WorldWideScience

Sample records for doppler rain measurements

  1. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  2. Evaluation of dual polarization scattering matrix radar rain backscatter measurements in the X- and Q-bands

    Science.gov (United States)

    Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.

    This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.

  3. Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations

    Science.gov (United States)

    Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh

    2018-05-01

    Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.

  4. De-Dopplerization of Acoustic Measurements

    Science.gov (United States)

    2017-08-10

    accurate measurement of aircraft location to resample the time signal to account for the compression and expansion of acoustic wavefronts. Correcting...AFRL-RH-WP-TR-2017-0043 DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS Frank Mobley, PhD 711 HPW/RHCB Wright-Patterson AFB OH...TITLE AND SUBTITLE DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  5. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  6. Rain Erosion/Measurement Impact Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  7. Doppler coefficient measurements in Zebra Core 5

    International Nuclear Information System (INIS)

    Baker, A.R.; Wheeler, R.C.

    1965-11-01

    Measurements using a central hot loop in Zebra Core 5 are described. Results are given for the Doppler coefficients found in a number of assemblies with PuO 2 and 16% PuO 2 /84% depleted UO 2 pins, loaded with different combinations of steel, sodium or void pins. The mixed oxide results are in general about 20% more negative than was calculated using the FD2 data set, but agreement is good if the plutonium contributions in the calculations are omitted. The small positive Doppler coefficient calculated for Pu239 was not observed, and two measurements indicated instead a small negative effect. The Doppler effect in the mixed oxide systems was found to vary approximately as 1/T. The results from the empty loop and non-fissile assemblies indicate either a small negative Doppler effect in steel or alternatively the presence of an unexplained expansion effect. (author)

  8. Measurement of ventricular function using Doppler ultrasound

    International Nuclear Information System (INIS)

    Teague, S.M.

    1986-01-01

    Doppler has wide application in the evaluation of valvular heart disease. The need to know ventricular function is a much more common reason for an echocardiographic evaluation. Interestingly, Doppler examinations can assess ventricular function from many perspectives. Description of ventricular function entails measurement of the timing, rate and volume of ventricular filling and ejection. Doppler ultrasound examination reveals all of these aspects of ventricular function noninvasively, simply, and without great expense or radiation exposure, as described in this chapter

  9. GPM GROUND VALIDATION NASA MICRO RAIN RADAR (MRR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA Micro Rain Radar (MRR) MC3E dataset was collected by a Micro Rain Radar (MRR), which is a vertically pointing Doppler radar which...

  10. Measurement of radioactivity in rain

    International Nuclear Information System (INIS)

    Eivindson, T.

    1985-01-01

    The report gives a description of an ion-exchange surveillance- sampler for routine measurements of radioactivity in rain, and how the measurements are performed. Using the nuclides 85 Sr, 131 I and 137 Cs as tracers, experiments have been performed to determine the distribution of radioactivity in the ion-exchange column and the effectiveness of the column as a function of elutriation rate and temperature

  11. Measurement of rain intensity by means of active-passive remote sensing

    Science.gov (United States)

    Linkova, Anna; Khlopov, Grygoriy

    2014-05-01

    Measurement of rain intensity is of great interest for municipal services and agriculture, particularly because of increasing number of floods and landslides. At that monitoring of amount of liquid precipitation allows to schedule work of hydrological services to inform the relevant public authorities about violent weather in time. That is why development of remote sensing methods for monitoring of rains is quite important task. The inverse problem solution of rain remote sensing is based on the measurements of scattering or radiation characteristics of rain drops. However liquid precipitation has a difficult structure which depends on many parameters. So using only scattering or radiation characteristics obtained by active and passive sensing at a single frequency does not allow to solve the inverse problem. Therefore double frequency sensing is widely used now for precipitation monitoring. Measurement of reflected power at two frequencies allows to find two parameters of drop size distribution of rain drops. However three-parameter distributions (for example gamma distribution) are the most prevalent now as a rain model, so in this case solution of the inverse problem requires the measurement of at least three uncorrelated variables. That is why a priori statistical meteorological data obtained by contact methods are used additionally to the double frequency sensing to solve the inverse problem. In particular, authors proposed and studied the combined method of double frequency sensing of rains based on dependence of the parameters of gamma distribution on rain intensity. The numerical simulation and experimental study shown that the proposed method allows to retrieve the profile of microstructure and integral parameters of rain with accuracy less than 15%. However, the effectiveness of the proposed method essentially depends on the reliability of the used statistical data which are tend to have a strong seasonal and regional variability led to significant

  12. Laser Doppler measurements in two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.; Zare, M.

    1976-01-01

    Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows

  13. Use of TRIGA-pulsed irradiations for high-temperature Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W K; Cashwell, R J; Bhattacharyya, S K [Argonne National Laboratory, Argonne, IL (United States); Russell, G J [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1974-07-01

    Conventional activation and reactivity measurements of the nuclear Doppler Effect have been limited to temperatures of about 2000{sup o}K because of problems with furnace equipment. There is a need for Doppler data at higher temperatures for design of reactors and analysis of reactor accidents. To fill this need, a novel technique using pulsed-mode operation of a TRIGA reactor has been developed at the University of Wisconsin. This new method, the Pulsed Activation Doppler (PAD) technique, has been used successfully for high temperature Doppler measurements of UO{sub 2} fuel pellets. In the PAD technique, UO{sub 2} test pellets were doped with varying amounts of U-235, with fissile enrichments varying from 0.22% to 12% by weight. The pellets were encapsulated in individual irradiation cells and electrically preheated to predetermined temperatures. Pyrofoam-graphite heaters were used to give preheat temperatures of up to 1720 deg. K. The cells were then positioned in the University of Wisconsin TRIGA reactor core and pulse-irradiated. During the rapid irradiation, adiabatic fission energy deposition occurred in the pellets and very high temperatures (over 3115 deg, K) were attained. Corresponding resonance neutron captures occurred at the elevated temperatures. The Doppler Ratio was deduced from the gamma activities of the Np-239 in the heated and unheated reference pellets. UO{sub 2} pellets of two nominal diameters, 210 mils (a surface-to-mass ratio, s/m = 1.1 cm{sup 2} /gm) and 360 mils (s/m = 0.63 cm{sup 2}/gm), were used for the experiments. For the 210 mil diameter pellets there was very good agreement between experimental results and Doppler ratios predicted both from extrapolations of the Hellstrand low-temperature resonance integral correlations and from GAROL calculations. Significantly, the agreement was good even for those pellets which experienced extensive melting. For the 360 mil diameter pellets the theoretical predictions were 10-15% lower than

  14. Doppler effect measurement in FCA assemblies X-3 and XI-1

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Mukaiyama, Takehiko

    1984-05-01

    Doppler reactivity worths were measured in FCA assemblies X-3 (mock-up core for JOYO Mark II) and XI-1 (mock-up core for large scale LMFBR) for U-238 and stractural materials of core (iron, stainless steel and nickel). The sample oscillation technique was used to measure the Doppler effect when a sample is heated up to 800 0 C from room temperature. The analysis was made using the 70 group JFS-3-J2 data set, and compared with the measured results. For U-238 samples, the calculation underestimates Doppler effects by 10%, on the other hand for other samples, the agreement between calculated values and measured values is quite good. (author)

  15. Doppler velocity measurements from large and small arteries of mice

    Science.gov (United States)

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  16. Direct measurement of Lorentz transformation with Doppler effects

    Science.gov (United States)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q

  17. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  18. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  19. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  20. Doppler broadening measurements in FRX-C/LSM

    International Nuclear Information System (INIS)

    Baron, M.H.; Chrien, R.E.

    1989-01-01

    Measurements obtained in situ during field reversed configuration (FRC) formation show that the Doppler broadening ion temperature T CV is larger by a factor of two or more than the ion temperature T i derived from pressure balance and Thomson scattering. After a time comparable to an ion-ion equilibrium time, T CV and T i come into agreement with each other. An exception to this picture occurs in the lowest fill pressure condition (2 mtorr), for which T CV > T i is maintained throughout the FRC lifetime. Earlier Doppler broadening measurements in FRX-B and FRX-C also showed persistent, anomalously high T CV at low fill pressure. The initially high values of T CV are probably caused by convective motion generated by the radial implosion. The low fill pressure results suggest an enhanced ohmic power input to the carbon ions. 7 refs., 3 figs

  1. Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands

    Science.gov (United States)

    Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.

  2. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  3. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  4. Measurement of cylindrical particles with phase Doppler anemometry.

    Science.gov (United States)

    Mignon, H; Gréhan, G; Gouesbet, G; Xu, T H; Tropea, C

    1996-09-01

    Light scattering from cylindrical particles has been described with geometric optics. The feasibility of determining the particle diameter with a planar phase Doppler anemometer has been examined by simulations and experiments. In particular, the influence of particle orientation on measurability and measurement accuracy has been investigated. Some recommendations for realizing a practical-measurement instrument have been presented.

  5. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    Science.gov (United States)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  6. [Comparison between two methods for hemodynamic measurement: thermodilution and oesophageal doppler].

    Science.gov (United States)

    Ferreira, Roberto Manara Victorio; do Amaral, José Luiz Gomes; Valiatti, Jorge Luís dos Santos

    2007-01-01

    Thermodilution (TD) is the "gold standard method" for hemodynamic monitoring. Some parameters can be measured by Oesophageal Doppler (OD), which is simpler and less invasive. To evaluate the accuracy of OD, we compared this method with TD in measurement of cardiac output (CO). One hundred and ninety two simultaneous measurements were made in 10 patients (5 male and 5 female) with different clinical situations, 8 with sepsis using vasoactive drugs and 2 monitored for laryngectomy and liver transplantation. Measurements were taken during 4 hours at 30 minute intervals. The two oesophageal dopplers used DeltexR and ArrowR, were introduced between 35 and 45 cm from the nose and located at the point of largest diameter of the descending aorta. In TD, we used the pulmonary artery catheter (Swan Ganz BaxterR) and the DX- 2001 monitorR positioning was confirmed with support of radiology and of pressures curves. Measurements of CO carried out by means of TD were achieved using an iced saline solution considering the mean of four measurements with less than a 5% difference. The statistical method used was the Bland-Altman scatter plot and dispersion graphic. No statistically significant difference was found between the two methods for hemodyamic measurement with a correlation coefficient of 0.8 for CO (Deltex DopplerR and Baxter Swan GanzR) and a correlation coefficient of 0.99 for CO (Arrow DopplerR and Baxter Swan GanzR). Homodynamic measurements with OD have the same accuracy as those with TD and were easily obtained in the 10 patients.

  7. Passive emitter location with Doppler frequency and interferometric measurements

    NARCIS (Netherlands)

    Groot, J.S.; Dam, F.A.M.; Theil, A.

    2008-01-01

    Ground based emitters can be located with a receiver installed on an airborne platform. This paper discusses techniques based on Doppler frequency and differential phase measurements (interferometry). Measurements of the first technique are provided, while we discuss and compare the theoretical

  8. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  9. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    International Nuclear Information System (INIS)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D'Ippolito, Giuseppe; Colleoni, Ramiro

    2008-01-01

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  10. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Colleoni, Ramiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Gastroenterologia

    2008-09-15

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  11. Measurement of Doppler effect up to 2000degC at FCA. 1

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki; Okajima, Shigeaki; Mukaiyama, Takehiko; Satoh, Kunio; Hishida, Makoto; Hayano, Mutsuhiko; Kudogh, Fumio; Kasahara, Yoshiyuki.

    1994-03-01

    A new experimental device for the measurement of 238 U Doppler effect up to 2000degC was developed for the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute with the intention to improve the Doppler effect analysis at high temperature in fast reactors. The measurement method consists of two different techniques; one is the reactivity worth measurement with using a small sample heated up to 1500degC, the other is the reaction rate measurement with using a foil heated up to 2000degC. In the present work, the development and measurement for the former technique is described. The technique itself had been used in critical assemblies around the world, including FCA, for the measurement up to 800degC. The present new device was developed by improving the old device throughouly to extend the sample temperature up to 1500degC which is hot enough for us to evaluate the Doppler effect in the MOX-fuel fast reactor. (author)

  12. Measuring Velocity and Acceleration Using Doppler Shift of a ...

    Indian Academy of Sciences (India)

    to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements. Key words. Doppler effect—measuring velocity and acceleration of the source— jet in SS433. 1. Introduction.

  13. Measurement of strontium 90 in the rain fall-out

    International Nuclear Information System (INIS)

    Suratman; Soedyartomo; Suhartono.

    1976-01-01

    The procedure of radioactivity measurement of strontium 90 in the rain fallout as well as the measurement of the fallout gross beta activity have been studied. In the preliminary study strontium 90 is separated from other cations especially fission products by fuming nitric acid, and radioactivity measurement is carried out in the form of strontium oxalate. Data of radioactivity measurement of strontium 90 and the gross beta activity in the fallout are given. (author)

  14. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  15. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  16. Analysis of Doppler effect measurement in FCA cores using JENDL-3.2 library

    International Nuclear Information System (INIS)

    Okajima, Shigeaki

    1996-01-01

    For the evaluation of the calculation accuracy of the 238 U Doppler effect using JENDL-3.2 library, the previously measured Doppler reactivity worths in the FCA were systematically analyzed. In the analysis the Doppler reactivity worth was calculated by a first order perturbation theory. The calculated results were compared with those using JENDL-3.1 library. The JENDL-3.2 calculation in MOX fuel mock-up cores agrees well with the experimental values within the experimental error. In U-235/Pu fuel cores, the JENDL-3.2 calculation gives 12-15% larger Doppler reactivity worths than the JENDL-3.1 calculation. (author)

  17. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  18. Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement.

    Science.gov (United States)

    Giannetti, Filippo; Reggiannini, Ruggero; Moretti, Marco; Adirosi, Elisa; Baldini, Luca; Facheris, Luca; Antonini, Andrea; Melani, Samantha; Bacci, Giacomo; Petrolino, Antonio; Vaccaro, Attilio

    2017-08-12

    We present the NEFOCAST project (named by the contraction of "Nefele", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

  19. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  20. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry

    International Nuclear Information System (INIS)

    Schirmer, J; Conway, G D; Holzhauer, E; Suttrop, W; Zohm, H

    2007-01-01

    The technique of correlation Doppler reflectometry for providing radial correlation length L r measurements is explored in this paper. Experimental L r measurements are obtained using the recently installed dual channel Doppler reflectometer system on ASDEX Upgrade. The experimental measurements agree well with theory and with L r measured on other fusion devices using different diagnostic techniques. A strong link between L r and plasma confinement could be observed. From the L- to the H-mode, an increase in the absolute value of E r shear was detected at the same plasma edge region where a decrease in L r was measured. This observation is in agreement with theoretical models which predict that an increase in the absolute shear suppresses turbulent fluctuations in the plasma, leading to a reduction in L r . Furthermore, L r decreases from the plasma core to the edge and decreases with increasing plasma triangularity δ. The experimental results have been extensively modelled using a 2-dimensional finite difference time domain code. The simulations confirm that Doppler reflectometry provides robust radial correlation lengths of the turbulence with high resolution and suggests that L r is independent of the turbulence wavenumber k p erpendicular and its fluctuation level

  1. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  2. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    Directory of Open Access Journals (Sweden)

    Salim Zair

    2016-04-01

    Full Text Available In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS data is hindered by Non-Line Of Sight (NLOS and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF or a Rao-Blackwellization (RB approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  3. Rain Gauges Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  4. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  5. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  6. analysis of rain analysis of rain rate and rain attenuation for earth

    African Journals Online (AJOL)

    eobe

    rate measurements were carried out using the Moupfouma and Chebil models ate measurements were ... The rain in Nigeria is characterized by high intensity rainfall, high frequency of ..... Journal of Atmospheric and Solar-. Terrestrial Physics ...

  7. The Methodology of Doppler-Derived Central Blood Flow Measurements in Newborn Infants

    Directory of Open Access Journals (Sweden)

    Koert A. de Waal

    2012-01-01

    Full Text Available Central blood flow (CBF measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO and/or as cardiac input measured at the superior vena cava (SVC flow. Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use.

  8. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  9. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  10. Poststenotic flow disturbance in the dog aorta as measured with pulsed Doppler ultrasound.

