WorldWideScience

Sample records for dose calculation algorithm

  1. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  2. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  3. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  4. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  5. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  6. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  7. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    International Nuclear Information System (INIS)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-01-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models

  8. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    Science.gov (United States)

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and

  9. Testing of the analytical anisotropic algorithm for photon dose calculation

    International Nuclear Information System (INIS)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka; Tenhunen, Mikko; Helminen, Hannu; Siljamaeki, Sami; Alakuijala, Jyrki; Paiusco, Marta; Iori, Mauro; Huyskens, Dominique P.

    2006-01-01

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d max . The electron contamination model was found to be suboptimal to model the dose around d max , especially for physical

  10. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  11. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  12. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  13. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms

    International Nuclear Information System (INIS)

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-01-01

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  14. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  15. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  16. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  17. Dose calculation algorithm for the Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Moscovitch, M.; Tawil, R.A.; Thompson, D.; Rhea, T.A.

    1991-01-01

    The dose calculation algorithm for a symmetric four-element LiF:Mg,Ti based thermoluminescent dosimeter is presented. The algorithm is based on the parameterization of the response of the dosimeter when exposed to both pure and mixed fields of various types and compositions. The experimental results were then used to develop the algorithm as a series of empirical response functions. Experiments to determine the response of the dosimeter and to test the dose calculation algorithm were performed according to the standard established by the Department of Energy Laboratory Accreditation Program (DOELAP). The test radiation fields include: 137 Cs gamma rays, 90 Sr/ 90 Y and 204 Tl beta particles, low energy photons of 20-120 keV and moderated 252 Cf neutron fields. The accuracy of the system has been demonstrated in an official DOELAP blind test conducted at Sandia National Laboratory. The test results were well within DOELAP tolerance limits. The results of this test are presented and discussed

  18. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  19. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  20. Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    International Nuclear Information System (INIS)

    Dobler, Barbara; Walter, Cornelia; Knopf, Antje; Fabri, Daniella; Loeschel, Rainer; Polednik, Martin; Schneider, Frank; Wenz, Frederik; Lohr, Frank

    2006-01-01

    The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

  1. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    Science.gov (United States)

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  2. SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm

    International Nuclear Information System (INIS)

    Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M

    2014-01-01

    Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans

  3. Independent procedure of checking dose calculations using an independent calculus algorithm

    International Nuclear Information System (INIS)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-01-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  4. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

    International Nuclear Information System (INIS)

    Papanikolaou, Niko; Stathakis, Sotirios

    2009-01-01

    Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.

  5. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  6. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kan, M W K; Cheung, J Y C; Leung, L H T; Lau, B M F; Yu, P K N

    2011-01-01

    Nasopharyngeal tumors are commonly treated with intensity-modulated radiotherapy techniques. For photon dose calculations, problems related to loss of lateral electronic equilibrium exist when small fields are used. The anisotropic analytical algorithm (AAA) implemented in Varian Eclipse was developed to replace the pencil beam convolution (PBC) algorithm for more accurate dose prediction in an inhomogeneous medium. The purpose of this study was to investigate the accuracy of the AAA for predicting interface doses for intensity-modulated stereotactic radiotherapy boost of nasopharyngeal tumors. The central axis depth dose data and dose profiles of phantoms with rectangular air cavities for small fields were measured using a 6 MV beam. In addition, the air-tissue interface doses from six different intensity-modulated stereotactic radiotherapy plans were measured in an anthropomorphic phantom. The nasopharyngeal region of the phantom was especially modified to simulate the air cavities of a typical patient. The measured data were compared to the data calculated by both the AAA and the PBC algorithm. When using single small fields in rectangular air cavity phantoms, both AAA and PBC overestimated the central axis dose at and beyond the first few millimeters of the air-water interface. Although the AAA performs better than the PBC algorithm, its calculated interface dose could still be more than three times that of the measured dose when a 2 x 2 cm 2 field was used. Testing of the algorithms using the anthropomorphic phantom showed that the maximum overestimation by the PBC algorithm was 20.7%, while that by the AAA was 8.3%. When multiple fields were used in a patient geometry, the dose prediction errors of the AAA would be substantially reduced compared with those from a single field. However, overestimation of more than 3% could still be found at some points at the air-tissue interface.

  7. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  8. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-01-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm 2 ) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm 2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within

  9. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    Science.gov (United States)

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  10. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    International Nuclear Information System (INIS)

    Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  11. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  12. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  13. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  14. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  15. SU-F-T-431: Dosimetric Validation of Acuros XB Algorithm for Photon Dose Calculation in Water

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, L [Rajiv Gandhi Cancer Institute & Research Center, New Delhi, Delhi (India); Yadav, G; Kishore, V [Bundelkhand Institute of Engineering & Technology, Jhansi, Uttar pradesh (India); Bhushan, M; Samuvel, K; Suhail, M [Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi (India)

    2016-06-15

    Purpose: To validate the Acuros XB algorithm implemented in Eclipse Treatment planning system version 11 (Varian Medical System, Inc., Palo Alto, CA, USA) for photon dose calculation. Methods: Acuros XB is a Linear Boltzmann transport equation (LBTE) solver that solves LBTE equation explicitly and gives result equivalent to Monte Carlo. 6MV photon beam from Varian Clinac-iX (2300CD) was used for dosimetric validation of Acuros XB. Percentage depth dose (PDD) and profiles (at dmax, 5, 10, 20 and 30 cm) measurements were performed in water for field size ranging from 2×2,4×4, 6×6, 10×10, 20×20, 30×30 and 40×40 cm{sup 2}. Acuros XB results were compared against measurements and anisotropic analytical algorithm (AAA) algorithm. Results: Acuros XB result shows good agreement with measurements, and were comparable to AAA algorithm. Result for PDD and profiles shows less than one percent difference from measurements, and from calculated PDD and profiles by AAA algorithm for all field size. TPS calculated Gamma error histogram values, average gamma errors in PDD curves before dmax and after dmax were 0.28, 0.15 for Acuros XB and 0.24, 0.17 for AAA respectively, average gamma error in profile curves in central region, penumbra region and outside field region were 0.17, 0.21, 0.42 for Acuros XB and 0.10, 0.22, 0.35 for AAA respectively. Conclusion: The dosimetric validation of Acuros XB algorithms in water medium was satisfactory. Acuros XB algorithm has potential to perform photon dose calculation with high accuracy, which is more desirable for modern radiotherapy environment.

  16. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  17. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  18. A comparison of two dose calculation algorithms-anisotropic analytical algorithm and Acuros XB-for radiation therapy planning of canine intranasal tumors.

    Science.gov (United States)

    Nagata, Koichi; Pethel, Timothy D

    2017-07-01

    Although anisotropic analytical algorithm (AAA) and Acuros XB (AXB) are both radiation dose calculation algorithms that take into account the heterogeneity within the radiation field, Acuros XB is inherently more accurate. The purpose of this retrospective method comparison study was to compare them and evaluate the dose discrepancy within the planning target volume (PTV). Radiation therapy (RT) plans of 11 dogs with intranasal tumors treated by radiation therapy at the University of Georgia were evaluated. All dogs were planned for intensity-modulated radiation therapy using nine coplanar X-ray beams that were equally spaced, then dose calculated with anisotropic analytical algorithm. The same plan with the same monitor units was then recalculated using Acuros XB for comparisons. Each dog's planning target volume was separated into air, bone, and tissue and evaluated. The mean dose to the planning target volume estimated by Acuros XB was 1.3% lower. It was 1.4% higher for air, 3.7% lower for bone, and 0.9% lower for tissue. The volume of planning target volume covered by the prescribed dose decreased by 21% when Acuros XB was used due to increased dose heterogeneity within the planning target volume. Anisotropic analytical algorithm relatively underestimates the dose heterogeneity and relatively overestimates the dose to the bone and tissue within the planning target volume for the radiation therapy planning of canine intranasal tumors. This can be clinically significant especially if the tumor cells are present within the bone, because it may result in relative underdosing of the tumor. © 2017 American College of Veterinary Radiology.

  19. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    International Nuclear Information System (INIS)

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-01-01

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D m,m ) and dose-to-water in medium (D w,m ), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%–4.4% to AXB doses (both D m,m and D w,m ); and within 2.5%–6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes (±3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB Dm,m , and AXB Dw,m , respectively. The differences between AXB and AAA in dose–volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However

  20. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, P; Lins, L Nadler [AC Camargo Cancer Center, Sao Paulo (Brazil)

    2016-06-15

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  1. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    International Nuclear Information System (INIS)

    Iwai, P; Lins, L Nadler

    2016-01-01

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  2. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  3. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  4. Evaluation of dose calculation algorithms for the electron beams used in radiotherapy. Comparison with radiochromic film measurements

    International Nuclear Information System (INIS)

    El Barouky, Jad

    2011-01-01

    In radiotherapy, the dose calculation accuracy is crucial for the quality and the outcome of the treatments. The purpose of our study was to evaluate the accuracy of dose calculation algorithms for electron beams in situations close to clinical conditions. A new practical approach of radiochromic film dosimetry was developed and validated especially for difficult situations. An accuracy of 3.1% and 2.6% was achieved for absolute and relative dosimetry respectively. Using this technique a measured database of dose distributions was developed to form the basis of several fast and efficient Quality Assurance tests. Such tests are intended to be used also when the dose calculation algorithm is changed or the Treatment Planning System replaced. Pencil Beam and Monte Carlo dose calculations were compared to the measured data for simple geometrical phantom setups. They both gave similar results for obliquity, surface irregularity and extended SSD tests but the Monte Carlo calculation was more accurate in presence of heterogeneities. The same radiochromic film dosimetry method was applied to film cuts inserted into anthropomorphic phantoms providing a 2D dose distribution for any transverse plan. This allowed us to develop clinical test that can be also used for internal Quality Assurance purposes. As for simpler geometries, the Monte Carlo calculations showed better agreement with the measured data than the Pencil Beam calculation, especially in presence of heterogeneities such as lungs, cavities and bones. (author) [fr

  5. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2015-01-01

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations

  6. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans

    International Nuclear Information System (INIS)

    Basran, Parminder S; Zavgorodni, Sergei; Berrang, Tanya; Olivotto, Ivo A; Beckham, Wayne

    2010-01-01

    This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs

  7. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Chu, Connel; Fields, Robert S; Sprunger, Conrad P

    2013-07-01

    The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer. PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal(®) (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle(3) (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point. The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average ± 1σ dose difference (calculated - measured) of -0.65% ± 1.62% without the bolus and -0.20% ± 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19% ± 3.27% without the bolus and -0.05% ± 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50% ± 3.06% without bolus and -0.18% ± 1.22% with the bolus. The PBA dose calculations had an average dose difference of 0.65%

  8. SU-E-T-339: Dosimetric Verification of Acuros XB Dose Calculation Algorithm On An Air Cavity for 6-MV Flattening Filter-Free Beam

    International Nuclear Information System (INIS)

    Kang, S; Suh, T; Chung, J

    2015-01-01

    Purpose: This study was to verify the accuracy of Acuros XB (AXB) dose calculation algorithm on an air cavity for a single radiation field using 6-MV flattening filter-free (FFF) beam. Methods: A rectangular slab phantom containing an air cavity was made for this study. The CT images of the phantom for dose calculation were scanned with and without film at measurement depths (4.5, 5.5, 6.5 and 7.5 cm). The central axis doses (CADs) and the off-axis doses (OADs) were measured by film and calculated with Analytical Anisotropic Algorithm (AAA) and AXB for field sizes ranging from 2 Χ 2 to 5 Χ 5 cm 2 of 6-MV FFF beams. Both algorithms were divided into AXB-w and AAA -w when included the film in phantom for dose calculation, and AXB-w/o and AAA-w/o in calculation without film. The calculated OADs for both algorithms were compared with the measured OADs and difference values were determined using root means squares error (RMSE) and gamma evaluation. Results: The percentage differences (%Diffs) between the measured and calculated CAD for AXB-w was most agreement than others. Compared to the %Diff with and without film, the %Diffs with film were decreased than without within both algorithms. The %Diffs for both algorithms were reduced with increasing field size and increased relative to the depth increment. RMSEs of CAD for AXB-w were within 10.32% for both inner-profile and penumbra, while the corresponding values of AAA-w appeared to 96.50%. Conclusion: This study demonstrated that the dose calculation with AXB within air cavity shows more accurate than with AAA compared to the measured dose. Furthermore, we found that the AXB-w was superior to AXB-w/o in this region when compared against the measurements

  9. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans

    International Nuclear Information System (INIS)

    Liang, X.; Penagaricano, J.; Zheng, D.; Morrill, S.; Zhang, X.; Corry, P.; Griffin, R. J.; Han, E. Y.; Hardee, M.; Ratanatharathom, V.

    2016-01-01

    The aim of this study is to evaluate the radiobiological impact of Acuros XB (AXB) vs. Anisotropic Analytic Algorithm (AAA) dose calculation algorithms in combined dose-volume and biological optimized IMRT plans of SBRT treatments for non-small-cell lung cancer (NSCLC) patients. Twenty eight patients with NSCLC previously treated SBRT were re-planned using Varian Eclipse (V11) with combined dose-volume and biological optimization IMRT sliding window technique. The total dose prescribed to the PTV was 60 Gy with 12 Gy per fraction. The plans were initially optimized using AAA algorithm, and then were recomputed using AXB using the same MUs and MLC files to compare with the dose distribution of the original plans and assess the radiobiological as well as dosimetric impact of the two different dose algorithms. The Poisson Linear-Quadatric (PLQ) and Lyman-Kutcher-Burman (LKB) models were used for estimating the tumor control probability (TCP) and normal tissue complication probability (NTCP), respectively. The influence of the model parameter uncertainties on the TCP differences and the NTCP differences between AAA and AXB plans were studied by applying different sets of published model parameters. Patients were grouped into peripheral and centrally-located tumors to evaluate the impact of tumor location. PTV dose was lower in the re-calculated AXB plans, as compared to AAA plans. The median differences of PTV(D 95% ) were 1.7 Gy (range: 0.3, 6.5 Gy) and 1.0 Gy (range: 0.6, 4.4 Gy) for peripheral tumors and centrally-located tumors, respectively. The median differences of PTV(mean) were 0.4 Gy (range: 0.0, 1.9 Gy) and 0.9 Gy (range: 0.0, 4.3 Gy) for peripheral tumors and centrally-located tumors, respectively. TCP was also found lower in AXB-recalculated plans compared with the AAA plans. The median (range) of the TCP differences for 30 month local control were 1.6 % (0.3 %, 5.8 %) for peripheral tumors and 1.3 % (0.5 %, 3.4 %) for centrally located tumors. The lower

  10. Implementation of an algorithm for absorbed dose calculation in high energy photon beams at off axis points

    International Nuclear Information System (INIS)

    Matos, M.F.; Alvarez, G.D.; Sanz, D.E.

    2008-01-01

    Full text: A semiempirical algorithm for absorbed dose calculation at off-axis points in irregular beams was implemented. It is well known that semiempirical methods are very useful because of their easy implementation and its helpfulness in dose calculation in the clinic. These methods can be used as independent tools for dosimetric calculation in many applications of quality assurance. However, the applicability of such methods has some limitations, even in homogeneous media, specially at off axis points, near beam fringes or outside the beam. Only methods derived from tissue-air-ratio (TAR) or scatter-maximum-ratio (SMR) have been devised for those situations, many years ago. Despite there have been improvements for these manual methods, like the Sc-Sp ones, no attempt has been made to extend their usage at off axis points. In this work, a semiempirical formalism was introduced, based on the works of Venselaar et al. (1999) and Sanz et al. (2004), aimed to the Sc-Sp separation. This new formalism relies on the separation of primary and secondary components of the beam although in a relative way. The data required by the algorithm are reduced to a minimal, allowing for experimental easy. According to modern recommendations, reference measurements in water phantom are performed at 10 cm depth, keeping away electron contamination. Air measurements are done using a mini phantom instead of the old equilibrium caps. Finally, the calculation at off-axis points are done using data measured on the central beam axis; but correcting the results with the introduction of a measured function which depends on the location of the off axis point. The measurements for testing the algorithm were performed in our Siemens MXE linear accelerator. The algorithm was used to determine specific dose profiles for a great number of different beam configurations, and the results were compared with direct measurements to validate the accuracy of the algorithm. Additionally, the results were

  11. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    Science.gov (United States)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  12. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    International Nuclear Information System (INIS)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In

    2017-01-01

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device

  13. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Park, Jong Min; Choi, Chang Heon; Chun, MinSoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were 97.2%±2.3%, and 99.4%±1.1%, respectively while those for 15 MV were 98.5%±0.85% and 99.8%±0.2%, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

  14. The application of artificial neural networks to TLD dose algorithm

    International Nuclear Information System (INIS)

    Moscovitch, M.

    1997-01-01

    We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

  15. SU-F-SPS-04: Dosimetric Evaluation of the Dose Calculation Accuracy of Different Algorithms for Two Different Treatment Techniques During Whole Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pacaci, P; Cebe, M; Mabhouti, H; Codel, G; Serin, E; Sanli, E; Kucukmorkoc, E; Doyuran, M; Kucuk, N; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: In this study, dosimetric comparison of field in field (FIF) and intensity modulated radiation therapy (IMRT) techniques used for treatment of whole breast radiotherapy (WBRT) were made. The dosimetric accuracy of treatment planning system (TPS) for Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithms in predicting PTV and OAR doses was also investigated. Methods: Two different treatment planning techniques of left-sided breast cancer were generated for rando phantom. FIF and IMRT plans were compared for doses in PTV and OAR volumes including ipsilateral lung, heart, left ascending coronary artery, contralateral lung and the contralateral breast. PTV and OARs doses and homogeneity and conformality indexes were compared between two techniques. The accuracy of TPS dose calculation algorithms was tested by comparing PTV and OAR doses measured by thermoluminescent dosimetry with the dose calculated by the TPS using AAA and AXB for both techniques. Results: IMRT plans had better conformality and homogeneity indexes than FIF technique and it spared OARs better than FIF. While both algorithms overestimated PTV doses they underestimated all OAR doses. For IMRT plan, PTV doses, overestimation up to 2.5 % was seen with AAA algorithm but it decreased to 1.8 % when AXB algorithm was used. Based on the results of the anthropomorphic measurements for OAR doses, underestimation greater than 7 % is possible by the AAA. The results from the AXB are much better than the AAA algorithm. However, underestimations of 4.8 % were found in some of the points even for AXB. For FIF plan, similar trend was seen for PTV and OARs doses in both algorithm. Conclusion: When using the Eclipse TPS for breast cancer, AXB the should be used instead of the AAA algorithm, bearing in mind that the AXB may still underestimate all OAR doses.

  16. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  17. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water

    International Nuclear Information System (INIS)

    Fogliata, Antonella; Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Cozzi, Luca

    2006-01-01

    In July 2005 a new algorithm was released by Varian Medical Systems for the Eclipse planning system and installed in our institute. It is the anisotropic analytical algorithm (AAA) for photon dose calculations, a convolution/superposition model for the first time implemented in a Varian planning system. It was therefore necessary to perform validation studies at different levels with a wide investigation approach. To validate the basic performances of the AAA, a detailed analysis of data computed by the AAA configuration algorithm was carried out and data were compared against measurements. To better appraise the performance of AAA and the capability of its configuration to tailor machine-specific characteristics, data obtained from the pencil beam convolution (PBC) algorithm implemented in Eclipse were also added in the comparison. Since the purpose of the paper is to address the basic performances of the AAA and of its configuration procedures, only data relative to measurements in water will be reported. Validation was carried out for three beams: 6 MV and 15 MV from a Clinac 2100C/D and 6 MV from a Clinac 6EX. Generally AAA calculations reproduced very well measured data, and small deviations were observed, on average, for all the quantities investigated for open and wedged fields. In particular, percentage depth-dose curves showed on average differences between calculation and measurement smaller than 1% or 1 mm, and computed profiles in the flattened region matched measurements with deviations smaller than 1% for all beams, field sizes, depths and wedges. Percentage differences in output factors were observed as small as 1% on average (with a range smaller than ±2%) for all conditions. Additional tests were carried out for enhanced dynamic wedges with results comparable to previous results. The basic dosimetric validation of the AAA was therefore considered satisfactory

  18. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  19. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  20. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  1. Evaluation of dose calculation algorithms using the treatment planning system Xi O with tissue heterogeneity correction turned on

    International Nuclear Information System (INIS)

    Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L.

    2011-01-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference ∼1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)

  2. SU-F-T-628: An Evaluation of Grid Size in Eclipse AcurosXB Dose Calculation Algorithm for SBRT Lung

    Energy Technology Data Exchange (ETDEWEB)

    Pokharel, S [21st Century Oncology, Naples, FL (United States); Rana, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States)

    2016-06-15

    Purpose: purpose of this study is to evaluate the effect of grid size in Eclipse AcurosXB dose calculation algorithm for SBRT lung. Methods: Five cases of SBRT lung previously treated have been chosen for present study. Four of the plans were 5 fields conventional IMRT and one was Rapid Arc plan. All five cases have been calculated with five grid sizes (1, 1.5, 2, 2.5 and 3mm) available for AXB algorithm with same plan normalization. Dosimetric indices relevant to SBRT along with MUs and time have been recorded for different grid sizes. The maximum difference was calculated as a percentage of mean of all five values. All the plans were IMRT QAed with portal dosimetry. Results: The maximum difference of MUs was within 2%. The time increased was as high as 7 times from highest 3mm to lowest 1mm grid size. The largest difference of PTV minimum, maximum and mean dose were 7.7%, 1.5% and 1.6% respectively. The highest D2-Max difference was 6.1%. The highest difference in ipsilateral lung mean, V5Gy, V10Gy and V20Gy were 2.6%, 2.4%, 1.9% and 3.8% respectively. The maximum difference of heart, cord and esophagus dose were 6.5%, 7.8% and 4.02% respectively. The IMRT Gamma passing rate at 2%/2mm remains within 1.5% with at least 98% points passing with all grid sizes. Conclusion: This work indicates the lowest grid size of 1mm available in AXB is not necessarily required for accurate dose calculation. The IMRT passing rate was insignificant or not observed with the reduction of grid size less than 2mm. Although the maximum percentage difference of some of the dosimetric indices appear large, most of them are clinically insignificant in absolute dose values. So we conclude that 2mm grid size calculation is best compromise in light of dose calculation accuracy and time it takes to calculate dose.

  3. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  4. SU-F-T-545: Dosimetric and Radiobiological Evaluation of Dose Calculation Algorithms On Prostate Stereotactic Body Radiotherapy Using Conventional Flattened and Flattening-Filter-Free Beam

    International Nuclear Information System (INIS)

    Kang, S; Suh, T; Chung, J; Eom, K; Lee, J

    2016-01-01

    Purpose: The purpose of this study is to evaluate the dosimetric and radiobiological impact of Acuros XB (AXB) and Anisotropic Analytic Algorithm (AAA) dose calculation algorithms on prostate stereotactic body radiation therapy plans with both conventional flattened (FF) and flattening-filter free (FFF) modes. Methods: For thirteen patients with prostate cancer, SBRT planning was performed using 10-MV photon beam with FF and FFF modes. The total dose prescribed to the PTV was 42.7 Gy in 7 fractions. All plans were initially calculated using AAA algorithm in Eclipse treatment planning system (11.0.34), and then were re-calculated using AXB with the same MUs and MLC files. The four types of plans for different algorithms and beam energies were compared in terms of homogeneity and conformity. To evaluate the radiobiological impact, the tumor control probability (TCP) and normal tissue complication probability (NTCP) calculations were performed. Results: For PTV, both calculation algorithms and beam modes lead to comparable homogeneity and conformity. However, the averaged TCP values in AXB plans were always lower than in AAA plans with an average difference of 5.3% and 6.1% for 10-MV FFF and FF beam, respectively. In addition, the averaged NTCP values for organs at risk (OARs) were comparable. Conclusion: This study showed that prostate SBRT plan were comparable dosimetric results with different dose calculation algorithms as well as delivery beam modes. For biological results, even though NTCP values for both calculation algorithms and beam modes were similar, AXB plans produced slightly lower TCP compared to the AAA plans.

  5. SU-F-T-545: Dosimetric and Radiobiological Evaluation of Dose Calculation Algorithms On Prostate Stereotactic Body Radiotherapy Using Conventional Flattened and Flattening-Filter-Free Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Suh, T [The catholic university of Korea, Seoul (Korea, Republic of); Chung, J; Eom, K [Seoul National University Bundang Hospital (Korea, Republic of); Lee, J [Konkuk University Medical Center (Korea, Republic of)

    2016-06-15

    Purpose: The purpose of this study is to evaluate the dosimetric and radiobiological impact of Acuros XB (AXB) and Anisotropic Analytic Algorithm (AAA) dose calculation algorithms on prostate stereotactic body radiation therapy plans with both conventional flattened (FF) and flattening-filter free (FFF) modes. Methods: For thirteen patients with prostate cancer, SBRT planning was performed using 10-MV photon beam with FF and FFF modes. The total dose prescribed to the PTV was 42.7 Gy in 7 fractions. All plans were initially calculated using AAA algorithm in Eclipse treatment planning system (11.0.34), and then were re-calculated using AXB with the same MUs and MLC files. The four types of plans for different algorithms and beam energies were compared in terms of homogeneity and conformity. To evaluate the radiobiological impact, the tumor control probability (TCP) and normal tissue complication probability (NTCP) calculations were performed. Results: For PTV, both calculation algorithms and beam modes lead to comparable homogeneity and conformity. However, the averaged TCP values in AXB plans were always lower than in AAA plans with an average difference of 5.3% and 6.1% for 10-MV FFF and FF beam, respectively. In addition, the averaged NTCP values for organs at risk (OARs) were comparable. Conclusion: This study showed that prostate SBRT plan were comparable dosimetric results with different dose calculation algorithms as well as delivery beam modes. For biological results, even though NTCP values for both calculation algorithms and beam modes were similar, AXB plans produced slightly lower TCP compared to the AAA plans.

  6. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations

    International Nuclear Information System (INIS)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-01-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  7. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.

    2004-01-01

    An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm 2 ) and two lung equivalent materials (CIRS, ρ e w =0.195 and St. Bartholomew Hospital, London, ρ e w =0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm 2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm 2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0

  8. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms.

    Science.gov (United States)

    Fogliata, Antonella; Lobefalo, Francesca; Reggiori, Giacomo; Stravato, Antonella; Tomatis, Stefano; Scorsetti, Marta; Cozzi, Luca

    2016-10-01

    Small field measurements are challenging, due to the physical characteristics coming from the lack of charged particle equilibrium, the partial occlusion of the finite radiation source, and to the detector response. These characteristics can be modeled in the dose calculations in the treatment planning systems. Aim of the present work is to evaluate the MU calculation accuracy for small fields, defined by jaw or MLC, for anisotropic analytical algorithm (AAA) and Acuros XB algorithms, relative to output measurements on the beam central axis. Single point output factor measurement was acquired with a PTW microDiamond detector for 6 MV, 6 and 10 MV unflattened beams generated by a Varian TrueBeam STx equipped with high definition-MLC. Fields defined by jaw or MLC apertures were set; jaw-defined: 0.6 × 0.6, 0.8 × 0.8, 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 ; MLC-defined: 0.5 × 0.5 cm 2 to the maximum field defined by the jaw, with 0.5 cm stepping, and jaws set to: 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 . MU calculation was obtained with 1 mm grid in a virtual water phantom for the same fields, for AAA and Acuros algorithms implemented in the Varian eclipse treatment planning system (version 13.6). Configuration parameters as the effective spot size (ESS) and the dosimetric leaf gap (DLG) were varied to find the best parameter setting. Differences between calculated and measured doses were analyzed. Agreement better than 0.5% was found for field sizes equal to or larger than 2 × 2 cm 2 for both algorithms. A dose overestimation was present for smaller jaw-defined fields, with the best agreement, averaged over all the energies, of 1.6% and 4.6% for a 1 × 1 cm 2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 1 mm for both X and Y directions for AAA, and ESS = 1.5 and 0 mm for X and Y directions for Acuros. Conversely, a calculated dose underestimation was found for small MLC-defined fields, with the

  9. Simple experimentally derived algorithm for computer calculated dose rates associated with 137Cs gynecologic insertions

    International Nuclear Information System (INIS)

    Wrede, D.E.; Dawalibi, H.

