weeks) represents the expression of damage to the epithelium while the second is indicative of primary damage to the dermis, mediated through vascular injury. Following β-irradiation with a strontium-90 applicator, a severe epithelial reaction was seen with little subsequent dermal effects. X-rays (250 kV) on the other hand, produced a minimal epithelial response at doses which led to the development of dermal necrosis after 10-16 weeks. Comparison of single doses with two equal doses separated by 24 h produced a D 2 -D 1 value of 7.0 Gy at the doses which produced moist desquamation in 50% of fields (ED 50 ) after strontium-90 irradiation. After X-irradiation comparison of ED 50 doses for the later dermal reaction suggested a D 2 -D 1 value of 4.5 Gy. Over this same dose range of X-rays the D 2 -D 1 value for the first wave epithelial reaction was 3.5 Gy. These values of D 2 -D 1 for epithelial and dermal reactions in pig skin were compared with published data and were examined in relation to the theoretical predictions of a linear quadratic model for tissue target cell survival. The results were broadly in keeping with the productions of such a model. (Auth.)

  18. Peripheral doses of cranial pediatric IMRT performed with attenuator blocks

    International Nuclear Information System (INIS)

    Soboll, Danyel Scheidegger; Schitz, Ivette; Schelin, Hugo Reuters; Silva, Ricardo Goulart da; Viamonte, Alfredo

    2011-01-01

    This paper presents values of peripheral doses measured at six vital points of simulator objects which represent the ages of 2, 5 and 10 years old, submitted to a cranial IMRT procedure that applied compensator blocks interposed to 6 MV beams. The found values indicate that there is independence of dose with position of measurements and age of the patient, as the peripheral dose at the points nearest and the 2 year old simulator object where larger. The doses in thyroid reached the range of 1.4 to 2.9% of the dose prescribed in the isocenter, indicating that the peripheral doses for IMRT that employ compensator blocks can be greater than for the IMRT produced with sliding window technique

  19. Skin dose mapping for fluoroscopically guided interventions.

    Science.gov (United States)

    Johnson, Perry B; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E

    2011-10-01

    To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional

  20. Hypofractionation for radiotherapy of prostate cancer using a low alfa/beta ratio - possible reasons for concerns? An example of five dimensional radiotherapy

    International Nuclear Information System (INIS)

    Lennernaes, Bo; Nilsson, Sten; Levitt, Seymour

    2011-01-01

    It is very attractive, due to the assumed low alfa/beta ratio of prostate cancer (PC), to construct new treatment schedules for prostate cancer using only a few large fractions of radiation (hypofractionation). This will widen the therapeutic window since the ratio for PC might be lower than that of the organs at risk (OAR). PC is an extremely variable disease and often contains both highly and poorly differentiated cells. It is reasonable to assume that different cells have different patterns of radiosensitivity, i.e. alfa/beta ratios and proliferation. In this study we will simulate the effect on the outcome of the treatment with different fractionations and different ratios. Material and methods. In this simulation we use an extension of the Linear Quadratic (LQ)/Biological Effective Dose (BED) formula called the dose volume inhomogeneity corrected BED (DVIC-BED). In the formula the tumour volume is divided in 50 subvolumes (step of 2%) and it is possible to calculate the relative effect of the treatment with different ratios (1.5, 4 and 6.5) in different subvolumes. Results. The simulations demonstrate that only a small portion (5-10%) of cells with a higher ratio will dramatically change the effect of the treatment. Increasing the total dose can compensate this, but this will on the other hand increase the dose to the OAR and also the risk for severe side effects. Conclusion. These simulations highlight possible reasons for concerns about the use of hypofractionation for pathologically heterogeneous tumours, such as prostate cancer, and also demonstrate the need for testing new treatment schedules using both high and low ratios

  1. Development and test of a new concept for biomass producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Vendelbo Foged, E.; Strand, R.; Birk Henriksen, U.