    Science.gov (United States)

    Talukder, N; Fulenwider, J T; Mabon, R F; Giddens, D P

    1986-08-01

    Blood flow velocity was measured in the dog aorta distal to mechanically induced constrictions of various degrees of severity employing an 8-MHz pulsed Doppler ultrasound velocimeter and a phase-lock loop frequency tracking method for extracting velocity from the Doppler quadrature signals. The data were analyzed to construct ensemble average velocity waveforms and random velocity disturbances. In any individual animal the effect of increasing the degree of stenosis beyond approximately 25 percent area reduction was to produce increasing levels of random velocity disturbance. However, variability among animals was such that the sensitivity of random behavior to the degree of stenosis was degraded to the point that it appears difficult to employ Doppler ultrasound measurements of random disturbances to discriminate among stenoses with area reductions less than approximately 75 percent. On the other hand, coherent vortex structures in velocity waveforms consistently occurred distal to mild constrictions (25-50 percent area reduction). Comparison of the phase-lock loop Doppler ultrasound data with simultaneous measurements using invasive hot-film anemometry, which possesses excellent frequency response, demonstrates that the ultrasound method can reliably detect those flow phenomena in such cases. Thus, the identification of coherent, rather than random, flow disturbances may offer improved diagnostic capability for noninvasively detecting arteriosclerotic plaques at relatively early stages of development.

  11. Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Baso Maruddani

    2015-01-01

    Full Text Available This paper deals with the prediction method using hidden Markov model (HMM for rain rate and rain propagation attenuation for K-band satellite communication link at tropical area. As is well known, the K-band frequency is susceptible of being affected by atmospheric condition, especially in rainy condition. The wavelength of K-band frequency which approaches to the size of rain droplet causes the signal strength is easily attenuated and absorbed by the rain droplet. In order to keep the quality of system performance for K-band satellite communication link, therefore a special attention has to be paid for rain rate and rain propagation attenuation. Thus, a prediction method for rain rate and rain propagation attenuation based on HMM is developed to process the measurement data. The measured and predicted data are then compared with the ITU-R recommendation. From the result, it is shown that the measured and predicted data show similarity with the model of ITU-R P.837-5 recommendation for rain rate and the model of ITU-R P.618-10 recommendation for rain propagation attenuation. Meanwhile, statistical data for measured and predicted data such as fade duration and interfade duration have insignificant discrepancy with the model of ITU-R P.1623-1 recommendation.

  12. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  13. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    Science.gov (United States)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  14. Exploitation of cloud top characterization from three-channel IR measurements in a physical PMW rain retrieval algorithm

    Directory of Open Access Journals (Sweden)

    F. Torricella

    2006-01-01

    Full Text Available Rainfall intensity estimates by passive microwave (PMW measurements from space perform generally better over the sea surface with respect to land, due to the problems in separating true rain signatures from those produced by surfaces having similar spectral behaviour (e.g. snow, ice, desert and semiarid grounds. The screening procedure aimed at recognizing the various surface types and delimit precipitation is based on tests that rely on PMW measurements only and global thresholds. The shortcoming is that the approach tries to discard spurious precipitating features (often detected over the land-sea border thus leading to no-rain conservative tests and thresholds. The TRMM mission, with its long record of simultaneous data from the Visible and Infrared Radiometer System (VIRS, the TRMM Microwave Imager (TMI and rain profiles from the Precipitation Radar (PR allows for unambiguous testing of the usefulness of cloud top characterization in rain detection. An intense precipitation event over the North Africa is analysed exploiting a night microphysical RGB scheme applied to VIRS measurements to classify and characterize the components of the observed scenario and to discriminate the various types of clouds. This classification is compared to the rain intensity maps derived from TMI by means of the Goddard profiling algorithm and to the near-surface rain intensities derived from PR. The comparison allows to quantify the difference between the two rain retrievals and to assess the usefulness of RGB analysis in identifying areas of precipitation.

  15. Estimate of rain evaporation rates from dual-wavelength lidar measurements: comparison against a model analytical solution

    Science.gov (United States)

    Lolli, Simone; Di Girolamo, Paolo; Demoz, Belay; Li, Xiaowen; Welton, Ellsworth J.

    2018-04-01

    Rain evaporation significantly contributes to moisture and heat cloud budgets. In this paper, we illustrate an approach to estimate the median volume raindrop diameter and the rain evaporation rate profiles from dual-wavelength lidar measurements. These observational results are compared with those provided by a model analytical solution. We made use of measurements from the multi-wavelength Raman lidar BASIL.

  16. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  17. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  18. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  19. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    Science.gov (United States)

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  20. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  1. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    International Nuclear Information System (INIS)

    Roldan, Omar; Quartin, Miguel; Notari, Alessio

    2016-01-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  2. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar; Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil); Notari, Alessio, E-mail: oaroldan@if.ufrj.br, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona (Spain)

    2016-06-01

    The aberration and Doppler coupling effects of the Cosmic Microwave Background (CMB) were recently measured by the Planck satellite. The most straightforward interpretation leads to a direct detection of our peculiar velocity β, consistent with the measurement of the well-known dipole. In this paper we discuss the assumptions behind such interpretation. We show that Doppler-like couplings appear from two effects: our peculiar velocity and a second order large-scale effect due to the dipolar part of the gravitational potential. We find that the two effects are exactly degenerate but only if we assume second-order initial conditions from single-field Inflation. Thus, detecting a discrepancy in the value of β from the dipole and the Doppler couplings implies the presence of a primordial non-Gaussianity. We also show that aberration-like signals likewise arise from two independent effects: our peculiar velocity and lensing due to a first order large-scale dipolar gravitational potential, independently on Gaussianity of the initial conditions. In general such effects are not degenerate and so a discrepancy between the measured β from the dipole and aberration could be accounted for by a dipolar gravitational potential. Only through a fine-tuning of the radial profile of the potential it is possible to have a complete degeneracy with a boost effect. Finally we discuss that we also expect other signatures due to integrated second order terms, which may be further used to disentangle this scenario from a simple boost.

  3. Spread of acid rain over India

    Science.gov (United States)

    Khemani, L. T.; Momin, G. A.; Rao, P. S. Prakasa; Safai, P. D.; Singh, G.; Kapoor, R. K.

    Rain water and aerosol samples were collected at a few locations representative of urban and non-urban regions in India. Also, rain water samples were collected in and around a coal-fired power plant. All the rain water and aerosol samples were analyzed for major chemical components along with pH. The rain water at all the places of measurement, except near the industrial sources, has been found to be alkaline and was characterized by the presence of excess cations, particularly by Ca 2+. The acid rain near the industrial sources was associated with excess anions, especially SO 42-. The atmospheric aerosols at all the places of measurement were found rich with basic components, suggesting that the alkaline soil dust and fly ash are responsible at present for preventing the spread of acid rain in India.

  4. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  5. Development of a low-budget, remote, solar powered, and self-operating rain gauge for spatial rainfall real time data monitoring in pristine and urban areas

    Science.gov (United States)

    Shafiei Shiva, J.; Chandler, D. G.; Nucera, K. J.; Valinski, N.

    2016-12-01

    Precipitation is one of the main components of the hydrological cycle and simulations and it is generally stated as an average value for the study area. However, due to high spatial variability of precipitation in some situations, more precise local data is required. In order to acquire the precipitation data, interpolation of neighbor gauged precipitation data is used which is the most affordable technique for a watershed scale study. Moreover, novel spatial rain measurements such as Doppler radars and satellite image processing have been widely used in recent studies. Although, due to impediments in the radar data processing and the effect of the local setting on the accuracy of the interpolated data, the local measurement of the precipitation remains as one of the most reliable approaches in attaining rain data. In this regard, development of a low-budget, remote, solar powered, and self-operating rain gauge for spatial rainfall real time data monitoring for pristine and urban areas has been presented in this research. The proposed rain gauge consists of two main parts: (a) hydraulic instruments and (b) electrical devices. The hydraulic instruments will collect the rain fall and store it in a PVC container which is connected to the high sensitivity pressure transducer systems. These electrical devices will transmit the data via cellphone networks which will be available for further analysis in less than one minute, after processing. The above-mentioned real time rain fall data can be employed in the precipitation measurement and the evaporation estimation. Due to the installed solar panel for battery recharging and designed siphon system for draining cumulative rain, this device is considered as a self-operating rain gauge. At this time, more than ten rain gauges are built and installed in the urban area of Syracuse, NY. Furthermore, these data are also useful for calibration and validation of data obtained by other rain gauging devices and estimation techniques

  6. Rain rate measurements over global oceans from IRS-P4 MSMR

    Indian Academy of Sciences (India)

    In this paper rain estimation capability of MSMR is explored. MSMR brightness temperature data of six channels corresponding to three frequencies of 10, 18 and 21 GHz are colocated with the TRMM Microwave Imager (TMI) derived rain rates to find a new empirical algorithm for rain rate by multiple regression. Multiple ...

  7. Measuring discharge with acoustic Doppler current profilers from a moving boat

    Science.gov (United States)

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  8. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  9. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    Science.gov (United States)

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  10. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  11. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  12. Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations

    Science.gov (United States)

    Bonin, Timothy A.; Newman, Jennifer F.; Klein, Petra M.; Chilson, Phillip B.; Wharton, Sonia

    2016-12-01

    Since turbulence measurements from Doppler lidars are being increasingly used within wind energy and boundary-layer meteorology, it is important to assess and improve the accuracy of these observations. While turbulent quantities are measured by Doppler lidars in several different ways, the simplest and most frequently used statistic is vertical velocity variance (w'2) from zenith stares. However, the competing effects of signal noise and resolution volume limitations, which respectively increase and decrease w'2, reduce the accuracy of these measurements. Herein, an established method that utilises the autocovariance of the signal to remove noise is evaluated and its skill in correcting for volume-averaging effects in the calculation of w'2 is also assessed. Additionally, this autocovariance technique is further refined by defining the amount of lag time to use for the most accurate estimates of w'2. Through comparison of observations from two Doppler lidars and sonic anemometers on a 300 m tower, the autocovariance technique is shown to generally improve estimates of w'2. After the autocovariance technique is applied, values of w'2 from the Doppler lidars are generally in close agreement (R2 ≈ 0.95 - 0.98) with those calculated from sonic anemometer measurements.

  13. Measurement of portal blood flow in healthy individuals: a comparison between magnetic resonance imaging and Doppler ultrasound

    International Nuclear Information System (INIS)

    Costa, Juliana Dantas da; Sebastiane, Patricia Moreno; Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; D'Ippolito, Giuseppe

    2008-01-01

    Objective: To evaluate the inter-observer agreement between Doppler ultrasonography and magnetic resonance imaging in the quantification of portal blood flow in healthy individuals, as well as evaluating the reproducibility of both methods. Materials and methods: A prospective, transverse, observational and self-paired study was developed evaluating 20 healthy volunteers whose portal blood flow was measured by means of Doppler ultrasonography and magnetic resonance imaging performed by two independent observers. Interobserver and inter method agreements were calculated using the intra class and Pearson's correlation coefficients. Results: The agreement between Doppler ultrasonography and magnetic resonance imaging was low (intra class coefficient: 1.9%-18.2%; Pearson's coefficient: 0.1%-13.7%; p=0.565). Mean values for the portal blood flow measured by Doppler ultrasonography and magnetic resonance imaging were respectively 0.768 l/min and 0.742 l/min. Interobserver agreement for quantification of the portal blood flow by Doppler ultrasonography and magnetic resonance imaging was respectively reasonable (intra class coefficient: 43.3%; Pearson's coefficient: 43.0%) and excellent (intra class coefficient: 91.4%; Pearson's coefficient: 93.4%). Conclusion: In the present study, magnetic resonance imaging demonstrated to be a reliable method for quantifying the portal blood flow, with a higher interobserver agreement than Doppler ultrasonography. The inter method agreement was low. (author)

  14. Optical Rain Gauge Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).

  15. New phase method of measuring particle size with laser Doppler radar

    Science.gov (United States)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  16. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  17. Ion temperature measurements of turbulently heated tokamak plasma by Doppler-broadening of visible lines in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-01-01

    In the turbulent heating experiment of the high-field tokamak TRIAM-1, the bulk ion heating shown by the neutral energy analyzer measurement is confirmed by the Doppler broadening measurement of visible lines. The increasing rate and decay time of the Doppler ion temperature are almost the same as those derived from the neutral energy analyzer measurement. From both methods of ion temperature measurements, it is shown that the ion temperature has a parabolic profile within 50 ..mu..s after the application of the heating pulse.

  18. Wind scatterometry with improved ambiguity selection and rain modeling

    Science.gov (United States)

    Draper, David Willis

    Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous

  19. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  20. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-10-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment.

  1. Color Doppler measurement of blood flow in the inferior thyroid artery in patients with autoimmune thyroid diseases

    International Nuclear Information System (INIS)

    Caruso, Giuseppe; Attard, Marco; Caronia, Aurelio; Lagalla, Roberto

    2000-01-01

    Purpose: The aim of the study is to find out whether the measurement of peak systolic velocity in the inferior thyroid artery (ITA) is a valuable parameter to differentiate autoimmune thyroid diseases (hyper-, normo- or hypofunctional) and to evaluate the efficacy of medical treatment. Material and methods: The ITA of 31 patients (eight with Graves' disease, 23 with subclinical hypothyroidism) was examined with color Doppler and pulsed Doppler. The final diagnosis was obtained by citology and by hormonal and antibodies assays. The patients were monitorized by ultrasound for a period of 8 months. Results: In all the patients with Graves' disease the peak systolic velocity was always over 150 cm/s, while in other autoimmune thyroiditis the peak systolic velocity was within the normal range, and never exceeding 65 cm/s. In the first group, the measurement taken in the ITA showed also the efficacy of the pharmacological treatment earlier and more reliably than the color Doppler pattern obtained in the parenchyma. Conclusions: The color Doppler measurement of the ITA seems to be a promising technique with low-cost and easy approach. In our experience, the color Doppler of the ITA could have a clinical role in the differential diagnosis of diffuse thyroid diseases and in the follow-up of the Graves' disease during medical treatment

  2. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  3. The diagnosis of deep venous thrombosis using laser Doppler skin perfusion measurements

    NARCIS (Netherlands)

    de Graaff, J. C.; Ubbink, D. T.; Büller, H. R.; Jacobs, M. J.

    2001-01-01

    Compression ultrasonography (CUS) falls short in the diagnosis of deep venous thrombosis in asymptomatic patients and thrombi limited to the calf veins. Alternatively, laser Doppler fluxmetry (LDF) may be useful for this purpose, as it can measure the peripheral vasoconstriction response upon an

  4. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    Science.gov (United States)

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  5. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  6. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  7. Comparison of Doppler and oscillometric ankle blood pressure measurement in patients with angiographically documented lower extremity arterial occlusive disease.

    Science.gov (United States)

    Nukumizu, Yoshihito; Matsushita, Masahiro; Sakurai, Tsunehisa; Kobayashi, Masayoshi; Nishikimi, Naomichi; Komori, Kimihiro

    2007-01-01

    To assess the reliability of the oscillometric method in patients with peripheral vascular disease, ankle blood pressure measurement by Doppler and oscillometry was compared. This study represents a prospective, non-blinded examination of pressure measurements in 168 patients. Twenty-two patients were included who had abdominal aortic aneurysms (AAA) and 146 had peripheral arterial occlusive disease (PAOD). Patients with PAOD were divided into 2 groups according to angiography results: a crural artery occlusion group (CAO, n = 32), and a no crural artery occlusion group (NCAO, n = 114). All subjects underwent pressure measurement by both Doppler and oscillometry. The correlation coefficient was 0.928 in AAA patients and 0.922 in PAOD patients. In CAO patients, there were significantly fewer patients whose oscillometric pressure was equivalent to the Doppler pressure (DP), as compared to NCAO patients, because the oscillometric pressure (OP) was 10% higher than DP in 44% of CAO patients. A high correlation exists between Doppler and oscillometric ankle pressure measurements irrespective of the type of vascular disease. However, the oscillometric method could not be substituted for the Doppler method completely, because there were several patients whose OP was greater than DP especially in those with crural artery occlusive disease.

  8. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    Science.gov (United States)

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  9. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  10. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  11. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  12. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  13. CALF BLOOD-FLOW AND POSTURE - DOPPLER ULTRASOUND MEASUREMENTS DURING AND AFTER EXERCISE

    NARCIS (Netherlands)

    VANLEEUWEN, BE; BARENDSEN, GJ; LUBBERS, J; DEPATER, L

    To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions

  14. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  15. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  16. Glare Spot Phase Doppler Anemometry

    OpenAIRE

    Hespel, Camille; Ren, Kuan Fang; Gréhan, Gérard; Onofri, Fabrice

    2006-01-01

    International audience; The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index is also necessary since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemo...

  17. Use of a tethersonde measurement system to conduct a Doppler SODAR performance audit

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, G.W. [North American Weather Consultants, Salt Lake City, UT (United States); Catizone, P.A. [TRC Environmental Corp., Windsor, CT (United States); Coble, T.D. [ASARCO Inc., East Helena, MT (United States)

    1994-12-31

    With the increased usage of dispersion models that require stack top wind information, such as the Complex Terrain Dispersion Model (CTDM), the need for a reliable method to collect elevated wind data has also increased. Doppler Sound Detection and Ranging (SODAR) instruments have gained recognition as a viable means of collecting such data. SODAR technology has improved greatly over the last decade and is now a cost effective alternative to tall meteorological towers. SODARs are remote sensing devices that sample the atmosphere and calculate wind speed and wind direction data at different altitudes. This is accomplished by measuring the doppler shift of an acoustic pulse emitted by a ground level antenna.