    1980-01-01

    A simple mathematical algorithm is derived from experimental data for dose rates from 137 Cs sources in a finite tissue equivalent medium corresponding to the female pelvis. An analytical expression for a point source of 137 Cs along with a simple numerical integration routine allows for rapid as well as accurate dose rate calculations at points of interest for gynecologic insertions. When compared with theoretical models assuming an infinite unit density medium, the measured dose rates are found to be systematically lower at distances away from a single source; 5 per cent at 2 cm and 10 per cent at 7 cm along the transverse axis. Allowance in the program for print out of dose rates from individual sources to a given point and the feature of source strength modification allows for optimization in terms of increasing the difference in dose rate between reference treatment points and sensitive structures such as the bladder, rectum and colon. (Auth.)

  10. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  11. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations

    DEFF Research Database (Denmark)

    Knöös, Tommy; Wieslander, Elinore; Cozzi, Luca

    2006-01-01

    to the fields. A Monte Carlo calculated algorithm input data set and a benchmark set for a virtual linear accelerator have been produced which have facilitated the analysis and interpretation of the results. The more sophisticated models in the type b group exhibit changes in both absorbed dose and its...... distribution which are congruent with the simulations performed by Monte Carlo-based virtual accelerator....

  12. A TLD dose algorithm using artificial neural networks

    International Nuclear Information System (INIS)

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-01-01

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

  13. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori; Ueki, Nami; Nakamura, Akira; Iizuka, Yusuke; Mampuya, Wambaka Ange; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D{sub 95}, D{sub 90}, D{sub 50}, and D{sub 2} of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation

  14. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    International Nuclear Information System (INIS)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro; Matsuo, Yukinori; Ueki, Nami; Nakamura, Akira; Iizuka, Yusuke; Mampuya, Wambaka Ange; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D 95 , D 90 , D 50 , and D 2 of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation algorithm or the

  15. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen Mingli; Reckwerdt, Paul J; Mackie, Thomas R

    2005-01-01

    Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm 2 ) and the 'narrow' (1.2 x 1.2 cm 2 ) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm

  16. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm.

    Science.gov (United States)

    Widesott, Lamberto; Lorentini, Stefano; Fracchiolla, Francesco; Farace, Paolo; Schwarz, Marco

    2018-05-04

    validation of a commercial Monte Carlo (MC) algorithm (RayStation ver6.0.024) for the treatment of brain tumours with pencil beam scanning (PBS) proton therapy, comparing it via measurements and analytical calculations in clinically realistic scenarios. Methods: For the measurements a 2D ion chamber array detector (MatriXX PT)) was placed underneath the following targets: 1) anthropomorphic head phantom (with two different thickness) and 2) a biological sample (i.e. half lamb's head). In addition, we compared the MC dose engine vs. the RayStation pencil beam (PB) algorithm clinically implemented so far, in critical conditions such as superficial targets (i.e. in need of range shifter), different air gaps and gantry angles to simulate both orthogonal and tangential beam arrangements. For every plan the PB and MC dose calculation were compared to measurements using a gamma analysis metrics (3%, 3mm). Results: regarding the head phantom the gamma passing rate (GPR) was always >96% and on average > 99% for the MC algorithm; PB algorithm had a GPR ≤90% for all the delivery configurations with single slab (apart 95 % GPR from gantry 0° and small air gap) and in case of two slabs of the head phantom the GPR was >95% only in case of small air gaps for all the three (0°, 45°,and 70°) simulated beam gantry angles. Overall the PB algorithm tends to overestimate the dose to the target (up to 25%) and underestimate the dose to the organ at risk (up to 30%). We found similar results (but a bit worse for PB algorithm) for the two targets of the lamb's head where only two beam gantry angles were simulated. Conclusions: our results suggest that in PBS proton therapy range shifter (RS) need to be used with extreme caution when planning the treatment with an analytical algorithm due to potentially great discrepancies between the planned dose and the dose delivered to the patients, also in case of brain tumours where this issue could be underestimated. Our results also

  17. SU-E-T-37: A GPU-Based Pencil Beam Algorithm for Dose Calculations in Proton Radiation Therapy

    International Nuclear Information System (INIS)

    Kalantzis, G; Leventouri, T; Tachibana, H; Shang, C

    2015-01-01

    Purpose: Recent developments in radiation therapy have been focused on applications of charged particles, especially protons. Over the years several dose calculation methods have been proposed in proton therapy. A common characteristic of all these methods is their extensive computational burden. In the current study we present for the first time, to our best knowledge, a GPU-based PBA for proton dose calculations in Matlab. Methods: In the current study we employed an analytical expression for the protons depth dose distribution. The central-axis term is taken from the broad-beam central-axis depth dose in water modified by an inverse square correction while the distribution of the off-axis term was considered Gaussian. The serial code was implemented in MATLAB and was launched on a desktop with a quad core Intel Xeon X5550 at 2.67GHz with 8 GB of RAM. For the parallelization on the GPU, the parallel computing toolbox was employed and the code was launched on a GTX 770 with Kepler architecture. The performance comparison was established on the speedup factors. Results: The performance of the GPU code was evaluated for three different energies: low (50 MeV), medium (100 MeV) and high (150 MeV). Four square fields were selected for each energy, and the dose calculations were performed with both the serial and parallel codes for a homogeneous water phantom with size 300×300×300 mm3. The resolution of the PBs was set to 1.0 mm. The maximum speedup of ∼127 was achieved for the highest energy and the largest field size. Conclusion: A GPU-based PB algorithm for proton dose calculations in Matlab was presented. A maximum speedup of ∼127 was achieved. Future directions of the current work include extension of our method for dose calculation in heterogeneous phantoms

  18. Optimization of an algorithm for 3D calculation of radiation dose distribution in heterogeneous media for use in radiotherapy planning

    International Nuclear Information System (INIS)

    Perles, L.A.; Chinellato, C.D.; Rocha, J.R.O.

    2001-01-01

    In this paper has been presented a modification of a algorithm for three-dimensional (3D) radiation dose distribution in heterogeneous media by convolutions. This modification has maintained good accordance between calculated and simulated data in EGS4 code. The results of algorithm have been compared with commercial program PLATO, where have been noticed inconsistency for equivalent density regions in a muscle-lung-muscle interface system

  19. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  20. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  1. Simple experimentally derived algorithm for computer calculated dose rates associated with /sup 137/Cs gynecologic insertions

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, D E; Dawalibi, H [King Faisal Specialist Hospital and Research Centre, Department of Medical Physics. Riyadh (Saudi Arabia)

    1980-01-01

    A simple mathematical algorithm is derived from experimental data for dose rates from /sup 137/Cs sources in a finite tissue equivalent medium corresponding to the female pelvis. An analytical expression for a point source of /sup 137/Cs along with a simple numerical integration routine allows for rapid as well as accurate dose rate calculations at points of interest for gynecologic insertions. When compared with theoretical models assuming an infinite unit density medium, the measured dose rates are found to be systematically lower at distances away from a single source; 5 per cent at 2 cm and 10 per cent at 7 cm along the transverse axis. Allowance in the program for print out of dose rates from individual sources to a given point and the feature of source strength modification allows for optimization in terms of increasing the difference in dose rate between reference treatment points and sensitive structures such as the bladder, rectum and colon.

  2. Comparison of dose calculations between pencil-beam and Monte Carlo algorithms of the iPlan RT in arc therapy using a homogenous phantom with 3DVH software

    International Nuclear Information System (INIS)

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Chae, Soo-Min; Son, Seok Hyun

    2013-01-01

    To create an arc therapy plan, certain current general calculation algorithms such as pencil-beam calculation (PBC) are based on discretizing the continuous arc into multiple fields to simulate an arc. The iPlan RT™ treatment planning system incorporates not only a PBC algorithm, but also a more recent Monte Carlo calculation (MCC) algorithm that does not need beam discretization. The objective of this study is to evaluate the dose differences in a homogenous phantom between PBC and MCC by using a three-dimensional (3D) diode array detector (ArcCHECK™) and 3DVH software. A cylindrically shaped ‘target’ region of interest (ROI) and a ‘periphery ROI’ surrounding the target were designed. An arc therapy plan was created to deliver 600 cGy to the target within a 350° rotation angle, calculated using the PBC and MCC algorithms. The radiation doses were measured by the ArcCHECK, and reproduced by the 3DVH software. Through this process, we could compare the accuracy of both algorithms with regard to the 3D gamma passing rate (for the entire area and for each ROI). Comparing the PBC and MCC planned dose distributions directly, the 3D gamma passing rates for the entire area were 97.7% with the gamma 3%/3 mm criterion. Comparing the planned dose to the measured dose, the 3D gamma passing rates were 98.8% under the PBC algorithm and 100% under the MCC algorithm. The difference was statistically significant (p = 0.034). Furthermore the gamma passing rate decreases 7.5% in the PBC when using the 2%/2 mm criterion compared to only a 0.4% decrease under the MCC. Each ROI as well as the entire area showed statistically significant higher gamma passing rates under the MCC algorithm. The failure points that did not satisfy the gamma criteria showed a regular pattern repeated every 10°. MCC showed better accuracy than the PBC of the iPlan RT in calculating the dose distribution in arc therapy, which was validated with the ArcCHECK and the 3DVH software. This may

  3. Assessment the accuracy of dose calculation in build-up region for two radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Bagher Farhood

    2017-01-01

    Conclusions: It is concluded that for open field sizes without gantry angulation, dose calculation accuracy in Prowess TPS with CCCS algorithm is better than TiGRT and Prowess TPSs with FPE algorithm. Furthermore, it is concluded that for wedged field with large gantry angle, dose calculation accuracy of Prowess TPS with FPE algorithm is better than TiGRT TPS while, for medium and small gantry angles, dose calculation accuracy of TiGRT TPS is better than Prowess TPS with FPE algorithm.

  4. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  5. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability.

    Science.gov (United States)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-12-23

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy -1.5 Gy; p AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans. Differences in dose distribution are observed with VMAT and CRT plans recalculated with AXB particularly within soft tissue at the tumour/lung interface, where AXB has been shown to more

  6. SU-F-T-273: Using a Diode Array to Explore the Weakness of TPS DoseCalculation Algorithm for VMAT and Sliding Window Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, J; Lu, B; Yan, G; Park, J; Li, F; Li, J; Liu, C [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diode array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.

  7. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  8. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  9. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    Science.gov (United States)

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  10. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  11. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    Science.gov (United States)

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  12. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations

    Science.gov (United States)

    Fogliata, Antonella; Vanetti, Eugenio; Albers, Dirk; Brink, Carsten; Clivio, Alessandro; Knöös, Tommy; Nicolini, Giorgia; Cozzi, Luca

    2007-03-01

    A comparative study was performed to reveal differences and relative figures of merit of seven different calculation algorithms for photon beams when applied to inhomogeneous media. The following algorithms were investigated: Varian Eclipse: the anisotropic analytical algorithm, and the pencil beam with modified Batho correction; Nucletron Helax-TMS: the collapsed cone and the pencil beam with equivalent path length correction; CMS XiO: the multigrid superposition and the fast Fourier transform convolution; Philips Pinnacle: the collapsed cone. Monte Carlo simulations (MC) performed with the EGSnrc codes BEAMnrc and DOSxyznrc from NRCC in Ottawa were used as a benchmark. The study was carried out in simple geometrical water phantoms (ρ = 1.00 g cm-3) with inserts of different densities simulating light lung tissue (ρ = 0.035 g cm-3), normal lung (ρ = 0.20 g cm-3) and cortical bone tissue (ρ = 1.80 g cm-3). Experiments were performed for low- and high-energy photon beams (6 and 15 MV) and for square (13 × 13 cm2) and elongated rectangular (2.8 × 13 cm2) fields. Analysis was carried out on the basis of depth dose curves and transverse profiles at several depths. Assuming the MC data as reference, γ index analysis was carried out distinguishing between regions inside the non-water inserts or inside the uniform water. For this study, a distance to agreement was set to 3 mm while the dose difference varied from 2% to 10%. In general all algorithms based on pencil-beam convolutions showed a systematic deficiency in managing the presence of heterogeneous media. In contrast, complicated patterns were observed for the advanced algorithms with significant discrepancies observed between algorithms in the lighter materials (ρ = 0.035 g cm-3), enhanced for the most energetic beam. For denser, and more clinical, densities a better agreement among the sophisticated algorithms with respect to MC was observed.

  13. [New calculation algorithms in brachytherapy for iridium 192 treatments].

    Science.gov (United States)

    Robert, C; Dumas, I; Martinetti, F; Chargari, C; Haie-Meder, C; Lefkopoulos, D

    2018-05-18

    Since 1995, the brachytherapy dosimetry protocols follow the methodology recommended by the Task Group 43. This methodology, which has the advantage of being fast, is based on several approximations that are not always valid in clinical conditions. Model-based dose calculation algorithms have recently emerged in treatment planning stations and are considered as a major evolution by allowing for consideration of the patient's finite dimensions, tissue heterogeneities and the presence of high atomic number materials in applicators. In 2012, a report from the American Association of Physicists in Medicine Radiation Therapy Task Group 186 reviews these models and makes recommendations for their clinical implementation. This review focuses on the use of model-based dose calculation algorithms in the context of iridium 192 treatments. After a description of these algorithms and their clinical implementation, a summary of the main questions raised by these new methods is performed. Considerations regarding the choice of the medium used for the dose specification and the recommended methodology for assigning materials characteristics are especially described. In the last part, recent concrete examples from the literature illustrate the capabilities of these new algorithms on clinical cases. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-01-01

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p < 0.05) for VMAT AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy −1.5 Gy; p < 0.05). An apparent difference in TCP of between 1.2% and 3.1% was found depending on the choice of TCP model. OAR mean dose was lower in the AXB recalculated plan than the AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans

  15. Independent dose calculation in IMRT for the Tps Iplan using the Clarkson modified integral

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Garrigo, E.; Venencia, D.

    2014-08-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments require a quality assurance (Q A) specific patient before delivery. These controls include the experimental verification in dose phantom of the total plan as well as dose distributions. The use of independent dose calculation (IDC) is used in 3D-Crt treatments; however its application in IMRT requires the implementation of an algorithm that allows considering a non-uniform intensity beam. The purpose of this work was to develop IDC software in IMRT with MLC using the algorithm proposed by Kung (Kung et al. 2000). The software was done using Matlab programming. The Clarkson modified integral was implemented on each flowing, applying concentric rings for the dose determination. From the integral of each field was calculated the dose anywhere. One time finished a planning; all data are exported to a phantom where a Q A plan is generated. On this is calculated the half dose in a representative volume of the ionization chamber and the dose at the center of it. Until now 230 IMRT planning were analyzed carried out ??in the treatment planning system (Tps) Iplan. For each one of them Q A plan was generated, were calculated and compared calculated dose with the Tps, IDC system and measurement with ionization chamber. The average difference between measured and calculated dose with the IDC system was 0.4% ± 2.2% [-6.8%, 6.4%]. The difference between the measured and the calculated doses by the pencil-beam algorithm (Pb) of Tps was 2.6% ± 1.41% [-2.0%, 5.6%] and with the Monte Carlo algorithm was 0.4% ± 1.5% [-4.9%, 3.7%]. The differences of the carried out software are comparable to the obtained with the ionization chamber and Tps in Monte Carlo mode. (author)

  16. Verification of the VEF photon beam model for dose calculations by the voxel-Monte-Carlo-algorithm

    International Nuclear Information System (INIS)

    Kriesen, S.; Fippel, M.

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tuebingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning. (orig.)

  17. [Verification of the VEF photon beam model for dose calculations by the Voxel-Monte-Carlo-Algorithm].

    Science.gov (United States)

    Kriesen, Stephan; Fippel, Matthias

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tübingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning.

  18. Radioiodine therapy of hyperfunctioning thyroid nodules: usefulness of an implemented dose calculation algorithm allowing reduction of radioiodine amount.

    Science.gov (United States)

    Schiavo, M; Bagnara, M C; Pomposelli, E; Altrinetti, V; Calamia, I; Camerieri, L; Giusti, M; Pesce, G; Reitano, C; Bagnasco, M; Caputo, M

    2013-09-01

    Radioiodine is a common option for treatment of hyperfunctioning thyroid nodules. Due to the expected selective radioiodine uptake by adenoma, relatively high "fixed" activities are often used. Alternatively, the activity is individually calculated upon the prescription of a fixed value of target absorbed dose. We evaluated the use of an algorithm for personalized radioiodine activity calculation, which allows as a rule the administration of lower radioiodine activities. Seventy-five patients with single hyperfunctioning thyroid nodule eligible for 131I treatment were studied. The activities of 131I to be administered were estimated by the method described by Traino et al. and developed for Graves'disease, assuming selective and homogeneous 131I uptake by adenoma. The method takes into account 131I uptake and its effective half-life, target (adenoma) volume and its expected volume reduction during treatment. A comparison with the activities calculated by other dosimetric protocols, and the "fixed" activity method was performed. 131I uptake was measured by external counting, thyroid nodule volume by ultrasonography, thyroid hormones and TSH by ELISA. Remission of hyperthyroidism was observed in all but one patient; volume reduction of adenoma was closely similar to that assumed by our model. Effective half-life was highly variable in different patients, and critically affected dose calculation. The administered activities were clearly lower with respect to "fixed" activities and other protocols' prescription. The proposed algorithm proved to be effective also for single hyperfunctioning thyroid nodule treatment and allowed a significant reduction of administered 131I activities, without loss of clinical efficacy.

  19. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  20. Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center's head and neck phantom

    International Nuclear Information System (INIS)

    Han Tao; Mourtada, Firas; Kisling, Kelly; Mikell, Justin; Followill, David; Howell, Rebecca

    2012-01-01

    Purpose: The purpose of this study was to verify the dosimetric performance of Acuros XB (AXB), a grid-based Boltzmann solver, in intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The Radiological Physics Center (RPC) head and neck (H and N) phantom was used for all calculations and measurements in this study. Clinically equivalent IMRT and VMAT plans were created on the RPC H and N phantom in the Eclipse treatment planning system (version 10.0) by using RPC dose prescription specifications. The dose distributions were calculated with two different algorithms, AXB 11.0.03 and anisotropic analytical algorithm (AAA) 10.0.24. Two dose report modes of AXB were recorded: dose-to-medium in medium (D m,m ) and dose-to-water in medium (D w,m ). Each treatment plan was delivered to the RPC phantom three times for reproducibility by using a Varian Clinac iX linear accelerator. Absolute point dose and planar dose were measured with thermoluminescent dosimeters (TLDs) and GafChromic registered EBT2 film, respectively. Profile comparison and 2D gamma analysis were used to quantify the agreement between the film measurements and the calculated dose distributions from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: Good agreement was observed between measured doses and those calculated with AAA or AXB. Both AAA and AXB calculated doses within 5% of TLD measurements in both the IMRT and VMAT plans. Results of AXB Dm,m (0.1% to 3.6%) were slightly better than AAA (0.2% to 4.6%) or AXB Dw,m (0.3% to 5.1%). The gamma analysis for both AAA and AXB met the RPC 7%/4 mm criteria (over 90% passed), whereas AXB Dm,m met 5%/3 mm criteria in most cases. AAA was 2 to 3 times faster than AXB for IMRT, whereas AXB was 4-6 times faster than AAA for VMAT. Conclusions: AXB was found to be satisfactorily accurate when compared to measurements in the RPC H and N phantom. Compared with AAA, AXB results were equal

  1. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H. [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  2. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    International Nuclear Information System (INIS)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H.

    2016-01-01

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  3. Evaluating the calculation accuracy of AAA algorithm for the situation with small fields in bone by monte carlo

    International Nuclear Information System (INIS)

    Zhang Yanqiu; Qiu Xiaoping; Yang Zhen; Lu Zhiping

    2011-01-01

    In order to evaluate the calculation accuracy of Anisotropic Analytical Algorithm (AAA) for the situation with small fields in a water-bone phantom using Monte Carlo simulation as benchmarks. A water phantom with a bone slab was built,in which the depth dose (DD) and off-axis ratio (OAR) for field 2 cm x 2 cm to field 8 cm x 8 cm were calculated by AAA algorithms, PBC algorithms (as comparison), and Monte Carlo (MC) simulation. The evaluation of algorithms by MC simulation was achieved by the comparisons of DD and the 1 dimension gamma analysis of OAR. It was shown that both of AAA algorithm and PBC algorithm overestimated the DD in bone region, and the dose differences ranged from 2.16%-2.7%, 1.4%-2.03%, respectively. AAA algorithm and PBC algorithm underestimated the DD in back of bone region, and the dose differences ranged from -0.39% - -1.19%, -0.13% - -0.4%, respectively. AAA algorithm and PBC algorithm overestimated the dose of field inner edge and field outer edge,respectively. One dimension gamma analysis indicated that AAA algorithm and PBC algorithm gamma pass rate was 100%, 100%, 100%, 86%, 100%, 100%, 72%, 64%, respectively. In bone medium,the dose calculated by AAA was slightly higher than MC simulation, the calculation accuracy was not evidently higher than PBC. (authors)

  4. SU-E-T-496: A Study of Two Commercial Dose Calculation Algorithms in Low Density Phantom

    International Nuclear Information System (INIS)

    Lim, S; Lovelock, D; Yorke, E; Kuo, L; LoSasso, T

    2014-01-01

    Purpose: Some lung cancer patients have very low lung density due to comorbidities. We investigate calculation accuracy of Eclipse AAA and Acuros(AXB) using a phantom that simulates this situation. Methods: A 2.5 x 5.0 x 5 cm (long) solid water inhomogeneity positioned 10 cm deep in a Balsa lung phantom (density 0.099 gm/cc) was irradiated with an off-center field such that the central axis was parallel to one side of the inhomogeneity. Radiochromic films were placed at 2.5cm(S1) and 5cm(S2) depths. After CT scanning, Hounsfield Units(HU) were converted to electron(ρe) and mass(ρm) density using in-house(IH) and vendor-supplied(V) calibration curves. IH electron densities were generated using a commercial electron density phantom. The phantom was exposed to 6 MV 3x3 and 20x20 fields. Dose distributions were calculated using the AAA and AXB algorithms. Results: The HU of BW is -910±40 which translates to ρe of 0.088±0.050(IH) and 0.090±0.050(V), and ρm of 0.101±0.045(IH) and 0.103±0.039(V). Both ρe(V) and ρm(V) are higher than ρe(IH) and ρm(IH) respectively by 1.4-5.3% and 0.5-12.3%. The average calculated dose inside the solid water ‘tumor’ are within 3.7% and 2.4% of measurements for both calibrations and field sizes using AAA and AXB. Within 10mm outside the ‘tumor’, AAA on average underestimates by 18.3% and 17.0% respectively for 3x3 using IH and V. AXB underestimates by 5.9%(S1)-6.6%(S2) and 13.1%(S1)-16.0%(S2) respectively using IH and V. For 20x20, AAA and AXB underestimate by 2.8%(S1)-4.4%(S2) and 0.3%(S1)-1.4%(S2) respectively with either calibration. Conclusion: The difference in the HU calibration between V and IH is not of clinical significance in normal field sizes. In the low density region of small fields, the calculations from both algorithms differ significantly from measurements. This may be attributed to the insufficient lateral electron transport modeled by two algorithms resulting in the over-estimation in penumbra

  5. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  6. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  7. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  8. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  9. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    Science.gov (United States)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  10. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  11. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  12. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  13. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  14. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-01-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  15. Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Smathers, James; Deye, James

    2003-01-01

    Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies. Based on these discussions, the workshop developed recommendations for future NCI-funded research and development efforts. This paper briefly summarizes the issues presented at the workshop and the recommendations developed by the group

  16. Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media

    International Nuclear Information System (INIS)

    Szymanowski, Hanitra; Oelfke, Uwe

    2002-01-01

    New dose delivery techniques with proton beams, such as beam spot scanning or raster scanning, require fast and accurate dose algorithms which can be applied for treatment plan optimization in clinically acceptable timescales. The clinically required accuracy is particularly difficult to achieve for the irradiation of complex, heterogeneous regions of the patient's anatomy. Currently applied fast pencil beam dose calculations based on the standard inhomogeneity correction of pathlength scaling often cannot provide the accuracy required for clinically acceptable dose distributions. This could be achieved with sophisticated Monte Carlo simulations which are still unacceptably time consuming for use as dose engines in optimization calculations. We therefore present a new algorithm for proton dose calculations which aims to resolve the inherent problem between calculation speed and required clinical accuracy. First, a detailed derivation of the new concept, which is based on an additional scaling of the lateral proton fluence is provided. Then, the newly devised two-dimensional (2D) scaling method is tested for various geometries of different phantom materials. These include standard biological tissues such as bone, muscle and fat as well as air. A detailed comparison of the new 2D pencil beam scaling with the current standard pencil beam approach and Monte Carlo simulations, performed with GEANT, is presented. It was found that the new concept proposed allows calculation of absorbed dose with an accuracy almost equal to that achievable with Monte Carlo simulations while requiring only modestly increased calculation times in comparison to the standard pencil beam approach. It is believed that this new proton dose algorithm has the potential to significantly improve the treatment planning outcome for many clinical cases encountered in highly conformal proton therapy. (author)

  17. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  18. Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.

    Science.gov (United States)

    Ong, Chloe C H; Ang, Khong Wei; Soh, Roger C X; Tin, Kah Ming; Yap, Jerome H H; Lee, James C L; Bragg, Christopher M

    2017-01-01

    There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  19. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  20. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J da [University of Cambridge, Cambridge, Cambridgeshire (United Kingdom)

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  1. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    International Nuclear Information System (INIS)

    Silva, J da

    2014-01-01

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552

  2. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

    International Nuclear Information System (INIS)

    Kroon, Petra S; Hol, Sandra; Essers, Marion

    2013-01-01

    The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. The dosimetric impact on near-minimum PTV dose (D 98% ) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V 20Gy and V 5Gy in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V 5Gy-cont was 35.6% for stage III patients. For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose

  3. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    International Nuclear Information System (INIS)

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-01-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  4. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  5. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  6. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage

    DEFF Research Database (Denmark)

    Aarup, Lasse Rye; Nahum, Alan E; Zacharatou, Christina

    2009-01-01

    PURPOSE: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung tumour coverage in stereotactic body radiotherapy (SBRT) conditions. MATERIALS AND METHODS: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatm...... target dose, the AAA(Ecl) and CCC(OMP) algorithms appear to be adequate alternatives to MC....