    2010-02-15

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kW{sub e} gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood. The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating on this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased. (author)

  2. Optimum ratio of main mechanized operations for direct-flow fertilizers introduction

    Directory of Open Access Journals (Sweden)

    V. P. Uvarov

    2016-01-01

    Full Text Available Use of transport and technological means is carried out according to the direct-flow scheme and includes stage-by-stage performance as the main standard-setting operations (fertilizers transportation, movement and their distribution across a field, and auxiliary (return from a field and loading of fertilizers. The method of comparison of main types of operations at fertilizers application is given. An estimation criterion is a ratio of cargo movements on a road and across a field, proportionality coefficient between movement of freight and a fertilizers distribution area across the field. These indicators depend on transportation distances and doses of fertilizers application, and also on technology factor that is freight moving frequency across the field. The last characteristic is taken as the optimized parameter. An extremum of this indicator was searched due to a classical method. Optimum values of estimated indicators with the accounting of a variation of a ratio of load capacity and operating width of technical means are received. Concrete combinations of transportation distances and doses of fertilizers application are specified. The authors defined conditions of effective use of tractor and perspective automobile transport and technological means. They recommended to use the automeans allowing to change operating width. Realization of the stated methodological approach will make it possible to select an optimum ratio of the mechanized operations at direct-flow fertilizers application, to exclude additional cargo movements across the field, to cut fuel consumption, to increase productivity. Productivity of transport and technological means increases by 2.0; 1.3 and 1.15 times respectively to length of furrow 3; 9 and 27 km at fertilizers application by a dose of 0.06 kg per sq.m.

  3. Effect of enzyme/substrate ratio on the antioxidant properties of ...

    African Journals Online (AJOL)

    The antioxidant properties of African yam bean hydrolysates (AYH) produced at different enzyme to substrate (E/S) ratios of 1: 100 and 3: 100 (W/V) using pepsin (pH 2.0, 37°C) were studied. 2, 2-Diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity of the hydrolysates was significantly influenced by the E\\S ratio as ...

  4. K X-ray production cross sections, Kβ/Kα ratios, and radiative Auger ratios for protons impacting low-Z elements

    International Nuclear Information System (INIS)

    Cipolla, Sam J.

    1999-01-01

    A Cockcroft-Walton accelerator was used to produce 50-300 keV protons to excite characteristic X-rays from thick targets of elements from Z=21 to 32, using an efficiency-calibrated Si(Li) detector equipped with an ultra-thin window. X-ray production cross sections were determined and compared with prevailing theories. Special attention was paid to accounting for the radiative Auger effects (RAE) in the analysis of the X-ray energy spectra. Ratios of RAE to K α and K β intensities, as well as K β /K α ratios, will be compared to theoretical values

  5. Dose-Dependent Effect of Statin Pretreatment on Preventing the Periprocedural Complications of Carotid Artery Stenting.

    Science.gov (United States)

    Hong, Jeong-Ho; Sohn, Sung-Il; Kwak, Jaehyuk; Yoo, Joonsang; Chang, Hyuk Won; Kwon, O-Ki; Jung, Cheolkyu; Chung, Inyoung; Bae, Hee-Joon; Lee, Ji Sung; Han, Moon-Ku

    2017-07-01

    We investigated whether statin pretreatment can dose dependently reduce periprocedural complications in patients undergoing carotid artery stenting because of symptomatic carotid artery stenosis. We enrolled a consecutive series of 397 symptomatic carotid artery stenosis (≥50% stenosis on conventional angiography) treated with carotid artery stenting at 2 tertiary university hospitals over a decade. Definition of periprocedural complications included any stroke, myocardial infarction, and death within 1 month after or during the procedure. Statin pretreatment was divided into 3 categories according to the atorvastatin equivalent dose: none (n=158; 39.8%), standard dose (statin use were 12.0%, 4.5%, and 1.2%. After adjustment, a change in the atorvastatin dose category was associated with reduction in the odds of periprocedural complications for each change in dose category (standard-dose statin: odds ratio, 0.24; 95% confidence interval, 0.07-0.81; high-dose statin: odds ratio, 0.11; 95% confidence interval, 0.01-0.96; P for trend=0.01). Administration of antiplatelet drugs was also an independent factor in periprocedural complications (OR, 0.18; 95% CI, 0.05-0.69). This study shows that statin pretreatment may reduce the incidence of periprocedural complications dose dependently in patients with symptomatic carotid artery stenting. © 2017 American Heart Association, Inc.