  18. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  19. Acid rain information book. Final report

    International Nuclear Information System (INIS)

    1983-05-01

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of widespread acid rain demand that the phenomenon be carefully evaluated. Review of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses aspects of the acid rain phenomenon, points out areas of uncertainty and summarizes current and projected research. The report is organized by a logical progression from sources of pollutants affecting acid rain formation to the atmospheric transport and transformation of those pollutants and finally to the deposition of acid rain, the effects of that deposition, and possible mitigative measures and regulatory options. This information is followed by a discussion of uncertainties in the understanding of the acid rain phenomenon and a description of current and proposed research by responsible government agencies and other concerned organizations

  20. Editorial special issue on "Laser Doppler vibrometry"

    Science.gov (United States)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  1. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  2. Activation Doppler Measurements on U 238 and U 235 in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, L I; Gustafsson, I

    1968-03-15

    Measurements of the Doppler effect in U-238 capture and U-235 fission have been made by means of the activation technique in three different neutron spectra in the fast critical assembly FR0. The experiments involved the irradiation of thin uranium metal foils or oxide disks, which were heated in a small oven located at the core centre. The measurements on U-238 were extended to 1780 deg K and on U-235 to 1470 deg K. A core region surrounding the oven was homogenized in order to facilitate the interpretation of results. The reaction rates in the uranium samples were detected by gamma counting. The experimental method was checked with regard to systematic errors by irradiations in a thermal spectrum. The data obtained for U-238 capture were corrected for the effect of neutron collisions in the oven wall, and were extrapolated to zero sample thickness. In the softest spectrum (core 5) a Doppler effect (relative increase in capture rate) of 0.260 {+-} 0.018 was obtained on heating from 343 to 1780 deg K, and in the hardest spectrum (core 3) the corresponding value was 0.030 {+-} 0.003. An appreciable Doppler effect in U-235 fission was obtained only in the softest spectrum, in which the measured increase in fission rate on heating from 320 to 1470 deg K was 0.007 {+-} 0.003.

  3. Utilisation of the Rapsodie reactor for the measurement of the doppler effect

    International Nuclear Information System (INIS)

    Zaleski, C.P.; Abdon, R.; Ladet, J.; Ping, I.; Steven, L.

    1964-01-01

    This report shows how a special loading of a 400 liters core in the reactor 'Rapsodie' could simulate the same neutronic conditions as those encountered in power fast reactors. Various methods designed to measure the Doppler effect in this core are described and compared. In particular, a computation of the errors involved is set. This computation would bring us to think that such an experiment could give a valid estimation of the Doppler coefficient of large fast reactors. The neutronic computations set for this study are described in an annex. - This report(the annex excepted) has already been presented by Freddy STORRER at the conference on breeding: Economics and safety in large fast breeder reactors at Argonne National Laboratory, october 1963 and published in the Proceedings (ANL 6792). (authors) [fr

  4. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  5. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1994-01-01

    Transcranial Doppler (TCD) examinations are increasingly being used in studies of headache pathophysiology. Because blood velocity is highly dependent on PCO2, these parameters should be measured simultaneously. The most common way of performing measurements during TCD examinations is as end......-tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  6. Rain intensity over specific rain thresholds in Athens and Thessaloniki, Greece

    Science.gov (United States)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, J.; Repapis, C. C.

    2009-09-01

    It is well documented that climatic change has caused significant impacts in the water cycle and great spatial and temporal variability of the rain events. The rain scarcity in many cases is associated with extreme convective weather resulted in flash floods, which threatens the human life and the existed infrastructure. In this study, the annual mean rain intensity (mm/h) along with the annual number of rain days for rain events over specific rain thresholds, such as 10, 20, 30, 40, 50 mm, in two Greek cities Athens and Thessaloniki, during the period 1930-2007, are examined. The meteorological data, which concern daily rain totals (mm) and duration (h), were acquired from the National Observatory of Athens and from the meteorological station of the University of Thessaloniki. Our findings show that, in Athens, an increase in the number of annual rain days and the mean rain intensity over the aforementioned rain thresholds appears at the end of 1980’s and continues until nowadays. On the contrary, concerning Thessaloniki, a decrease in the rain days is apparent from 1980, while the decrease in the mean rain intensity concerns only the rain thresholds of 10 and 20 mm. This analysis reveals that extreme rain events are more frequent in Athens, which is under a high urbanization rhythm, than in Thessaloniki at the north of Greece. Finally, the patterns of the atmospheric circulation, which are associated with specific extreme cases are analysed, using NCEP reanalysis data.

  7. Rain rate measurements over global oceans from IRS-P4 MSMR

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This algorithm explained about 82 per cent correlation (r) with rain rate, and 1.61 mm h−1 of error of estimation. ... MSMR derived monthly averaged rain rates are compared with similar estimates from. TRMM Precipitation Radar (PR), and it .... A second order polynomial fit explains corre- lation for 10 GHz vertically polarized ...

  8. Rain Fade Compensation for Ka-Band Communications Satellites

    Science.gov (United States)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  9. Steerable Doppler transducer probes

    International Nuclear Information System (INIS)

    Fidel, H.F.; Greenwood, D.L.

    1986-01-01

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis

  10. Application of a Novel Laser-Doppler Velocimeter for Turbulence: Structural Measurements in Turbulent Boundary Layers

    National Research Council Canada - National Science Library

    Lowe, Kevin T; Simpson, Roger L

    2006-01-01

    An advanced laser-Doppler velocimeter (LDV), deemed the 'comprehensive LDV', is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers...

  11. analysis of rain rate and rain attenuation for earth-space

    African Journals Online (AJOL)

    Rain rate and rain attenuation predictions are vital when designing microwave satellite and terrestrial communication links, such as in the Ku and Ka bands. This paper presents the cumulative distribution functions (CDFs) of the predicted rain rate and rain attenuation for Uyo, Akwa Ibom State (AKS) (Latitude: 4.88°N, ...

  12. SMAP Salinity Artifacts Associated With Presence of Rain

    Science.gov (United States)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  13. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  14. Influence of internal refractive index gradients on size measurements of spherically symmetric particles by phase Doppler anemometry.

    Science.gov (United States)

    Schneider, M; Hirleman, E D

    1994-04-20

    A model based on geometric optics for predicting the response of interferometric (phase Doppler) instruments for size measurements of particles with radially symmetric but inhomogeneous internal refractive index profiles is developed. The model and results are important for applications in which heat or mass transfer from the particles or droplets is significant, for example, in liquid-fuel combustion. To quantify the magnitude of potential bias errors introduced by the classical assumption of uniform internal properties on phase Doppler measurements, we compute calibration curves for a sequence of times during the evaporation of a decane droplet immersed in an environment of T = 2000 K and p = 10 bars. The results reveal considerable effects on the relation between phase difference and droplet diameter caused by the refractive index gradients present. The model provides an important tool to assess sizing uncertainties that can be expected when applying conventional (based on uniform properties) phase Doppler calibration curves in spray combustion and similar processes.

  15. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  16. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    Science.gov (United States)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  17. Aerosol distribution measurements by laser - Doppler - spectroscopy

    International Nuclear Information System (INIS)

    Baldassari, J.

    1977-01-01

    Laser-Doppler-Spectroscopy is used to study particle size distribution, especially sodium aerosols, in the presence of uncondensable gases. Theoretical basis are given, and an experimental technique is described. First theoretical results show reasonably good agreement with experimental data available; this method seems to be a promising one. (author)

  18. Methodology for obtaining wind gusts using Doppler lidar

    DEFF Research Database (Denmark)

    Suomi, Irene; Gryning, Sven-Erik; O'Connor, Ewan J.

    2017-01-01

    reduced the bias in the Doppler lidar gust factors from 0.07 to 0.03 and can be improved further to reduce the bias by using a realistic estimate of turbulence. Wind gust measurements are often prone to outliers in the time series, because they represent the maximum of a (moving-averaged) horizontal wind...... detection also outperformed the traditional Doppler lidar quality assurance method based on carrier-to-noise ratio, by removing additional unrealistic outliers present in the time series.......A new methodology is proposed for scaling Doppler lidar observations of wind gusts to make them comparable with those observed at a meteorological mast. Doppler lidars can then be used to measure wind gusts in regions and heights where traditional meteorological mast measurements are not available...

  19. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single-particl...

  20. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    Science.gov (United States)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  1. Monitoring of rain water storage in forests with satellite radar

    OpenAIRE

    de Jong, JJM; Klaassen, W; Kuiper, PJC

    2002-01-01

    The sensitivity of radar backscatter to the amount of intercepted rain in temperate deciduous forests is analyzed to determine the feasibility of retrieval of this parameter from satellite radar data. A backscatter model is validated with X-band radar measurements of a single tree exposed to rain. A good agreement between simulation and measurements is observed and this demonstrates the ability of radar to measure the amount of intercepted rain. The backscatter model is next applied to simula...

  2. Ion temperature measurements of turbulently heated TRIAM-1 plasmas by the Doppler-broadening of visible lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The ion temperature of the turbulently heated TRIAM-1 plasma is obtained from the Doppler-broadening of visible lines. The radial profiles of the volume emission of visible lines are measured beforehand to examine whether the volume emissions are localized at a specified position of the minor cross-section of the plasma or not. The ion temperature of the specified position is determined from these profiles. The time behaviour of thus obtained Doppler ion temperature shows a good agreement with that of the one derived from the Neutral Energy Analyzer.

  3. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  4. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

    NARCIS (Netherlands)

    de Mul, FFM; Morales, F; Smit, AJ; Graaff, R

    To facilitate the quantitative analysis of post-occlusive reactive fiyper emia (POR11), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (tau(1)

  5. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  6. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  7. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  8. Analysis of Doppler effect with JAERI-Fast set

    International Nuclear Information System (INIS)

    Takano, Hideki; Matsui, Yasushi.

    1977-07-01

    Temperature dependence of group cross sections in the JAERI-Fast set versions I, IR, II and IIR has been tested from the analysis of Doppler experiments performed with two different methods. One is Doppler reactivity measurement for the whole core of SEFOR assembly, and the other sample Doppler reactivity measurement for natural UO 2 in FCA assemblies V-1, V-2, VI-1 and VI-2, ZPR-6-7, ZPR-3-47, and ZPPR-2 and 3. Doppler effects were calculated with one- and two-dimensional diffusion 1-st order perturbation code DOPP2D. The results calculated with the JAERI-Fast set versions II and IIR are in good agreement with the experimental ones. In these calculation, resonance heterogeneity effect, stainless-stell buffer effect and plate heterogeneity effect are considered, and these effects contribute significantly to Doppler effect. (auth.)

  9. Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa

    Science.gov (United States)

    Koffi, A. K.; Gosset, M.; Zahiri, E.-P.; Ochou, A. D.; Kacou, M.; Cazenave, F.; Assamoi, P.

    2014-06-01

    As part of the African Monsoon Multidisciplinary Analysis (AMMA) field campaign an X-band dual-polarization Doppler radar was deployed in Benin, West-Africa, in 2006 and 2007, together with a reinforced rain gauge network and several optical disdrometers. Based on this data set, a comparative study of several rainfall estimators that use X-band polarimetric radar data is presented. In tropical convective systems as encountered in Benin, microwave attenuation by rain is significant and quantitative precipitation estimation (QPE) at X-band is a challenge. Here, several algorithms based on the combined use of reflectivity, differential reflectivity and differential phase shift are evaluated against rain gauges and disdrometers. Four rainfall estimators were tested on twelve rainy events: the use of attenuation corrected reflectivity only (estimator R(ZH)), the use of the specific phase shift only R(KDP), the combination of specific phase shift and differential reflectivity R(KDP,ZDR) and an estimator that uses three radar parameters R(ZH,ZDR,KDP). The coefficients of the power law relationships between rain rate and radar variables were adjusted either based on disdrometer data and simulation, or on radar-gauges observations. The three polarimetric based algorithms with coefficients predetermined on observations outperform the R(ZH) estimator for rain rates above 10 mm/h which explain most of the rainfall in the studied region. For the highest rain rates (above 30 mm/h) R(KDP) shows even better scores, and given its performances and its simplicity of implementation, is recommended. The radar based retrieval of two parameters of the rain drop size distribution, the normalized intercept parameter NW and the volumetric median diameter Dm was evaluated on four rainy days thanks to disdrometers. The frequency distributions of the two parameters retrieved by the radar are very close to those observed with the disdrometer. NW retrieval based on a combination of ZH

  10. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  11. Patient-exposure data for doppler ultrasound

    International Nuclear Information System (INIS)

    Stewart, H.F.; Silvis, P.X.; Smith, S.W.

    1986-01-01

    In recent years ultrasound imaging and Doppler blood flow measurements have become important tools for use in diagnostic medicine. Commercial pulse-echo imaging equipment was first introduced into commerce in 1963. The first commercial continuous wave Doppler unit was introduced to the marketplace in 1966. As equipment improved and applications developed, the industry experienced rapid growth in the 1970s. One of the more recent growth areas in the application of diagnostic ultrasound has been the use of pulsed Doppler equipment for cardiac applications. Prior to 1976, some continuous wave Doppler ultrasound was used for cardiovascular diagnosis. However, only a single manufacturer marketed a pulsed Doppler clinical instrument for cardiac or peripheral vascular diagnosis. Currently, many continuous wave and pulsed Doppler instruments are commercially available for both peripheral vascular and cardiac diagnosis. This chapter (1) briefly reviews current safety guidelines, regulations, and recommendations for diagnostic ultrasound; (2) discusses the patient-exposure intensities associated with Doppler ultrasound medical equipment and compare these levels of exposure with intensities from other medical ultrasound devices; and (3) considers some of the current information as it relates to the safety of diagnostic ultrasound

  12. Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures

    DEFF Research Database (Denmark)

    Smit Andersen, Jonas; Lerer, Sara Maria; Backhaus, Antje

    2017-01-01

    of achieving amenity value is to stage the rainwater and thus bring it to the attention of the public. We present here a methodology for creating a selection of rain events that can help bridge between engineering and landscape architecture when dealing with staging of rainwater. The methodology uses......Local management of rainwater using stormwater control measures (SCMs) is gaining increased attention as a sustainable alternative and supplement to traditional sewer systems. Besides offering added utility values, many SCMs also offer a great potential for added amenity values. One way...... quantitative and statistical methods to select Characteristic Rain Events (CREs) for a range of frequent return periods: weekly, bi-weekly, monthly, bi-monthly, and a single rarer event occurring only every 1–10 years. The methodology for selecting CREs is flexible and can be adjusted to any climatic settings...

  13. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  14. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    Science.gov (United States)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen

    2016-08-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.

  15. Scale Dependence of Spatiotemporal Intermittence of Rain

    Science.gov (United States)

    Kundu, Prasun K.; Siddani, Ravi K.

    2011-01-01

    It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.

  16. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  17. Noncoherent Doppler tracking: first flight results

    Science.gov (United States)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  18. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    International Nuclear Information System (INIS)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133 Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133 Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133 Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and 133 Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes. (author)

  19. Comparison between /sup 133/Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-10-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by /sup 133/Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and /sup 133/Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The /sup 133/Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and /sup 133/Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes.

  20. Rain-rate data base development and rain-rate climate analysis

    Science.gov (United States)

    Crane, Robert K.

    1993-01-01

    The single-year rain-rate distribution data available within the archives of Consultative Committee for International Radio (CCIR) Study Group 5 were compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tip-time sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They were also processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma. The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.

  1. A Space-Frequency Data Compression Method for Spatially Dense Laser Doppler Vibrometer Measurements

    Directory of Open Access Journals (Sweden)

    José Roberto de França Arruda

    1996-01-01

    Full Text Available When spatially dense mobility shapes are measured with scanning laser Doppler vibrometers, it is often impractical to use phase-separation modal parameter estimation methods due to the excessive number of highly coupled modes and to the prohibitive computational cost of processing huge amounts of data. To deal with this problem, a data compression method using Chebychev polynomial approximation in the frequency domain and two-dimensional discrete Fourier series approximation in the spatial domain, is proposed in this article. The proposed space-frequency regressive approach was implemented and verified using a numerical simulation of a free-free-free-free suspended rectangular aluminum plate. To make the simulation more realistic, the mobility shapes were synthesized by modal superposition using mode shapes obtained experimentally with a scanning laser Doppler vibrometer. A reduced and smoothed model, which takes advantage of the sinusoidal spatial pattern of structural mobility shapes and the polynomial frequency-domain pattern of the mobility shapes, is obtained. From the reduced model, smoothed curves with any desired frequency and spatial resolution can he produced whenever necessary. The procedure can he used either to generate nonmodal models or to compress the measured data prior to modal parameter extraction.