  7. SU-E-T-800: Verification of Acurose XB Dose Calculation Algorithm at Air Cavity-Tissue Interface Using Film Measurement for Small Fields of 6-MV Flattening Filter-Free Beams

    International Nuclear Information System (INIS)

    Kang, S; Suh, T; Chung, J

    2015-01-01

    Purpose: To verify the dose accuracy of Acuros XB (AXB) dose calculation algorithm at air-tissue interface using inhomogeneous phantom for 6-MV flattening filter-free (FFF) beams. Methods: An inhomogeneous phantom included air cavity was manufactured for verifying dose accuracy at the air-tissue interface. The phantom was composed with 1 and 3 cm thickness of air cavity. To evaluate the central axis doses (CAD) and dose profiles of the interface, the dose calculations were performed for 3 × 3 and 4 × 4 cm 2 fields of 6 MV FFF beams with AAA and AXB in Eclipse treatment plainning system. Measurements in this region were performed with Gafchromic film. The root mean square errors (RMSE) were analyzed with calculated and measured dose profile. Dose profiles were divided into inner-dose profile (>80%) and penumbra (20% to 80%) region for evaluating RMSE. To quantify the distribution difference, gamma evaluation was used and determined the agreement with 3%/3mm criteria. Results: The percentage differences (%Diffs) between measured and calculated CAD in the interface, AXB shows more agreement than AAA. The %Diffs were increased with increasing the thickness of air cavity size and it is similar for both algorithms. In RMSEs of inner-profile, AXB was more accurate than AAA. The difference was up to 6 times due to overestimation by AAA. RMSEs of penumbra appeared to high difference for increasing the measurement depth. Gamma agreement also presented that the passing rates decreased in penumbra. Conclusion: This study demonstrated that the dose calculation with AXB shows more accurate than with AAA for the air-tissue interface. The 2D dose distributions with AXB for both inner-profile and penumbra showed better agreement than with AAA relative to variation of the measurement depths and air cavity sizes

  8. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  9. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  10. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  11. TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a

    Energy Technology Data Exchange (ETDEWEB)

    Xue, J; Park, J; Kim, L; Wang, C [MD Anderson Cancer Center at Cooper, Camden, NJ (United States); Balter, P; Ohrt, J; Kirsner, S; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommended by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.

  12. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm 2 field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.

  13. Comparison of Dose Distributions With TG-43 and Collapsed Cone Convolution Algorithms Applied to Accelerated Partial Breast Irradiation Patient Plans

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Sara L., E-mail: slloupot@mdanderson.org [The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F.; Bloom, Elizabeth [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Salehpour, Mohammad; Gifford, Kent [Department of Radiation Physics, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-08-01

    Purpose: To compare the treatment plans for accelerated partial breast irradiation calculated by the new commercially available collapsed cone convolution (CCC) and current standard TG-43–based algorithms for 50 patients treated at our institution with either a Strut-Adjusted Volume Implant (SAVI) or Contura device. Methods and Materials: We recalculated target coverage, volume of highly dosed normal tissue, and dose to organs at risk (ribs, skin, and lung) with each algorithm. For 1 case an artificial air pocket was added to simulate 10% nonconformance. We performed a Wilcoxon signed rank test to determine the median differences in the clinical indices V90, V95, V100, V150, V200, and highest-dosed 0.1 cm{sup 3} and 1.0 cm{sup 3} of rib, skin, and lung between the two algorithms. Results: The CCC algorithm calculated lower values on average for all dose-volume histogram parameters. Across the entire patient cohort, the median difference in the clinical indices calculated by the 2 algorithms was <10% for dose to organs at risk, <5% for target volume coverage (V90, V95, and V100), and <4 cm{sup 3} for dose to normal breast tissue (V150 and V200). No discernable difference was seen in the nonconformance case. Conclusions: We found that on average over our patient population CCC calculated (<10%) lower doses than TG-43. These results should inform clinicians as they prepare for the transition to heterogeneous dose calculation algorithms and determine whether clinical tolerance limits warrant modification.

  14. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    International Nuclear Information System (INIS)

    Gemmel, A; Rietzel, E; Kraft, G; Durante, M; Bert, C

    2011-01-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of −1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  15. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  16. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4 cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.

  17. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  18. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  19. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    International Nuclear Information System (INIS)

    Varadhan; Way, S; Arentsen, L; Gerbi, B

    2016-01-01

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R_8_0_–_2_0 electron distal falloff distance and number of particle histories was set at 500,000 per cm"2. Percent depth dose scans and beam profiles at dmax, d_9_0 and d_8_0 depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom"2 scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d_9_0 and d_8_0 depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  20. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Varadhan [Minneapolis Radiation Oncology, Fridley, MN (United States); Way, S [Minneapolis Radiation Oncology, Robbinsdale, MN (United States); Arentsen, L; Gerbi, B [University of Minnesota, Minneapolis, MN (United States)

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distance and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  1. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  2. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations

    DEFF Research Database (Denmark)

    Fogliata, Antonella; Vanetti, Eugenio; Albers, Dirk

    2007-01-01

    A comparative study was performed to reveal differences and relative figures of merit of seven different calculation algorithms for photon beams when applied to inhomogeneous media. The following algorithms were investigated: Varian Eclipse: the anisotropic analytical algorithm, and the pencil beam...... a systematic deficiency in managing the presence of heterogeneous media. In contrast, complicated patterns were observed for the advanced algorithms with significant discrepancies observed between algorithms in the lighter materials (rho = 0.035 g cm(-3)), enhanced for the most energetic beam. For denser...

  3. Poster - 20: Detector selection for commissioning of a Monte Carlo based electron dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Anusionwu, Princess [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Alpuche Aviles, Jorge E. [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Pistorius, Stephen [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2016-08-15

    Objective: Commissioning of a Monte Carlo based electron dose calculation algorithm requires percentage depth doses (PDDs) and beam profiles which can be measured with multiple detectors. Electron dosimetry is commonly performed with cylindrical chambers but parallel plate chambers and diodes can also be used. The purpose of this study was to determine the most appropriate detector to perform the commissioning measurements. Methods: PDDs and beam profiles were measured for beams with energies ranging from 6 MeV to 15 MeV and field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Detectors used included diodes, cylindrical and parallel plate ionization chambers. Beam profiles were measured in water (100 cm source to surface distance) and in air (95 cm source to detector distance). Results: PDDs for the cylindrical chambers were shallower (1.3 mm averaged over all energies and field sizes) than those measured with the parallel plate chambers and diodes. Surface doses measured with the diode and cylindrical chamber were on average larger by 1.6 % and 3% respectively than those of the parallel plate chamber. Profiles measured with a diode resulted in penumbra values smaller than those measured with the cylindrical chamber by 2 mm. Conclusion: The diode was selected as the most appropriate detector since PDDs agreed with those measured with parallel plate chambers (typically recommended for low energies) and results in sharper profiles. Unlike ion chambers, no corrections are needed to measure PDDs, making it more convenient to use.

  4. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  5. Electron dose map inversion based on several algorithms

    International Nuclear Information System (INIS)

    Li Gui; Zheng Huaqing; Wu Yican; Fds Team

    2010-01-01

    The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)

  6. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    International Nuclear Information System (INIS)

    Slopsema, R. L.; Flampouri, S.; Yeung, D.; Li, Z.; Lin, L.; McDonough, J. E.; Palta, J.

    2014-01-01

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  7. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.; Li, Z. [University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205 (United States); Lin, L.; McDonough, J. E. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104 (United States); Palta, J. [VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298 (United States)

    2014-09-15

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  8. Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence on Dose Calculation Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Kujtim, E-mail: Kujtim.Latifi@Moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Oliver, Jasmine [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Department of Physics, University of South Florida, Tampa, Florida (United States); Baker, Ryan [University of South Florida School of Medicine, Tampa, Florida (United States); Dilling, Thomas J.; Stevens, Craig W. [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States); Kim, Jongphil; Yue, Binglin [Department of Biostatics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida (United States); DeMarco, MaryLou; Zhang, Geoffrey G.; Moros, Eduardo G.; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida (United States)

    2014-04-01

    Purpose: Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Methods and Materials: Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treated on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Results: Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99{sub GITV} = 7.4 Gy, ΔD99{sub PTV} = 10.4 Gy, ΔV90{sub GITV} = 13.7%, ΔV90{sub PTV} = 37.6%, ΔD95{sub PTV} = 9.8 Gy, and ΔD{sub ISO} = 3.4 Gy. GITV = gross internal tumor volume. Conclusions: Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible

  9. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    International Nuclear Information System (INIS)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron

    2016-01-01

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm 3 water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  10. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron [Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB (Canada)

    2016-08-15

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  11. Comparison of dose evaluation index by pencil beam convolution and anisotropic analytical algorithm in stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    We previously studied dose distributions of stereotactic radiotherapy (SRT) for lung cancer. Our aim is to compare in combination pencil beam convolution with the inhomogeneity correction algorithm of Batho power low [PBC (BPL)] to the anisotropic analytical algorithm (AAA) by using the dose evaluation indexes. There were significant differences in D95, planning target volume (PTV) mean dose, homogeneity index, and conformity index, V10, and V5. The dose distributions inside the PTV calculated by PBC (BPL) were more uniform than those of AAA. There were no significant differences in V20 and mean dose of total lung. There was no large difference for the whole lung. However, the surrounding high-dose region of PTV became smaller in AAA. The difference in dose evaluation indexes extended between PBC (BPL) and AAA that as many as low CT value of lung. When the dose calculation algorithm is changed, it is necessary to consider difference dose distributions compared with those of established practice. (author)

  12. Transmission dose estimation algorithm for in vivo dosimetry

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings

  13. Transmission dose estimation algorithm for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)

    2002-07-01

    Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

  14. A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy

    International Nuclear Information System (INIS)

    Gagne, I M; Ansbacher, W; Zavgorodni, S; Popescu, C; Beckham, W A

    2008-01-01

    RapidArc(TM), recently released by Varian Medical Systems, is a novel extension of IMRT in which an optimized 3D dose distribution may be delivered in a single gantry rotation of 360 deg. or less. The purpose of this study was to investigate the accuracy of the analytical anisotropic algorithm (AAA), the sole algorithm for photon dose calculations of RapidArc(TM) treatment plans. The clinical site chosen was oropharynx and the associated nodes involved. The VIMC-Arc system, which utilizes BEAMnrc and DOSXYZnrc for particle transport through the linac head and patient CT phantom, was used as a benchmarking tool. As part of this study, the dose for a single static aperture, typical for RapidArc(TM) delivery, was calculated by the AAA, MC and compared with the film. This film measurement confirmed MC modeling of the beam aperture in water. It also demonstrated that the AAA dosimetric error can be as high as 12% near isolated leaf edges and up to 5% at the leaf end. The composite effect of these errors in a full RapidArc(TM) calculation in water involving a C-shaped target and the associated organ at risk produced a 1.5% overprediction of the mean target dose. In our cohort of six patients, the AAA was found, on average, to overestimate the PTV60 coverage at the 95% level in the presence of air cavities by 1.0% (SD = 1.1%). Removing the air cavities from the target volumes reduced these differences by about a factor of 2. The dose to critical structures was also overestimated by the AAA. The mean dose to the spinal cord was higher by 1.8% (SD = 0.8%), while the effective maximum dose (D 2% ) was only 0.2% higher (SD = 0.6%). The mean dose to the parotid glands was overestimated by ∼9%. This study has shown that the accuracy of the AAA for RapidArc(TM) dose calculations, performed at a resolution of 2.5 mm or better, is adequate for clinical use.

  15. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  16. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  17. Evaluation of dose calculation algorithms using the treatment planning system Xi O with tissue heterogeneity correction turned on; Validacao dos algoritmos de calculo de dose do sistema de planejamento Xi O considerando as correcoes para heterogeneidade dos tecidos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L., E-mail: lefairbanks@yahoo.com.b [Universidade de Sao Paulo (HCRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2011-07-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference {approx}1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)

  18. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  19. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  20. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  1. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  2. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    International Nuclear Information System (INIS)

    Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K

    2014-01-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10 9 ), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT

  3. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Popple, R; Benhabib, S [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom); Antolak, J [Mayo Clinic, Rochester, MN (United States); Sprunger, C [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.

  4. Evaluation of dose calculation algorithms using the treatment planning system XiO with tissue heterogeneity correction turned on; Validacao dos algoritmos de calculo de dose do sistema de planejamento XiO considerando as correcoes para heterogeneidade dos tecidos

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, L.R.; Barbi, G.L.; Silva, W.T. da; Reis, E.G.F. dos; Borges, L.F.; Bertucci, E.C.; Maciel, M.F.; Amaral, L.L. do, E-mail: lefairbanks@yahoo.com.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2010-07-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%; This is in accordance with the recommendation of several references.The convolution method shows better results for high density materials (difference {approx}1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%).

  5. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  6. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  7. SU-F-SPS-01: Accuracy of the Small Field Dosimetry Using Acuros XB and AAA Dose Calculation Algorithms of Eclipse Treatment Planning System Within and Beyond Heterogeneous Media for Trubeam 2.0 Unit

    International Nuclear Information System (INIS)

    Codel, G; Serin, E; Pacaci, P; Sanli, E; Cebe, M; Mabhouti, H; Doyuran, M; Kucukmorkoc, E; Kucuk, N; Altinok, A; Canoglu, D; Acar, H; Caglar Ozkok, H

    2016-01-01

    Purpose: In this study, the comparison of dosimetric accuracy of Acuros XB and AAA algorithms were investigated for small radiation fields incident on homogeneous and heterogeneous geometries Methods: Small open fields of Truebeam 2.0 unit (1×1, 2×2, 3×3, 4×4 fields) were used for this study. The fields were incident on homogeneous phantom and in house phantom containing lung, air, and bone inhomogeneities. Using the same film batch, the net OD to dose calibration curve was obtaine dusing Trubeam 2.0 for 6 MV, 6 FFF, 10 MV, 10 FFF, 15 MV energies by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of Acuros XB and AAA algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement betweent wo algorithms and measurement. For Acuros XB, minimum gamma analysis passin grates between measured and calculated dose distributions were 99.3% and 98.1% for homogeneousand inhomogeneous fields in thecase of lung and bone respectively. For AAA, minimum gamma analysis passingrates were 99.1% and 96.5% for homogeneous and inhomogeneous fields respectively for all used energies and field sizes.In the case of the air heterogeneity, the differences were larger for both calculations algorithms. Over all, when compared to measurement, theAcuros XB had beter agreement than AAA. Conclusion: The Acuros XB calculation algorithm in the TPS is an improvemen tover theexisting AAA algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  8. SU-F-SPS-01: Accuracy of the Small Field Dosimetry Using Acuros XB and AAA Dose Calculation Algorithms of Eclipse Treatment Planning System Within and Beyond Heterogeneous Media for Trubeam 2.0 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Codel, G; Serin, E; Pacaci, P; Sanli, E; Cebe, M; Mabhouti, H; Doyuran, M; Kucukmorkoc, E; Kucuk, N; Altinok, A; Canoglu, D; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: In this study, the comparison of dosimetric accuracy of Acuros XB and AAA algorithms were investigated for small radiation fields incident on homogeneous and heterogeneous geometries Methods: Small open fields of Truebeam 2.0 unit (1×1, 2×2, 3×3, 4×4 fields) were used for this study. The fields were incident on homogeneous phantom and in house phantom containing lung, air, and bone inhomogeneities. Using the same film batch, the net OD to dose calibration curve was obtaine dusing Trubeam 2.0 for 6 MV, 6 FFF, 10 MV, 10 FFF, 15 MV energies by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of Acuros XB and AAA algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement betweent wo algorithms and measurement. For Acuros XB, minimum gamma analysis passin grates between measured and calculated dose distributions were 99.3% and 98.1% for homogeneousand inhomogeneous fields in thecase of lung and bone respectively. For AAA, minimum gamma analysis passingrates were 99.1% and 96.5% for homogeneous and inhomogeneous fields respectively for all used energies and field sizes.In the case of the air heterogeneity, the differences were larger for both calculations algorithms. Over all, when compared to measurement, theAcuros XB had beter agreement than AAA. Conclusion: The Acuros XB calculation algorithm in the TPS is an improvemen tover theexisting AAA algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  9. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  10. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  11. Comparison of build-up region doses in oblique tangential 6 MV photon beams calculated by AAA and CCC algorithms in breast Rando phantom

    Science.gov (United States)

    Masunun, P.; Tangboonduangjit, P.; Dumrongkijudom, N.

    2016-03-01

    The purpose of this study is to compare the build-up region doses on breast Rando phantom surface with the bolus covered, the doses in breast Rando phantom and also the doses in a lung that is the heterogeneous region by two algorithms. The AAA in Eclipse TPS and the collapsed cone convolution algorithm in Pinnacle treatment planning system were used to plan in tangential field technique with 6 MV photon beam at 200 cGy total doses in Breast Rando phantom with bolus covered (5 mm and 10 mm). TLDs were calibrated with Cobalt-60 and used to measure the doses in irradiation process. The results in treatment planning show that the doses in build-up region and the doses in breast phantom were closely matched in both algorithms which are less than 2% differences. However, overestimate of doses in a lung (L2) were found in AAA with 13.78% and 6.06% differences at 5 mm and 10 mm bolus thickness, respectively when compared with CCC algorithm. The TLD measurements show the underestimate in buildup region and in breast phantom but the doses in a lung (L2) were overestimated when compared with the doses in the two plannings at both thicknesses of the bolus.

  12. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  13. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  14. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy.

    Science.gov (United States)

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  15. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    Directory of Open Access Journals (Sweden)

    Hualiang Zhong

    2016-01-01

    Full Text Available Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs, the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung

  16. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T; Bush, K [Stanford School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identify the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.

  17. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)

  18. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  19. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  20. A comparison study for dose calculation in radiation therapy: pencil beam Kernel based vs. Monte Carlo simulation vs. measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Suh, Tae-Suk; Lee, Hyoung-Koo; Choe, Bo-Young [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Hoi-Nam; Yoon, Sei-Chul [Kangnam St. Mary' s Hospital, Seoul (Korea, Republic of)

    2002-07-01

    Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant. However in general clinical situation, pencil beam kernel based convolution algorithm is thought to be a valuable tool to calculate the dose.

  1. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Energy Technology Data Exchange (ETDEWEB)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  2. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  3. Evaluation of collapsed cone convolution superposition (CCCS algorithms in prowess treatment planning system for calculating symmetric and asymmetric field size

    Directory of Open Access Journals (Sweden)

    Tamer Dawod

    2015-01-01

    Full Text Available Purpose: This work investigated the accuracy of prowess treatment planning system (TPS in dose calculation in a homogenous phantom for symmetric and asymmetric field sizes using collapse cone convolution / superposition algorithm (CCCS. Methods: The measurements were carried out at source-to-surface distance (SSD set to 100 cm for 6 and 10 MV photon beams. Data for a full set of measurements for symmetric fields and asymmetric fields, including inplane and crossplane profiles at various depths and percentage depth doses (PDDs were obtained during measurements on the linear accelerator.Results: The results showed that the asymmetric collimation dose lead to significant errors (up to approximately 7% in dose calculations if changes in primary beam intensity and beam quality. It is obvious that the most difference in the isodose curves was found in buildup and the penumbra regions. Conclusion: The results showed that the dose calculation using Prowess TPS based on CCCS algorithm is generally in excellent agreement with measurements.

  4. Independent procedure of checking dose calculations using an independent calculus algorithm; Verificacion independiente de los parametros de planificacion, histogramas dosis volumen, y parametros radiobioligocs mediante el uso de una hoja de calculo automatizada

    Energy Technology Data Exchange (ETDEWEB)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-07-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  5. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Taboaco, R.C.

    1982-02-01

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author) [pt

  6. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  7. Realization of 3D evaluation algorithm in dose-guided radiotherapy

    International Nuclear Information System (INIS)

    Wang Yu; Li Gui; Wang Dong; Wu Yican; FDS Team

    2012-01-01

    3D evaluation algorithm instead of 2D evaluation method of clinical dose verification is highly needed for dose evaluation in Dose-guided Radiotherapy. 3D evaluation algorithm of three evaluation methods, including Dose Difference, Distance-To-Agreement and 7 Analysis, was realized by the tool of Visual C++ according to the formula. Two plans were designed to test the algorithm, plan 1 was radiation on equivalent water using square field for the verification of the algorithm's correctness; plan 2 was radiation on the emulation head phantom using conformal field for the verification of the algorithm's practicality. For plan 1, the dose difference, in the tolerance range has a pass rate of 100%, the Distance-To-Agreement and 7 analysis was of a pass rate of 100% in the tolerance range, and a pass rate of 99±1% at the boundary of range. For plan 2, the pass rate of algorithm were 88.35%, 100%, 95.07% for the three evaluation methods, respectively. It can be concluded that the 3D evaluation algorithm is feasible and could be used to evaluate 3D dose distributions in Dose-guided Radiotherapy. (authors)

  8. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    Science.gov (United States)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  9. Calculating Graph Algorithms for Dominance and Shortest Path

    DEFF Research Database (Denmark)

    Sergey, Ilya; Midtgaard, Jan; Clarke, Dave

    2012-01-01

    We calculate two iterative, polynomial-time graph algorithms from the literature: a dominance algorithm and an algorithm for the single-source shortest path problem. Both algorithms are calculated directly from the definition of the properties by fixed-point fusion of (1) a least fixed point...... expressing all finite paths through a directed graph and (2) Galois connections that capture dominance and path length. The approach illustrates that reasoning in the style of fixed-point calculus extends gracefully to the domain of graph algorithms. We thereby bridge common practice from the school...... of program calculation with common practice from the school of static program analysis, and build a novel view on iterative graph algorithms as instances of abstract interpretation...

  10. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  11. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Leroux, J.B.; Herbaut, Y.

    1996-01-01

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60 Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60 Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm 2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60 Co source, in contact with skin, is of the order of 6.1 10 -2 nGy s -1 Bq -1 . (author)

  12. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  13. Small field depth dose profile of 6 MV photon beam in a simple air-water heterogeneity combination: A comparison between anisotropic analytical algorithm dose estimation with thermoluminescent dosimeter dose measurement.

    Science.gov (United States)

    Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin

    2017-01-01

    To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.

  14. Application of backtracking algorithm to depletion calculations

    International Nuclear Information System (INIS)

    Wu Mingyu; Wang Shixi; Yang Yong; Zhang Qiang; Yang Jiayin

    2013-01-01

    Based on the theory of linear chain method for analytical depletion calculations, the burnup matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain then can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths and search the paths automatically according to the problem description and precision restrictions should be found. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to establish and calculate the linear chains in searching process using depth first search (DFS) method, forming an algorithm which can solve the depletion problem adaptively and with high fidelity. The complexity of the solution space and time was analyzed by taking into account depletion process and the characteristics of the backtracking algorithm. The newly developed depletion program was coupled with Monte Carlo program MCMG-Ⅱ to calculate the benchmark burnup problem of the first core of China Experimental Fast Reactor (CEFR) and the preliminary verification and validation of the program were performed. (authors)

  15. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  16. Algorithm for calculating an availability factor for the inhalation of radioactive and chemical materials

    International Nuclear Information System (INIS)

    1984-02-01

    This report presents a method of calculating the availability of buried radioactive and nonradioactive materials via an inhalation pathway. Availability is the relationship between the concentration of a substance in the soil and the dose rate to a human receptor. Algorithms presented for calculating availabiliy of elemental inorganic substances are based on atmospheric enrichment factors; those presented for calculating availability of organic substances are based on vapor pressures. The basis, use, and limitations of the developed equations are discussed. 32 references, 5 tables

  17. Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.

    Science.gov (United States)

    Tommasino, Francesco; Fellin, Francesco; Lorentini, Stefano; Farace, Paolo

    2018-06-01

    Proton therapy for the treatment of breast cancer is acquiring increasing interest, due to the potential reduction of radiation-induced side effects such as cardiac and pulmonary toxicity. While several in silico studies demonstrated the gain in plan quality offered by pencil beam scanning (PBS) compared to passive scattering techniques, the related dosimetric uncertainties have been poorly investigated so far. Five breast cancer patients were planned with Raystation 6 analytical pencil beam (APB) and Monte Carlo (MC) dose calculation algorithms. Plans were optimized with APB and then MC was used to recalculate dose distribution. Movable snout and beam splitting techniques (i.e. using two sub-fields for the same beam entrance, one with and the other without the use of a range shifter) were considered. PTV dose statistics were recorded. The same planning configurations were adopted for the experimental benchmark. Dose distributions were measured with a 2D array of ionization chambers and compared to APB and MC calculated ones by means of a γ analysis (agreement criteria 3%, 3 mm). Our results indicate that, when using proton PBS for breast cancer treatment, the Raystation 6 APB algorithm does not allow obtaining sufficient accuracy, especially with large air gaps. On the contrary, the MC algorithm resulted into much higher accuracy in all beam configurations tested and has to be recommended. Centers where a MC algorithm is not yet available should consider a careful use of APB, possibly combined with a movable snout system or in any case with strategies aimed at minimizing air gaps. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Analysis of the penumbra enlargement in lung versus the Quality Index of photon beams: A methodology to check the dose calculation algorithm

    International Nuclear Information System (INIS)

    Tsiakalos, Miltiadis F.; Theodorou, Kiki; Kappas, Constantin; Zefkili, Sofia; Rosenwold, Jean-Claude

    2004-01-01

    It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect. A methodology has been developed for assessing the dose calculation algorithms in the lung region where lateral electronic disequilibrium exists, based on the Quality Index (QI) of the incident beam. A phantom, consisting of layers of polystyrene and lung material, has been irradiated using photon beams of 4, 6, 15, and 20 MV. The cross-plane profiles of each beam for 5x5, 10x10, and 25x10 fields have been measured at the middle of the phantom with the use of films. The penumbra (20%-80%) and fringe (50%-90%) enlargement was measured and the ratio of the widths for the lung to that of polystyrene was defined as the Correction Factor (CF). Monte Carlo calculations in the two phantoms have also been performed for energies of 6, 15, and 20 MV. Five commercial TPS's algorithms were tested for their ability to predict the penumbra and fringe enlargement. A linear relationship has been found between the QI of the beams and the CF of the penumbra and fringe enlargement for all the examined fields. Monte Carlo calculations agree very well (less than 1% difference) with the film measurements. The CF values range between 1.1 for 4 MV (QI 0.620) and 2.28 for 20 MV (QI 0.794). Three of the tested TPS's algorithms could not predict any enlargement at all for all energies and all fields and two of them could predict the penumbra enlargement to some extent. The proposed methodology can help any user or developer to check the accuracy of its algorithm for lung cases, based on a simple phantom geometry and the QI of the incident beam. This check is

  19. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  20. Practical applications of internal dose calculations

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles

  1. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young

    2011-02-15

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H{sub p}(10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  2. Development of double dosimetry algorithm for assessment of effective dose to staff in interventional radiology

    International Nuclear Information System (INIS)

    Kim, Ji Young

    2011-02-01

    Medical staff involving interventional radiology(IR) procedures are significantly exposed to the scatter radiation because they stand in close proximity to the patient. Since modern IR techniques are often very complicated and require extended operation time, doses to IR workers tend to increase considerably. In general, the personal dose equivalent at 10 mm depth, H p (10), read from one dosimeter worn on the trunk of a radiation worker is assumed to be a good estimate of the effective dose and compared to the dose limits for regulatory compliance. This assumption is based on the exposure conditions that the radiation field is broad and rather homogeneous. However, IR workers usually wear protective clothing like lead aprons and thyroid shield which allow part of the body being exposed to much higher doses. To solve this problem, i.e. to adequately estimate the effective doses of IR workers, use of double dosimeters, one under the apron and one over the apron where unshielded part of the body exposed, was recommended. Several algorithms on the interpretation of the two dosimeter readings have been proposed. However, the dosimeter weighting factors applied to the algorithm differ significantly, which quests a question on the reliability of the algorithm. Moreover, there are some changes in the process of calculating the effective dose in the 2007 recommendations of the International Commission on Radiological Protection(ICRP): changes in the radiation weighting factors, tissue weighting factors and the computational reference phantoms. Therefore, this study attempts to set a new algorithm for interpreting two dosimeter readings to provide a proper estimate of the effective dose for IR workers, incorporating those changes in definition of effective dose. The effective doses were estimated using Monte Carlo simulations for various practical conditions based on the vogel reference phantom and the new tissue weighting factors. A quasi-effective dose, which is

  3. Improved core protection calculator system algorithm

    International Nuclear Information System (INIS)

    Yoon, Tae Young; Park, Young Ho; In, Wang Kee; Bae, Jong Sik; Baeg, Seung Yeob

    2009-01-01

    Core Protection Calculator System (CPCS) is a digitized core protection system which provides core protection functions based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels which adapted a two out of four trip logic. CPCS algorithm improvement for the newly designed core protection calculator system, RCOPS (Reactor COre Protection System), is described in this paper. New features include the improvement of DNBR algorithm for thermal margin, the addition of pre trip alarm generation for auxiliary trip function, VOPT (Variable Over Power Trip) prevention during RPCS (Reactor Power Cutback System) actuation and the improvement of CEA (Control Element Assembly) signal checking algorithm. To verify the improved CPCS algorithm, CPCS algorithm verification tests, 'Module Test' and 'Unit Test', would be performed on RCOPS single channel facility. It is expected that the improved CPCS algorithm will increase DNBR margin and enhance the plant availability by reducing unnecessary reactor trips

  4. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  5. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  6. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement.