  6. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  7. Unit of measurement used and parent medication dosing errors.

    Science.gov (United States)

    Yin, H Shonna; Dreyer, Benard P; Ugboaja, Donna C; Sanchez, Dayana C; Paul, Ian M; Moreira, Hannah A; Rodriguez, Luis; Mendelsohn, Alan L

    2014-08-01

    Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2-4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03-3.5) dose; associations greater for parents with low health literacy and non-English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon-associated measurement errors. Findings support a milliliter-only standard to reduce medication errors. Copyright © 2014 by the American Academy of Pediatrics.

  8. Optimizing bevacizumab dosing in glioblastoma: less is more.

    Science.gov (United States)

    Ajlan, Abdulrazag; Thomas, Piia; Albakr, Abdulrahman; Nagpal, Seema; Recht, Lawrence

    2017-10-01

    Compared to traditional chemotherapies, where dose limiting toxicities represent the maximum possible dose, monoclonal antibody therapies are used at doses well below maximum tolerated dose. However, there has been little effort to ascertain whether there is a submaximal dose at which the efficacy/complication ratio is maximized. Thus, despite the general practice of using Bevacizumab (BEV) at dosages of 10 mg/kg every other week for glioma patients, there has not been much prior work examining whether the relatively high complication rates reported with this agent can be decreased by lowering the dose without impairing efficacy. We assessed charts from 80 patients who received BEV for glioblastoma to survey the incidence of complications relative to BEV dose. All patients were treated with standard upfront chemoradiation. The toxicity was graded based on the NCI CTCAE, version 4.03. The rate of BEV serious related adverse events was 12.5% (n = 10/80). There were no serious adverse events (≥grade 3) when the administered dose was (<3 mg/kg/week), compared to a 21% incidence in those who received higher doses (≥3 mg/kg/week) (P < 0.01). Importantly, the three patient deaths attributable to BEV administration occurred in patients receiving higher doses. Patients who received lower doses also had a better survival rate, although this did not reach statistical significance [median OS 39 for low dose group vs. 17.3 for high dose group (P = 0.07)]. Lower rates of serious BEV related toxicities are noted when lower dosages are used without diminishing positive clinical impact. Further work aimed at optimizing BEV dosage is justified.

  9. Monte Carlo Simulations on the water-to-air stopping power ratio for carbon ion dosimetry

    DEFF Research Database (Denmark)

    Henkner, Katrin; Bassler, Niels; Sobolevsky, Nikolai

    2009-01-01

    Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80±2  eV instead of 67.2  eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power...... tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping...

  10. Assessment of patient radiation doses in chest X-ray examinations

    International Nuclear Information System (INIS)

    Orsini, S.; Scribano, V.S.; Merluzzi, F.; Tosca, L.

    1987-01-01

    The paper reports the initial results of a radioprotection programme for diagnostic radiology carried out in a major hospital in Milan. The data cover chest X-ray examinations. The dose values were obtained using different techniques, according to the specific diagnostic requirements in each departement. A wide radiation dose range was observed between the different techniques, with a ratio between maximum and minimum dose > 30 for the skin and the spine. The doses were however lower than those capable of inducing non-stochastic effects by about 10000 and were so low that the probability of a stochastics effect is minimal. Nevertheless, because chest X-rays are performed so frequently, it is recommended that radiologists take greater account of patient dose, as far as compatible with diagnostic requirements. Radiology technicians must strictly observe the regulations for radioprotection of the patient

  11. Natural radiation level and doses to population in Anhui province

    International Nuclear Information System (INIS)

    1985-01-01

    The absorbed dose rates in air 1 m above the ground from natural radiation and terrestrial gamma radiation in Anhui Province were surveyed. One measurement was made in every area of 90 km 2 . The absorbed dose rates in air from terrestrial radiation range from 54 to 90 nGy.h -1 with an average of 70 nGy.h -1 . The ratios of indoors-to-outdoors and of roads-to-outdoors are 1.5 and 0.9 respectively. The annual effective dose equivalent from external radiation is 0.68-1.05 mSv. The population-weighted average values for mountain area, plain, hilly land, and the Changjiang River basin as well as the annual collective effective dose equivalent were calculated

  12. Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration.