  2. Gold nanorods as a contrast agent for Doppler optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available To investigate gold nanorods (GNRs as a contrast agent to enhance Doppler optical coherence tomography (OCT imaging of the intrascleral aqueous humor outflow.A serial dilution of GNRs was scanned with a spectral-domain OCT device (Bioptigen, Durham, NC to visualize Doppler signal. Doppler measurements using GNRs were validated using a controlled flow system. To demonstrate an application of GNR enhanced Doppler, porcine eyes were perfused at constant pressure with mock aqueous alone or 1.0×10(12 GNR/mL mixed with mock aqueous. Twelve Doppler and volumetric SD-OCT scans were obtained from the limbus in a radial fashion incremented by 30°, forming a circular scan pattern. Volumetric flow was computed by integrating flow inside non-connected vessels throughout all 12 scans around the limbus.At the GNR concentration of 0.7×10(12 GNRs/mL, Doppler signal was present through the entire depth of the testing tube without substantial attenuation. A well-defined laminar flow profile was observed for Doppler images of GNRs flowing through the glass capillary tube. The Doppler OCT measured flow profile was not statistically different from the expected flow profile based upon an autoregressive moving average model, with an error of -0.025 to 0.037 mm/s (p = 0.6435. Cross-sectional slices demonstrated the ability to view anterior chamber outflow ex-vivo using GNR-enhanced Doppler OCT. Doppler volumetric flow measurements were comparable to flow recorded by the perfusion system.GNRs created a measureable Doppler signal within otherwise silent flow fields in OCT Doppler scans. Practical application of this technique was confirmed in a constant pressure ex-vivo aqueous humor outflow model in porcine eyes.

  3. Complex regression Doppler optical coherence tomography

    Science.gov (United States)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  4. Characterization of rain heights due to 0° isotherm in tropical and subtropical climates: implication on rain-induced attenuation prediction

    Science.gov (United States)

    Ojo, J. S.; Owolawi, P. A.

    2018-01-01

    In this paper, the dynamics of the structure of the rain profile as related to the zero-degree isotherm height and the implications for attenuation prediction along the Earth-space propagation links at locations in Nigeria, a tropical region, and South Africa, a subtropical region, are presented. Five-year (January 2010-December 2014) precipitation data on board the Tropical Rainfall Measuring Mission (TRMM) satellite have been analyzed over some selected locations in the two regions. The influences of the zero-degree isotherm height on some observed weather parameters are also discussed. The result on the influence of air temperature on rain height h r shows a significant increase in the tropical environment as compared with those in the subtropics. However, when h r results are compared with those obtained using rain height as recommended by the International Telecommunication Union (ITU), there is a significant difference at the 0.01% unavailability of the signal in a year particularly at higher frequencies. Further comparison with the slant path attenuation at 0.01% unavailability of the signal in a year shows a slight deviation (between 1.04 and 2.13 dB) in rain height than those acquired using the measured rain height in the tropical locations. Nevertheless, the result is slightly less than those obtained using the measured rain height in the subtropical locations with the differences in dB between - 0.49 and - 1.18. The overall results will be useful for estimating the link budgeting for digital radio satellite broadcasting. It will also be applicable for radar propagation systems at higher-frequency bands in Nigeria and South Africa.

  5. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Science.gov (United States)

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  6. Method of phase-Doppler anemometry free from the measurement-volume effect.

    Science.gov (United States)

    Qiu, H; Hsu, C T

    1999-05-01

    A novel method is developed to improve the accuracy of particle sizing in laser phase-Doppler anemometry (PDA). In this method the vector sum of refractive and reflective rays is taken into consideration in describing a dual-mechanism-scattering model caused by a nonuniformly illuminated PDA measurement volume. The constraint of the single-mechanism-scattering model in the conventional PDA is removed. As a result the error caused by the measurement-volume effect, which consists of a Gaussian-beam defect and a slit effect, can be eliminated. This new method can be easily implemented with minimal modification of the conventional PDA system. The results of simulation based on the generalized Lorenz-Mie theory show that the new method can provide a PDA system free from the measurement-volume effect.

  7. Radar Doppler Processing with Nonuniform Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  8. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  9. Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation

    International Nuclear Information System (INIS)

    Cizek, J.; Vlcek, M.; Prochazka, I.

    2010-01-01

    High-resolution digital coincidence Doppler broadening spectrometer equipped with two high-purity Ge detectors and two-channel 12-bit fast digitizer was developed and tested in this work. Two configurations were compared: (i) semi-digital setup which uses active analogue shaping of detector pulses prior to digitization to improve signal-to-noise ratio, and (ii) pure-digital setup which samples detector pulses directly. Software procedure developed for analysis of sampled waveforms, i.e. precise determination of energy of detected photon and rejection of distorted pulses, is described. Performance of digital coincidence spectrometer was compared with traditional analogue setup connected to the same detectors. It was found that digital spectrometer enables to achieve better energy resolution than in traditional analogue setup. Moreover, in digital configuration one has better control over shape of the signal. This allows efficient elimination of undesired distorted or damaged waveforms and to obtain spectrum of better clarity. The superior parameters of new digital coincidence Doppler broadening spectrometer are demonstrated by benchmark measurements of well defined Fe and Al specimens and also by the detection of rare annihilation in flight events.

  10. Neutral rains at Athens, Greece: a natural safeguard against acidification of rains

    International Nuclear Information System (INIS)

    Kita, Itsuro; Sato, Takayuki; Kase, Yoshinori; Mitropoulos, Panagiotis

    2004-01-01

    Samples of all rains in a period from October, 1998 to January, 1999 at Athens, Greece, were collected. The pH values of almost all of these rains clustered in a high range of 7.0-7.5, with no relation between pH and their SO 4 2- , NO 3 - and Cl - contents. In addition, a few rains with low contents of chemical components similar to pure water also were observed, giving a pH (approx. 5.5) of rain caused by dissolution of only atmospheric CO 2 in it. These results indicate that the level of air pollution of Athens by human activity has become lower during the last decade, restoring the neutral condition of rain in this area. Furthermore, the Ca contents and Ca/Mg ratios in these rains, as well as their chemical and isotopic behavior, suggest that particles of calcium carbonate taken in as dust act as a neutralizer of rains. The dust must be derived not only from the urban area of Athens but also from its environs or areas distant from it. Such a mechanism causing universally neutral rains throughout the rainy season at Athens must have worked as a natural safeguard against rains acidified naturally and artificially from ancient times up to recent years, keeping the remains of ancient Greece in a good state of preservation during such a long period

  11. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  12. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  13. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  14. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  15. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Science.gov (United States)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  16. Acid Rain and Snow in Kashiwazaki City.

    OpenAIRE

    小野寺, 正幸; 富永, 禎秀; 竹園, 恵; 大金, 一二; Onodera, Masayuki; Tominaga, Yoshihide; Takesono, Satoshi; Oogane, Katsuji

    2002-01-01

    This paper described the actual condition of acid rain and snow and their influence of a winter monsoon in Kashiwazaki city. For 7 months from September in 2001 to March in 2002, the pH value was measured in rain or snow. The minimum of pH value observed was 3.9 for the 7 months. The day which observed pH

  17. Fitness Activity Recognition on Smartphones Using Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Biying Fu

    2018-05-01

    Full Text Available Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform fitness activities, or increase the amount of sports exercise. Thus far, most applications rely on accelerometers or gyroscopes that are integrated into the devices. They have to be worn on the body to track activities. In this work, we investigated the use of a speaker and a microphone that are integrated into a smartphone to track exercises performed close to it. We combined active sonar and Doppler signal analysis in the ultrasound spectrum that is not perceivable by humans. We wanted to measure the body weight exercises bicycles, toe touches, and squats, as these consist of challenging radial movements towards the measuring device. We have tested several classification methods, ranging from support vector machines to convolutional neural networks. We achieved an accuracy of 88% for bicycles, 97% for toe-touches and 91% for squats on our test set.

  18. Power and color Doppler ultrasound settings for inflammatory flow

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used....... On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA......) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. RESULTS...

  19. Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat.

    Science.gov (United States)

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Yeo, Chow C; Abbiss, Chris R

    2017-09-01

    This study examined the test-retest reliability of near-infrared spectroscopy (NIRS), laser Doppler flowmetry (LDF) and Doppler ultrasound to assess exercise-induced haemodynamics. Nine men completed two identical trials consisting of 25-min submaximal cycling at first ventilatory threshold followed by repeated 30-s bouts of high-intensity (90% of peak power) cycling in 32.8 ± 0.4°C and 32 ± 5% relative humidity (RH). NIRS (tissue oxygenation index [TOI] and total haemoglobin [tHb]) and LDF (perfusion units [PU]) signals were monitored continuously during exercise, and leg blood flow was assessed by Doppler ultrasound at baseline and after exercise. Cutaneous vascular conductance (CVC; PU/mean arterial pressure (MAP)) was expressed as the percentage change from baseline (%CVC BL ). Coefficients of variation (CVs) as indicators of absolute reliability were 18.7-28.4%, 20.2-33.1%, 42.5-59.8%, 7.8-12.4% and 22.2-30.3% for PU, CVC, %CVC BL , TOI and tHb, respectively. CVs for these variables improved as exercise continued beyond 10 min. CVs for baseline and post-exercise leg blood flow were 17.8% and 10.5%, respectively. CVs for PU, tHb (r 2  = 0.062) and TOI (r 2  = 0.002) were not correlated (P > 0.05). Most variables demonstrated CVs lower than the expected changes (35%) induced by training or heat stress; however, minimum of 10 min exercise is recommended for more reliable measurements.

  20. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  1. Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres

    International Nuclear Information System (INIS)

    Russell, Laura; Daly, Mark J; Chormaic, Síle Nic; Deasy, Kieran; Morrissey, Michael J

    2012-01-01

    We present a method for measuring the average temperature of a cloud of cold 85 Rb atoms in a magneto-optical trap using an optical nanofibre. A periodic spatial variation is applied to the magnetic fields generated by the trapping coils and this causes the trap centre to oscillate, which, in turn, causes the cloud of cold atoms to oscillate. The optical nanofibre is used to collect the fluorescence emitted by the cold atoms, and the frequency response between the motion of the centre of the oscillating trap and the cloud of atoms is determined. This allows us to make measurements of cloud temperature both above and below the Doppler limit, thereby paving the way for nanofibres to be integrated with ultracold atoms for hybrid quantum devices

  2. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension.

    Science.gov (United States)

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2006-04-01

    We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.

  3. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  4. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  5. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  6. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  7. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  8. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    Science.gov (United States)

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  9. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    by ultrasound dilution was determined within three days of the procedure. The methods were compared using regression analysis and tested for systematic bias. Results: Failure to position the thermodilutional catheter correctly was observed in 8 out of 46 (17%) pre-intervention measurements. Post-intervention......Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...

  10. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  11. Heavy rain effects

    Science.gov (United States)

    Dunham, R. Earl, Jr.

    1994-01-01

    This paper summarizes the current state of knowledge of the effect of heavy rain on airplane performance. Although the effects of heavy rain on airplane systems and engines are generally known, only recently has the potential aerodynamic effect of heavy rain been recognized. In 1977 the United States Federal Aviation Administration (FAA) conducted a study of 25 aircraft accidents and incidents which occurred between 1964 and 1976 in which low-altitude wind shear could have been a contributing factor. Of the 25 cases (23 approach or landing and 2 take-off) in the study, ten cases had occurred in a rain environment, and in five cases these were classified as intense or heavy rain encounters. These results led to the reconsideration of high-intensity, short-duration rainfall as a potential weather-related aircraft safety hazard, particularly in the take-off and/or approach phases of flight.

  12. Recommendations for terminology and display for doppler echocardiography

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Doppler echocardiography has recently emerged as a major noninvasive technique with many applications in cardiology. To a large extent, this has been based upon a combination of clinical and engineering advances which now make possible the use of quantitative Doppler echocardiography in combination with two-dimensional imaging for measurement of volume flows, transvalve gradients, and other physiologic flow parameters which reflect cardiac function. It was the purpose of this Committee to provide a glossary of terms which could be used in standard fashion for papers and discussions related to Doppler echocardiography. As part of its task, the Committee also undertook an attempt to recommend a standard for display of Doppler information which would be useful, both for manufacturers and for clinicians. The document, therefore, includes: Section I, the Committee's recommendations for Doppler display. Section II, the glossary of Doppler terms, related to engineering and to clinical applications

  13. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    Science.gov (United States)

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  14. On validation of the rain climatic zone designations for Nigeria

    Science.gov (United States)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2017-07-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  15. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen

    2016-01-01

    estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable......Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling...... overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall...

  16. Positron mobility in thermally grown SiO2 measured by Doppler broadening technique

    International Nuclear Information System (INIS)

    Kong, Y.; Leung, T.C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G.

    1991-01-01

    The positron mobility in thermally grown SiO 2 is deduced from Doppler broadening lineshape data on a metal-oxide-semiconductor sample for positrons implanted into the oxide layer. The fitted mobility is ∼13(10)x10 -3 cm 2 /s V. This value is between that of the electron and hole mobilities in the same system and is two orders of magnitude smaller than the previous estimate from positron measurements

  17. Minimally destructive Doppler measurement of a quantized, superfluid flow

    Science.gov (United States)

    Anderson, Neil; Kumar, Avinash; Eckel, Stephen; Stringari, Sandro; Campbell, Gretchen

    2016-05-01

    Ring shaped Bose-Einstein condensates are of interest because they support the existence of quantized, persistent currents. These currents arise because in a ring trap, the wavefunction of the condensate must be single valued, and thus the azimuthal velocity is quantized. Previously, these persistent current states have only been measured in a destructive fashion via either interference with a phase reference or using the size of a central vortex-like structure that appears in time of flight. Here, we demonstrate a minimally destructive, in-situ measurement of the winding number of a ring shaped BEC. We excite a standing wave of phonon modes in the ring BEC using a perturbation. If the condensate is in a nonzero circulation state, then the frequency of these phonon modes are Doppler shifted, causing the standing wave to precess about the ring. From the direction and velocity of this precession, we can infer the winding number of the flow. For certain parameters, this technique can detect individual winding numbers with approximately 90% fidelity.

  18. Rain Simulation for the Test of Automotive Surround Sensors

    Science.gov (United States)

    Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor

    2017-04-01

    The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.

  19. Re-Normalization Method of Doppler Lidar Signal for Error Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nakgyu; Baik, Sunghoon; Park, Seungkyu; Kim, Donglyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dukhyeon [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, we presented a re-normalization method for the fluctuations of Doppler signals from the various noises mainly due to the frequency locking error for a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter and an iodine filter as the Doppler frequency discriminator. For the Doppler frequency shift measurement, the transmission ratio using the injection-seeded laser is locked to stabilize the frequency. If the frequency locking system is not perfect, the Doppler signal has some error due to the frequency locking error. The re-normalization process of the Doppler signals was performed to reduce this error using an additional laser beam to an Iodine cell. We confirmed that the renormalized Doppler signal shows the stable experimental data much more than that of the averaged Doppler signal using our calibration method, the reduced standard deviation was 4.838 Χ 10{sup -3}.

  20. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  1. Comparison of ankle-brachial index measured by an automated oscillometric apparatus with that by standard Doppler technique in vascular patients

    DEFF Research Database (Denmark)

    Korno, M.; Eldrup, N.; Sillesen, H.

    2009-01-01

    was calculated twice using both the methods on both legs. MATERIALS AND METHODS: We tested the automated oscillometric blood pressure device, CASMED 740, for measuring ankle and arm blood pressure and compared it with the current gold standard, the hand-held Doppler technique, by the Bland-Altman analysis....... RESULTS: Using the Doppler-derived ABI as the gold standard, the sensitivity and specificity of the oscillometric method for determining an ABI Udgivelsesdato: 2009/11...

  2. Quantitative measurement of blood flow dynamics in chorioallantoic membrane of chicken embryo using laser Doppler anemometry

    Science.gov (United States)

    Borozdova, M. A.; Stiukhina, E. S.; Sdobnov, A. A.; Fedosov, I. V.; Postnov, D. E.; Tuchin, V. V.

    2016-04-01

    We report the results on in ovo application of developed Laser Doppler Anemometer (LDA) device. The chorioallantoic membrane (CAM) of 9-13 days chicken embryos was used as a biological model that allows an easy access to both arterial and venous vessels of different size. The key point of our study was to find out how the periodic and aperiodic pulsations of blood flow (which are inevitable in living organism) will affect the LDA functions and measuring capability. Specifically, we (i) developed the technique to extract and refine the pulse rhythm from the signal received from a vessel, and (ii) analyzed the changes in power spectra of LDA signal that are caused by heart beating and considerably complicate the reliable measurement of Doppler shift. Our main conclusion is that the algorithm of LDA data processing need to be improved, and this possibly can be done by counting the information on current phase of cardiac cycle.