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement.

  7. The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose

    Science.gov (United States)

    Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.

    2018-01-01

    The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.

  8. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  9. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  10. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  11. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  12. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms.

    Science.gov (United States)

    Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio

    2018-03-01

    To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  14. An algorithm to include the bremsstrahlung component in the determination of the absorbed dose in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Klevenhagen, S C [The Royal London Hospital, London (United Kingdom). Medical Physics Dept.

    1996-08-01

    Currently used dosimetry protocols for absolute dose determination of electron beams from accelerators in radiation therapy do not account for the effect of the bremsstrahlung contamination of the beam. This results in slightly erroneous doses calculated from ionization chamber measurements. In this report the deviation is calculated and an improved algorithm, which accounts for the effect of the bremsstrahlung component of the beam, is suggested. (author). 14 refs, 2 figs, 1 tab.

  15. Adapted Prescription Dose for Monte Carlo Algorithm in Lung SBRT: Clinical Outcome on 205 Patients.

    Directory of Open Access Journals (Sweden)

    Jean-Emmanuel Bibault

    Full Text Available SBRT is the standard of care for inoperable patients with early-stage lung cancer without lymph node involvement. Excellent local control rates have been reported in a large number of series. However, prescription doses and calculation algorithms vary to a great extent between studies, even if most teams prescribe to the D95 of the PTV. Type A algorithms are known to produce dosimetric discrepancies in heterogeneous tissues such as lungs. This study was performed to present a Monte Carlo (MC prescription dose for NSCLC adapted to lesion size and location and compare the clinical outcomes of two cohorts of patients treated with a standard prescription dose calculated by a type A algorithm or the proposed MC protocol.Patients were treated from January 2011 to April 2013 with a type B algorithm (MC prescription with 54 Gy in three fractions for peripheral lesions with a diameter under 30 mm, 60 Gy in 3 fractions for lesions with a diameter over 30 mm, and 55 Gy in five fractions for central lesions. Clinical outcome was compared to a series of 121 patients treated with a type A algorithm (TA with three fractions of 20 Gy for peripheral lesions and 60 Gy in five fractions for central lesions prescribed to the PTV D95 until January 2011. All treatment plans were recalculated with both algorithms for this study. Spearman's rank correlation coefficient was calculated for GTV and PTV. Local control, overall survival and toxicity were compared between the two groups.205 patients with 214 lesions were included in the study. Among these, 93 lesions were treated with MC and 121 were treated with TA. Overall survival rates were 86% and 94% at one and two years, respectively. Local control rates were 79% and 93% at one and two years respectively. There was no significant difference between the two groups for overall survival (p = 0.785 or local control (p = 0.934. Fifty-six patients (27% developed grade I lung fibrosis without clinical consequences. GTV size

  16. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2016-08-01

    Full Text Available Purpose: Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm, accurate tissues segmentation, and the structure’s elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods : Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results : Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm. Conclusions : Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  17. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  18. Target dose study of effects of changes in the AAA calculation resolution on lung SABR plan

    International Nuclear Information System (INIS)

    Kim, Dae Il; Son, Sang Jun; Ahn, Bum Seok; Jung, Chi Hoon; Yoo, Suk Hyun

    2014-01-01

    Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan(Eclipse TM ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid V98 of the prescribed dose is about 99.5%±1.5%, Dmin of the prescribed dose is about 92.5±1.5% and Homogeneity Index(HI) is 1.0489±0.0025. In the case of use a 3.0 mm calculation grid V98 dose of the prescribed dose is about 90±4.5% , Dmin of the prescribed dose is about 87.5±3% and HI is about 1.07±1. In the case of use a 5.0 mm calculation grid V98 dose of the prescribed dose is about 63±15%, Dmin of the prescribed dose is about 83±4% and HI is about 1.13±0.2, respectively. The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm

  19. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  20. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  1. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  2. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  3. Commissioning and Validation of the First Monte Carlo Based Dose Calculation Algorithm Commercial Treatment Planning System in Mexico

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.; Galvan de la Cruz, O. O.; Ballesteros-Zebadua, P.

    2010-01-01

    This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm 2 ). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mm were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm 2 . Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm 2 ) only 92% of the data meet the criteria. Total scatter factors show a good agreement ( 2 ) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm 2 . Special care must be taken for smaller fields.

  4. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  5. Evidence-based algorithm for heparin dosing before cardiopulmonary bypass. Part 1: Development of the algorithm.

    Science.gov (United States)

    McKinney, Mark C; Riley, Jeffrey B

    2007-12-01

    The incidence of heparin resistance during adult cardiac surgery with cardiopulmonary bypass has been reported at 15%-20%. The consistent use of a clinical decision-making algorithm may increase the consistency of patient care and likely reduce the total required heparin dose and other problems associated with heparin dosing. After a directed survey of practicing perfusionists regarding treatment of heparin resistance and a literature search for high-level evidence regarding the diagnosis and treatment of heparin resistance, an evidence-based decision-making algorithm was constructed. The face validity of the algorithm decisive steps and logic was confirmed by a second survey of practicing perfusionists. The algorithm begins with review of the patient history to identify predictors for heparin resistance. The definition for heparin resistance contained in the algorithm is an activated clotting time 450 IU/kg heparin loading dose. Based on the literature, the treatment for heparin resistance used in the algorithm is anti-thrombin III supplement. The algorithm seems to be valid and is supported by high-level evidence and clinician opinion. The next step is a human randomized clinical trial to test the clinical procedure guideline algorithm vs. current standard clinical practice.

  6. Electron and bremsstrahlung penetration and dose calculation

    Science.gov (United States)

    Watts, J. W., Jr.; Burrell, M. O.

    1972-01-01

    Various techniques for the calculation of electron and bremsstrahlung dose deposition are described. Energy deposition, transmission, and reflection coefficients for electrons incident on plane slabs are presented, and methods for their use in electron dose calculations were developed. A method using the straight-ahead approximation was also developed, and the various methods were compared and found to be in good agreement. Both accurate and approximate methods of calculating bremsstrahlung dose were derived and compared. Approximation is found to give a good estimate of dose where the electron spectrum falls off exponentially with energy.

  7. Text book of dose calculation for operators

    International Nuclear Information System (INIS)

    Aoyagi, Haruki; Gonda, Kozo

    1979-07-01

    This is a text book of dose calculation for the operators of the reprocessing factory of Power Reactor and Nuclear Fuel Development Corporation. The radiations considered are beta-ray and gamma-ray. The method used is a point attenuation nuclear integral method. Radiation sources are considered as the assemblies of point sources. Dose from each point source is calculated, then, total dose is obtained by the integration for all sources. Attenuation is calculated by considering the attenuation owing to distance and the absorption by absorbers. The build-up factor is introduced for the correction for scattered gamma-ray. The build-up factor is given in a table for various scatterers. The operators are able to calculate dose by themselves. The results of integral calculation expressed with formulas are given in graphs. (Kato, T.)

  8. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    International Nuclear Information System (INIS)

    Huang, J; Followill, D; Howell, R; Liu, X; Mirkovic, D; Stingo, F; Kry, S

    2015-01-01

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titanium and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus

  9. Automated calculation of point A coordinates for CT-based high-dose-rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Hyejoo Kang

    2017-07-01

    Full Text Available Purpose: The goal is to develop a stand-alone application, which automatically and consistently computes the coordinates of the dose calculation point recommended by the American Brachytherapy Society (i.e., point A based solely on the implanted applicator geometry for cervical cancer brachytherapy. Material and methods: The application calculates point A coordinates from the source dwell geometries in the computed tomography (CT scans, and outputs the 3D coordinates in the left and right directions. The algorithm was tested on 34 CT scans of 7 patients treated with high-dose-rate (HDR brachytherapy using tandem and ovoid applicators. A single experienced user retrospectively and manually inserted point A into each CT scan, whose coordinates were used as the “gold standard” for all comparisons. The gold standard was subtracted from the automatically calculated points, a second manual placement by the same experienced user, and the clinically used point coordinates inserted by multiple planners. Coordinate differences and corresponding variances were compared using nonparametric tests. Results: Automatically calculated, manually placed, and clinically used points agree with the gold standard to < 1 mm, 1 mm, 2 mm, respectively. When compared to the gold standard, the average and standard deviation of the 3D coordinate differences were 0.35 ± 0.14 mm from automatically calculated points, 0.38 ± 0.21 mm from the second manual placement, and 0.71 ± 0.44 mm from the clinically used point coordinates. Both the mean and standard deviations of the 3D coordinate differences were statistically significantly different from the gold standard, when point A was placed by multiple users (p < 0.05 but not when placed repeatedly by a single user or when calculated automatically. There were no statistical differences in doses, which agree to within 1-2% on average for all three groups. Conclusions: The study demonstrates that the automated algorithm

  10. Warfarin Dosing Algorithms Underpredict Dose Requirements in Patients Requiring ≥7 mg Daily: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Saffian, S M; Duffull, S B; Wright, Dfb

    2017-08-01

    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I 2 = 24%). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  11. Quantification of the influence of the choice of the algorithm and planning system on the calculation of a treatment plan

    International Nuclear Information System (INIS)

    Moral, F. del; Ramos, A.; Salgado, M.; Andrade, B; Munoz, V.

    2010-01-01

    In this work an analysis of the influence of the choice of the algorithm or planning system, on the calculus of the same treatment plan is introduced. For this purpose specific software has been developed for comparing plans of a series of IMRT cases of prostate and head and neck cancer calculated using the convolution, superposition and fast superposition algorithms implemented in the XiO 4.40 planning system (CMS). It has also been used for the comparison of the same treatment plan for lung pathology calculated in XiO with the mentioned algorithms, and calculated in the Plan 4.1 planning system (Brainlab) using its pencil beam algorithm. Differences in dose among the treatment plans have been quantified using a set of metrics. The recommendation for the dosimetrist of a careful choice of the algorithm has been numerically confirmed. (Author).

  12. Algorithms for Monte Carlo calculations with fermions

    International Nuclear Information System (INIS)

    Weingarten, D.

    1985-01-01

    We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)

  13. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  14. Georgia fishery study: implications for dose calculations

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr

  15. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Carlsson Tedgren, Åsa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76 (Sweden); Granero, Domingo [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014 (Spain); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000 (Australia); Mourtada, Firas [Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713 (United States); Fonseca, Gabriel Paiva [Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Zourari, Kyveli; Papagiannis, Panagiotis [Medical Physics Laboratory, Medical School, University of Athens, 75 MikrasAsias, Athens 115 27 (Greece); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105 (Germany); Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  16. Uncertainty assessment and comparison of different dose algorithms used to evaluate a two element LiF:Mg,Ti TL personal dosemeter

    International Nuclear Information System (INIS)

    Stadtmann, H.; Hranitzky, F.C.

    2008-01-01

    This paper presents the results of an uncertainty assessment and comparison study of different dose algorithms used for evaluating our routine two element TL whole body dosemeter. Due to the photon energy response of the two different filtered LiF:Mg,Ti detector elements the application of dose algorithms is necessary to assess the relevant photon doses over the rated energy range with an acceptable energy response. Three dose algorithms are designed to calculate the dose for the different dose equivalent quantities, i.e. personal dose equivalent H p (10) and H p (0.07) and photon dose equivalent H x used for personal monitoring before introducing personal dose equivalent. Based on experimental results both for free in air calibration as well as calibration on the ISO water slab phantom (type test data) a detailed uncertainty analysis war performed by means of Monte Carlo simulation techniques. The uncertainty contribution of the individual detector element signals was taken into special consideration. (author)

  17. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  18. SU-F-T-560: Measurement of Dose Blurring Effect Due to Respiratory Motion for Lung Stereotactic Body Radiation Therapy (SBRT) Using Monte Carlo Based Calculation Algorithm

    International Nuclear Information System (INIS)

    Badkul, R; Pokhrel, D; Jiang, H; Lominska, C; Wang, F; Ramanjappa, T

    2016-01-01

    Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0

  19. Internal dose conversion factors for calculation of dose to the public

    International Nuclear Information System (INIS)

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities

  20. Evolution of calculation models for the proton-therapy dose planning software

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie Proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams. (author) [fr

  1. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge

    International Nuclear Information System (INIS)

    Ottosson, Rickard O; Behrens, Claus F

    2011-01-01

    One of the building blocks in Monte Carlo (MC) treatment planning is to convert patient CT data to MC compatible phantoms, consisting of density and media matrices. The resulting dose distribution is highly influenced by the accuracy of the conversion. Two major contributing factors are precise conversion of CT number to density and proper differentiation between air and lung. Existing tools do not address this issue specifically. Moreover, their density conversion may depend on the number of media used. Differentiation between air and lung is an important task in MC treatment planning and misassignment may lead to local dose errors on the order of 10%. A novel algorithm, CTC-ask, is presented in this study. It enables locally confined constraints for the media assignment and is independent of the number of media used for the conversion of CT number to density. MC compatible phantoms were generated for two clinical cases using a CT-conversion scheme implemented in both CTC-ask and the DICOM-RT toolbox. Full MC dose calculation was subsequently conducted and the resulting dose distributions were compared. The DICOM-RT toolbox inaccurately assigned lung in 9.9% and 12.2% of the voxels located outside of the lungs for the two cases studied, respectively. This was completely avoided by CTC-ask. CTC-ask is able to reduce anatomically irrational media assignment. The CTC-ask source code can be made available upon request to the authors. (note)

  2. Independent dose calculation in IMRT for the Tps Iplan using the Clarkson modified integral; Calculo independiente de dosis en IMRT para el TPS Iplan usando la integral modificada de Clarkson

    Energy Technology Data Exchange (ETDEWEB)

    Adrada, A.; Tello, Z.; Garrigo, E.; Venencia, D., E-mail: jorge.alberto.adrada@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    Intensity-Modulated Radiation Therapy (IMRT) treatments require a quality assurance (Q A) specific patient before delivery. These controls include the experimental verification in dose phantom of the total plan as well as dose distributions. The use of independent dose calculation (IDC) is used in 3D-Crt treatments; however its application in IMRT requires the implementation of an algorithm that allows considering a non-uniform intensity beam. The purpose of this work was to develop IDC software in IMRT with MLC using the algorithm proposed by Kung (Kung et al. 2000). The software was done using Matlab programming. The Clarkson modified integral was implemented on each flowing, applying concentric rings for the dose determination. From the integral of each field was calculated the dose anywhere. One time finished a planning; all data are exported to a phantom where a Q A plan is generated. On this is calculated the half dose in a representative volume of the ionization chamber and the dose at the center of it. Until now 230 IMRT planning were analyzed carried out ??in the treatment planning system (Tps) Iplan. For each one of them Q A plan was generated, were calculated and compared calculated dose with the Tps, IDC system and measurement with ionization chamber. The average difference between measured and calculated dose with the IDC system was 0.4% ± 2.2% [-6.8%, 6.4%]. The difference between the measured and the calculated doses by the pencil-beam algorithm (Pb) of Tps was 2.6% ± 1.41% [-2.0%, 5.6%] and with the Monte Carlo algorithm was 0.4% ± 1.5% [-4.9%, 3.7%]. The differences of the carried out software are comparable to the obtained with the ionization chamber and Tps in Monte Carlo mode. (author)

  3. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  4. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Science.gov (United States)

    Vasseur, Aurélien; Makovicka, Libor; Martin, Éric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-04-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150×1×150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  5. Dose calculations using artificial neural networks: A feasibility study for photon beams

    International Nuclear Information System (INIS)

    Vasseur, Aurelien; Makovicka, Libor; Martin, Eric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-01-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions

  6. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Aurelien [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)], E-mail: aurelien.vasseur@gmail.com; Makovicka, Libor; Martin, Eric [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); Sauget, Marc [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France); Contassot-Vivier, Sylvain; Bahi, Jacques [University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)

    2008-04-15

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  7. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT

    International Nuclear Information System (INIS)

    Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-01-01

    Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm 2 square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm 2 , where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a

  8. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT.

    Science.gov (United States)

    Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-04-01

    The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc

  9. Comparison of measured and calculated contralateral breast doses in whole breast radiotherapy for VMAT and standard tangent techniques

    International Nuclear Information System (INIS)

    Tse, T.L.J; Bromley, R.; Booth, J.; Gray, A.

    2011-01-01

    Full text: Objective This study aims to evaluate the accuracy of calculated dose with the Eclipse analytical anisotropic algorithm (AAA) for contralateral breast (CB) in left-sided breast radiotherapy for dual-arc VMA T and standard wedged tangent (SWT) techniques. Methods and materials Internal and surface CB doses were measured with EBT2 film in an anthropomorphic phantom mounted with C-cup and D-cup breasts. The measured point dose was approximated by averaging doses over the 4 x 4 mm 2 central region of each 2 x 2 cm2 piece of film. The dose in the target region of the breast was also measured. The measured results were compared to AAA calculations with calculation grids of I, 2.5 and 5 mm. Results In SWT plans, the average ratios of calculation to measurement for internal doses were 0.63 ± 0.081 and 0.5 I ± 0.28 in the medial and lateral aspects, respectively. Corresponding ratios for surface doses were 0.88 ± 0.22 and 0.38 ± 0.38. In VMAT plans, however, the calculation accuracies showed little dependence on the measurement locations, the ratios were 0.78 ± O. I I and 0.81 ± 0.085 for internal and surface doses. In general, finer calculation resolutions did not inevitably improve the dose estimates of internal doses. For surface doses, using smaller grid size I mm could improve the calculation accuracies on the medial but not the lateral aspects of CB. Conclusion In all plans, AAA had a tendency to underestimate both internal and surface CB doses. Overall, it produces more accurate results in VMAT than SWT plans.

  10. On the implementation of new versions of the algorithms of calculation of dose absorbed in radiotherapy external; Sobre la implementacion de nuevas versiones de los algoritmos de calculo de dosis absorbida en radioterapia externa

    Energy Technology Data Exchange (ETDEWEB)

    Latorre-Musoll, A.; Carrasco de Fez, P.; Lizondo Gisbert, M.; Jordi-Ollero, O.; Jornet Sala, N.; Eudaldo Puell, T.; Ruiz Martinez, A.; Ribas Morales, M.

    2015-07-01

    The changes of version of the algorithms of calculation of dose absorbed in radiotherapy external should implement in a time reduced due to the pressure care. A set reduced of checks could pass by high discrepancies significant between the stones and the measures experimental, as illustrate in this work. (Author)

  11. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  12. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  13. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  14. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  15. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Chen, Q. [Department of Radiation Oncology, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, California 22908 (United States)

    2014-10-15

    , respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.

  16. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    International Nuclear Information System (INIS)

    Neylon, J.; Sheng, K.; Yu, V.; Low, D. A.; Kupelian, P.; Santhanam, A.; Chen, Q.

    2014-01-01

    , respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems

  17. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  18. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  19. Examinations on Applications of Manual Calculation Programs on Lung Cancer Radiation Therapy Using Analytical Anisotropic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Min; Kim, Dae Sup; Hong, Dong Ki; Back, Geum Mun; Kwak, Jung Won [Dept. of Radiation Oncology, , Seoul (Korea, Republic of)

    2012-03-15

    There was a problem with using MU verification programs for the reasons that there were errors of MU when using MU verification programs based on Pencil Beam Convolution (PBC) Algorithm with radiation treatment plans around lung using Analytical Anisotropic Algorithm (AAA). On this study, we studied the methods that can verify the calculated treatment plans using AAA. Using Eclipse treatment planning system (Version 8.9, Varian, USA), for each 57 fields of 7 cases of Lung Stereotactic Body Radiation Therapy (SBRT), we have calculated using PBC and AAA with dose calculation algorithm. By developing MU of established plans, we compared and analyzed with MU of manual calculation programs. We have analyzed relationship between errors and 4 variables such as field size, lung path distance of radiation, Tumor path distance of radiation, effective depth that can affect on errors created from PBC algorithm and AAA using commonly used programs. Errors of PBC algorithm have showned 0.2{+-}1.0% and errors of AAA have showned 3.5{+-}2.8%. Moreover, as a result of analyzing 4 variables that can affect on errors, relationship in errors between lung path distance and MU, connection coefficient 0.648 (P=0.000) has been increased and we could calculate MU correction factor that is A.E=L.P 0.00903+0.02048 and as a result of replying for manual calculation program, errors of 3.5{+-}2.8% before the application has been decreased within 0.4{+-}2.0%. On this study, we have learned that errors from manual calculation program have been increased as lung path distance of radiation increases and we could verified MU of AAA with a simple method that is called MU correction factor.

  20. Examinations on Applications of Manual Calculation Programs on Lung Cancer Radiation Therapy Using Analytical Anisotropic Algorithm

    International Nuclear Information System (INIS)

    Kim, Jung Min; Kim, Dae Sup; Hong, Dong Ki; Back, Geum Mun; Kwak, Jung Won

    2012-01-01

    There was a problem with using MU verification programs for the reasons that there were errors of MU when using MU verification programs based on Pencil Beam Convolution (PBC) Algorithm with radiation treatment plans around lung using Analytical Anisotropic Algorithm (AAA). On this study, we studied the methods that can verify the calculated treatment plans using AAA. Using Eclipse treatment planning system (Version 8.9, Varian, USA), for each 57 fields of 7 cases of Lung Stereotactic Body Radiation Therapy (SBRT), we have calculated using PBC and AAA with dose calculation algorithm. By developing MU of established plans, we compared and analyzed with MU of manual calculation programs. We have analyzed relationship between errors and 4 variables such as field size, lung path distance of radiation, Tumor path distance of radiation, effective depth that can affect on errors created from PBC algorithm and AAA using commonly used programs. Errors of PBC algorithm have showned 0.2±1.0% and errors of AAA have showned 3.5±2.8%. Moreover, as a result of analyzing 4 variables that can affect on errors, relationship in errors between lung path distance and MU, connection coefficient 0.648 (P=0.000) has been increased and we could calculate MU correction factor that is A.E=L.P 0.00903+0.02048 and as a result of replying for manual calculation program, errors of 3.5±2.8% before the application has been decreased within 0.4±2.0%. On this study, we have learned that errors from manual calculation program have been increased as lung path distance of radiation increases and we could verified MU of AAA with a simple method that is called MU correction factor.

  1. Solid-state personal dosimeter using dose conversion algorithm

    International Nuclear Information System (INIS)

    Lee, B.J.; Lee, Wanno; Cho, Gyuseong; Chang, S.Y.; Rho, S.R.

    2003-01-01

    Solid-state personal dosimeters using semiconductor detectors have been widely used because of their simplicity and real time operation. In this paper, a personal dosimeter based on a silicon PIN photodiode has been optimally designed by the Monte Carlo method and also developed. For performance test, the developed dosimeter was irradiated within the energy range between 50 keV and 1.25 MeV, the exposure dose rate between 3 mR/h and 25 R/h. The thickness of 0.2 mm Cu and 1.0 mm Al was selected as an optimal filter by simulation results. For minimizing the non-linear sensitivity on energy, dose conversion algorithm was presented, which was able to consider pulse number as well as pulse amplitude related to absorbed energies. The sensitivities of dosimeters developed by the proposed algorithm and the conventional method were compared and analyzed in detail. When dose conversion algorithm was used, the linearity of sensitivity was better about 38%. This dosimeter will be used for above 65 keV within the relative response of ±10% to 137 Cs

  2. A comparison study of size-specific dose estimate calculation methods

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Roshni A. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Wien, Michael A.; Jordan, David W.; Ciancibello, Leslie; Berlin, Sheila C. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Novak, Ronald D. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Rebecca D. Considine Research Institute, Children' s Hospital Medical Center of Akron, Center for Mitochondrial Medicine Research, Akron, OH (United States); Klahr, Paul [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States); Soriano, Stephanie [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Washington, Department of Radiology, Seattle, WA (United States)

    2018-01-15

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ{sub c}) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI{sub vol,} there was poor correlation, ρ{sub c}<0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide

  3. Dosing algorithm to target a predefined AUC in patients with primary central nervous system lymphoma receiving high dose methotrexate.