    Science.gov (United States)

    Lee, Dayong; Vandrey, Ryan; Milman, Garry; Bergamaschi, Mateus; Mendu, Damodara R; Murray, Jeannie A; Barnes, Allan J; Huestis, Marilyn A

    2013-09-01

    Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/μg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.

  13. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Rogovschi, Vladimir D.; Aquino, Simone; Nunes, Thaise C.F.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Zorzete, Patricia; Correa, Benedito

    2007-01-01

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  14. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir D.; Aquino, Simone; Nunes, Thaise C.F.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (brazil)]. E-mails: vladrogo@yahoo.com.br; villavic@ipen.br; Zorzete, Patricia; Correa, Benedito [Universidade de Sao Paulo, SP (Brazil). Inst. de Ciencias Biomedicas]. E-mail: correabe@usp.br

    2007-07-01

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  15. Implementation of three-dimensional planning in brachytherapy of high dose rate for gynecology therapies

    International Nuclear Information System (INIS)

    Sales, Camila Pessoa de

    2015-01-01

    This work aims to implement the three-dimensional (3D) planning for gynecological brachytherapy treatments. For this purpose, tests of acceptance and commissioning of brachytherapy equipment were performed to establish a quality and periodic assurance program. For this purpose, an important step was searching for a material to be used as a dummy source, since the applicators do not have any specific dummy. In addition, the validation of the use of applicators library was made for reconstruction in computed tomography (CT) and magnetic resonance imaging (MRI). In order to validate 3D planning, comparison of doses in dose assessment points used in bidimensional (2D) plans have been performed with volumetric doses to adjacent organs to the tumor. Finally, a protocol was established for 3D brachytherapy planning alternately using magnetic resonance image (MRI) and CT images, making evaluation of the dose in the tumor through the recording of MR and CT images. It was not possible to find a suitable material that could be used as dummy in MRI. However, the acquisition of the license's library for the applicators made possible the 3D planning based on MRI. No correlation was found between volumetric and specific doses analyzed, showing the importance of the implementation of 3D planning. The average ratio between D 2cc and ICRU Bladder dose was 1,74, 22% higher than the ratio found by others authors. For the rectum, D 2cc was less than dose point for 60% of fractions; the average difference was 12,5%. The average ratio between D 2cc and point dose rectum, 0,85, is equivalent to the value showed by Kim et al, 0,91. The D 2cc for sigmoid was 69% higher than point dose used, unless it was not possible compare this value, since the sigmoid point used in the 2D procedures is not used in others institutes. Relative dose in 2 cc of sigmoid was 57% of the prescription dose, the same value was found by in literature. This work enabled the implementation of a viable

  16. Low-dose aspirin and risk of intracranial bleeds

    DEFF Research Database (Denmark)

    Cea Soriano, Lucía; Gaist, David; Soriano-Gabarró, Montse

    2017-01-01

    cohort of nonusers of low-dose aspirin at baseline were followed (maximum 14 years, median 5.4 years) to identify incident cases of ICB, with validation by manual review of patient records or linkage to hospitalization data. Using 10,000 frequency-matched controls, adjusted rate ratios (RRs) with 95...

  17. A TLD dose algorithm using artificial neural networks

    International Nuclear Information System (INIS)

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-01-01

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

  18. Building shielding effects on radiation doses from routine radionuclide releases

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1977-01-01

    In calculating population doses from the release of radionuclides to the atmosphere, it is usually assumed that man spends all of his time outdoors standing on a smooth infinite plane. Realistically, however, man spends most of the time indoors, so that substantial reductions in radiation doses may result compared with the usual estimates. Calculational models were developed to study the effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere. Both internal dose from inhaled radionuclides and external photon dose from airborne and surface-deposited radionuclides are considered. The effect of building structures is described quantitatively by a dose reduction factor, which is the ratio of the dose inside a structure to the corresponding dose with no structure present. The internal dose from inhaled radionuclides is proportional to the radionuclide concentration in the air. Assuming that the outdoor airborne concentration is constant with time, the time-dependence of the indoor airborne concentration in terms of the structure air ventilation rate, the deposition velocities for radionuclides on the inside floor, walls, and ceiling, and the radioactive decay constant, were calculated

  19. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  20. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.