  3. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  4. A Rain Taxonomy for Degraded Visual Environment Mitigation

    Science.gov (United States)

    Gatlin, P. N.; Petersen, W. A.

    2018-01-01

    This Technical Memorandum (TM) provides a description of a rainfall taxonomy that defines the detailed characteristics of naturally occurring rainfall. The taxonomy is based on raindrop size measurements collected around the globe and encompasses several different climate types. Included in this TM is a description of these rainfall observations, an explanation of methods used to process those data, and resultant metrics comprising the rain taxonomy database. Each of the categories in the rain taxonomy are characterized by a unique set of raindrop sizes that can be used in simulations of electromagnetic wave propagation through a rain medium.

  5. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  6. Rain drop size densities over land and over sea

    Science.gov (United States)

    Bumke, Karl

    2010-05-01

    A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the

  7. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  8. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    International Nuclear Information System (INIS)

    Thomas, T.D.; Harpold, G.J.

    1990-01-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO 2 , evidenced by an increase in middle cerebral artery blood flow velocity of 47% ± 15% compared to 28% ± 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO 2 inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs

  9. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  10. Superimposed noninterfering probes to extend the capabilities of phase Doppler anemometry.

    Science.gov (United States)

    Onofri, Fabrice; Lenoble, Anne; Radev, Stefan

    2002-06-20

    We propose using multiple superimposed noninterfering probes (SNIPs) of the same wavelength but different beam angles to extend the capabilities of phase Doppler anemometry. When a particle is moving in a SNIP the Doppler signals that are produced exhibit multiple Doppler frequencies and phase shifts. The resolution of the measurements of particle size (i.e., by fringe spacing and Doppler frequency) increases with beam angle. Then, with the solution proposed, even with only two detectors several measurements of size can be obtained for the same particle with increasing resolution if we consider higher frequencies in the signal. Several optical solutions to produce SNIPs as well as a signal-processing algorithm to treat the multiple-frequency Doppler signals are proposed. Experimental validations of the sizing of spherical and cylindrical particles demonstrate the applicability of this technique for particle measurement. We believe that this new technique can be of great interest when high resolution of size, velocity, and even refractive index is required.

  11. Corruption of radio metric Doppler due to solar plasma dynamics: S/X dual-frequency Doppler calibration for these effects

    Science.gov (United States)

    Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.

    1975-01-01

    Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.

  12. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  13. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  14. Imaging doppler lidar for wind turbine wake profiling

    Science.gov (United States)

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  15. Comprasion of ovarian stromal blood flow measured by color Doppler ultrasonography in polycystic ovary syndrome patients and healthy women with ultrasonographic evidence of polycystic.

    Science.gov (United States)

    Ozdemir, Ozhan; Sari, Mustafa Erkan; Kalkan, Dilek; Koc, Esra Meltem; Ozdemir, Seyda; Atalay, Cemal Resat

    2015-04-01

    To compare ovarian stromal artery blood flows measured by Doppler ultrasonography of polycystic ovary syndrome (PCOS) patients and healthy women with polycystic ovarian image in ultrasonography. Forty-two patients diagnosed with PCOS according to the criteria of 2003 Rotterdam Concencus Conferance on PCOS and 38 healthy volunteers with polycystic ovarian image in ultrasonography were included in the study. Ovarian volumes and ovarian stromal artery blood flows were measured by 3-dimensional (3-D) ultrasonography and Doppler ultrasonography in all patients. In patients with PCOS, ovarian stromal artery pulsatility index (PI) and resistivity index (RI) were found significantly different from healthy women with polycystic ovarian image in ultrasonography (p ovarian volumes were found significantly higher in patients with PCOS (p ovarian volumes and ovarian stromal artery resistivity indices. Ovarian stromal artery Doppler examination could have an importance to explain the pathophysiology of PCOS, but there are few publications in the literature about PCOS and the details of ovarian stromal artery Doppler parameters in patients with polycystic ovarian image only. We conclude that Doppler ultrasonography findings of PCOS patients might be helpful in understanding the clinical follow-up and etiology of the disease.

  16. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  17. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.D.; Harpold, G.J. (Alabama Univ., Birmingham, AL (USA). School of Medicine); Troost, B.T. (Bowman Gray School of Medicine, Winston-Salem, NC (USA))

    1990-04-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO{sub 2}, evidenced by an increase in middle cerebral artery blood flow velocity of 47% {plus minus} 15% compared to 28% {plus minus} 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO{sub 2} inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs.

  18. Long-period polar rain variations, solar wind and hemispherically symmetric polar rain

    International Nuclear Information System (INIS)

    Makita, K.; Meng, C.

    1987-01-01

    On the basic of electron data obtained by the Defense Meteorological Satellite Program (DMSP) F2 satellite the long-period variations of the polar rain flux are examined for four consecutive solar rotations. It is clearly demonstrated that the asymmetric enhancement of the polar rain flux is strongly controlled by the sector structure of the interplanetary magnetic field (IMF). However, the orbit-to-orbit and day-to-day variations of the polar rain flux are detected even during a very stable sector period, and the polar rain flux does not have any clear relationship to the magnitude of the IMF B/sub x/ or B/sub y/. Thus the polarity of B/sub x/ controls only the accessibility of a polar region. It is also noticed that the intensity of polar rain fluxes does not show any relationship to the density of the solar wind, suggesting that the origin of the polar rain electrons is different from the commonly observed part of the solar wind electron distribution function. In addition to the asymmetric polar rain distribution, increasing polar rain fluxes of similar high intensity are sometimes detected over both polar caps. An examination of more than 1 year's data from the DMSP F2 and F4 satellites shows that simultaneous intense uniform precipitations (>10 7 electrons/cm 2 s sr) over both polar caps are not coincidental; it also shows that the spectra are similar. The occurrence of hemispherically symmetric events is not common. They generally are observed after an IMF sector transition period, during unstable periods in the sector structure, and while the solar wind density is high. copyright American Geophysical Union 1987

  19. Skin blood flow changes, measured by laser Doppler flowmetry, in the first week after birth

    NARCIS (Netherlands)

    Suichies, H.E.; Brouwer, C.; Aarnoudse, J.G.; Jentink, H.W.; de Mul, F.F.M.; Greve, Jan

    1990-01-01

    Changes in forehead skin blood flow were determined in 17 healthy, term newborns, using a fiberless diode laser Doppler flow meter (Diodopp). Measurements were carried out three times on each infant, at postnatal ages of 16.8 ± 7.4 h, 58.9 ± 6.2 h and 121.5 ± 14.2 h (mean ± S.D.), respectively. Skin

  20. Power doppler 'blanching' after the application of transducer pressure

    International Nuclear Information System (INIS)

    Joshua, F.; Edmonds, J.; Lassere, M.; De Carle, R.; Rayment, M.; Bryant, C.; Shnier, R.

    2005-01-01

    The aim of this study was to determine if transducer pressure modifies power Doppler assessments of rheumatoid arthritis synovium at the metacarpophalangeal joints and metatarsophalangeal joints. Five rheumatoid arthritis patients of varying degrees of 'disease activity' and damage were assessed with power Doppler ultrasound scanning of the dominant hand second to fifth metacarpophalangeal joints. Two rheumatoid arthritis patients had their dominant foot first to fifth metatarsophalangeal joints assessed with power Doppler ultrasound. Ultrasonography was performed with a high frequency transducer (14 MHz) with a colour mode frequency of 10 Mhz, and a standard colour box and gain. In the joint that showed the highest power Doppler signal, an image was made. A further image was taken after transducer pressure was applied. In all patients, there was increased flow to at least one joint. After pressure was applied, power Doppler signal intensity markedly reduced in all images and in some there was no recordable power Doppler signal. Increased transducer pressure can result in a marked reduction or obliteration in power Doppler signal. This power Doppler 'blanching' shows the need for further studies to evaluate sources of error and standardization before power Doppler ultrasound becomes a routine measure of 'disease activity' in rheumatoid arthritis. Copyright (2005) Blackwell Science Pty Ltd

  1. Korea-China Joint R and D on Doppler Lidar Technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kim, D. H.; Kwon, S. O.; Yang, K. H.; Song, I. K.

    2009-03-01

    Doppler lidar technology is to monitor atmospheric wind velocity by measuring the light scattering signals between a laser and aerosol particles or molecules existing in the atmosphere. When the particles (or molecules) in the atmosphere are moving by wind force, the frequency of backscattering light is shifted by doppler effect, so that the wind velocity profile can be obtained by measurement of the shifted frequencies. When the laser radiation is scanned in four different direction, three dimensional wind profiles are obtained. The Anhui Institute of Optics and Fine Mechanics under the China Academy of Sciences has developed and operated the doppler lidar system for long time. In this project we want to developed a new technologies adopted to the chinese doppler system and to test the updated In the process of collaboration between China and Korea research teams, we want to learn the state-of-art technology involved in the doppler lidar system

  2. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  3. Variation of rain intensity and drop size distribution with General Weather Patterns (GWL)

    Science.gov (United States)

    Ghada, Wael; Buras, Allan; Lüpke, Marvin; Menzel, Annette

    2017-04-01

    Short-duration rainfall extremes may cause flash floods in certain catchments (e.g. cities or fast responding watersheds) and pose a great risk to affected communities. In order to predict their occurrence under future climate change scenarios, their link to atmospheric circulation patterns needs to be well understood. We used a comprehensive data set of meteorological data (temperature, rain gauge precipitation) and precipitation spectra measured by a disdrometer (OTT PARSIVEL) between October 2008 and June 2010 at Freising, southern Germany. For the 21 months of the study period, we integrated the disdrometer spectra over intervals of 10 minutes to correspond to the temporal resolution of the weather station data and discarded measurements with air temperatures below 0°C. Daily General Weather Patterns ("Großwetterlagen", GWL) were downloaded from the website of the German Meteorological Service. Out of the 29 GWL, 14 were included in the analysis for which we had at least 12 rain events during our study period. For the definition of a rain event, we tested different lengths of minimum inter-event times and chose 30 min as a good compromise between number and length of resulting events; rain events started when more than 0.001 mm/h (sensitivity of the disdrometer) were recorded. The length of the rain events ranged between 10 min and 28 h (median 130 min) with the maximum rain intensity recorded being 134 mm/h on 24-07-2009. Seasonal differences were identified for rain event average intensities and maximum intensities per event. The influence of GWL on rain properties such as rain intensity and drop size distribution per time step and per event was investigated based on the above mentioned rain event definition. Pairwise Wilcoxon-tests revealed that higher rain intensity and larger drops were associated with the GWL "Low over the British Isles" (TB), whereas low rain intensities and less drops per interval were associated with the GWL "High over Central Europe

  4. More rain compensation results

    Science.gov (United States)

    Sworder, D. D.; Vojak, R.

    1992-01-01

    To reduce the impact of rain-induced attenuation in the 20/30 GHz band, the attenuation at a specified signal frequency must be estimated and extrapolated forward in time on the basis of a noisy beacon measurement. Several studies have used model based procedures for solving this problem in statistical inference. Perhaps the most widely used model-based paradigm leads to the Kalman filter and its lineal variants. In this formulation, the dynamic features of the attenuation are represented by a state process (x(sub t)). The observation process (y(sub t)) is derived from beacon measurements. Some ideas relating to the signal processing problems related to uplink power control are presented. It is shown that some easily implemented algorithms hold promise for use in estimating rain induced fades. The algorithms were applied to actual data generated at the Virginia Polytechnic Institute and State University (VPI) test facility. Because only one such event was studied, it is not clear that the algorithms will have the same effectiveness when a wide range of events are studied.

  5. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  6. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  7. Doppler electron velocimetry : notes on creating a practical tool.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.; Milster, Tom (University of Arizona)

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  8. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    DEFF Research Database (Denmark)

    Kastrup, J; Bülow, J; Lassen, N A

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vasoconstrictor reflex by lowering the area of investigation below heart...... forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133Xenon method recorded a 44% decrease in blood flow in innervated...... level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133Xenon blood flow measurements were performed simultaneously on the sympathetically denervated...

  9. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography. Comparison with thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Fujimoto, Kohei; Watanabe, Hiroyuki; Hozumi, Takeshi; Otsuka, Ryo; Hirata, Kumiko; Yamagishi, Hiroyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2004-01-01

    The usefulness of coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography to detect myocardial ischemia was compared with exercise thallium-201 single photon emission computed tomography (SPECT). Transthoracic Doppler echocardiography was performed in 110 patients with suspected coronary artery disease. Color Doppler signals of the left circumflex coronary artery flow in the apical four-chamber view were identified, and the velocities at rest and during hyperemia recorded for calculation of coronary flow reserve by the pulsed Doppler method. All patients underwent SPECT within 1 week of the transthoracic Doppler echocardiographic study. Coronary flow reserve in the left circumflex coronary artery was measured in 79 (72%) of 110 patients. SPECT revealed reversible perfusion defect in the left circumflex coronary artery territories in 12 of 69 patients excluding those with multivessel disease. Coronary flow reserve <2.0 had a sensitivity of 92% and specificity of 96% for reversible perfusion defect detected by SPECT. Noninvasive coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography can estimate myocardial ischemia in the left ventricular lateral regions. (author)

  10. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  11. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  12. Carotid stenosis measurement on colour Doppler ultrasound: Agreement of ECST, NASCET and CCA methods applied to ultrasound with intra-arterial angiographic stenosis measurement

    International Nuclear Information System (INIS)

    Wardlaw, Joanna M.; Lewis, Steff

    2005-01-01

    Purpose: Carotid stenosis is usually determined on Doppler ultrasound from velocity readings. We wondered if angiography-style stenosis measurements applied to ultrasound images improved accuracy over velocity readings alone, and if so, which measure correlated best with angiography. Materials and methods: We studied prospectively patients undergoing colour Doppler ultrasound (CDU) for TIA or minor stroke. Those with 50%+ symptomatic internal carotid artery (ICA) stenosis had intra-arterial angiography (IAA). We measured peak systolic ICA velocity, and from the ultrasound image, the minimal residual lumen, the original lumen (ECST), ICA diameter distal (NASCET) and CCA diameter proximal (CCA method) to the stenosis. The IAAs were measured by ECST, NASCET and CCA methods also, blind to CDU. Results: Amongst 164 patients (328 arteries), on CDU the ECST, NASCET and CCA stenosis measures were similarly related to each other (ECST = 0.54 NASCET + 46) as on IAA (ECST = 0.6 NASCET + 40). Agreement between CDU- and IAA-measured stenosis was similar for ECST (r = 0.51), and CCA (r = 0.48) methods, and slightly worse for NASCET (r = 0.41). Adding IAA-style stenosis to the peak systolic ICA velocity did not improve agreement with IAA over peak systolic velocity alone. Conclusion: Angiography-style stenosis measures have similar inter-relationships when applied to CDU, but do not improve accuracy of ultrasound over peak systolic ICA velocity alone

  13. Pre-precipitation studies in an Al-Zn alloy by positron Doppler broadening measurements

    International Nuclear Information System (INIS)

    Panchanadeeswaran, S.; Plichta, M.R.; Byrne, J.G.

    1984-01-01

    Positron annihilation studies using measurements of Doppler broadening of annihilation γ-rays have been carried out in an Al-8.5 wt% Zn alloy. More than 90% of positron trapping is believed to occur at GP zones formed on quenching the supersaturated solid solution. The dissolution of GP zones above 373 K was revealed by drastic narrowing of the Doppler energy spectrum for samples aged above 373 K. The kinetics of formation of GP zones at ambient temperatures is drastically reduced when the alloy containing GP zones formed during quenching from supersaturated solid solution was reverted at 403 K and reaged at ambient temperature. It was also observed that, even after long reageing, the total number of GP zones formed is much lower than in a directly quenched alloy. The kinetics of formation of GP zones are also reduced by quenching from a single phase to an intermediate temperature where GP zones are not stable, followed by ageing at ambient temperature. Transmission electron micrographs revealed the presence of dislocation loops in alloys quenched from temperature above 773 K. The sensitivity of positrons to the presence of dislocation loops was analysed using the R parameter analysis. (author)

  14. New procedures for analyzing Doppler-shift attenuation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, P., E-mail: petkov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria); Dewald, A. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Tonev, D.; Goutev, N.; Asova, G.; Dimitrov, B.; Gavrilov, G.; Mineva, M.N.; Yavahchova, M.S. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria)

    2015-05-21

    A generalization of an earlier proposed version of the Differential decay curve method is presented for the analysis of Doppler-shift attenuation lifetime measurements. The lifetime is derived directly from the line shapes of the depopulating and feeding transitions without any assumptions about or fitting of the time dependence of the population of the corresponding levels except for unobserved feeding when relevant. Fitting of the line shapes is also not necessary. The only approximation involved is related to the continuous treatment of the nuclear scattering events in the Monte Carlo simulation needed. Tests with simulated and real data reveal good reliability of this method. We propose also a new precise procedure where the lifetime is derived by fitting the time dependence of the population of the level of interest using the line shape of the depopulating transition and the difference of the spectra of the depopulating and feeding transitions. Practical application to simulated and real data proves the applicability of the new procedure.