    Science.gov (United States)

    Joerger, Markus; Ferreri, Andrés J M; Krähenbühl, Stephan; Schellens, Jan H M; Cerny, Thomas; Zucca, Emanuele; Huitema, Alwin D R

    2012-02-01

    There is no consensus regarding optimal dosing of high dose methotrexate (HDMTX) in patients with primary CNS lymphoma. Our aim was to develop a convenient dosing algorithm to target AUC(MTX) in the range between 1000 and 1100 µmol l(-1) h. A population covariate model from a pooled dataset of 131 patients receiving HDMTX was used to simulate concentration-time curves of 10,000 patients and test the efficacy of a dosing algorithm based on 24 h MTX plasma concentrations to target the prespecified AUC(MTX) . These data simulations included interindividual, interoccasion and residual unidentified variability. Patients received a total of four simulated cycles of HDMTX and adjusted MTX dosages were given for cycles two to four. The dosing algorithm proposes MTX dose adaptations ranging from +75% in patients with MTX C(24) 12 µmol l(-1). The proposed dosing algorithm resulted in a marked improvement of the proportion of patients within the AUC(MTX) target between 1000 and 1100 µmol l(-1) h (11% with standard MTX dose, 35% with the adjusted dose) and a marked reduction of the interindividual variability of MTX exposure. A simple and practical dosing algorithm for HDMTX has been developed based on MTX 24 h plasma concentrations, and its potential efficacy in improving the proportion of patients within a prespecified target AUC(MTX) and reducing the interindividual variability of MTX exposure has been shown by data simulations. The clinical benefit of this dosing algorithm should be assessed in patients with primary central nervous system lymphoma (PCNSL). © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  4. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Lourenço, Ana Mónica [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Acoustics and Ionizing Radiation Team, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Mouinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands); Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R. [Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom)

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of

  5. GPU-based fast pencil beam algorithm for proton therapy

    International Nuclear Information System (INIS)

    Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya

    2011-01-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  6. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    International Nuclear Information System (INIS)

    Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel; Moreno-Jiménez, Sergio; García-Garduño, Olivia Amanda; Celis, Miguel Angel

    2013-01-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs

  7. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Galván de la Cruz, Olga Olinca [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Lárraga-Gutiérrez, José Manuel, E-mail: jlarraga@innn.edu.mx [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Moreno-Jiménez, Sergio [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); García-Garduño, Olivia Amanda [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico); Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía (Mexico); Celis, Miguel Angel [Unidad de Radioneurocirugía, Instituto Nacional de Neurología y Neurocirugía (Mexico)

    2013-07-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.

  8. On the use of Gafchromic EBT3 films for validating a commercial electron Monte Carlo dose calculation algorithm.

    Science.gov (United States)

    Chan, EuJin; Lydon, Jenny; Kron, Tomas

    2015-03-07

    This study aims to investigate the effects of oblique incidence, small field size and inhomogeneous media on the electron dose distribution, and to compare calculated (Elekta/CMS XiO) and measured results. All comparisons were done in terms of absolute dose. A new measuring method was developed for high resolution, absolute dose measurement of non-standard beams using Gafchromic® EBT3 film. A portable U-shaped holder was designed and constructed to hold EBT3 films vertically in a reproducible setup submerged in a water phantom. The experimental film method was verified with ionisation chamber measurements and agreed to within 2% or 1 mm. Agreement between XiO electron Monte Carlo (eMC) and EBT3 was within 2% or 2 mm for most standard fields and 3% or 3 mm for the non-standard fields. Larger differences were seen in the build-up region where XiO eMC overestimates dose by up to 10% for obliquely incident fields and underestimates the dose for small circular fields by up to 5% when compared to measurement. Calculations with inhomogeneous media mimicking ribs, lung and skull tissue placed at the side of the film in water agreed with measurement to within 3% or 3 mm. Gafchromic film in water proved to be a convenient high spatial resolution method to verify dose distributions from electrons in non-standard conditions including irradiation in inhomogeneous media.

  9. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  10. [Clinical applications of dosing algorithm in the predication of warfarin maintenance dose].

    Science.gov (United States)

    Huang, Sheng-wen; Xiang, Dao-kang; An, Bang-quan; Li, Gui-fang; Huang, Ling; Wu, Hai-li

    2011-12-27

    To evaluate the feasibility of clinical application for genetic based dosing algorithm in the predication of warfarin maintenance dose in Chinese population. The clinical data were collected and blood samples harvested from a total of 126 patients undergoing heart valve replacement. The genotypes of VKORC1 and CYP2C9 were determined by melting curve analysis after PCR. They were divided randomly into the study and control groups. In the study group, the first three doses of warfarin were prescribed according to the predicted warfarin maintenance dose while warfarin was initiated at 2.5 mg/d in the control group. The warfarin doses were adjusted according to the measured international normalized ratio (INR) values. And all subjects were followed for 50 days after an initiation of warfarin therapy. At the end of a 50-day follow-up period, the proportions of the patients on a stable dose were 82.4% (42/51) and 62.5% (30/48) for the study and control groups respectively. The mean durations of reaching a stable dose of warfarin were (27.5 ± 1.8) and (34.7 ± 1.8) days and the median durations were (24.0 ± 1.7) and (33.0 ± 4.5) days in the study and control groups respectively. Significant differences existed in the durations of reaching a stable dose between the two groups (P = 0.012). Compared with the control group, the hazard ratio (HR) for the duration of reaching a stable dose was 1.786 in the study group (95%CI 1.088 - 2.875, P = 0.026). The predicted dosing algorithm incorporating genetic and non-genetic factors may shorten the duration of achieving efficiently a stable dose of warfarin. And the present study validates the feasibility of its clinical application.

  11. A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms.

    Science.gov (United States)

    Cini, Michela; Legnani, Cristina; Cosmi, Benilde; Guazzaloca, Giuliana; Valdrè, Lelia; Frascaro, Mirella; Palareti, Gualtiero

    2012-08-01

    Warfarin dosing is affected by clinical and genetic variants, but the contribution of the genotype associated with warfarin resistance in pharmacogenetic algorithms has not been well assessed yet. We developed a new dosing algorithm including polymorphisms associated both with warfarin sensitivity and resistance in the Italian population, and its performance was compared with those of eight previously published algorithms. Clinical and genetic data (CYP2C9*2, CYP2C9*3, VKORC1 -1639 G > A, and VKORC1 3730 G > A) were used to elaborate the new algorithm. Derivation and validation groups comprised 55 (58.2% men, mean age 69 years) and 40 (57.5% men, mean age 70 years) patients, respectively, who were on stable anticoagulation therapy for at least 3 months with different oral anticoagulation therapy (OAT) indications. Performance of the new algorithm, evaluated with mean absolute error (MAE) defined as the absolute value of the difference between observed daily maintenance dose and predicted daily dose, correlation with the observed dose and R(2) value, was comparable with or slightly lower than that obtained using the other algorithms. The new algorithm could correctly assign 53.3%, 50.0%, and 57.1% of patients to the low (≤25 mg/week), intermediate (26-44 mg/week) and high (≥ 45 mg/week) dosing range, respectively. Our data showed a significant increase in predictive accuracy among patients requiring high warfarin dose compared with the other algorithms (ranging from 0% to 28.6%). The algorithm including VKORC1 3730 G > A, associated with warfarin resistance, allowed a more accurate identification of resistant patients who require higher warfarin dosage.

  12. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  13. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  14. SU-F-T-155: Validation of a Commercial Monte Carlo Dose Calculation Algorithm for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saini, J; Wong, T [SCCA Proton Therapy Center, Seattle, WA (United States); St James, S; Stewart, R; Bloch, C [University of Washington, Seattle, WA (United States); Traneus, E [Raysearch Laboratories AB, Stockholm. (Sweden)

    2016-06-15

    Purpose: Compare proton pencil beam scanning dose measurements to GATE/GEANT4 (GMC) and RayStation™ Monte Carlo (RMC) simulations. Methods: Proton pencil beam models of the IBA gantry at the Seattle Proton Therapy Center were developed in the GMC code system and a research build of the RMC. For RMC, a preliminary beam model that does not account for upstream halo was used. Depth dose and lateral profiles are compared for the RMC, GMC and a RayStation™ pencil beam dose (RPB) model for three spread out Bragg peaks (SOBPs) in homogenous water phantom. SOBP comparisons were also made among the three models for a phantom with a (i) 2 cm bone and a (ii) 0.5 cm titanium insert. Results: Measurements and GMC estimates of R80 range agree to within 1 mm, and the mean point-to-point dose difference is within 1.2% for all integrated depth dose (IDD) profiles. The dose differences at the peak are 1 to 2%. All of the simulated spot sigmas are within 0.15 mm of the measured values. For the three SOBPs considered, the maximum R80 deviation from measurement for GMC was −0.35 mm, RMC 0.5 mm, and RPB −0.1 mm. The minimum gamma pass using the 3%/3mm criterion for all the profiles was 94%. The dose comparison for heterogeneous inserts in low dose gradient regions showed dose differences greater than 10% at the distal edge of interface between RPB and GMC. The RMC showed improvement and agreed with GMC to within 7%. Conclusion: The RPB dosimetry show clinically significant differences (> 10%) from GMC and RMC estimates. The RMC algorithm is superior to the RPB dosimetry in heterogeneous media. We suspect modelling of the beam’s halo may be responsible for a portion of the remaining discrepancy and that RayStation will reduce this discrepancy as they finalize the release. Erik Traneus is employed as a Research Scientist at RaySearch Laboratories. The research build of the RayStation TPS used in the study was made available to the SCCA free of charge. RaySearch did not provide

  15. Evaluation of six TPS algorithms in computing entrance and exit doses

    Science.gov (United States)

    Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun P.; Elliott, Alex

    2014-01-01

    Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%‐3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.N‐, 87.53.Bn PMID:24892349

  16. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  17. Coupling Algorithms for Calculating Sensitivities of Population Balances

    International Nuclear Information System (INIS)

    Man, P. L. W.; Kraft, M.; Norris, J. R.

    2008-01-01

    We introduce a new class of stochastic algorithms for calculating parametric derivatives of the solution of the space-homogeneous Smoluchowski's coagulation equation. Currently, it is very difficult to produce low variance estimates of these derivatives in reasonable amounts of computational time through the use of stochastic methods. These new algorithms consider a central difference estimator of the parametric derivative which is calculated by evaluating the coagulation equation at two different parameter values simultaneously, and causing variance reduction by maximising the covariance between these. The two different coupling strategies ('Single' and 'Double') have been compared to the case when there is no coupling ('Independent'). Both coupling algorithms converge and the Double coupling is the most 'efficient' algorithm. For the numerical example chosen we obtain a factor of about 100 in efficiency in the best case (small system evolution time and small parameter perturbation).

  18. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  19. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water

    Science.gov (United States)

    Antoni, Rodolphe; Bourgois, Laurent

    2017-12-01

    In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those

  20. SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Pino, M; Caussa, L; Garrigo, E [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina); Molineu, A [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MC dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.

  1. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-05-01

    To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. CT scans were performed on a chest phantom containing various nodules (10 and 12mm; +100, -630 and -800HU) at 120kVp with tube current-time settings of 10, 20, 50, and 100mAs. Each CT was reconstructed using filtered back projection (FBP), iDose(4) and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p>0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose(4) at all radiation dose settings (pvolumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Development of internal dose calculation programing via food ingestion

    International Nuclear Information System (INIS)

    Kim, H. J.; Lee, W. K.; Lee, M. S.

    1998-01-01

    Most of dose for public via ingestion pathway is calculating for considering several pathways; which start from radioactive material released from a nuclear power plant to diffusion and migration. But in order to model these complicate pathways mathematically, some assumptions are essential and lots of input data related with pathways are demanded. Since there is uncertainty related with environment in these assumptions and input data, the accuracy of dose calculating result is not reliable. To reduce, therefore, these uncertain assumptions and inputs, this paper presents exposure dose calculating method using the activity of environmental sample detected in any pathway. Application of dose calculation is aim at peoples around KORI nuclear power plant and the value that is used to dose conversion factor recommended in ICRP Publ. 60

  3. A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Lahanas, M; Baltas, D; Zamboglou, N

    2003-01-01

    Multiple objectives must be considered in anatomy-based dose optimization for high-dose-rate brachytherapy and a large number of parameters must be optimized to satisfy often competing objectives. For objectives expressed solely in terms of dose variances, deterministic gradient-based algorithms can be applied and a weighted sum approach is able to produce a representative set of non-dominated solutions. As the number of objectives increases, or non-convex objectives are used, local minima can be present and deterministic or stochastic algorithms such as simulated annealing either cannot be used or are not efficient. In this case we employ a modified hybrid version of the multi-objective optimization algorithm NSGA-II. This, in combination with the deterministic optimization algorithm, produces a representative sample of the Pareto set. This algorithm can be used with any kind of objectives, including non-convex, and does not require artificial importance factors. A representation of the trade-off surface can be obtained with more than 1000 non-dominated solutions in 2-5 min. An analysis of the solutions provides information on the possibilities available using these objectives. Simple decision making tools allow the selection of a solution that provides a best fit for the clinical goals. We show an example with a prostate implant and compare results obtained by variance and dose-volume histogram (DVH) based objectives

  4. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  5. Design of an optimization algorithm for clinical use

    International Nuclear Information System (INIS)

    Gustafsson, Anders

    1995-01-01

    Radiation therapy optimization has received much attention in the past few years. In combination with biological objective functions, the different optimization schemes has shown a potential to considerably increase the treatment outcome. With improved radiobiological models and increased computer capacity, radiation therapy optimization has now reached a stage where implementation in a clinical treatment planning system is realistic. A radiation therapy optimization method has been investigated with respect to its feasibility as a tool in a clinical 3D treatment planning system. The optimization algorithm is a constrained iterative gradient method. Photon dose calculation is performed using the clinically validated pencil-beam based algorithm of the clinical treatment planning system. Dose calculation within the optimization scheme is very time consuming and measures are required to decrease the calculation time. Different methods for more effective dose calculation within the optimization scheme have been investigated. The optimization results for adaptive sampling of calculation points, and secondary effect approximations in the dose calculation algorithm are compared with the optimization result for accurate dose calculation in all voxels of interest

  6. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  7. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  8. Manual method for dose calculation in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, Elizabeth A.; Almeida, Carlos E. de; Biaggio, Maria F. de

    1998-01-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author)

  9. Variations of dose distribution in high energy electron beams as a function of geometrical parameters of irradiation. Application to computer calculation

    International Nuclear Information System (INIS)

    Villeret, O.

    1985-04-01

    An algorithm is developed for the purpose of compter treatment planning of electron therapy. The method uses experimental absorbed dose distribution data in the irradiated medium for electron beams in the 8-20 MeV range delivered by the Sagittaire linear accelerator (study of central axis depth dose, beam profiles) in various geometrical conditions. Experimental verification of the computer program showed agreement with 2% between dose measurement and computer calculation [fr

  10. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  11. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  12. An algorithm for intelligent sorting of CT-related dose parameters

    Science.gov (United States)

    Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin

    2011-03-01

    Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  13. An algorithm for intelligent sorting of CT-related dose parameters.

    Science.gov (United States)

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin

    2012-02-01

    Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  14. New resonance cross section calculational algorithms

    International Nuclear Information System (INIS)

    Mathews, D.R.

    1978-01-01

    Improved resonance cross section calculational algorithms were developed and tested for inclusion in a fast reactor version of the MICROX code. The resonance energy portion of the MICROX code solves the neutron slowing-down equations for a two-region lattice cell on a very detailed energy grid (about 14,500 energies). In the MICROX algorithms, the exact P 0 elastic scattering kernels are replaced by synthetic (approximate) elastic scattering kernels which permit the use of an efficient and numerically stable recursion relation solution of the slowing-down equation. In the work described here, the MICROX algorithms were modified as follows: an additional delta function term was included in the P 0 synthetic scattering kernel. The additional delta function term allows one more moments of the exact elastic scattering kernel to be preserved without much extra computational effort. With the improved synthetic scattering kernel, the flux returns more closely to the exact flux below a resonance than with the original MICROX kernel. The slowing-down calculation was extended to a true B 1 hyperfine energy grid calculatn in each region by using P 1 synthetic scattering kernels and tranport-corrected P 0 collision probabilities to couple the two regions. 1 figure, 6 tables

  15. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  16. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  17. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study

    International Nuclear Information System (INIS)

    Kim, Hyungjin; Park, Chang Min; Song, Yong Sub; Lee, Sang Min; Goo, Jin Mo

    2014-01-01

    Purpose: To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. Materials and methods: CT scans were performed on a chest phantom containing various nodules (10 and 12 mm; +100, −630 and −800 HU) at 120 kVp with tube current–time settings of 10, 20, 50, and 100 mAs. Each CT was reconstructed using filtered back projection (FBP), iDose 4 and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Results: Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p > 0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose 4 at all radiation dose settings (p < 0.05). Conclusion: Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility

  18. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungjin, E-mail: khj.snuh@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Park, Chang Min, E-mail: cmpark@radiol.snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Song, Yong Sub, E-mail: terasong@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Sang Min, E-mail: sangmin.lee.md@gmail.com [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Goo, Jin Mo, E-mail: jmgoo@plaza.snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, Seoul 110-744 (Korea, Republic of)

    2014-05-15

    Purpose: To evaluate the influence of radiation dose settings and reconstruction algorithms on the measurement accuracy and reproducibility of semi-automated pulmonary nodule volumetry. Materials and methods: CT scans were performed on a chest phantom containing various nodules (10 and 12 mm; +100, −630 and −800 HU) at 120 kVp with tube current–time settings of 10, 20, 50, and 100 mAs. Each CT was reconstructed using filtered back projection (FBP), iDose{sup 4} and iterative model reconstruction (IMR). Semi-automated volumetry was performed by two radiologists using commercial volumetry software for nodules at each CT dataset. Noise, contrast-to-noise ratio and signal-to-noise ratio of CT images were also obtained. The absolute percentage measurement errors and differences were then calculated for volume and mass. The influence of radiation dose and reconstruction algorithm on measurement accuracy, reproducibility and objective image quality metrics was analyzed using generalized estimating equations. Results: Measurement accuracy and reproducibility of nodule volume and mass were not significantly associated with CT radiation dose settings or reconstruction algorithms (p > 0.05). Objective image quality metrics of CT images were superior in IMR than in FBP or iDose{sup 4} at all radiation dose settings (p < 0.05). Conclusion: Semi-automated nodule volumetry can be applied to low- or ultralow-dose chest CT with usage of a novel iterative reconstruction algorithm without losing measurement accuracy and reproducibility.

  19. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  20. Study of Variation in Dose Calculation Accuracy Between kV Cone-Beam Computed Tomography and kV fan-Beam Computed Tomography

    Science.gov (United States)

    Kaliyaperumal, Venkatesan; Raphael, C. Jomon; Varghese, K. Mathew; Gopu, Paul; Sivakumar, S.; Boban, Minu; Raj, N. Arunai Nambi; Senthilnathan, K.; Babu, P. Ramesh

    2017-01-01

    Cone-beam computed tomography (CBCT) images are presently used for geometric verification for daily patient positioning. In this work, we have compared the images of CBCT with the images of conventional fan beam CT (FBCT) in terms of image quality and Hounsfield units (HUs). We also compared the dose calculated using CBCT with that of FBCT. Homogenous RW3 plates and Catphan phantom were scanned by FBCT and CBCT. In RW3 and Catphan phantom, percentage depth dose (PDD), profiles, isodose distributions (for intensity modulated radiotherapy plans), and calculated dose volume histograms were compared. The HU difference was within ± 20 HU (central region) and ± 30 HU (peripheral region) for homogeneous RW3 plates. In the Catphan phantom, the difference in HU was ± 20 HU in the central area and peripheral areas. The HU differences were within ± 30 HU for all HU ranges starting from −1000 to 990 in phantom and patient images. In treatment plans done with simple symmetric and asymmetric fields, dose difference (DD) between CBCT plan and FBCT plan was within 1.2% for both phantoms. In intensity modulated radiotherapy (IMRT) treatment plans, for different target volumes, the difference was <2%. This feasibility study investigated HU variation and dose calculation accuracy between FBCT and CBCT based planning and has validated inverse planning algorithms with CBCT. In our study, we observed a larger deviation of HU values in the peripheral region compared to the central region. This is due to the ring artifact and scatter contribution which may prevent the use of CBCT as the primary imaging modality for radiotherapy treatment planning. The reconstruction algorithm needs to be modified further for improving the image quality and accuracy in HU values. However, our study with TG-119 and intensity modulated radiotherapy test targets shows that CBCT can be used for adaptive replanning as the recalculation of dose with the anisotropic analytical algorithm is in full accord

  1. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma.

    Science.gov (United States)

    Kan, Monica W K; Leung, Lucullus H T; So, Ronald W K; Yu, Peter K N

    2013-03-01

    To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc(®) (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic(®) EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB_Dm) and dose-to-water (AXB_Dw) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the dose close to unit density water

  2. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma

    International Nuclear Information System (INIS)

    Kan, Monica W. K.; Leung, Lucullus H. T.; So, Ronald W. K.; Yu, Peter K. N.

    2013-01-01

    Purpose: To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc ® (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Methods: Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic ® EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB Dm ) and dose-to-water (AXB Dw ) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. Results: For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB Dm , and AXB Dw , respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB Dm , and AXB Dw , respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the

  3. Metrological and treatment planning improvements on external beam radiotherapy. Detector size effect and dose calculation in low-density media (in Spanish)

    International Nuclear Information System (INIS)

    Garcia-Vicente, Feliciano

    2004-01-01

    The objective of this thesis is the improvement of the measurement and calculation accuracy for radiation therapy fields. Basically, it deals with two questions: the detector size effect and the heterogeneity dose calculation. The author analyzes both the metrological and computational effects and its clinical implications by simulation of the radiotherapy treatments in a treatment planning system. The detector size effect leads up to smoothing of the radiation profile increasing the penumbra (20%-80%) and beam fringe (50%-90%) values with the consequent clinical effect of over-irradiation of the organs at risk close to the planning target volume (PTV). In this thesis this problem is analyzed finding mathematical solutions based on profile deconvolution or the use of radiation detectors of adequate size. On the other side, the author analyzes the dose computation on heterogeneous media by the superposition algorithms versus classical algorithms. The derived conclusion from this thesis is that in locations like lung and breast, the classical algorithms lead to a significant underdosage of the PTV with an important decrease of tumor control probability (TCP). On this basis, the author does not recommend the clinical use of these algorithms in the mentioned tumor locations

  4. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  5. Pressure algorithm for elliptic flow calculations with the PDF method

    Science.gov (United States)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  6. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyong Geon; Shin, Kyo Chul [Dankook Univ., College of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., College of Medicine, Seoul (Korea, Republic of); Lee, Hyoung Koo [The Catholic Univ., College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within {+-}1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within {+-}1.0% in most situations and within {+-}3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry.

  7. Modification of transmission dose algorithm for irregularly shaped radiation field and tissue deficit

    International Nuclear Information System (INIS)

    Yun, Hyong Geon; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2002-01-01

    Algorithm for estimation of transmission dose was modified for use in partially blocked radiation fields and in cases with tissue deficit. The beam data was measured with flat solid phantom in various conditions of beam block. And an algorithm for correction of transmission dose in cases of partially blocked radiation field was developed from the measured data. The algorithm was tested in some clinical settings with irregular shaped field. Also, another algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. This algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients by using multiple sheets of solid phantoms. The algorithm for correction of beam block could accurately reflect the effect of beam block, with error within ±1.0%, both with square fields and irregularly shaped fields. The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ±1.0% in most situations and within ±3.0% in experimental settings with irregular contours mimicking breast cancer treatment set-up. Developed algorithms could accurately estimate the transmission dose in most radiation treatment settings including irregularly shaped field and irregularly shaped body contour with tissue deficit in transmission dosimetry

  8. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  9. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc stereotactic treatments

    International Nuclear Information System (INIS)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca

    2011-01-01

    Purpose: To assess the accuracy against measurements of two photon dose calculation algorithms (Acuros XB and the Anisotropic Analytical algorithm AAA) for small fields usable in stereotactic treatments with particular focus on RapidArc. Methods: Acuros XB and AAA were configured for stereotactic use. Baseline accuracy was assessed on small jaw-collimated open fields for different values for the spot sizes parameter in the beam data: 0.0, 0.5, 1, and 2 mm. Data were calculated with a grid of 1 x 1 mm 2 . Investigated fields were: 3 x 3, 2 x 2, 1 x 1, and 0.8 x 0.8 cm 2 with a 6 MV photon beam generated from a Clinac2100iX (Varian, Palo Alto, CA). Profiles, PDD, and output factors were measured in water with a PTW diamond detector (detector size: 4 mm 2 , thickness 0.4 mm) and compared to calculations. Four RapidArc test plans were optimized, calculated and delivered with jaw settings J3 x 3, J2 x 2, and J1 x 1 cm 2 , the last was optimized twice to generate high (H) and low (L) modulation patterns. Each plan consisted of one partial arc (gantry 110 deg. to 250 deg.), and collimator 45 deg. Dose to isocenter was measured in a PTW Octavius phantom and compared to calculations. 2D measurements were performed by means of portal dosimetry with the GLAaS method developed at authors' institute. Analysis was performed with gamma pass-fail test with 3% dose difference and 2 mm distance to agreement thresholds. Results: Open square fields: penumbrae from open field profiles were in good agreement with diamond measurements for 1 mm spot size setting for Acuros XB, and between 0.5 and 1 mm for AAA. Maximum MU difference between calculations and measurements was 1.7% for Acuros XB (0.2% for fields greater than 1 x 1 cm 2 ) with 0.5 or 1 mm spot size. Agreement for AAA was within 0.7% (2.8%) for 0.5 (1 mm) spot size. RapidArc plans: doses were evaluated in a 4 mm diameter structure at isocenter and computed values differed from measurements by 0.0, -0.2, 5.5, and -3.4% for

  10. Simplified dose calculation method for mantle technique

    International Nuclear Information System (INIS)

    Scaff, L.A.M.

    1984-01-01

    A simplified dose calculation method for mantle technique is described. In the routine treatment of lymphom as using this technique, the daily doses at the midpoints at five anatomical regions are different because the thicknesses are not equal. (Author) [pt

  11. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries

    International Nuclear Information System (INIS)

    Chakarova, Roumiana; Gustafsson, Magnus; Bäck, Anna; Drugge, Ninni; Palm, Åsa; Lindberg, Andreas; Berglund, Mattias

    2012-01-01

    Purpose: The aim of this study is to examine experimentally and by the Monte Carlo method the accuracy of the Eclipse Pencil Beam Convolution (PBC) and Analytical Anisotropic Algorithm (AAA) algorithms in the superficial region (0–2 cm) of the breast for tangential photon beams in a phantom case as well as in a number of patient geometries. The aim is also to identify differences in how the patient computer tomography data are handled by the treatment planning system and in the Monte Carlo simulations in order to reduce influences of these effects on the evaluation. Materials and methods: Measurements by thermoluminescent dosimeters and gafchromic film are performed for six MV tangential irradiation of the cylindrical solid water phantom. Tangential treatment of seven patients is investigated considering open beams. Dose distributions are obtained by the Eclipse PBC and AAA algorithms. Monte Carlo calculations are carried out by BEAMnrc/DOSXYZnrc code package. Calculations are performed with a calculation grid of 1.25 × 1.25 × 5 mm 3 for PBC and 2 × 2 × 5 mm 3 for AAA and Monte Carlo, respectively. Dose comparison is performed in both dose and spatial domains by the normalized dose difference method. Results: Experimental profiles from the surface toward the geometrical center of the cylindrical phantom are obtained at the beam entrance and exit as well as laterally. Full dose is received beyond 2 mm in the lateral superficial region and beyond 7 mm at the beam entrance. Good agreement between experimental, Monte Carlo and AAA data is obtained, whereas PBC is seen to underestimate the entrance dose the first 3–4 mm and the lateral dose by more than 5% up to 8 mm depth. In the patient cases considered, AAA and Monte Carlo show agreement within 3% dose and 4 mm spatial tolerance. PBC systematically underestimates the dose at the breast apex. The dimensions of region out of tolerance vary with the local breast shape. Different interpretations of patient

  12. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P [University of Kansas Medical Center, Kansas City, KS (United States)

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  13. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    Science.gov (United States)

    Qin, Cheng-Zhi; Zhan, Lijun

    2012-06-01

    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU

  14. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    International Nuclear Information System (INIS)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-01-01

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit

  15. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y [Hiroshima University, Hiroshima, Hiroshima (Japan)

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  16. Dose calculation of X-ray in medium

    International Nuclear Information System (INIS)

    Liu Yanmei; Xue Dingyu; Xu Xinhe; Chen Zhen; Dong Zaili

    2006-01-01

    The photon transportation in radiotherapy is studied based on Monte Carlo method. The dose calculation based on the MC simulation package DPM has been carried out, and the results have been visualized using MEX technology of Matlab. The dose results of X-ray in homogeneity and inhomogeneity medium have been compared with experimental data and those of other MC simulation package, and these results all agree. The calculation method we proposed has the advantage of high speed and good accuracy, therefore, is applicable in practice. (authors)

  17. SU-F-T-609: Impact of Dosimetric Variation for Prescription Dose Using Analytical Anisotropic Algorithm (AAA) in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, D [Kanagawa Cancer Center, Yokohama, Kanagawa (Japan); Takahashi, R [Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto, Tokyo (Japan); Kamima, T [Cancer Institute Hospital Japanese Foundation for Cancer Research, Koto, Tokyo (Japan); Baba, H [The National Cancer Center Hospital East, Kshiwa, Chiba (Japan); Yamamoto, T; Kubo, Y [Otemae Hospital, Chuo-ku, Osaka (Japan); Ishibashi, S; Higuchi, Y [Sasebo City General Hospital, Sasebo, Nagasaki (Japan); Tani, K [St Luke’s International Hospital, Tokyo, Tokyo (Japan); Tachibana, H [National Cancer Center, Kashiwa, Chiba (Japan)

    2016-06-15

    Purpose: Actual irradiated prescription dose to patients cannot be verified. Thus, independent dose verification and second treatment planning system are used as the secondary check. AAA dose calculation engine has contributed to lung SBRT. We conducted a multi-institutional study to assess variation of prescription dose for lung SBRT when using AAA in reference to using Acuros XB and Clarkson algorithm. Methods: Six institutes in Japan participated in this study. All SBRT treatments were planed using AAA in Eclipse and Adaptive Convolve (AC) in Pinnacle3. All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, Japan), which implemented a Clarkson-based dose calculation algorithm using CT image dataset. A retrospective analysis for lung SBRT plans (73 patients) was performed to compute the confidence limit (CL, Average±2SD) in dose between the AAA and the SMU. In one of the institutes, a additional analysis was conducted to evaluate the variations between the AAA and the Acuros XB (AXB). Results: The CL for SMU shows larger systematic and random errors of 8.7±9.9 % for AAA than the errors of 5.7±4.2 % for AC. The variations of AAA correlated with the mean CT values in the voxels of PTV (a correlation coefficient : −0.7) . The comparison of AXB vs. AAA shows smaller systematic and random errors of −0.7±1.7%. The correlation between dose variations for AXB and the mean CT values in PTV was weak (0.4). However, there were several plans with more than 2% deviation of AAPM TG114 (Maximum: −3.3 %). Conclusion: In comparison for AC, prescription dose calculated by AAA may be more variable in lung SBRT patient. Even AXB comparison shows unexpected variation. Care should be taken for the use of AAA in lung SBRT. This research is partially supported by Japan Agency for Medical Research and Development (AMED)

  18. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations; Diferencias en las dosis absorbidas en organos de riesgo y volumen tumoral de planificacion (PTV) en tratamientos de pulmon usando dos algoritmos de calculo diferentes: pencil beam y collpased cone

    Energy Technology Data Exchange (ETDEWEB)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-07-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  19. An ultrafast line-by-line algorithm for calculating spectral transmittance and radiance

    International Nuclear Information System (INIS)

    Tan, X.

    2013-01-01

    An ultrafast line-by-line algorithm for calculating spectral transmittance and radiance of gases is presented. The algorithm is based on fast convolution of the Voigt line profile using Fourier transform and a binning technique. The algorithm breaks a radiative transfer calculation into two steps: a one-time pre-computation step in which a set of pressure independent coefficients are computed using the spectral line information; a normal calculation step in which the Fourier transform coefficients of the optical depth are calculated using the line of sight information and the coefficients pre-computed in the first step, the optical depth is then calculated using an inverse Fourier transform and the spectral transmittance and radiance are calculated. The algorithm is significantly faster than line-by-line algorithms that do not employ special speedup techniques by a factor of 10 3 –10 6 . A case study of the 2.7 μm band of H 2 O vapor is presented. -- Highlights: •An ultrafast line-by-line model based on FFT and a binning technique is presented. •Computationally expensive calculations are factored out into a pre-computation step. •It is 10 3 –10 8 times faster than LBL algorithms that do not employ speedup techniques. •Good agreement with experimental data for the 2.7 μm band of H 2 O

  20. SU-F-19A-01: APBI Brachytherapy Treatment Planning: The Impact of Heterogeneous Dose Calculations

    International Nuclear Information System (INIS)

    Loupot, S; Han, T; Salehpour, M; Gifford, K

    2014-01-01

    Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reported in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information

  1. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-01-01

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo TM , GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  2. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  3. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  4. Collective probabilities algorithm for surface hopping calculations

    International Nuclear Information System (INIS)

    Bastida, Adolfo; Cruz, Carlos; Zuniga, Jose; Requena, Alberto

    2003-01-01

    General equations that transition probabilities of the hopping algorithms in surface hopping calculations must obey to assure the equality between the average quantum and classical populations are derived. These equations are solved for two particular cases. In the first it is assumed that probabilities are the same for all trajectories and that the number of hops is kept to a minimum. These assumptions specify the collective probabilities (CP) algorithm, for which the transition probabilities depend on the average populations for all trajectories. In the second case, the probabilities for each trajectory are supposed to be completely independent of the results from the other trajectories. There is, then, a unique solution of the general equations assuring that the transition probabilities are equal to the quantum population of the target state, which is referred to as the independent probabilities (IP) algorithm. The fewest switches (FS) algorithm developed by Tully is accordingly understood as an approximate hopping algorithm which takes elements from the accurate CP and IP solutions. A numerical test of all these hopping algorithms is carried out for a one-dimensional two-state problem with two avoiding crossings which shows the accuracy and computational efficiency of the collective probabilities algorithm proposed, the limitations of the FS algorithm and the similarity between the results offered by the IP algorithm and those obtained with the Ehrenfest method

  5. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  6. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 04: On 3D Fabrication of Phantoms and Experimental Verification of Patient Dose Computation Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rao; Zavan, Rodolfo; McGeachy, Philip; Madamesila, Joseph; Villarreal-Barajas, Jose Eduardo [Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA, Instituto de Física de São Carlos, Universidade de São Paulo, SP, Brazil, CancerCare Manitoba, Winnipeg,Manitoba, Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada)

    2016-08-15

    Purpose: Transport based dose calculation algorithm Acuros XB (AXB) has been shown to accurately account for heterogeneities mostly through comparisons with Monte Carlo simulations. This study aims at providing additional experimental verification for AXB for flattened and unflattened clinical energies in low density phantoms of the same material. Materials and Methods: Polystyrene slabs were created using a bench-top 3D printer. Six slabs were printed at varying densities from 0.23 g/cm{sup 3} to 0.68 g/cm{sup 3}, corresponding to different density humanoid tissues. The slabs were used to form different single and multilayer geometries. Dose was calculated with AXB 11.0.31 for 6MV, 15MV flattened and 6FFF (flattening filter free) energies for field sizes of 2×2 cm{sup 2} and 5×5 cm{sup 2}. The phantoms containing radiochromic EBT3 films were irradiated. Absolute dose profiles and 2D gamma analyses were performed for 96 dose planes. Results: For all single slab, multislab configurations and energies, absolute dose differences between the AXB calculation and film measurements remained <3% for both fields, with slightly poor disagreement in penumbra. The gamma index at 2% / 2mm averaged 98% in all combinations of fields, phantoms and photon energies. Conclusions: The transport based dose algorithm AXB is in good agreement with the experimental measurements for small field sizes using 6MV, 6FFF and 15MV beams adjacent to low density heterogeneous media. This work provides sufficient experimental ground to support the use of AXB for heterogeneous dose calculation purposes.

  7. A study on the application of two-dosimeter algorithm to estimate the effective dose in an inhomogeneous radiation field at Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Hee Geun; Kong, Tae Young

    2008-01-01

    In Korean Nuclear Power Plants (NPPs), two ThermoLuminescent Dosimeters (TLD) were provided to workers who work in an inhomogeneous radiation field; one on the chest and the other on the head. In this way, the effective dose for radiation workers at NPPs was determined by the high deep dose between two radiation dose from these TLDs. This represented a conservative method of evaluating the degree of exposure to radiation. In this study, to prevent the overestimation of the effective dose, field application experiments were implemented using two-dosimeter algorithms developed by several international institutes for the selection of an optimal algorithm. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, NCRP (55/50), NCRP (70/30), EPRI (NRC), Lakshmanan, and Kim (Texas A and M University) were extensively analyzed as two-dosimeter algorithms. In particular, three additional TLDs were provided to radiation workers who wore them on the head, chest, and back during maintenance periods, and the measured value were analyzed. The results found no significant differences among the calculated effective doses, apart from Lakshmanan's algorithm. Thus, this paper recommends the NCRP(55/50) algorithm as an optimal two-dosimeter algorithm in consideration of the solid technical background of NCRP and the convenience of radiation works. In addition, it was determined that a two-dosimeter is provided to a single task which is expected to produce a dose rate of more than 1 mSv/hr, a difference of dose rates depending on specific parts of the body of more than 30%, and an exposure dose of more than 2 mSv

  8. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  9. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    International Nuclear Information System (INIS)

    Smarda, M; Alexopoulou, E; Mazioti, A; Kordolaimi, S; Ploussi, A; Efstathopoulos, E; Priftis, K

    2015-01-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions. (paper)

  10. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    Science.gov (United States)

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  11. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel

  12. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction; Cambio de paradigma en SBRT pulmonar asociada al calculo de dosis con correccion de heterogeneidad

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-07-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  13. Evaluation tests of treatment planning systems concerning 3D dose calculation

    International Nuclear Information System (INIS)

    Simonian-Sauve, M.; Smart, C.

    1998-01-01

    The development of irradiation techniques in radiotherapy shows a clear tendency towards the systematic use of three-dimensional (3D) information. Great efforts are being made to set up 3D conformal radiotherapy. Consequently, in the aim of greater coherence and accuracy, 'the dosimetric tool' must also meet the requirements of 3D radiotherapy, as it plays a role in the treatment chain. To know if the treatment planning system is a '3D', '2D', or even '1D' system, one should not be satisfied with reading the technical documentation and the program algorithm description not entirely trust the constructor's assertions. It is essential to clearly and precisely evaluate the possibilities of the treatment planning system. Even if it is proved not to satisfy perfectly all the tests which would qualify it as a real 3D calculation system, the study of the test results helps to give clear explanations of the dosimetric results. Two series of test cases are proposed. The first series allows us to understand in which conditions the treatment planning system takes into account the scatter influence in a volume. The second series is designed to inform us about the capacity of the dose calculation algorithm when the medium encloses non-homogeneities. These test cases do not constitute an exhaustive 'check-list' able to tackle completely the question of 3D calculation. They are submitted as examples and should be considered as an evaluation methodology for the software implanted in the treatment planning system. (authors)

  14. SU-F-T-619: Dose Evaluation of Specific Patient Plans Based On Monte Carlo Algorithm for a CyberKnife Stereotactic Radiosurgery System

    Energy Technology Data Exchange (ETDEWEB)

    Piao, J [PLA General Hospital, Beijing (China); PLA 302 Hospital, Beijing (China); Xu, S [PLA General Hospital, Beijing (China); Tsinghua University, Beijing (China); Wu, Z; Liu, Y [Tsinghua University, Beijing (China); Li, Y [Beihang University, Beijing (China); Qu, B [PLA General Hospital, Beijing (China); Duan, X [PLA 302 Hospital, Beijing (China)

    2016-06-15

    Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combined 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant

  15. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  16. SU-E-T-381: Evaluation of Calculated Dose Accuracy for Organs-At-Risk Located at Out-Of-Field in a Commercial Treatment Planning System for High Energy Photon Beams Produced From TrueBeam Accelerators

    International Nuclear Information System (INIS)

    Wang, L; Ding, G

    2015-01-01

    Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millennium 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the

  17. Classical Methods and Calculation Algorithms for Determining Lime Requirements

    Directory of Open Access Journals (Sweden)

    André Guarçoni

    Full Text Available ABSTRACT The methods developed for determination of lime requirements (LR are based on widely accepted principles. However, the formulas used for calculation have evolved little over recent decades, and in some cases there are indications of their inadequacy. The aim of this study was to compare the lime requirements calculated by three classic formulas and three algorithms, defining those most appropriate for supplying Ca and Mg to coffee plants and the smaller possibility of causing overliming. The database used contained 600 soil samples, which were collected in coffee plantings. The LR was estimated by the methods of base saturation, neutralization of Al3+, and elevation of Ca2+ and Mg2+ contents (two formulas and by the three calculation algorithms. Averages of the lime requirements were compared, determining the frequency distribution of the 600 lime requirements (LR estimated through each calculation method. In soils with low cation exchange capacity at pH 7, the base saturation method may fail to adequately supply the plants with Ca and Mg in many situations, while the method of Al3+ neutralization and elevation of Ca2+ and Mg2+ contents can result in the calculation of application rates that will increase the pH above the suitable range. Among the methods studied for calculating lime requirements, the algorithm that predicts reaching a defined base saturation, with adequate Ca and Mg supply and the maximum application rate limited to the H+Al value, proved to be the most efficient calculation method, and it can be recommended for use in numerous crops conditions.

  18. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc stereotactic treatments

    Energy Technology Data Exchange (ETDEWEB)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Cozzi, Luca [Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona (Switzerland)

    2011-11-15

    Purpose: To assess the accuracy against measurements of two photon dose calculation algorithms (Acuros XB and the Anisotropic Analytical algorithm AAA) for small fields usable in stereotactic treatments with particular focus on RapidArc. Methods: Acuros XB and AAA were configured for stereotactic use. Baseline accuracy was assessed on small jaw-collimated open fields for different values for the spot sizes parameter in the beam data: 0.0, 0.5, 1, and 2 mm. Data were calculated with a grid of 1 x 1 mm{sup 2}. Investigated fields were: 3 x 3, 2 x 2, 1 x 1, and 0.8 x 0.8 cm{sup 2} with a 6 MV photon beam generated from a Clinac2100iX (Varian, Palo Alto, CA). Profiles, PDD, and output factors were measured in water with a PTW diamond detector (detector size: 4 mm{sup 2}, thickness 0.4 mm) and compared to calculations. Four RapidArc test plans were optimized, calculated and delivered with jaw settings J3 x 3, J2 x 2, and J1 x 1 cm{sup 2}, the last was optimized twice to generate high (H) and low (L) modulation patterns. Each plan consisted of one partial arc (gantry 110 deg. to 250 deg.), and collimator 45 deg. Dose to isocenter was measured in a PTW Octavius phantom and compared to calculations. 2D measurements were performed by means of portal dosimetry with the GLAaS method developed at authors' institute. Analysis was performed with gamma pass-fail test with 3% dose difference and 2 mm distance to agreement thresholds. Results: Open square fields: penumbrae from open field profiles were in good agreement with diamond measurements for 1 mm spot size setting for Acuros XB, and between 0.5 and 1 mm for AAA. Maximum MU difference between calculations and measurements was 1.7% for Acuros XB (0.2% for fields greater than 1 x 1 cm{sup 2}) with 0.5 or 1 mm spot size. Agreement for AAA was within 0.7% (2.8%) for 0.5 (1 mm) spot size. RapidArc plans: doses were evaluated in a 4 mm diameter structure at isocenter and computed values differed from measurements by 0.0, -0

  19. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  20. Is it sensible to “deform” dose? 3D experimental validation of dose-warping

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Supple, J. R.; Smith, R. L.; Dunn, L.; Kron, T.; Franich, R. D.

    2012-01-01

    Purpose: Strategies for dose accumulation in deforming anatomy are of interest in radiotherapy. Algorithms exist for the deformation of dose based on patient image sets, though these are sometimes contentious because not all such image calculations are constrained by physical laws. While tumor and organ motion has been a key area of study for a considerable amount of time, deformation is of increasing interest. In this work, we demonstrate a full 3D experimental validation of results from a range of dose deformation algorithms available in the public domain. Methods: We recently developed the first tissue-equivalent, full 3D deformable dosimetric phantom—“DEFGEL.” To assess the accuracy of dose-warping based on deformable image registration (DIR), we have measured doses in undeformed and deformed states of the DEFGEL dosimeter and compared these to planned doses and warped doses. In this way we have directly evaluated the accuracy of dose-warping calculations for 11 different algorithms. We have done this for a range of stereotactic irradiation schemes and types and magnitudes of deformation. Results: The original Horn and Schunck algorithm is shown to be the best performing of the 11 algorithms trialled. Comparing measured and dose-warped calculations for this method, it is found that for a 10 × 10 mm 2 square field, γ 3%/3mm = 99.9%; for a 20 × 20 mm 2 cross-shaped field, γ 3%/3mm = 99.1%; and for a multiple dynamic arc (0.413 cm 3 PTV) treatment adapted from a patient treatment plan, γ 3%/3mm = 95%. In each case, the agreement is comparable to—but consistently ∼1% less than—comparison between measured and calculated (planned) dose distributions in the absence of deformation. The magnitude of the deformation, as measured by the largest displacement experienced by any voxel in the volume, has the greatest influence on the accuracy of the warped dose distribution. Considering the square field case, the smallest deformation (∼9 mm) yields

  1. An algorithm of α-and γ-mode eigenvalue calculations by Monte Carlo method

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori

    2003-01-01

    A new algorithm for Monte Carlo calculation was developed to obtain α- and γ-mode eigenvalues. The α is a prompt neutron time decay constant measured in subcritical experiments, and the γ is a spatial decay constant measured in an exponential method for determining the subcriticality. This algorithm can be implemented into existing Monte Carlo eigenvalue calculation codes with minimum modifications. The algorithm was implemented into MCNP code and the performance of calculating the both mode eigenvalues were verified through comparison of the calculated eigenvalues with the ones obtained by fixed source calculations. (author)

  2. Algorithm for lamotrigine dose adjustment before, during, and after pregnancy

    DEFF Research Database (Denmark)

    Sabers, A

    2012-01-01

    Sabers A. Algorithm for lamotrigine dose adjustment before, during, and after pregnancy. Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2011.01627.x. © 2011 John Wiley & Sons A/S. Background -  Treatment with lamotrigine (LTG) during pregnancy is associated with a pronounced risk of seizure deterior......Sabers A. Algorithm for lamotrigine dose adjustment before, during, and after pregnancy. Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2011.01627.x. © 2011 John Wiley & Sons A/S. Background -  Treatment with lamotrigine (LTG) during pregnancy is associated with a pronounced risk of seizure...

  3. Comparison of SAR calculation algorithms for the finite-difference time-domain method

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-01-01

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)

  4. Application of Multiobjective Genetic Algorithms in Anatomy Based Dose Optimization in Brachytherapy and its Comparation with Deterministic Algorithms

    National Research Council Canada - National Science Library

    Milickovic, Natasa

    2001-01-01

    In High Dose Rate (HDR) brachytherapy the conventional dose optimization algorithms consider the multiple objectives in the form of an aggregate function which combines individual objectives into a single utility value...

  5. Smartphone apps for calculating insulin dose: a systematic assessment.

    Science.gov (United States)

    Huckvale, Kit; Adomaviciute, Samanta; Prieto, José Tomás; Leow, Melvin Khee-Shing; Car, Josip

    2015-05-06

    Medical apps are widely available, increasingly used by patients and clinicians, and are being actively promoted for use in routine care. However, there is little systematic evidence exploring possible risks associated with apps intended for patient use. Because self-medication errors are a recognized source of avoidable harm, apps that affect medication use, such as dose calculators, deserve particular scrutiny. We explored the accuracy and clinical suitability of apps for calculating medication doses, focusing on insulin calculators for patients with diabetes as a representative use for a prevalent long-term condition. We performed a systematic assessment of all English-language rapid/short-acting insulin dose calculators available for iOS and Android. Searches identified 46 calculators that performed simple mathematical operations using planned carbohydrate intake and measured blood glucose. While 59% (n = 27/46) of apps included a clinical disclaimer, only 30% (n = 14/46) documented the calculation formula. 91% (n = 42/46) lacked numeric input validation, 59% (n = 27/46) allowed calculation when one or more values were missing, 48% (n = 22/46) used ambiguous terminology, 9% (n = 4/46) did not use adequate numeric precision and 4% (n = 2/46) did not store parameters faithfully. 67% (n = 31/46) of apps carried a risk of inappropriate output dose recommendation that either violated basic clinical assumptions (48%, n = 22/46) or did not match a stated formula (14%, n = 3/21) or correctly update in response to changing user inputs (37%, n = 17/46). Only one app, for iOS, was issue-free according to our criteria. No significant differences were observed in issue prevalence by payment model or platform. The majority of insulin dose calculator apps provide no protection against, and may actively contribute to, incorrect or inappropriate dose recommendations that put current users at risk of both catastrophic overdose and more

  6. Comparison of two heterogeneity correction algorithms in pituitary gland treatments with intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Albino, Lucas D.; Santos, Gabriela R.; Ribeiro, Victor A.B.; Rodrigues, Laura N.; Weltman, Eduardo; Braga, Henrique F.

    2013-01-01

    The dose accuracy calculated by a treatment planning system is directly related to the chosen algorithm. Nowadays, several calculation doses algorithms are commercially available and they differ in calculation time and accuracy, especially when individual tissue densities are taken into account. The aim of this study was to compare two different calculation algorithms from iPlan®, BrainLAB, in the treatment of pituitary gland tumor with intensity-modulated radiation therapy (IMRT). These tumors are located in a region with variable electronic density tissues. The deviations from the plan with no heterogeneity correction were evaluated. To initial validation of the data inserted into the planning system, an IMRT plan was simulated in a anthropomorphic phantom and the dose distribution was measured with a radiochromic film. The gamma analysis was performed in the film, comparing it with dose distributions calculated with X-ray Voxel Monte Carlo (XVMC) algorithm and pencil beam convolution (PBC). Next, 33 patients plans, initially calculated by PBC algorithm, were recalculated with XVMC algorithm. The treatment volumes and organs-at-risk dose-volume histograms were compared. No relevant differences were found in dose-volume histograms between XVMC and PBC. However, differences were obtained when comparing each plan with the plan without heterogeneity correction. (author)

  7. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  8. Dose determination algorithms for a nearly tissue equivalent multi-element thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Moscovitch, M.; Chamberlain, J.; Velbeck, K.J.

    1988-01-01

    In a continuing effort to develop dosimetric systems that will enable reliable interpretation of dosimeter readings in terms of the absorbed dose or dose-equivalent, a new multi-element TL dosimeter assembly for Beta and Gamma dose monitoring has been designed. The radiation-sensitive volumes are four LiF-TLD elements, each covered by its own unique filter. For media-matching, care has been taken to employ nearly tissue equivalent filters of thicknesses of 1000 mg/cm 2 and 300 mg/cm 2 for deep dose and dose to the lens-of-the-eye measurements respectively. Only one metal filter (Cu) is employed to provide low energy photon discrimination. A Thin TL element (0.09 mm thick) is located behind an open window designed to improve the energy under-response to low energy beta rays and to provide closer estimate of the shallow dose equivalent. The deep and shallow dose equivalents are derived from the correlation of the response of the various TL elements to the above quantities through computations based on previously defined relationships obtained from experimental results. The theoretical formalization for the dose calculation algorithms is described in detail, and provides a useful methodology which can be applied to different tissue-equivalent dosimeter assemblies. Experimental data has been obtained by performing irradiation according to the specifications established by DOELAP, using 27 types of pure and mixed radiation fields including Cs-137 gamma rays, low energy photons down to 20 keV, Sr/Y-90, Uranium, and Tl-204 beta particles

  9. SU-F-T-575: Verification of a Monte-Carlo Small Field SRS/SBRT Dose Calculation System

    International Nuclear Information System (INIS)

    Sudhyadhom, A; McGuinness, C; Descovich, M

    2016-01-01

    Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert. Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm 2 area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.

  10. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of 98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. SU-E-T-516: Dosimetric Validation of AcurosXB Algorithm in Comparison with AAA & CCC Algorithms for VMAT Technique.

    Science.gov (United States)

    Kathirvel, M; Subramanian, V Sai; Arun, G; Thirumalaiswamy, S; Ramalingam, K; Kumar, S Ashok; Jagadeesh, K

    2012-06-01

    To dosimetrically validate AcurosXB algorithm for Volumetric Modulated Arc Therapy (VMAT) in comparison with standard clinical Anisotropic Analytic Algorithm(AAA) and Collapsed Cone Convolution(CCC) dose calculation algorithms. AcurosXB dose calculation algorithm is available with Varian Eclipse treatment planning system (V10). It uses grid-based Boltzmann equation solver to predict dose precisely in lesser time. This study was made to realize algorithms ability to predict dose accurately as its delivery for which five clinical cases each of Brain, Head&Neck, Thoracic, Pelvic and SBRT were taken. Verification plans were created on multicube phantom with iMatrixx-2D detector array and then dose prediction was done with AcurosXB, AAA & CCC (COMPASS System) algorithm and the same were delivered onto CLINAC-iX treatment machine. Delivered dose was captured in iMatrixx plane for all 25 plans. Measured dose was taken as reference to quantify the agreement between AcurosXB calculation algorithm against previously validated AAA and CCC algorithm. Gamma evaluation was performed with clinical criteria distance-to-agreement 3&2mm and dose difference 3&2% in omnipro-I'MRT software. Plans were evaluated in terms of correlation coefficient, quantitative area gamma and average gamma. Study shows good agreement between mean correlation 0.9979±0.0012, 0.9984±0.0009 & 0.9979±0.0011 for AAA, CCC & Acuros respectively. Mean area gamma for criteria 3mm/3% was found to be 98.80±1.04, 98.14±2.31, 98.08±2.01 and 2mm/2% was found to be 93.94±3.83, 87.17±10.54 & 92.36±5.46 for AAA, CCC & Acuros respectively. Mean average gamma for 3mm/3% was 0.26±0.07, 0.42±0.08, 0.28±0.09 and 2mm/2% was found to be 0.39±0.10, 0.64±0.11, 0.42±0.13 for AAA, CCC & Acuros respectively. This study demonstrated that the AcurosXB algorithm had a good agreement with the AAA & CCC in terms of dose prediction. In conclusion AcurosXB algorithm provides a valid, accurate and speedy alternative to AAA

  12. Algorithms for Calculating Alternating Infinite Series

    International Nuclear Information System (INIS)

    Garcia, Hector Luna; Garcia, Luz Maria

    2015-01-01

    This paper are presented novel algorithms for exact limits of a broad class of infinite alternating series. Many of these series are found in physics and other branches of science and their exact values found for us are in complete agreement with the values obtained by other authors. Finally, these simple methods are very powerful in calculating the limits of many series as shown by the examples

  13. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  14. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  15. MO-E-17A-05: Individualized Patient Dosimetry in CT Using the Patient Dose (PATDOSE) Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A; Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2014-06-15

    Purpose: Radiation dose to the patient undergoing a CT examination has been the focus of many recent studies. While CTDIvol and SSDE-based methods are important tools for patient dose management, the CT image data provides important information with respect to CT dose and its distribution. Coupled with the known geometry and output factors (kV, mAs, pitch, etc.) of the CT scanner, the CT dataset can be used directly for computing absorbed dose. Methods: The HU numbers in a patient's CT data set can be converted to linear attenuation coefficients (LACs) with some assumptions. With this (PAT-DOSE) method, which is not Monte Carlo-based, the primary and scatter dose are computed separately. The primary dose is computed directly from the geometry of the scanner, x-ray spectrum, and the known patient LACs. Once the primary dose has been computed to all voxels in the patient, the scatter dose algorithm redistributes a fraction of the absorbed primary dose (based on the HU number of each source voxel), and the methods here invoke both tissue attenuation and absorption and solid angle geometry. The scatter dose algorithm can be run N times to include Nth-scatter redistribution. PAT-DOSE was deployed using simple PMMA phantoms, to validate its performance against Monte Carlo-derived dose distributions. Results: Comparison between PAT-DOSE and MCNPX primary dose distributions showed excellent agreement for several scan lengths. The 1st-scatter dose distributions showed relatively higher-amplitude, long-range scatter tails for the PAT-DOSE algorithm then for MCNPX simulations. Conclusion: The PAT-DOSE algorithm provides a fast, deterministic assessment of the 3-D dose distribution in CT, making use of scanner geometry and the patient image data set. The preliminary implementation of the algorithm produces accurate primary dose distributions however achieving scatter distribution agreement is more challenging. Addressing the polyenergetic x-ray spectrum and spatially

  16. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  17. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    Science.gov (United States)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  18. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    Science.gov (United States)

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  19. Effective calculation algorithm for nuclear chains of arbitrary length and branching

    International Nuclear Information System (INIS)

    Chirkov, V.A.; Mishanin, B.V.