  15. Performance of a rain retrieval algorithm using TRMM data in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    D. Katsanos

    2006-01-01

    Full Text Available This study aims to make a regional characterization of the performance of the rain retrieval algorithm BRAIN. This algorithm estimates the rain rate from brightness temperatures measured by the TRMM Microwave Imager (TMI onboard the TRMM satellite. In this stage of the study, a comparison between the rain estimated from Precipitation Radar (PR onboard TRMM (2A25 version 5 and the rain retrieved by the BRAIN algorithm is presented, for about 30 satellite overpasses over the Central and Eastern Mediterranean during the period October 2003–March 2004, in order to assess the behavior of the algorithm in the Eastern Mediterranean region. BRAIN was built and tested using PR rain estimates distributed randomly over the whole TRMM sampling region. Characterization of the differences between PR and BRAIN over a specific region is thus interesting because it might show some local trend for one or the other of the instrument. The checking of BRAIN results against the PR rain-estimate appears to be consistent with former results i.e. a somewhat marked discrepancy for the highest rain rates. This difference arises from a known problem that affect rain retrieval based on passive microwave radiometers measurements, but some of the higher radar rain rates could also be questioned. As an independent test, a good correlation between the rain retrieved by BRAIN and lighting data (obtained by the UK Met. Office long range detection system is also emphasized in the paper.

  16. Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures

    Directory of Open Access Journals (Sweden)

    Jonas Smit Andersen

    2017-10-01

    Full Text Available Local management of rainwater using stormwater control measures (SCMs is gaining increased attention as a sustainable alternative and supplement to traditional sewer systems. Besides offering added utility values, many SCMs also offer a great potential for added amenity values. One way of achieving amenity value is to stage the rainwater and thus bring it to the attention of the public. We present here a methodology for creating a selection of rain events that can help bridge between engineering and landscape architecture when dealing with staging of rainwater. The methodology uses quantitative and statistical methods to select Characteristic Rain Events (CREs for a range of frequent return periods: weekly, bi-weekly, monthly, bi-monthly, and a single rarer event occurring only every 1–10 years. The methodology for selecting CREs is flexible and can be adjusted to any climatic settings; here we show its use for Danish conditions. We illustrate with a case study how CREs can be used in combination with a simple hydrological model to visualize where, how deep and for how long water is visible in a landscape designed to manage rainwater.

  17. MEASUREMENTS IN A LIQUID ATOMISER SPRAY USING THE PHASE-DOPPLER PARTICLE ANALYSER

    Directory of Open Access Journals (Sweden)

    R HADEF

    2000-12-01

    Full Text Available Experiments have been carried out at atmospheric conditions using a water atomiser spray. A phase Doppler anemometry was used to perform the measurements of the droplets size, their velocity and concentration, and photographs were taken.  The results showed that the small particles with low turbulence occupied the central core of the jet displaying a Gaussian profile for the axial velocity component.  The large particles were defected towards the outer edges of the jet, due to their higher initial momentum, and displayed relatively high levels of turbulence. The variables measured show that their spatial distributions were nearly symmetrical about the x-axis and although the number density of the droplets is very high in the centred region, most of the pulverised liquid was present in the edges of the spray.

  18. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    Science.gov (United States)

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  19. [Changes of renal blood flow during organ-associated foot reflexology measured by color Doppler sonography].

    Science.gov (United States)

    Sudmeier, I; Bodner, G; Egger, I; Mur, E; Ulmer, H; Herold, M

    1999-06-01

    Using colour Doppler sonography blood flow changes of the right kidney during foot reflexology were determined in a placebo-controlled, double-blind, randomised study. 32 healthy young adults (17 women, 15 men) were randomly assigned to the verum or placebo group. The verum group received foot reflexology at zones corresponding to the right kidney, the placebo group was treated on other foot zones. Before, during and after foot reflexology the blood flow of three vessels of the right kidney was measured using colour Doppler sonography. Systolic peak velocity and end diastolic peak velocity were measured in cm/s, and the resistive index, a parameter of the vascular resistance, was calculated. The resistive index in the verum group showed a highly significant decrease (p foot reflexology. There was no difference between men and women and no difference between smokers and non-smokers. Verum and placebo group significantly differed concerning alterations of the resistive index both between the measuring points before versus during foot reflexology (p = 0.002) and those during versus after foot reflexology (p = 0.031). The significant decrease of the resistive index during foot reflexology in the verum group indicates a decrease of flow resistance in renal vessels and an increase of renal blood flow. These findings support the hypothesis that organ-associated foot reflexology is effective in changing renal blood flow during therapy.

  20. Kan Doppler-ultralyd erstatte strain gauge til måling af systolisk ankelblodtryk?

    DEFF Research Database (Denmark)

    Sørensen, T L; Perner, A; Hansen, L

    1992-01-01

    Traditionally, strain gauge technique is used in Denmark to measure ankle blood pressure, a method requiring both time and well-trained personnel. In a study involving 90 limbs in 45 patients, this method was compared with ultrasonic technique using a portable 5 MHz Doppler. The reproducibility...... of Doppler ankle pressure measurement was similar to that found in strain gauge based studies. Two consecutive measurements may differ by 20 mmHg or in terms of ankle-brachial index by 0.15 before this is considered significant. No systematic variation was found between the two methods. Increasing...... difficulties were encountered with the Doppler technique at pressures below 50 mmHg. It is concluded that Doppler is a good alternative to strain gauge for measurement of ankle blood pressure....

  1. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  2. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    International Nuclear Information System (INIS)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A S

    2013-01-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately

  3. Sequential motion of the ossicular chain measured by laser Doppler vibrometry.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi

    2017-12-01

    In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.

  4. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia

    Science.gov (United States)

    Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.

    2010-06-01

    Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.

  5. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  6. Exploring the Relationship between Prior Knowledge on Rain Gardens and Supports for Adopting Rain Gardens Using a Structural Equation Model

    Directory of Open Access Journals (Sweden)

    Suyeon Kim

    2018-05-01

    Full Text Available The objective of this study was to determine the effect of prior knowledge and visual evaluation on supports for rain garden installations. To achieve this objective, a survey was conducted to obtain prior knowledge of rain gardens, rain garden implementation support ratings, and visual evaluation of rain gardens in 100 visitors of three rain garden sites. Results of the analysis revealed that users’ visual evaluation of rain gardens played a role as a moderator in the relationship between prior knowledge and support for rain garden installations. In other words, education and publicity of rain gardens alone cannot increase support for rain gardens. However, if rain gardens are visually evaluated positively, the effects of education and publicity of rain gardens can be expected. Therefore, to successfully apply a rain garden policy in the future, basic consideration should be given to aesthetics in order to meet visitors’ visual expectations prior to education and publicity of rain gardens.

  7. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Saeed Abdulrahman Alnuaimi

    2017-12-01

    Full Text Available The fetal Doppler Ultrasound (DUS is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.

  8. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Directory of Open Access Journals (Sweden)

    J. Boutin

    2013-02-01

    Full Text Available The sea surface salinity (SSS measured from space by the Soil Moisture and Ocean Salinity (SMOS mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days, 100 × 100 km2 in the open ocean and estimated by comparison to ARGO (Array for Real-Time Geostrophic Oceanography SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The averaged negative SSS bias (−0.1 observed in the tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS observations concomitant with rain events, as detected from SSM/Is (Special Sensor Microwave Imager rain rates, are removed from the SMOS–ARGO comparisons. The SMOS freshening is linearly correlated to SSM/Is rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with ARGO measurements concomitant with rain events collocated with SMOS measurements under no rain, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.

  9. Influence of recent exercise and skin temperature on ultrasound Doppler measurements in patients with rheumatoid arthritis--an intervention study

    DEFF Research Database (Denmark)

    Ellegaard, Karen; Torp-Pedersen, Søren; Henriksen, Marius

    2009-01-01

    activity. It is unclear, however, whether the hyperaemia alone reflects the disease activity or may be influenced by other factors. METHODS: Twenty-nine patients with RA underwent USD examination of the wrist before and immediately after three interventions. The interventions were carried out on three...... separate days. The interventions were (i) isometric exercise of the muscles of the hand and forearm, (ii) heating and (iii) cooling of the hand. The amount of Doppler in the wrist joint was quantified by measuring the percentage of colour in the synovium-the colour fraction (CF). The CF values estimated...... the amount of Doppler activity might be affected by low skin temperatures....

  10. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    International Nuclear Information System (INIS)

    Goel, Sumit; Nagendrareddy, Suma Gundareddy; Raju, Manthena Srinivasa; Krishnojirao, Dayashankara Rao Jingade; Rastogi, Rajul; Mohan, Ravi Prakash Sasankoti; Gupta, Swati

    2011-01-01

    To evaluate the efficacy of ultrasonography (USG) with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas) of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas). There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions

  11. Rain Forest Murals

    Science.gov (United States)

    Kleiner, Cheryl

    2010-01-01

    The rain forest murals in the author's school began as a request from her principal to have students decorate the cafeteria with their own paintings. She decided to brainstorm ideas with her eighth-grade students. Taking into consideration the architectural space and the environmental concerns they wanted to convey, students chose the rain forest…

  12. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  13. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  14. Experimental and biological variation of three-dimensional transcranial Doppler measurements

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1993-01-01

    A new transcranial Doppler system (3-D Transscan, Eden Medizinische Elektronik) was evaluated in relation to sex, age, intersubject, interobserver, side-to-side, and day-to-day variation. Fifty-eight healthy volunteers participated (aged 18-80 yr). Mean velocity was higher in females than in male...

  15. Influence of the measuring condition on vibrocardiographic signals acquired on the thorax with a laser Doppler vibrometer

    Science.gov (United States)

    Mignanelli, L.; Bauer, G.; Klarmann, M.; Wang, H.; Rembe, C.

    2017-07-01

    Velocity signals acquired with a Laser Doppler Vibrometer on the thorax (Optical Vibrocardiography) contain important information, which have a relation to cardiovascular parameters and cardiovascular diseases. The acquired signal results in a superimposition of vibrations originated from different sources of the human body. Since we study the vibration generated by the heart to reliably detect a characteristic time interval corresponding to the PR interval in the ECG, these disturbance have to be removed by filtering. Moreover, the Laser Doppler Vibrometer measures only in the direction of the laser beam and, thus, the velocity signal is only a projection of the tridimensional movement of the thorax. This work presents an analysis of the influences of the filters and of the measurement direction on the characteristic time interval in Vibrocardiographic signals. Our analysis results in recommended settings for filters and we demonstrate that reliable detection of vibrocardiographic parameters is possible within an angle deviation of 30° in respect to the perpendicular irradiation on the front side of the subject.

  16. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.; Bell, G. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zafar, A. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  17. Inline Ultrasonic Rheometry by Pulsed Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  18. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  19. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Science.gov (United States)

    Goel, Sumit; Nagendrareddy, Suma Gundareddy; Raju, Manthena Srinivasa; Krishnojirao, Dayashankara Rao Jingade; Rastogi, Rajul; Mohan, Ravi Prakash Sasankoti; Gupta, Swati

    2011-01-01

    Aim: To evaluate the efficacy of ultrasonography (USG) with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas) of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas). There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions. PMID:22223940

  20. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Sumit Goel

    2011-01-01

    Full Text Available Aim: To evaluate the efficacy of ultrasonography (USG with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas. There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions.

  1. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  2. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  3. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation—and Doppler signature—of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ∼2 km s –1 blueshift inferred on HD 209458b may require drag time constants as short as 10 4 -10 6 s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  4. Material properties identification using ultrasonic waves and laser Doppler vibrometer measurements: a multi-input multi-output approach

    International Nuclear Information System (INIS)

    Longo, R; Vanlanduit, S; Guillaume, P

    2013-01-01

    In this paper a multi-input multi-output approach able to determine the material properties of homogeneous materials is presented. To do so, an experimental set-up which combines the use of multi harmonic signals with interleaved frequencies and laser Doppler vibrometer measurements has been developed. A modeling technique, based on transmission and reflection measurements, allowed the simultaneous determination of longitudinal wave velocity, density and thickness of the materials under test with high levels of precision and accuracy. (paper)

  5. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  6. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    Science.gov (United States)

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  7. Atmospheric deposition of 7Be by rain events, incentral Argentina

    Science.gov (United States)

    Ayub, J. Juri; Di Gregorio, D. E.; Huck, H.; Velasco, H.; Rizzotto, M.

    2008-08-01

    Beryllium-7 is a natural radionuclide that enters into the ecosystems through wet and dry depositions and has numerous environmental applications in terrestrial and aquatic ecosystems. Atmospheric wet deposition of 7Be was measured in central Argentina. Rain traps were installed (1 m above ground) and individual rain events have been collected. Rain samples were filtered and analyzed by gamma spectrometry. The gamma counting was undertaken using a 40%-efficient p-type coaxial intrinsic high-purity natural germanium crystal built by Princeton Gamma-Tech. The cryostat was made from electroformed high-purity copper using ultralow-background technology. The detector was surrounded by 50 cm of lead bricks to provide shielding against radioactive background. The detector gamma efficiency was determined using a water solution with known amounts of chemical compounds containing long-lived naturally occurring radioisotopes, 176Lu, 138La and 40K. Due to the geometry of the sample and its position close to the detector, the efficiency points from the 176Lu decay, had to be corrected for summing effects. The measured samples were 400 ml in size and were counted curing one day. The 7Be detection limit for the present measurements was as low as 0.2 Bq l-1. Thirty two rain events were sampled and analyzed (November 2006-May 2007). The measured values show that the events corresponding to low rainfall (<20 mm) are characterized by significantly higher activity concentrations (Bq l-1). The activity concentration of each individual event varied from 0.8 to 3.5 Bq l-1, while precipitations varied between 4 and 70 mm. The integrated activity by event of 7Be was fitted with a model that takes into account the precipitation amount and the elapsed time between two rain events. The integrated activities calculated with this model show a good agreement with experimental values.

  8. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  10. Evaluation of the RAIN project

    International Nuclear Information System (INIS)

    Stuanes, A.; Dickson, W.; Jenkins, A.; Rasmussen, L.; Stordal, F.

    1991-11-01

    This report presents a scientific assessment of the RAIN project. It describes the main hypotheses tested and the applied methods. The major results of the research are highlighted and discussed, and they are placed in the perspective of national and international acid rain research. An important part of the RAIN project has been to provide information to the public about the acid rain problem, and in this way it has performed an important background role in influencing political decisions and legislation. The RAIN project is regarded as a cost effective research effort, and the novel approach and capital investment will enable further manipulation studies at these sites in the future. It is recommended that the project is continued in the immediate future, with some modification to answer specific questions resulting from the collected data. 24 refs., 6 figs., 1 tab

  11. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  12. Comparison of power Doppler and color Doppler ultrasonography in the detection of intrasticular blood flow of normal infants

    International Nuclear Information System (INIS)

    Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun

    1999-01-01

    To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.

  13. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  14. Glare Spot Phase Doppler Anemometry

    Science.gov (United States)

    Hespel, Camille; Ren, Kuanfang; Gréhan, Gérard; Onofri, Fabrice

    2007-06-01

    The Phase Doppler anemometry has been developed to measure simultaneously the velocity and the size of droplets. The measurement of the refractive index would be also interesting since it depends on the temperature and the composition of the particle and its measurement permits both to increase the quality of the diameter measurement and to obtain information on the temperature and/or the composition of the droplets. In this paper, we introduce a Glare Spot Phase Doppler Anemometry which uses two large beams. In this case, the images of the particle formed by the reflected and refracted light, known as glare spots, are separated in space. When a particle passes in the probe volume, the two parts in a signal obtained by a detector in forward direction are then separated in time. If two detectors are used the phase differences between two signals, the distance and the intensity ratio of reflected and refracted parts can be obtained and they provide rich information about the particle diameter and its refractive index, as well as its velocity. This paper is devoted to the numerical study of such a configuration with two theoretical models: geometrical optics and rigorous electromagnetism solution.

  15. Relation between tritium concentration and chemical composition in rain at Fukuoka

    International Nuclear Information System (INIS)

    Hayashi, Y.; Momoshima, N.; Maeda, Y.; Kakiuchi, H.

    1999-01-01

    Tritium concentrations in rain collected at Fukuoka, Japan from 1982 have been measured. From May 1996 tritium concentrations and chemical species have been analyzed for each rain to examine their relationship. Recent rain was concluded not to be affected by tritium from atmospheric nuclear tests. Tritium concentrations showed a seasonal pattern, high during winter and spring and low during summer and fall and had positive correlations with non-sea-salt SO 4 2- , indicating a long distance of acidic materials as well as tritium from continental China. (author)

  16. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  17. Gallblader varices in children with portal cavernoma: duplex-Doppler and color Doppler ultrasound studies

    International Nuclear Information System (INIS)

    Muro, D.; Sanguesa, C.; Lopez, A.

    1998-01-01

    To determine the prevalence of varices in the gallbladder wall, observed by duplex-Doppler and color Doppler ultrasound, in children with cavernoma of the portal vein. Nineteen patients with portal hypertension were studied prospectively by duplex-Doppler and color Doppler ultrasound: 12 of the patients had developed a cavernoma of the portal vein. The presence of peri vesicular varices was assessed in the group of patients with portal cavernoma. Duplex-Doppler and color Doppler ultrasound disclosed the presence of varices in gallbladder wall in nine of the 12 patients (75%). The varices appeared as anechoic and serpiginous areas, and Doppler ultrasound revealed slowed venous flow. However, the three patients in whom gallbldder varices were not detected presented collateral gastric ciculation and spontaneous splenorenal shunt. Gallbladder varices are common in children with portal vein cavernoma; they present hepatopetal flow. Their developments is not related to the size of the portal cavernoma, the presence of spontaneous portosystemic shunts, or endoscopic obliteration of gastric and esophageal varices. The detection of gallbladder varices in patients with portal hypertension who are to undergo biliary surgery is highly important for the surgeon, helping to avoid perioperative complications. (Author) 15 refs

  18. A simple rain attenuation model for earth-space radio links operating at 10-35 GHz

    Science.gov (United States)

    Stutzman, W. L.; Yon, K. M.

    1986-01-01

    The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.

  19. When It Rains, It Pours

    Science.gov (United States)

    Mills, Linda

    2012-01-01

    "It's raining, it's pouring, the old man is snoring!" "The itsy, bitsy spider crawled up the waterspout, down came the rain and washed the spider out. Out came the sun and dried up all the rain, and the itsy, bitsy spider went up the spout again." What do children's nursery rhymes have to do with the school library? The author begins by telling a…

  20. Dew measurement and estimation of rain-fed jujube (Zizyphus jujube Mill) in a semi-arid loess hilly region of China

    Institute of Scientific and Technical Information of China (English)

    WANG Xing; GAO Zhiyong; WANG Youke; Wang Zhi; JIN Shanshan

    2017-01-01

    Dew is an important water source for plants in arid and semi-arid regions.However,information on dew is scarce in such regions.In this study,we explored dew formation,amount,and duration of rain-fed jujube (Zi(w)phus jujube Mill) trees in a semi-arid loess hilly region of China (i.e.,Mizhi County).The data included dew intensity and duration,relative humidity,temperature,and wind speed measured from 26 July to 23 October,2012 and from 24 June to 17 October,2013 using a micro-climate system (including dielectric leaf wetness sensors,VP-3 Relative Humidity/Temperature Sensor,High Resolution Rain Gauge,and Davis Cup Anemometer).The results show that atmospheric conditions of relative humidity of >78% and dew point temperature of 1℃C-3℃C are significantly favorable to dew formation.Compared with the rainfall,dew was characterized by high frequency,strong stability,and long duration.Furthermore,heavy dew accounted for a large proportion of the total amount.The empirical models (i.e.,relative humidity model (RH model) and dew point depression model (DPD model)) for daily dew duration estimation performed well at 15-rain intervals,with low errors ranging between 1.29 and 1.60 h,respectively.But it should be noted that the models should be calibrated firstly by determining the optimal thresholds of relatively humidity for RH model and dew point depression for DPD model.For rain-fed jujube trees in the semi-arid loess hilly regions of China,the optimal threshold of relative humidity was 78%,and the optimal upper and lower thresholds of dew point depression were 1℃C and 5℃C,respectively.The study further demonstrates that dew is an important water resource that cannot be ignored for rain-fed jujube trees and may affect water balance at regional scales.

  1. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    Science.gov (United States)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  2. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    OpenAIRE

    Mergheni Ali Mohamed; Ben Ticha Hmaied; Sautet Jen-Charles; Godard Gille; Ben Nasrallah Sassi

    2008-01-01

    For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near t...

  3. Rain effect on Aquarius L-band Emissivity and Backscatter Model Functions

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Fore, A.; Neumann, G.; Hayashi, A.

    2012-12-01

    Remote sensing of sea surface salinity (SSS) is being performed by Aquarius and SMOS missions, which are using L-band radiometry to sense the microwave emissions from sea surfaces. To enable accurate SSS retrieval, it is essential to correct the impact of sea surface roughness on L-band brightness temperatures. In addition, the impact of rain has to be carefully assessed and accounted for. Although the atmospheric attenuation caused by raindrops are likely negligible at 1.4GHz, other factors must be considered because they may have indirect but important contribution to the surface roughness and consequently L-band brightness temperatures. For example, the wind speed dependent roughness correction will be corrupted when rain striking the water, creating rings, stalks, and crowns from which the signal scatters. It is also unknown how long the freshwater stays at surface while through the oceanic mixing process at various regions over global oceans. We collocated the Aquarius L-band data with various wind products, including SSM/I, NCEP, ASCAT and WindSAT, as well as the SSM/I and WindSAT rain products. During the first four months of Aquarius mission, near 1.9 million pixels are identified under rain conditions by either SSM/I or WindSAT. We derived the L-band emissivity and backscatter geophysical model functions (GMF), parameterized by SSM/I and NCEP winds for rain-free conditions. However, the residual ocean surface emissivity (the Aquarius measured minus the rain-free model predictions) reveals profound resemblance with global precipitation pattern. In region dominated by rain, e.g. ITCZ, northern hemisphere storm track, and Indian Ocean partially under the influence of summer monsoon, the GMF built using rain free data underestimates excess emissivity about 0.5 to 1 K. The dependence of residual of emissivity and backscatter is shown as a function of wind speed and rain rate. A modified GMF is developed including rain rate as one of the parameters. Due to

  4. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  5. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  6. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  7. Avaliação dos tumores hepáticos ao Doppler Doppler evaluation of liver tumors

    Directory of Open Access Journals (Sweden)

    Márcio Martins Machado

    2004-10-01

    Full Text Available Os avanços recentes na ultra-sonografia têm ampliado a possibilidade de detecção de tumores hepáticos. Isto tem auxiliado na perspectiva de melhora do prognóstico destes pacientes, à medida que novas técnicas terapêuticas têm surgido. Neste artigo os autores relatam achados ao Doppler que podem auxiliar na identificação e caracterização dos tumores hepáticos, avaliando dados do Doppler colorido, pulsado e do Doppler de amplitude ("power Doppler". Fazem, também, referência a novas modalidades de imagem, como o uso da harmônica.Recent advances in ultrasound have optimized the detection of liver tumors and helped to improve the prognosis of patients with this condition as newly developed and improved therapeutic modalities have been established. The authors review important Doppler findings which may help in the identification and characterization of some hepatic tumors through the evaluation of color Doppler, pulsed Doppler and power Doppler features. New imaging methods such as the use of harmonics imaging are also reviewed.

  8. Development and Performance Evaluation of a Rain Shade for a low ...

    African Journals Online (AJOL)

    Aderoju Tomiwa

    for a low scale agricultural produce, The rain shade consists of a geared D. C motor, 12V battery, ... rain shade was embarked on in this research work. ... (9) Face width, b. +. 5mm (10). Determination of weight acting on the Extension. Arm: The measured weight of the polyester fabric equals 14.7N, while the combined ...

  9. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    Science.gov (United States)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  10. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas

    2009-01-01

    BACKGROUND: Myocardial velocities can be measured with both pulsed-wave tissue Doppler (PWTD) and color tissue Doppler (CTD) echocardiography. We aimed to (A) to explore which of the two methods better approximates true tissue motion and (B) to examine the agreement and the reproducibility...... of the two methods in a routine clinical setting. METHODS: For Study A, the displacements of 63 basal myocardial segments from 13 patients were examined with M-mode and compared with the velocity-time integral of PWTD and CTD velocities. For Study B, the basal lateral segments from 58 patients were examined...... with PWTD and CTD, and the peak myocardial velocities during systole (Sm), early diastole (Em), and late diastole (Am) were measured. RESULTS: Study A: CTD-based measurements of displacement were 12% lower than M-mode measurements (95% CI: -18%; -6%). PWTD velocity-time integrals measured at the outer edge...

  11. Doppler evaluation of valvular stenosis

    International Nuclear Information System (INIS)

    Kisslo, J.; Krafchek, J.; Adams, D.; Mark, D.B.

    1986-01-01

    One of the reasons why use of Doppler echocardiography is growing rapidly is because of its utility in detecting the presence of valvular stenosis and in estimating its severity. Detection of the presence of stenotic valvular heart disease using Doppler echocardiography was originally described over 10 years ago. It has been demonstrated that Doppler blood velocity data could be used to estimate the severity of a stenotic lesion. This chapter discusses the evaluation of valvular stenois using Doppler

  12. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

    Directory of Open Access Journals (Sweden)

    Yee Siong Lee

    2015-01-01

    Full Text Available Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS, and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio. This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

  13. The Cognitive Doppler.

    Science.gov (United States)

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  14. Forehead Skin Blood Flow in Normal Neonates during Active and Quiet Sleep, Measured with a Diode Laser Doppler Instrument

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; de Mul, F.F.M.; Greve, Jan

    1988-01-01

    Changes in forehead skin blood flow during active and quiet sleep were determined in 16 healthy neonates using a recently developed semi-conductor laser Doppler flow meter without light conducting fibres. Measurements were carried out at a postnatal age varying from 5 hours to 7 days. The two sleep

  15. Doppler ultrasound exam of an arm or leg

    Science.gov (United States)

    Peripheral vascular disease - Doppler; PVD - Doppler; PAD - Doppler; Blockage of leg arteries - Doppler; Intermittent claudication - Doppler; Arterial insufficiency of the legs - Doppler; Leg pain and ...

  16. Data driven analysis of rain events: feature extraction, clustering, microphysical /macro physical relationship

    Science.gov (United States)

    Djallel Dilmi, Mohamed; Mallet, Cécile; Barthes, Laurent; Chazottes, Aymeric

    2017-04-01

    The study of rain time series records is mainly carried out using rainfall rate or rain accumulation parameters estimated on a fixed integration time (typically 1 min, 1 hour or 1 day). In this study we used the concept of rain event. In fact, the discrete and intermittent natures of rain processes make the definition of some features inadequate when defined on a fixed duration. Long integration times (hour, day) lead to mix rainy and clear air periods in the same sample. Small integration time (seconds, minutes) will lead to noisy data with a great sensibility to detector characteristics. The analysis on the whole rain event instead of individual short duration samples of a fixed duration allows to clarify relationships between features, in particular between macro physical and microphysical ones. This approach allows suppressing the intra-event variability partly due to measurement uncertainties and allows focusing on physical processes. An algorithm based on Genetic Algorithm (GA) and Self Organising Maps (SOM) is developed to obtain a parsimonious characterisation of rain events using a minimal set of variables. The use of self-organizing map (SOM) is justified by the fact that it allows to map a high dimensional data space in a two-dimensional space while preserving as much as possible the initial space topology in an unsupervised way. The obtained SOM allows providing the dependencies between variables and consequently removing redundant variables leading to a minimal subset of only five features (the event duration, the rain rate peak, the rain event depth, the event rain rate standard deviation and the absolute rain rate variation of order 0.5). To confirm relevance of the five selected features the corresponding SOM is analyzed. This analysis shows clearly the existence of relationships between features. It also shows the independence of the inter-event time (IETp) feature or the weak dependence of the Dry percentage in event (Dd%e) feature. This confirms

  17. Rain, Snow, and Spring Runoff Revisited.

    Science.gov (United States)

    Bohren, Craig F.

    1995-01-01

    Explores the theory behind the correlation between warm rain, rapid snowmelt, and the subsequent runoff using the concepts of enthalpy, thermal transfer, and energy transfer. Concludes that rapid runoff is not a consequence of rain per se but of the high humidities associated with the rain. (JRH)

  18. Doppler broadening measurements of positron annihilation spectroscopy using a 22 Na source made in IFIN-HH Bucharest

    International Nuclear Information System (INIS)

    Racolta, P.M.; Craciun, L.; Plostinaru, D.; Catana, D.; Muresan, O.; Serban, A.

    2003-01-01

    The Doppler-broadening technique requires an energy-dispersive system. Compared with the angular correlation technique, a compact and relatively simple setup is possible and, thus spectrometers are used in almost all positron laboratories. The energy broadening of the annihilation line is measured by a high-resolution energy-dispersive detector system. The paper describes the principia of this method, experimental arrangement used, and data treatment. (authors)

  19. A simplified study of trans-mitral Doppler patterns

    Directory of Open Access Journals (Sweden)

    Thomas George

    2008-11-01

    Full Text Available Abstract Background Trans-mitral Doppler produces complex patterns with a great deal of variability. There are several confusing numerical measures and indices to study these patterns. However trans-mitral Doppler produces readymade data visualization by pattern generation which could be interpreted by pattern analysis. By following a systematic approach we could create an order and use this tool to study cardiac function. Presentation of the hypothesis In this new approach we eliminate the variables and apply pattern recognition as the main criterion of study. Proper terminologies are also devised to avoid confusion. In this way we can get some meaningful information. Testing the hypothesis Trans-mitral Doppler should be seen as patterns rather than the amplitude. The hypothesis can be proven by logical deduction, extrapolation and elimination of variables. Trans-mitral flow is also analyzed vis-à-vis the Starling's Law applied to the left atrium. Implications of the hypothesis Trans-mitral Doppler patterns are not just useful for evaluating diastolic function. They are also useful to evaluate systolic function. By following this schema we could get useful diagnostic information and therapeutic options using simple pattern recognition with minimal measurements. This simplified but practical approach will be useful in day to day clinical practice and help in understanding cardiac function better. This will also standardize research and improve communication.

  20. Study of 1-min rain rate integration statistic in South Korea

    Science.gov (United States)

    Shrestha, Sujan; Choi, Dong-You

    2017-03-01

    The design of millimeter wave communication links and the study of propagation impairments at higher frequencies due to a hydrometeor, particularly rain, require the knowledge of 1-min. rainfall rate data. Signal attenuation in space communication results are due to absorption and scattering of radio wave energy. Radio wave attenuation due to rain depends on the relevance of a 1-min. integration time for the rain rate. However, in practice, securing these data over a wide range of areas is difficult. Long term precipitation data are readily available. However, there is a need for a 1-min. rainfall rate in the rain attenuation prediction models for a better estimation of the attenuation. In this paper, we classify and survey the prominent 1-min. rain rate models. Regression analysis was performed for the study of cumulative rainfall data measured experimentally for a decade in nine different regions in South Korea, with 93 different locations, using the experimental 1-min. rainfall accumulation. To visualize the 1-min. rainfall rate applicable for the whole region for 0.01% of the time, we have considered the variation in the rain rate for 40 stations across South Korea. The Kriging interpolation method was used for spatial interpolation of the rain rate values for 0.01% of the time into a regular grid to obtain a highly consistent and predictable rainfall variation. The rain rate exceeded the 1-min. interval that was measured through the rain gauge compared to the rainfall data estimated using the International Telecommunication Union Radio Communication Sector model (ITU-R P.837-6) along with the empirical methods as Segal, Burgueno et al., Chebil and Rahman, logarithmic, exponential and global coefficients, second and third order polynomial fits, and Model 1 for Icheon regions under the regional and average coefficient set. The ITU-R P. 837-6 exhibits a lower relative error percentage of 3.32% and 12.59% in the 5- and 10-min. to 1-min. conversion, whereas the

  1. Correlation between Doppler flow patterns in growth-restricted fetuses and neonatal circulation

    NARCIS (Netherlands)

    Tanis, J. C.; Boelen, M. R.; Schmitz, D. M.; Casarella, L.; van der Laan, M. E.; Bos, A. F.; Bilardo, C. M.

    Objectives To investigate whether prenatal Doppler parameters in growth-restricted fetuses are correlated with neonatal circulatory changes. Methods In 43 cases of suspected fetal growth restriction (FGR), serial Doppler measurements of umbilical artery (UA) and middle cerebral artery (MCA)

  2. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  3. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    International Nuclear Information System (INIS)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon

    2002-01-01

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  4. Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.

  5. Numerical stud of glare spot phase Doppler anemometry

    OpenAIRE

    Hespel , Camille; Ren , Kuan Fang; Gréhan , Gérard; Onofri , Fabrice

    2008-01-01

    International audience; The phase Doppler anemometry has (PDA) been developed to measure simultaneously the velocity and the size of droplets. When the concentration of particles is high, tightly focused beams must be used, as in the dual burst PDA. The latter permits an access to the refractive index of the particle, but the effect of wave front curvature of the incident beams becomes evident. In this paper, we introduce a glare spot phase Doppler anemometry which uses two large beams. The i...