    1994-01-01

    An effective algorithm for calculation of the isotope concentration in the spent nuclear fuel when it is kept in storage, is presented. Using the superposition principle and representing the transfer function in a rather compact form it becomes possible achieve high calculation speed and a moderate computer code size. The algorithm is applied for the calculation of activity, energy release and toxicity of heavy nuclides and products of their decay when the fuel is kept in storage. (authors). 1 ref., 4 tabs

  20. Method for dose calculation in intracavitary irradiation of endometrical carcinoma

    International Nuclear Information System (INIS)

    Zevrieva, I.F.; Ivashchenko, N.T.; Musapirova, N.A.; Fel'dman, S.Z.; Sajbekov, T.S.

    1979-01-01

    A method for dose calculation for the conditions of intracavitary gamma therapy of endometrial carcinoma using spherical and linear 60 Co sources was elaborated. Calculations of dose rates for different amount and orientation of spherical radiation sources and for different planes were made with the aid of BEhSM-4M computer. Dosimet were made with the aid of BEhSM-4M computer. Dosimetric study of dose fields was made using a phantom imitating the real conditions of irradiation. Discrepancies between experimental and calculated values are within the limits of the experiment accuracy

  1. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  2. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  3. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  4. Concurrent algorithms for nuclear shell model calculations

    International Nuclear Information System (INIS)

    Mackenzie, L.M.; Macleod, A.M.; Berry, D.J.; Whitehead, R.R.

    1988-01-01

    The calculation of nuclear properties has proved very successful for light nuclei, but is limited by the power of the present generation of computers. Starting with an analysis of current techniques, this paper discusses how these can be modified to map parallelism inherent in the mathematics onto appropriate parallel machines. A prototype dedicated multiprocessor for nuclear structure calculations, designed and constructed by the authors, is described and evaluated. The approach adopted is discussed in the context of a number of generically similar algorithms. (orig.)

  5. Current algorithms for computed electron beam dose planning

    International Nuclear Information System (INIS)

    Brahme, A.

    1985-01-01

    Two- and sometimes three-dimensional computer algorithms for electron beam irradiation are capable of taking all irregularities of the body cross-section and the properties of the various tissues into account. This is achieved by dividing the incoming broad beams into a number of narrow pencil beams, the penetration of which can be described by essentially one-dimensional formalisms. The constituent pencil beams are most often described by Gaussian, experimentally or theoretically derived distributions. The accuracy of different dose planning algorithms is discussed in some detail based on their ability to take the different physical interaction processes of high energy electrons into account. It is shown that those programs that take the deviations from the simple Gaussian model into account give the best agreement with experimental results. With such programs a dosimetric relative accuracy of about 5% is generally achieved except in the most complex inhomogeneity configurations. Finally, the present limitations and possible future developments of electron dose planning are discussed. (orig.)

  6. A pharmacogenetics-based warfarin maintenance dosing algorithm from Northern Chinese patients.

    Directory of Open Access Journals (Sweden)

    Jinxing Chen

    Full Text Available Inconsistent associations with warfarin dose were observed in genetic variants except VKORC1 haplotype and CYP2C9*3 in Chinese people, and few studies on warfarin dose algorithm was performed in a large Chinese Han population lived in Northern China. Of 787 consenting patients with heart-valve replacements who were receiving long-term warfarin maintenance therapy, 20 related Single nucleotide polymorphisms were genotyped. Only VKORC1 and CYP2C9 SNPs were observed to be significantly associated with warfarin dose. In the derivation cohort (n = 551, warfarin dose variability was influenced, in decreasing order, by VKORC1 rs7294 (27.3%, CYP2C9*3(7.0%, body surface area(4.2%, age(2.7%, target INR(1.4%, CYP4F2 rs2108622 (0.7%, amiodarone use(0.6%, diabetes mellitus(0.6%, and digoxin use(0.5%, which account for 45.1% of the warfarin dose variability. In the validation cohort (n = 236, the actual maintenance dose was significantly correlated with predicted dose (r = 0.609, P<0.001. Our algorithm could improve the personalized management of warfarin use in Northern Chinese patients.

  7. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  8. Modified automatic term selection v2: A faster algorithm to calculate inelastic scattering cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2017-06-15

    Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].

  9. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  10. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    Science.gov (United States)

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  11. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    Knoeoes, T.

    1991-01-01

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  12. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  13. Standardized dose factors for dose calculations - 1982 SRP reactor safety analysis report tritium, iodine, and noble gases

    International Nuclear Information System (INIS)

    Pillinger, W.L.; Marter, W.L.

    1982-01-01

    Standardized dose constants are recommended for calculation of offsite doses in the 1982 SRP Reactor Safety Analysis Report (SAR). Dose constants are proposed for inhalation of tritium and radioiodines and for submersion in a semi-infinite cloud of radioiodines and noble gases. The proposed constants, based on ICRP2 methodology for internal dose and methodology recommended by the US Nuclear Regulatory Commission for external dose, are compatible with dose calculational methods used at the Savannah River Plant and Savannah River Laboratory for normal releases of radioactivity. 8 references

  14. Iterative metal artifact reduction improves dose calculation accuracy. Phantom study with dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Manuel; Mittermair, Pia; Koelbl, Oliver; Dobler, Barbara [Regensburg University Medical Center, Department of Radiotherapy, Regensburg (Germany); Krauss, Andreas [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Metallic dental implants cause severe streaking artifacts in computed tomography (CT) data, which affect the accuracy of dose calculations in radiation therapy. The aim of this study was to investigate the benefit of the metal artifact reduction algorithm iterative metal artifact reduction (iMAR) in terms of correct representation of Hounsfield units (HU) and dose calculation accuracy. Heterogeneous phantoms consisting of different types of tissue equivalent material surrounding metallic dental implants were designed. Artifact-containing CT data of the phantoms were corrected using iMAR. Corrected and uncorrected CT data were compared to synthetic CT data to evaluate accuracy of HU reproduction. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated in Oncentra v4.3 on corrected and uncorrected CT data and compared to Gafchromic trademark EBT3 films to assess accuracy of dose calculation. The use of iMAR increased the accuracy of HU reproduction. The average deviation of HU decreased from 1006 HU to 408 HU in areas including metal and from 283 HU to 33 HU in tissue areas excluding metal. Dose calculation accuracy could be significantly improved for all phantoms and plans: The mean passing rate for gamma evaluation with 3 % dose tolerance and 3 mm distance to agreement increased from 90.6 % to 96.2 % if artifacts were corrected by iMAR. The application of iMAR allows metal artifacts to be removed to a great extent which leads to a significant increase in dose calculation accuracy. (orig.) [German] Metallische Implantate verursachen streifenfoermige Artefakte in CT-Bildern, welche die Dosisberechnung beeinflussen. In dieser Studie soll der Nutzen des iterativen Metall-Artefakt-Reduktions-Algorithmus iMAR hinsichtlich der Wiedergabetreue von Hounsfield-Werten (HU) und der Genauigkeit von Dosisberechnungen untersucht werden. Es wurden heterogene Phantome aus verschiedenen Arten gewebeaequivalenten Materials mit

  15. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  16. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  17. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  18. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  19. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  20. Algorithm of calculation of multicomponent system eutectics using electronic digital computer

    International Nuclear Information System (INIS)

    Posypajko, V.I.; Stratilatov, B.V.; Pervikova, V.I.; Volkov, V.Ya.

    1975-01-01

    A computer algorithm is proposed for determining low-temperature equilibrium regions for existing phases. The algorithm has been used in calculating nonvariant parameters (temperatures of melting of eutectics and the concentrations of their components) for a series of trinary systems, among which are Ksub(long)Cl, WO 4 , SO 4 (x 1 =K 2 WO 4 ; x 2 =K 2 SO 4 ), Ag, Cd, Pbsub(long)Cl(x 1 =CdCl 2 , x 2 =PbCl 2 ); Ksub(long)F, Cl, I (x 1 =KF, x 2 =KI). The proposed method of calculating eutectics permits the planning of the subsequent experiment in determining the parameters of the eutectics of multicomponent systems and the forecasting of chemical interaction in such systems. The algorithm can be used in calculating systems containing any number of components

  1. Development of a Monte Carlo multiple source model for inclusion in a dose calculation auditing tool.

    Science.gov (United States)

    Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S

    2017-09-01

    The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm 2 to 30 × 30 cm 2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.

  2. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

    OpenAIRE

    Daryoush Shahbazi-Gahrouei; Mohsen Saeb; Shahram Monadi; Iraj Jabbari

    2017-01-01

    Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose veri...

  3. Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms

    International Nuclear Information System (INIS)

    Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2003-01-01

    Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size

  4. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  5. Dose calculations for intakes of ore dust

    International Nuclear Information System (INIS)

    O'Brien, R.S.

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures

  6. Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism

    Science.gov (United States)

    Maneval, Daniel; Bouchard, Hugo; Ozell, Benoît; Després, Philippe

    2018-01-01

    The equivalent restricted stopping power formalism is introduced for proton mean energy loss calculations under the continuous slowing down approximation. The objective is the acceleration of Monte Carlo dose calculations by allowing larger steps while preserving accuracy. The fractional energy loss per step length ɛ was obtained with a secant method and a Gauss-Kronrod quadrature estimation of the integral equation relating the mean energy loss to the step length. The midpoint rule of the Newton-Cotes formulae was then used to solve this equation, allowing the creation of a lookup table linking ɛ to the equivalent restricted stopping power L eq, used here as a key physical quantity. The mean energy loss for any step length was simply defined as the product of the step length with L eq. Proton inelastic collisions with electrons were added to GPUMCD, a GPU-based Monte Carlo dose calculation code. The proton continuous slowing-down was modelled with the L eq formalism. GPUMCD was compared to Geant4 in a validation study where ionization processes alone were activated and a voxelized geometry was used. The energy straggling was first switched off to validate the L eq formalism alone. Dose differences between Geant4 and GPUMCD were smaller than 0.31% for the L eq formalism. The mean error and the standard deviation were below 0.035% and 0.038% respectively. 99.4 to 100% of GPUMCD dose points were consistent with a 0.3% dose tolerance. GPUMCD 80% falloff positions (R80 ) matched Geant’s R80 within 1 μm. With the energy straggling, dose differences were below 2.7% in the Bragg peak falloff and smaller than 0.83% elsewhere. The R80 positions matched within 100 μm. The overall computation times to transport one million protons with GPUMCD were 31-173 ms. Under similar conditions, Geant4 computation times were 1.4-20 h. The L eq formalism led to an intrinsic efficiency gain factor ranging between 30-630, increasing with the prescribed accuracy of simulations. The

  7. Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation has been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2

  8. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  9. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  10. Calculation of dose point kernels for five radionuclides used in radio-immunotherapy

    International Nuclear Information System (INIS)

    Okigaki, S.; Ito, A.; Uchida, I.; Tomaru, T.

    1994-01-01

    With the recent interest in radioimmunotherapy, attention has been given to calculation of dose distribution from beta rays and monoenergetic electrons in tissue. Dose distribution around a point source of a beta ray emitting radioisotope is referred to as a beta dose point kernel. Beta dose point kernels for five radionuclides such as 131 I, 186 Re, 32 P, 188 Re, and 90 Y appropriate for radioimmunotherapy are calculated by Monte Carlo method using the EGS4 code system. Present results were compared with the published data of experiments and other calculations. Accuracy and precisions of beta dose point kernels are discussed. (author)

  11. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  12. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131.

  13. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M

    2015-01-01

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131

  14. Activities of the ICRP task group on dose calculations (DOCAL)

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    Full text. The International Commission of Radiological Protection has been doing many efforts to improve dose calculations due to intake of radionuclides by workers and members of the public. More specifically, the biokinetic models have become more and more physiologically based and developed for age-groups ranging from the embryo to the adult. The dosimetric aspects have also been very carefully revised and a new series of phantoms encompassing all developing stages of embryo and fetus were also envisaged. In order to assure the quality of the calculations, dose coefficients have been derived by two different laboratories and the results and methods have been frequently compared and discussed. A CD-ROM has been prepared allowing the user to obtain dose coefficients for the several age-groups for ingestion and inhalation of all important radionuclides. Inhalation dose coefficients will be available for several AMADs. For the particular case of embryo and fetus, doses will be calculated when the intake occurred before and during gestation for single and chronic patterns of intake

  15. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms

    International Nuclear Information System (INIS)

    Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.

    2002-01-01

    In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)

  16. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  17. RECLAIM V2.0: comparison of calculated doses with other assessment tools when emulating contaminated land scenarios

    International Nuclear Information System (INIS)

    Willans, Mark; Galais, Nathalie; Lennon, Chris; Trivedil, Divyesh

    2007-01-01

    ReCLAIM v2.0 is a software tool designed to calculate doses to exposure groups from radioactively contaminated land including UK Nuclear Licensed Sites. When using tools to undertake contaminated land assessments, it is important to understand the functionality of the tool and how the tool should be best used to undertake an assessment. This work describes the results from inter-comparison of ReCLAIM v2.0 with two other radioactively contaminated land tools (Conland and RCLEA). For the majority of cases there was little difference between ReCLAIM v2.0 and the other tools. In all cases where there were significant differences, the cause of the variation could be explained and quantified. In the majority of these cases the main exposure pathway was external irradiation. In these cases, variations in the calculated doses were due to the differing ways in which underpinning shielding calculations were undertaken to calculate external radiation dose coefficients. The effect was most noticeable for radionuclides emitting high energy penetrating radiation such as Co-60, Cs-134 and Cs-137. For these cases, there was a greater difference of up to around 60% in the dose comparisons between ReCLAIM v2.0 and the alternative tools, with ReCLAIM v2.0 being more conservative. These results demonstrate that where the algorithms and parameter values are similar, different tools will produce similar results. The user of such tools should be aware of cases where different results may be produced in order that an appropriate level of confidence can be assigned when making decisions based upon the results. (authors)

  18. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  19. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  20. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  1. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  2. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  3. Fast grid layout algorithm for biological networks with sweep calculation.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2008-06-15

    Properly drawn biological networks are of great help in the comprehension of their characteristics. The quality of the layouts for retrieved biological networks is critical for pathway databases. However, since it is unrealistic to manually draw biological networks for every retrieval, automatic drawing algorithms are essential. Grid layout algorithms handle various biological properties such as aligning vertices having the same attributes and complicated positional constraints according to their subcellular localizations; thus, they succeed in providing biologically comprehensible layouts. However, existing grid layout algorithms are not suitable for real-time drawing, which is one of requisites for applications to pathway databases, due to their high-computational cost. In addition, they do not consider edge directions and their resulting layouts lack traceability for biochemical reactions and gene regulations, which are the most important features in biological networks. We devise a new calculation method termed sweep calculation and reduce the time complexity of the current grid layout algorithms through its encoding and decoding processes. We conduct practical experiments by using 95 pathway models of various sizes from TRANSPATH and show that our new grid layout algorithm is much faster than existing grid layout algorithms. For the cost function, we introduce a new component that penalizes undesirable edge directions to avoid the lack of traceability in pathways due to the differences in direction between in-edges and out-edges of each vertex. Java implementations of our layout algorithms are available in Cell Illustrator. masao@ims.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.

  4. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  5. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  6. Determination of organ doses during radiological examinations and calculation of somatically significant dose

    International Nuclear Information System (INIS)

    Steiner, H.

    1980-01-01

    Examples are used to demonstrate that a shift in the point of emphasis is necessary with regard to radiation hazard in medicinal X-ray diagnosis. The parameters employed in this study to calculate somatic dose (SD) and somatically significant dose (SSD) may well be in need of modification; nevertheless the numerical estimation of SSD arrived at here appears to reflect the right order of magnitude for the estimation of somatic risk. The consideration of the threshold dose for somatic injury remains a problem. (orig./MG) [de

  7. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  8. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  9. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)

  10. SU-F-J-217: Accurate Dose Volume Parameters Calculation for Revealing Rectum Dose-Toxicity Effect Using Deformable Registration in Cervical Cancer Brachytherapy: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, X; Chen, H; Liao, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Hrycushko, B; Albuquerque, K; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study the feasibility of employing deformable registration methods for accurate rectum dose volume parameters calculation and their potentials in revealing rectum dose-toxicity between complication and non-complication cervical cancer patients with brachytherapy treatment. Method and Materials: Data from 60 patients treated with BT including planning images, treatment plans, and follow-up clinical exam were retrospectively collected. Among them, 12 patients complained about hematochezia were further examined with colonoscopy and scored as Grade 1–3 complication (CP). Meanwhile, another 12 non-complication (NCP) patients were selected as a reference group. To seek for potential gains in rectum toxicity prediction when fractional anatomical deformations are account for, the rectum dose volume parameters D0.1/1/2cc of the selected patients were retrospectively computed by three different approaches: the simple “worstcase scenario” (WS) addition method, an intensity-based deformable image registration (DIR) algorithm-Demons, and a more accurate, recent developed local topology preserved non-rigid point matching algorithm (TOP). Statistical significance of the differences between rectum doses of the CP group and the NCP group were tested by a two-tailed t-test and results were considered to be statistically significant if p < 0.05. Results: For the D0.1cc, no statistical differences are found between the CP and NCP group in all three methods. For the D1cc, dose difference is not detected by the WS method, however, statistical differences between the two groups are observed by both Demons and TOP, and more evident in TOP. For the D2cc, the CP and NCP cases are statistically significance of the difference for all three methods but more pronounced with TOP. Conclusion: In this study, we calculated the rectum D0.1/1/2cc by simple WS addition and two DIR methods and seek for gains in rectum toxicity prediction. The results favor the claim that accurate dose

  11. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  12. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  13. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  14. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  15. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  16. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  17. PIVET rFSH dosing algorithms for individualized controlled ovarian stimulation enables optimized pregnancy productivity rates and avoidance of ovarian hyperstimulation syndrome.

    Science.gov (United States)

    Yovich, John L; Alsbjerg, Birgit; Conceicao, Jason L; Hinchliffe, Peter M; Keane, Kevin N

    2016-01-01

    The first PIVET algorithm for individualized recombinant follicle stimulating hormone (rFSH) dosing in in vitro fertilization, reported in 2012, was based on age and antral follicle count grading with adjustments for anti-Müllerian hormone level, body mass index, day-2 FSH, and smoking history. In 2007, it was enabled by the introduction of a metered rFSH pen allowing small dosage increments of ~8.3 IU per click. In 2011, a second rFSH pen was introduced allowing more precise dosages of 12.5 IU per click, and both pens with their individual algorithms have been applied continuously at our clinic. The objective of this observational study was to validate the PIVET algorithms pertaining to the two rFSH pens with the aim of collecting ≤15 oocytes and minimizing the risk of ovarian hyperstimulation syndrome. The data set included 2,822 in vitro fertilization stimulations over a 6-year period until April 2014 applying either of the two individualized dosing algorithms and corresponding pens. The main outcome measures were mean oocytes retrieved and resultant embryos designated for transfer or cryopreservation permitted calculation of oocyte and embryo utilization rates. Ensuing pregnancies were tracked until live births, and live birth productivity rates embracing fresh and frozen transfers were calculated. Overall, the results showed that mean oocyte numbers were 10.0 for all women algorithms in our clinic meant that the starting dose was not altered for 79.1% of patients and for 30.1% of those receiving the very lowest rFSH dosages (≤75 IU). Only 0.3% patients were diagnosed with severe ovarian hyperstimulation syndrome, all deemed avoidable due to definable breaches from the protocols. The live birth productivity rates exceeded 50% for women algorithms led to only 11.6% of women generating >15 oocytes, significantly lower than recently published data applying conventional dosages (38.2%; Palgorithms to each other, the outcomes were mainly comparable for

  18. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  19. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  20. Is it worth to calculate the dose of radioiodine?

    International Nuclear Information System (INIS)

    Mikalauskas, V.; Kuprionis, G.; Vajauskas, D.

    2005-01-01

    Full text: Administration of empirical doses of radioiodine (RAI) has been preferred to calculated doses in many hospitals, because the need to measure the size and the iodine uptake in the thyroid involves considerable inconvenience to the patient and additional costs. The preparation of RAI of varying activities also means extra work. Today there is no general consensus on whether radioiodine should be given as a fixed dose or should be calculated. There is also no consensus regarding the question of which radiation burden should be administered to a given volume of thyroid if the activity is calculated. However, while it is possible to deliver a relatively precise dose of radiation to the thyroid gland, maybe it is worth doing this?The aim of this study was to investigate the results of different uptake and volume dependent target doses on clinical outcome of patients with hyperthyroidism in Graves' disease, multi-nodular toxic goiter or toxic adenoma after radioiodine therapy. We reviewed the records of 428 patients (389 women and 39 men, mean age 56.8±12.9 years) who had received radioiodine treatment for Graves' disease and multinodular toxic goiter (n=312) or toxic adenoma (n=116) during the period of 2000-2004 in Kaunas Medical University Hospital. Most patients were given antithyroid drug therapy in order to achieve euthyroidism before treatment with RAI. Radioiodine uptake test with repeated measurements at 2, 6, 24, 48 and/or 72 and/or 96 hr to define the effective half-life was performed. In addition, all the patients underwent thyroid ultrasonography and scintigraphy to define the volume of the thyroid. The 131I activities were calculated according to the formula of Marinelli. In addition to the normal calculation individual target doses were adjusted to the thyroid volumes of each patient before therapy. For statistical evaluation, the patients were divided into four groups: group I included those with a thyroid volume 51 ml. Statistical analysis was

  1. Effective dose to staff from interventional procedures: Estimations from single and double dosimetry

    International Nuclear Information System (INIS)

    Kuipers, G.; Velders, X. L.

    2009-01-01

    The exposure of 11 physicians performing interventional procedures was measured by means of two personal dosemeters. One personal dosemeter was worn outside the lead apron and an additional under the lead apron. The study was set up in order to determine the added value of a dosemeter worn under the lead apron. With the doses measured, the effective doses of the physicians were estimated using an algorithm for single dosimetry and two algorithms for double dosimetry. The effective doses calculated with the single dosimetry algorithm ranged from 0.11 to 0.85 mSv in 4 weeks. With the double dosimetry algorithms, the effective doses ranged from 0.02 mSv to 0.47 mSv. The statistical analysis revealed no significant differences in the accuracy of the effective doses calculated with single or double dosimetry algorithms. It was concluded that the effective dose cannot be considered a more accurate estimate when two dosemeters are used instead of one. (authors)

  2. SU-E-T-533: Evaluation of Dose Calculation Accuracy for Small Elongated Targets On the Edge Linac

    International Nuclear Information System (INIS)

    Qin, Y; Wen, N; Snyder, K; Huang, Y; Zhao, B; Bellon, M; Li, H; Song, K; Kim, J; Gordon, J; Chetty, I

    2014-01-01

    Purpose: To evaluate output factors and dose calculation accuracy on a novel SRS linear accelerator, the Edge (Varian), for treatments of small, elongated targets using flattening filter free (FFF) beam. Methods: Total scatter/output factors (OF’s) for 24 elongated, small, high definition multi-leaf collimator (HDMLC)-defined fields were measured on the Edge machine using 6X FFF beam. 3 detectors were used in water tank: CC01 ion chamber (active volume 10cc), stereotactic photon diode (SFD) (active diameter 0.6mm, active thickness 0.06mm), Edge detector (active volume 0.0019cc). The 24 MLC apertures have widths ranging from 5 to 20mm and length/width ratio from 0.25 to 5. Readings were cross calibrated with CC04 at field size 3×3 cm. A beam model was developed using commissioning measurements for treatment planning in Eclipse (AAA, version 11). One representative patient case (IMRT, target volume 0.2cc, 4×4×14mm) was calculated using AAA 11 and delivered on the Edge. Results: Due to volume averaging effects, CC01 readings were 11.2±0.9% lower than SFD readings for 5mm field sizes. The Edge diode showed a uniform over-response of 2.6±0.7% compared to SFD. Calculation using AAA v11 showed the best agreement with SFD measurements (2.4±1.7% lower than SFD). The largest difference between AAA v11 and SFD occurs at 5mm field sizes. For the patient plan, dose delivered on Edge was measured to be 2.2% higher than AAA v11 calculation. Conclusion: Cross-calibrated SFD output measurements presented the best agreement with commissioned AAA v11 beam model. Field sizes smaller than 1cm posed challenges to both the detectors and the calculation algorithm. For the representative patient with small elongated target, AAA v11 and measurements agreed within ~2% on the Edge linac. Although encouraging, a more comprehensive study is required to validate the overall algorithmic accuracy

  3. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  4. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  5. CALCULATION ALGORITHM TRUSS UNDER CRANE BEAMS

    Directory of Open Access Journals (Sweden)

    N. K. Akaev1

    2016-01-01

    Full Text Available Aim.The task of reducing the deflection and increase the rigidity of single-span beams are made. In the article the calculation algorithm for truss crane girders is determined.Methods. To identify the internal effort required for the selection of cross section elements the design uses the Green's function.Results. It was found that the simplest truss system reduces deflection and increases the strength of design. The upper crossbar is subjected not only to bending and shear and compression work due to tightening tension. Preliminary determination of the geometrical characteristics of the crane farms elements are offered to make a comparison with previous similar configuration of his farms, using a simple approximate calculation methods.Conclusion.The method of sequential movements (incrementally the two bridge cranes along the length of the upper crossbar truss beams is suggested. We give the corresponding formulas and conditions of safety.

  6. Calculation of radiation dose received in computed tomography examinations

    International Nuclear Information System (INIS)

    Abed Elseed, Eslam Mustafa

    2014-07-01

    Diagnostic computed tomography (CT) examinations play an important role in the health care of the population. These examination may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed to assess the effective dose (ED) received in brain CT examination ( base of skull and cerebrum) and to analyze effective dose distributions among radiological departments under study. The study was performed at Elnileen Medical Center, coverage one CT unit and a sample of 51 patients (25 cerebrum sample and 26 base of skull sample). The following parameters were recorded age, weight, height body mass index (BMI) derived from weight (kg) and height ( m) and exposure factor and CTDI voi , DLP value. The effective dose was measured for brain CT examination. The ED values were calculated from the obtained DLP values using AAPM report No 96 calculation methods. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were 0.35±0.15 for base of skull of brain CT examinations and 0.70±0.32 for cerebrum of brain CT examination, respectively. Further studies are recommended with more number of pa.(Author)

  7. SU-E-T-512: Evaluation of Treatment Planning Dose Calculation Accuracy at the Interface of Prosthetic Devices.

    Science.gov (United States)

    Paulu, D; Alaei, P

    2012-06-01

    To evaluate the ability of treatment planning algorithm to accurately predict dose delivered at the interface of high density implanted devices. A high density (7.6 g/cc) Cobalt-Chromium-Molybdenum hip prosthesis was molded into an epoxy-based cylindrical leg phantom. The phantom was designed to be separated in half to access the prosthesis and to place the TLDs. Using MVCT to image the apparatus, a simple treatment plan was developed using the Philips Pinnacle treatment planning system. Wires were placed in the molded epoxy to allow for accurate definition of measurement sites (TLD positions) along the surface of the prosthesis. Micro-cube TLDs (1 mm 3 ) were placed at six measurement locations for which the dose had been calculated by the treatment planning system. An Elekta Synergy linear accelerator was used to deliver a 400 cGy plan to the phantom with 6 MV photons in a single fraction. A total of four 10 cm × 21 cm fields were used at 0, 90, 180, and 270 degree gantry rotations. Initial results indicate that the measured dose is 7-17% lower than the dose calculated by the treatment planning system. Further study using high energy beams are also in progress. Initial results indicate that the treatment planning system does predict the dose near a high density prosthetic device within 10-15% but underestimates the dose. The results of this study could help in designing treatment plans which would reduce the uncertainty of the dose delivered in the vicinity of prosthetic hip implants and similar devices. © 2012 American Association of Physicists in Medicine.

  8. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D.

    2014-08-01

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  9. Robust ray-tracing algorithms for interactive dose rate evaluation

    International Nuclear Information System (INIS)

    Perrotte, L.

    2011-01-01

    More than ever, it is essential today to develop simulation tools to rapidly evaluate the dose rate received by operators working on nuclear sites. In order to easily study numerous different scenarios of intervention, computation times of available softwares have to be all lowered. This mainly implies to accelerate the geometrical computations needed for the dose rate evaluation. These computations consist in finding and sorting the whole list of intersections between a big 3D scene and multiple groups of 'radiative' rays meeting at the point where the dose has to be measured. In order to perform all these computations in less than a second, we first propose a GPU algorithm that enables the efficient management of one big group of coherent rays. Then we present a modification of this algorithm that guarantees the robustness of the ray-triangle intersection tests through the elimination of the precision issues due to floating-point arithmetic. This modification does not require the definition of scene-dependent coefficients ('epsilon' style) and only implies a small loss of performance (less than 10%). Finally we propose an efficient strategy to handle multiple ray groups (corresponding to multiple radiative objects) which use the previous results.Thanks to these improvements, we are able to perform an interactive and robust dose rate evaluation on big 3D scenes: all of the intersections (more than 13 million) between 700 000 triangles and 12 groups of 100 000 rays each are found, sorted along each ray and transferred to the CPU in 470 milliseconds. (author) [fr

  10. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    Science.gov (United States)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  11. Influence of metallic dental implants and metal artefacts on dose calculation accuracy

    International Nuclear Information System (INIS)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-01-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.) [de

  12. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    in the mean compositions of tissues affect low energy brachytherapy dosimetry. Dose differences between mean and one standard deviation of the mean composition increasing with distance from the source are observed. It is established that the {sup 125}I and {sup 131}Cs sources are the least sensitive to variations in elemental compositions while {sup 103}Pd is most sensitive. The EBS falls in between and exhibits complex behavior due to significant spectral hardening. Results from simulation (2) show that two prostate compositions are dosimetrically equivalent to water while the third shows D{sub 90} differences of up to 4%. Results from simulation (3) show that breast is more sensitive than prostate with dose variations of up to 30% from water for 70% adipose/30% gland breast. The variability of the breast composition adds a {+-}10% dose variation. Conclusions: Low energy brachytherapy dose distributions in tissue differ from water and are influenced by density, mean tissue composition, and patient-to-patient composition variations. The results support the use of a dose calculation algorithm accounting for heterogeneities such as MC. Since this work shows that variations in mean tissue compositions affect MC dosimetry and result in increased dose uncertainties, the authors conclude that imaging tools providing more accurate estimates of elemental compositions such as dual energy CT would be beneficial.

  13. Development of Variational Guiding Center Algorithms for Parallel Calculations in Experimental Magnetic Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, C. Leland [PPPL; Finn, J. M. [LANL; Qin, H. [PPPL; Tang, William M. [PPPL

    2014-10-01

    Structure-preserving algorithms obtained via discrete variational principles exhibit strong promise for the calculation of guiding center test particle trajectories. The non-canonical Hamiltonian structure of the guiding center equations forms a novel and challenging context for geometric integration. To demonstrate the practical relevance of these methods, a prototypical variational midpoint algorithm is applied to an experimental magnetic equilibrium. The stability characteristics, conservation properties, and implementation requirements associated with the variational algorithms are addressed. Furthermore, computational run time is reduced for large numbers of particles by parallelizing the calculation on GPU hardware.

  14. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams

    International Nuclear Information System (INIS)

    Russell, K.R.; Saxner, M.; Ahnesjoe, A.; Montelius, A.; Grusell, E.; Dahlgren, C.V.

    2000-01-01

    The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three-dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi-Eyges formalism and Moliere multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media. (author)

  15. Manual method for dose calculation in gynecologic brachytherapy; Metodo manual para o calculo de doses em braquiterapia ginecologica

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, Elizabeth A.; Almeida, Carlos E. de [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Biaggio, Maria F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    1998-09-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author) 10 refs., 5 figs.

  16. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R.; St. James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-10-01

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  17. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations.

    Science.gov (United States)

    Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R; St James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles

    2017-09-12

    RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within  ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and  >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within  ±3% and distal fall-off to within 2

  18. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    International Nuclear Information System (INIS)

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  19. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  20. An improved algorithm for calculating cloud radiation

    International Nuclear Information System (INIS)

    Yuan Guibin; Sun Xiaogang; Dai Jingmin

    2005-01-01

    Clouds radiation characteristic is very important in cloud scene simulation, weather forecasting, pattern recognition, and other fields. In order to detect missiles against cloud backgrounds, to enhance the fidelity of simulation, it is critical to understand a cloud's thermal radiation model. Firstly, the definition of cloud layer infrared emittance is given. Secondly, the discrimination conditions of judging a pixel of focal plane on a satellite in daytime or night time are shown and equations are given. Radiance such as reflected solar radiance, solar scattering, diffuse solar radiance, solar and thermal sky shine, solar and thermal path radiance, cloud blackbody and background radiance are taken into account. Thirdly, the computing methods of background radiance for daytime and night time are given. Through simulations and comparison, this algorithm is proved to be an effective calculating algorithm for cloud radiation

  1. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  2. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  3. The interpretation of animal data in the calculation of doses from new radiolabeled compounds

    International Nuclear Information System (INIS)

    Naylor, G.P.L.; Ellender, M.; Harrison, J.D.

    1992-01-01

    At NRPB, dose calculations are performed for pharmaceutical companies wishing to obtain approval for human volunteer experiments. Animal data from one or more species are used to estimate the radiation doses to humans that would result from the administration of novel radiolabeled compounds. The calculations themselves are straightforward, but the animal data can be interpreted in different ways, leading to variations in the calculated dose. Doses to the gut compartments usually dominate the committed effective dose equivalent, but retention in other tissues may be important for some compounds. Long-term retention components in tissues can affect doses considerably, and the binding of many radiopharmaceuticals to melanin means that doses to the eye are particularly important. The effect of these considerations on calculating doses are considered, as well as the effect of changes in risk estimates and tissue weighting factors

  4. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    International Nuclear Information System (INIS)

    Bangtsson, E; Vries, W de

    2016-01-01

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstruction algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos

  5. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bangtsson, E [ScandiDos, Uppsala (Sweden); Vries, W de [University Medical Center Utrecht, Utrecht (Netherlands)

    2016-06-15

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstruction algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos.

  6. An Algorithm of Calculating the Position in a Self-Capacitance Touch Screen

    Science.gov (United States)

    Zhang, Huan; Peng, Haiyan; Qian, Xiaoli; Ren, Can; Wang, Wentao; Li, Jianjun

    Touch screens have been widely used in many kinds of electronic products. For many capacitive touch sensing devices, they always suffer from a variety of electronic signal noises. So when a finger touches the screen, it is difficult to calculate the exact touch position on the screen. We proposed an algorithm of calculating the position in a self-capacitance touch screen to alleviate noise interference. We determined the touch region by calculating the differences between current data and reference data in every channel. In the touch region we divided it into different ranges to calculate the touch point. The simulation results show that the algorithm that we proposed can alleviate noise interference effectively and obtain the exact positioning on touch screen accurately.

  7. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    Science.gov (United States)

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  8. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  9. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  10. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  11. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  12. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested

  13. A general algorithm for calculating jet cross sections in NLO QCD

    CERN Document Server

    Catani, S.; Catani, Stefano; Seymour, Michael H

    1997-01-01

    We present a new general algorithm for calculating arbitrary jet cross sections in arbitrary scattering processes to next-to-leading accuracy in perturbative QCD. The algorithm is based on the subtraction method. The key ingredients are new factorization formulae, called dipole formulae, which implement in a Lorentz covariant way both the usual soft and collinear approximations, smoothly interpolating the two. The corresponding dipole phase space obeys exact factorization, so that the dipole contributions to the cross section can be exactly integrated analytically over the whole of phase space. We obtain explicit analytic results for any jet observable in any scattering or fragmentation process in lepton, lepton-hadron or hadron-hadron collisions. All the analytical formulae necessary to construct a numerical program for next-to-leading order QCD calculations are provided. The algorithm is straightforwardly implementable in general purpose Monte Carlo programs.

  14. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs

  15. Double dosimetry procedures for the determination of occupational effective dose in interventional radiology

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; D'Errico, F.

    2008-01-01

    Full text: In interventional radiology, for an accurate determination of occupational effective dose, measurements with two dosemeters ('double dosimetry', DD) have been recommended, one dosemeter located above and one under the protective apron. In this paper, based on an extensive literature search, the most recent algorithms developed for the determination of effective dose from the dosimeter readings have been compared for a few practical interventional procedures. Recommendations on the practices and algorithms are given on the basis of the results. For the comparison of algorithms, dosemeter readings and the effective dose were obtained both experimentally and by calculation. Further, data from published Monte Carlo calculations have been applied. The literature review has indicated that very few regulations for DD exist and the DD practices have not been harmonized. There is no firm consensus on the most suitable calculation algorithms. Single dosemeter (SD) measurements are still mostly used for the calculation of effective dose. Most DD and SD algorithms overestimate effective dose significantly, sometimes by over ten times. However, SD algorithms can significantly underestimate effective dose in certain interventional radiology conditions. Due to the possibility of underestimating effective dose, DD is generally recommended. The results suggest that there might not be a single DD algorithm which would be optimum for all interventional radiology procedures. However, the selection of a precise DD algorithm for each individual condition is not practical and compromises must be made. For accurate personnel dosimetry, the accuracy of the algorithm selected should be tested for typical local interventional radiology condition. Personnel dosemeters should be used in the recommended positions. The dosemeter above the apron should be on a collar and its reading also used to assess the risk of lens injuries. The dosemeter under the apron can be on the chest or

  16. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  17. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  18. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    Science.gov (United States)

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P  .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  19. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  20. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    Science.gov (United States)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  1. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    International Nuclear Information System (INIS)

    Treiber, O; Wanninger, F; Fuehr, H; Panzer, W; Regulla, D; Winkler, G

    2003-01-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography

  2. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  3. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  4. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  6. An accurate algorithm to calculate the Hurst exponent of self-similar processes

    International Nuclear Information System (INIS)

    Fernández-Martínez, M.; Sánchez-Granero, M.A.; Trinidad Segovia, J.E.; Román-Sánchez, I.M.

    2014-01-01

    In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency

  7. An accurate algorithm to calculate the Hurst exponent of self-similar processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, M., E-mail: fmm124@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Sánchez-Granero, M.A., E-mail: misanche@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Trinidad Segovia, J.E., E-mail: jetrini@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain); Román-Sánchez, I.M., E-mail: iroman@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain)

    2014-06-27

    In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency.

  8. Accuracy assessment of pharmacogenetically predictive warfarin dosing algorithms in patients of an academic medical center anticoagulation clinic.

    Science.gov (United States)

    Shaw, Paul B; Donovan, Jennifer L; Tran, Maichi T; Lemon, Stephenie C; Burgwinkle, Pamela; Gore, Joel

    2010-08-01

    The objectives of this retrospective cohort study are to evaluate the accuracy of pharmacogenetic warfarin dosing algorithms in predicting therapeutic dose and to determine if this degree of accuracy warrants the routine use of genotyping to prospectively dose patients newly started on warfarin. Seventy-one patients of an outpatient anticoagulation clinic at an academic medical center who were age 18 years or older on a stable, therapeutic warfarin dose with international normalized ratio (INR) goal between 2.0 and 3.0, and cytochrome P450 isoenzyme 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genotypes available between January 1, 2007 and September 30, 2008 were included. Six pharmacogenetic warfarin dosing algorithms were identified from the medical literature. Additionally, a 5 mg fixed dose approach was evaluated. Three algorithms, Zhu et al. (Clin Chem 53:1199-1205, 2007), Gage et al. (J Clin Ther 84:326-331, 2008), and International Warfarin Pharmacogenetic Consortium (IWPC) (N Engl J Med 360:753-764, 2009) were similar in the primary accuracy endpoints with mean absolute error (MAE) ranging from 1.7 to 1.8 mg/day and coefficient of determination R (2) from 0.61 to 0.66. However, the Zhu et al. algorithm severely over-predicted dose (defined as >or=2x or >or=2 mg/day more than actual dose) in twice as many (14 vs. 7%) patients as Gage et al. 2008 and IWPC 2009. In conclusion, the algorithms published by Gage et al. 2008 and the IWPC 2009 were the two most accurate pharmacogenetically based equations available in the medical literature in predicting therapeutic warfarin dose in our study population. However, the degree of accuracy demonstrated does not support the routine use of genotyping to prospectively dose all patients newly started on warfarin.

  9. Current evaluation of dose rate calculation - analytical method

    International Nuclear Information System (INIS)

    Tello, Marcos; Vilhena, Marco Tulio

    1996-01-01

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested

  10. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  11. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  12. Phase-only stereoscopic hologram calculation based on Gerchberg–Saxton iterative algorithm

    International Nuclear Information System (INIS)

    Xia Xinyi; Xia Jun

    2016-01-01

    A phase-only computer-generated holography (CGH) calculation method for stereoscopic holography is proposed in this paper. The two-dimensional (2D) perspective projection views of the three-dimensional (3D) object are generated by the computer graphics rendering techniques. Based on these views, a phase-only hologram is calculated by using the Gerchberg–Saxton (GS) iterative algorithm. Comparing with the non-iterative algorithm in the conventional stereoscopic holography, the proposed method improves the holographic image quality, especially for the phase-only hologram encoded from the complex distribution. Both simulation and optical experiment results demonstrate that our proposed method can give higher quality reconstruction comparing with the traditional method. (special topic)

  13. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  14. Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems

    Science.gov (United States)

    Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.

    2018-05-01

    An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.

  15. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.

    Science.gov (United States)

    Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken

    2018-05-17

    An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4

  16. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  17. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  18. Calculation of electromagnetic parameter based on interpolation algorithm

    International Nuclear Information System (INIS)

    Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan

    2015-01-01

    Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment

  19. A comparison of the calculation methods of the maze shielding dose

    International Nuclear Information System (INIS)

    Li Wenqian; Li Junli; Li Pengyu; Tao Yinghua

    2009-01-01

    This paper gives a theoretical calculating method for the dose rate of the maze of the low-energy accelerators or high-energy accelerators, based on the NCRP report Nos.49, 51 and 151. The multi-legged maze of the Miyun CT workshop of the NUCTECH Company Limited and the arc maze of the radiation laboratory of the Academy of Military Medical Sciences were calculated using this method. The calculating results were compared with the MCNP simulating results and the measured results. For the commonly estimation of the maze dose rate, as long as the parameters chosen properly, this method can give a conservative result, and save time from simulation. It's hoped that this work could offer a reference for the maze design and the dose estimation method in the aftertime. (authors)

  20. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    International Nuclear Information System (INIS)

    Lewis, R.D.; Ryde, S.J.S.; Seaby, A.W.; Hancock, D.A.; Evans, C.J.

    2000-01-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms. (author)

  1. Performance characteristics of an independent dose verification program for helical tomotherapy

    Directory of Open Access Journals (Sweden)

    Isaac C. F. Chang

    2017-01-01

    Full Text Available Helical tomotherapy with its advanced method of intensity-modulated radiation therapy delivery has been used clinically for over 20 years. The standard delivery quality assurance procedure to measure the accuracy of delivered radiation dose from each treatment plan to a phantom is time-consuming. RadCalc®, a radiotherapy dose verification software, has released specifically for beta testing a module for tomotherapy plan dose calculations. RadCalc®'s accuracy for tomotherapy dose calculations was evaluated through examination of point doses in ten lung and ten prostate clinical plans. Doses calculated by the TomoHDA™ tomotherapy treatment planning system were used as the baseline. For lung cases, RadCalc® overestimated point doses in the lung by an average of 13%. Doses within the spinal cord and esophagus were overestimated by 10%. Prostate plans showed better agreement, with overestimations of 6% in the prostate, bladder, and rectum. The systematic overestimation likely resulted from limitations of the pencil beam dose calculation algorithm implemented by RadCalc®. Limitations were more severe in areas of greater inhomogeneity and less prominent in regions of homogeneity with densities closer to 1 g/cm3. Recommendations for RadCalc® dose calculation algorithms and anatomical representation were provided based on the results of the study.

  2. The Mayak Worker Dosimetry System (MWDS-2013): implementation of the dose calculations

    International Nuclear Information System (INIS)

    Zhdanov, A.; Vostrotin, V.; Efimov, A.; Birchall, A.; Puncher, M.

    2017-01-01

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. (authors)

  3. Independent calculation of monitor units for VMAT and SPORT

    International Nuclear Information System (INIS)

    Chen, Xin; Bush, Karl; Ding, Aiping; Xing, Lei

    2015-01-01

    Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours

  4. Independent calculation of monitor units for VMAT and SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Bush, Karl; Ding, Aiping; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours

  5. Dose variations with varying calculation grid size in head and neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heeteak [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Jin, Hosang [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States); Suh, Tae-Suk [Department of Biomedical Engineering, Catholic University of Korea (Korea, Republic of); Kim, Siyong [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States)

    2006-10-07

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle{sup 3} TPS for two targets, one shallow ({approx}0.5 cm depth) and one deep ({approx}6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study.

  6. Dose variations with varying calculation grid size in head and neck IMRT

    International Nuclear Information System (INIS)

    Chung, Heeteak; Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2006-01-01

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle 3 TPS for two targets, one shallow (∼0.5 cm depth) and one deep (∼6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study

  7. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    International Nuclear Information System (INIS)

    Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M

    2006-01-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  8. Touch screen man machine interfere for emergency dose calculations

    International Nuclear Information System (INIS)

    Woodard, K.; Abrams, M.

    1987-01-01

    Emergency dose calculation systems generally use a keyboard to provide the interface between the user and the computer. This interface is preferred by users who work daily with computers; however, for many plant personnel who are not continuously involved with computer operations, the use of a keyboard can be cumbersome and time consuming. This is particularly true when the user is under pressure during a drill or an actual emergency. Experience in many applications of Pickard, Lowe and Garrick's PLG's Meteorological Information and Dose Assessment System (MIDAS) has shown that user friendliness is a key ingredient toward achieving acceptance of computerized systems. Hardware to support to touch screen interface is now available and has been implemented in MIDAS. Recent experience has demonstrated that selection times for dose calculations are reduced, data entry errors have been minimized, and confusion over appropriate entries has been avoided due to the built-in logic. A 10-yr search for an acceptable keyboard replacement has ended

  9. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  10. Development of a computational methodology for internal dose calculations

    International Nuclear Information System (INIS)

    Yoriyaz, Helio

    2000-01-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)

  11. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  12. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  13. Dosimetric evaluation of multi-pattern spatially fractionated radiation therapy using a multi-leaf collimator and collapsed cone convolution superposition dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, Sotirios [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)], E-mail: stathakis@uthscsa.edu; Esquivel, Carlos; Gutierrez, Alonso N.; Shi, ChengYu; Papanikolaou, Niko [Department of Radiation Oncology, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229 (United States)

    2009-10-15

    Purpose: In this paper, we present an alternative to the originally proposed technique for the delivery of spatially fractionated radiation therapy (GRID) using multi-leaf collimator (MLC) shaped fields. We employ the MLC to deliver various pattern GRID treatments to large solid tumors and dosimetrically characterize the GRID fields. Methods and materials: The GRID fields were created with different open to blocked area ratios and with variable separation between the openings using a MLC. GRID designs were introduced into the Pinnacle{sup 3} treatment planning system, and the dose was calculated in a water phantom. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a SolidWater phantom to determine the relative output of each GRID design as well as its spatial dosimetric characteristics. Results: Agreement within 5.0% was observed between the Pinnacle{sup 3} predicted dose distributions and the measurements for the majority of experiments performed. A higher magnitude of discrepancy (15%) was observed using a high photon beam energy (18 MV) and small GRID opening. Skin dose at the GRID openings was higher than the corresponding open field by a factor as high as three for both photon energies and was found to be independent of the open-to-blocked area ratio. Conclusion: In summary, we reaffirm that the MLC can be used to deliver spatially fractionated GRID therapy and show that various GRID patterns may be generated. The Pinnacle{sup 3} TPS can accurately calculate the dose of the different GRID patterns in our study to within 5% for the majority of the cases based on film and ion chamber measurements. Disadvantages of MLC-based GRID therapy are longer treatment times and higher surface doses.

  14. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  15. The optimization of pencil beam widths for use in an electron pencil beam algorithm

    International Nuclear Information System (INIS)

    McParland, Brian J.; Cunningham, John R.; Woo, Milton K.

    1988-01-01

    Pencil beam algorithms for the calculation of electron beam dose distributions have come into widespread use. These algorithms, however, have generally exhibited difficulties in reproducing dose distributions for small field dimensions or, more specifically, for those conditions in which lateral scatter equilibrium does not exist. The work described here has determined that this difficulty can arise from the manner in which the width of the pencil beam is calculated. A unique approach for determining the pencil beam widths required to accurately reproduce small field dose distributions in a homogeneous phantom is described and compared with measurements and the results of other calculations. This method has also been extended to calculate electron beam dose distributions in heterogeneous media and the results of this work are presented. Suggestions for further improvements are discussed.

  16. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  17. Spent Fuel Pool Dose Rate Calculations Using Point Kernel and Hybrid Deterministic-Stochastic Shielding Methods

    International Nuclear Information System (INIS)

    Matijevic, M.; Grgic, D.; Jecmenica, R.

    2016-01-01

    This paper presents comparison of the Krsko Power Plant simplified Spent Fuel Pool (SFP) dose rates using different computational shielding methodologies. The analysis was performed to estimate limiting gamma dose rates on wall mounted level instrumentation in case of significant loss of cooling water. The SFP was represented with simple homogenized cylinders (point kernel and Monte Carlo (MC)) or cuboids (MC) using uranium, iron, water, and dry-air as bulk region materials. The pool is divided on the old and new section where the old one has three additional subsections representing fuel assemblies (FAs) with different burnup/cooling time (60 days, 1 year and 5 years). The new section represents the FAs with the cooling time of 10 years. The time dependent fuel assembly isotopic composition was calculated using ORIGEN2 code applied to the depletion of one of the fuel assemblies present in the pool (AC-29). The source used in Microshield calculation is based on imported isotopic activities. The time dependent photon spectra with total source intensity from Microshield multigroup point kernel calculations was then prepared for two hybrid deterministic-stochastic sequences. One is based on SCALE/MAVRIC (Monaco and Denovo) methodology and another uses Monte Carlo code MCNP6.1.1b and ADVANTG3.0.1. code. Even though this model is a fairly simple one, the layers of shielding materials are thick enough to pose a significant shielding problem for MC method without the use of effective variance reduction (VR) technique. For that purpose the ADVANTG code was used to generate VR parameters (SB cards in SDEF and WWINP file) for MCNP fixed-source calculation using continuous energy transport. ADVATNG employs a deterministic forward-adjoint transport solver Denovo which implements CADIS/FW-CADIS methodology. Denovo implements a structured, Cartesian-grid SN solver based on the Koch-Baker-Alcouffe parallel transport sweep algorithm across x-y domain blocks. This was first

  18. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  19. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. SU-E-T-154: Calculation of Tissue Dose Point Kernels Using GATE Monte Carlo Simulation Toolkit to Compare with Water Dose Point Kernel

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, M [shahid beheshti university, Tehran, Tehran (Iran, Islamic Republic of); Asl, A Kamali [Shahid Beheshti University, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of); Geramifar, P [Shariati Hospital, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Purpose: the objective of this study was to assess utilizing water dose point kernel (DPK)instead of tissue dose point kernels in convolution algorithms.to the best of our knowledge, in providing 3D distribution of absorbed dose from a 3D distribution of the activity, the human body is considered equivalent to water. as a Result tissue variations are not considered in patient specific dosimetry. Methods: In this study Gate v7.0 was used to calculate tissue dose point kernel. the beta emitter radionuclides which have taken into consideration in this simulation include Y-90, Lu-177 and P-32 which are commonly used in nuclear medicine. the comparison has been performed for dose point kernels of adipose, bone, breast, heart, intestine, kidney, liver, lung and spleen versus water dose point kernel. Results: In order to validate the simulation the Result of 90Y DPK in water were compared with published results of Papadimitroulas et al (Med. Phys., 2012). The results represented that the mean differences between water DPK and other soft tissues DPKs range between 0.6 % and 1.96% for 90Y, except for lung and bone, where the observed discrepancies are 6.3% and 12.19% respectively. The range of DPK difference for 32P is between 1.74% for breast and 18.85% for bone. For 177Lu, the highest difference belongs to bone which is equal to 16.91%. For other soft tissues the least discrepancy is observed in kidney with 1.68%. Conclusion: In all tissues except for lung and bone, the results of GATE for dose point kernel were comparable to water dose point kernel which demonstrates the appropriateness of applying water dose point kernel instead of soft tissues in the field of nuclear medicine.