  6. Beyond rain: Advances in measurements of solid or mixed phase precipitation using a 2D-Video-Distrometer

    Science.gov (United States)

    Schwinzerl, Martin; Schönhuber, Michael; Lammer, Günter

    2015-04-01

    The requirement to estimate for each individual hydrometeor precipitation parameters such as shape, equi-voluminous diameter, fall velocity, height to width ratio, and canting angle gave rise to the development of the family of 2D-Video-Distrometer (2DVD) measurement devices. The measurement principle of the 2DVD is based upon the ability to acquire a side- and front view onto each particle by virtue of two orthogonally arranged high-speed line-scan cameras. The cameras are displaced vertically towards each other by a precisely determined distance in the ballpark of 6 mm, thus allowing the estimation of the vertical fall velocity in-situ on a per-particle basis. The geometrical and velocity information, sampled over a measurement surface of approx. 100 x 100 mm in this way, is then used to derive observables like rain rate and the accumulated equivalent amount of precipitation with a high degree of statistical relevance. One of the biggest assets of this measurement principle is the ability to perform measurements without relying on any externally provided model or phenomenological relationship between observables like particle shape and velocity. For liquid precipitation in the form of natural rain, this allows for example to verify whether established relationships - like, for example, the tabulated values for diameter vs. vertical velocity provided by Gunn & Kinzer - can be reproduced in sampled datasets. For mixed-phase and solid precipitation, different types of hydrometeors like for example different snow flake families, hail and graupel yield - depending on parameters like for example the water content and therefor, in turn, the density of the particle - very diverse results with respect to expected fall velocity, oblateness, or general shape for a given diameter class. The ability of the 2DVD to capture these parameters directly and without reliance on externally provided relationships, has contributed to the attractiveness of this measurement device for in

  7. Doppler flowmetry in preeclampsia.

    Science.gov (United States)

    Zahumensky, J

    2009-01-01

    The purpose of this study was to summarize the new published data on the Doppler flowmetry in preeclampsia. We summarize the new published data on the Doppler flowmetry in uteroplacental, fetoplacental and fetal circulation in preeclampsia. The present review summarized the results of clinical research on the Doppler flowmetry in the screening of risk of preclampsia, in the diagnosis of preclampsia and in the fetal risk in preclampsia (Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  8. Phonon characteristics of high Tc superconductors from neutron Doppler broadening measurements

    International Nuclear Information System (INIS)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.

    1994-01-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La 2-x Ba x CuO 4 . Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra

  9. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  10. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  11. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  12. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  13. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    Science.gov (United States)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  14. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  15. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  16. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  17. Cardiac Time Intervals Measured by Tissue Doppler Imaging M-mode

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Møgelvang, Rasmus; Schnohr, Peter

    2016-01-01

    function was evaluated in 1915 participants by using both conventional echocardiography and tissue Doppler imaging (TDI). The cardiac time intervals, including the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and ejection time (ET), were obtained by TDI M-mode through the mitral......). Additionally, they displayed a significant dose-response relationship, between increasing severity of elevated blood pressure and increasing left ventricular mass index (P

  18. Spatial weighting of Doppler reactivity feedback

    International Nuclear Information System (INIS)

    Carew, J.F.; Diamond, D.J.; Todosow, M.

    1977-12-01

    The spatial weighting of the local Doppler feedback implicit in the determination of the core Doppler feedback reactivity has been investigated. Using a detailed planar PDQ7-II PWR model with local fuel-temperature feedback, the core Doppler spatial weight factor, S, has been determined for various control patterns and power levels. Assuming power-squared weighting of the local Doppler feedback, a simple analytic expression for S has been derived and, based on comparison with the PDQ7-II results, provides a convenient and accurate representation of the Doppler spatial weight factor. The sensitivity of these results to variations in the fuel rod heat transfer coefficients, fuel loading and the magnitude of the Doppler coefficient has also been evaluated. The dependence of the local Doppler coefficient on moderator temperature, boron concentration and control rod density has been determined and found to be weak. Selected comparisons with vendor analyses have been made and indicate general agreement

  19. Evaluation of cutaneous blood flow responses by 133Xe washout and a laser-Doppler flowmeter

    International Nuclear Information System (INIS)

    Engelhart, M.; Kristensen, J.K.

    1983-01-01

    A new method for noninvasive measurement of cutaneous blood flow is laser-Doppler flowmetry. The technique is based on the fact that laser light is back-scattered from the moving red blood cells, with Doppler-shifted frequencies; these impulses lead to photodetectors and are converted to flow signals. In this work we used a new system with a low noise level. Comparison was made between this technique and the atraumatic epicutaneous 133 Xe technique for measurement of cutaneous blood flow during reactive hyperemia and orthostatic pressure changes. The laser-Doppler flowmeter seems to measure blood flow in capillaries as well as in arteriovenous anastomoses, while the 133 Xe method probably measures only capillary flow. A calibration of the laser-Doppler method against the 133 Xe method would appear to be impossible in skin areas where arteriovenous anastomoses are present. The changes in blood flow during reactive hyperemia, orthostatic pressure changes, and venous stasis were found to be parallel as measured by the two methods in skin areas without shunt vessels. The laser-Doppler flowmeter would appear to be a useful supplement to the 133Xe washout method in cutaneous vascular physiology, but it is important to keep in mind that different parameters may be measured

  20. Application of Statistical Methods of Rain Rate Estimation to Data From The TRMM Precipitation Radar

    Science.gov (United States)

    Meneghini, R.; Jones, J. A.; Iguchi, T.; Okamoto, K.; Liao, L.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The TRMM Precipitation Radar is well suited to statistical methods in that the measurements over any given region are sparsely sampled in time. Moreover, the instantaneous rain rate estimates are often of limited accuracy at high rain rates because of attenuation effects and at light rain rates because of receiver sensitivity. For the estimation of the time-averaged rain characteristics over an area both errors are relevant. By enlarging the space-time region over which the data are collected, the sampling error can be reduced. However. the bias and distortion of the estimated rain distribution generally will remain if estimates at the high and low rain rates are not corrected. In this paper we use the TRMM PR data to investigate the behavior of 2 statistical methods the purpose of which is to estimate the rain rate over large space-time domains. Examination of large-scale rain characteristics provides a useful starting point. The high correlation between the mean and standard deviation of rain rate implies that the conditional distribution of this quantity can be approximated by a one-parameter distribution. This property is used to explore the behavior of the area-time-integral (ATI) methods where fractional area above a threshold is related to the mean rain rate. In the usual application of the ATI method a correlation is established between these quantities. However, if a particular form of the rain rate distribution is assumed and if the ratio of the mean to standard deviation is known, then not only the mean but the full distribution can be extracted from a measurement of fractional area above a threshold. The second method is an extension of this idea where the distribution is estimated from data over a range of rain rates chosen in an intermediate range where the effects of attenuation and poor sensitivity can be neglected. The advantage of estimating the distribution itself rather than the mean value is that it yields the fraction of rain contributed by

  1. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    ADOWIE PERE

    significantly in test plant with decreasing pH of acid rain solution. Acid rain application ... indicates the sunflower plant turns to be an acid rain sensitive system and demands for breeding with acid rain ..... Changes in growth, pigmentation and ...

  2. Laser doppler velocimetry and confined flows

    Directory of Open Access Journals (Sweden)

    Ilić Jelena T.

    2017-01-01

    Full Text Available Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

  3. The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Fardin Mirbolouk

    2012-03-01

    Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.

  4. Prediction of slant path rain attenuation statistics at various locations

    Science.gov (United States)

    Goldhirsh, J.

    1977-01-01

    The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).

  5. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  6. Analysis of 35 GHz Cloud Radar polarimetric variables to identify stratiform and convective precipitation.

    Science.gov (United States)

    Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald

    2017-04-01

    This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.

  7. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation

    Science.gov (United States)

    Das, Saurabh; Maitra, Animesh

    2018-04-01

    Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).

  8. Three-gamma annihilation of ortho-positronium in NiO/γ-Al2O3 catalysts detected by positron lifetime and coincidence Doppler broadening measurements

    International Nuclear Information System (INIS)

    Huang, S.H.; Chen, Z.Q.; Zhang, H.J.

    2012-01-01

    The pore structure of NiO/γ-Al 2 O 3 catalysts is characterized by positron lifetime and Doppler broadening measurements. A very long lifetime τ 4 of 92 ns is resolved from the positron lifetime spectrum measured for pure Al 2 O 3 , which could be attributed to the ortho-positronium (o-Ps) lifetime in large pores. It was also found that the fitted lifetime τ 4 and its corresponding intensity I 4 obtained from the lifetime spectra both decrease with narrowing energy window of the stop channel in the fast–fast coincidence lifetime measurement system. This suggests that the ultra long lifetime is primarily due to the self annihilation of o-Ps which emits three gamma-rays. Such 3γ annihilation is further evidenced by measuring the Doppler broadening of annihilation gamma rays in coincidence with the prompt gamma rays (1.28 MeV) emitted from the 22 Na positron source. In NiO/γ-Al 2 O 3 catalysts both the lifetime τ 4 and its intensity I 4 decreases with increasing NiO content (from 3 wt% to 40 wt%), which indicates decreasing of the number of 3γ events. The 3γ annihilation parameter analyzed from the coincidence Doppler broadening spectrum shows consistent decrease with increasing NiO content. - Highlights: ► Above paper reported study of the 3-gamma annihilation of o-Ps. ► 3γ annihilation was verified by varying the energy window of the lifetime system. ► A new coincidence Doppler broadening technique is also used to record 3γ events. ► 3γ parameter decreases with NiO content in NiO/γ-Al 2 O 3 catalysts.

  9. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  10. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    Directory of Open Access Journals (Sweden)

    R. Sailer

    2002-01-01

    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  11. Correlation of experimental rCBF determinations in goats with flow measurements from a Doppler-modified carotid artery shunt

    International Nuclear Information System (INIS)

    Loftus, C.M.; Silvidi, J.A.; Becker, J.A.; Miller, B.V.; Bernstein, D.D.

    1989-01-01

    A carotid artery shunt system has been developed that continuously monitors blood flow rates by embedding a Doppler crystal in the shunt wall. The crystal ranges through a liquid lens that enables it to be placed without violation of the shunt lumen. Because the crystal is at a fixed angle (45 degrees) to the axis of blood flow and the diameter of the lumen remains constant, a linear relationship exists between flow rates and the Doppler velocity signal. This shunt system was previously tested in vitro using a pulsatile pump and was found to be accurate to within 4.7% of the actual flow rate. In the present study, animal (goat) experiments were performed consisting of simultaneous carotid shunt flow and bilateral rCBF measurements by the radiolabeled microsphere technique to determine in vivo the accuracy of this Doppler modified shunt and to ascertain the ability of shunt flow to increase in the face of acute contralateral carotid occlusion. Data from five animals show that in vivo shunt flow can be recorded to within 13% of control rCBF and that shunt flow increases nearly 50% under conditions of distal demand (contralateral carotid occlusion). This device may prove useful in laboratory studies of carotid shunt dynamics and in clinical practice to quickly detect correctable shunt flow abnormalities

  12. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been...

  13. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  14. Three-dimensional laser cooling at the Doppler limit

    Science.gov (United States)

    Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2014-12-01

    Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.

  15. Rain Gardens: Stormwater Infiltrating Systems

    Science.gov (United States)

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  16. Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)

    2011-07-01

    Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments

  17. Doppler ultrasonographic measurement of short-term effects of valsalva maneuver on retrobulbar blood flow.

    Science.gov (United States)

    Kimyon, Sabit; Mete, Ahmet; Mete, Alper; Mete, Duçem

    2017-11-12

    To investigate the effects of Valsalva maneuver (VM) on retrobulbar blood flow parameters in healthy subjects. Participants without any ophthalmologic or systemic pathology were examined in supine position with color and pulsed Doppler imaging for blood flow measurement, via a paraocular approach, in the ophthalmic artery (OA), central retinal artery (CRA), central retinal vein (CRV), nasal posterior ciliary artery (NPCA), and temporal posterior ciliary artery (TPCA), 10 seconds after a 35- to 40-mm Hg expiratory pressure was reached. Peak systolic velocity (PSV), end-diastolic velocity (EDV), pulsatility index (PI), and resistivity index (RI) values were recorded for each artery. PSV and EDV values were recorded for CRV. There were significant differences between resting and VM values of PSV and EDV of CRA, RI of NPCA, and PI, RI, and EDV of TPCA. Resting CRA-EDV, CRV-PSV, and CRV-EDV were positively correlated whereas resting OA-PSV and CRA-PI, and OA-PSV, CRA-PSV, and CRA-EDV during VM, were negatively correlated with age. VM induces a short-term increase in CRA blood flow and a decrease in NPCA and TPCA RI. Additional studies with a longer Doppler recording during VM, in a larger population sample, are required to allow definitive interpretation. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 45:551-555, 2017. © 2017 Wiley Periodicals, Inc.

  18. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  19. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  20. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Science.gov (United States)

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  1. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2000-01-01

    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  2. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    Science.gov (United States)

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry

    International Nuclear Information System (INIS)

    Engelhart, M.; Petersen, L.J.; Kristensen, J.K.

    1988-01-01

    The laser Doppler flowmeter and the 133-Xenon washout techniques of measuring cutaneous blood flow were compared for measuring the vasoconstrictor response of the hand during orthostatic maneuvres. Important discrepancies were detected for the two methods. When the hand was lowered by 40 cm a 40% decrease in blood flow was detected by the 133-Xenon method, while a 60% decrease was seen by the laser Doppler technique. Lowering the hand by 50 cm resulted in no further blood flow decrease when using the 133-Xenon method, but an 80% blood flow decrease was recorded with the laser Doppler method. A marked decrease in blood flow was recorded by the laser Doppler technique in hands that were sympathectomized or a hand that was subjected to a nerve blockade, strategies which should eliminate the orthostatic vasoconstrictor response of superficial cutaneous vessels. The 133-Xenon technique did not detect any blood flow changes in hands without sympathetic tone. We found the laser Doppler flowmetry technique unsatisfactory for measurement of blood flow changes that occur in nutritional vessels as this method measures total skin blood flow including non-capillary vessels

  4. Rain concentration and sheltering effect of solar panels on cultivated plots

    Science.gov (United States)

    Elamri, Yassin; Cheviron, Bruno; Mange, Annabelle; Dejean, Cyril; Liron, François; Belaud, Gilles

    2018-02-01

    Agrivoltaism is the association of agricultural and photovoltaic energy production on the same land area, coping with the increasing pressure on land use and water resources while delivering clean and renewable energy. However, the solar panels located above the cultivated plots also have a seemingly yes unexplored effect on rain redistribution, sheltering large parts of the plot but redirecting concentrated fluxes on a few locations. The spatial heterogeneity in water amounts observed on the ground is high in the general case; its dynamical patterns are directly attributable to the mobile panels through their geometrical characteristics (dimensions, height, coverage percentage) and the strategies selected to rotate them around their support tube. A coefficient of variation is used to measure this spatial heterogeneity and to compare it with the coefficient of uniformity that classically describes the efficiency of irrigation systems. A rain redistribution model (AVrain) was derived from literature elements and theoretical grounds and then validated from experiments in both field and controlled conditions. AVrain simulates the effective rain amounts on the plot from a few forcing data (rainfall, wind velocity and direction) and thus allows real-time strategies that consist in operating the panels so as to limit the rain interception mainly responsible for the spatial heterogeneities. Such avoidance strategies resulted in a sharp decrease in the coefficient of variation, e.g. 0.22 vs. 2.13 for panels held flat during one of the monitored rain events, which is a fairly good uniformity score for irrigation specialists. Finally, the water amounts predicted by AVrain were used as inputs to Hydrus-2D for a brief exploratory study on the impact of the presence of solar panels on rain redistribution at shallow depths within soils: similar, more diffuse patterns were simulated and were coherent with field measurements.

  5. Doppler ultrasound monitoring technology.

    Science.gov (United States)

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  6. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  7. Modeling the impact of wintertime rain events on the thermal regime of permafrost

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2011-10-01

    Full Text Available In this study, we present field measurements and numerical process modeling from western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50% of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.

  8. Sequential multipoint motion of the tympanic membrane measured by laser Doppler vibrometry: preliminary results for normal tympanic membrane.

    Science.gov (United States)

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Kitano, Hiroya

    2014-04-01

    Numerous studies have reported sound-induced motion of the tympanic membrane (TM). To demonstrate sequential motion characteristics of the entire TM by noncontact laser Doppler vibrometry (LDV), we have investigated multipoint TM measurement. A laser Doppler vibrometer was mounted on a surgical microscope. The velocity was measured at 33 points on the TM using noncontact LDV without any reflectors. Measurements were performed with tonal stimuli of 1, 3, and 6 kHz. Amplitudes were calculated from these measurements, and time-dependent changes in TM motion were described using a graphics application. TM motions were detected more clearly and stably at 1 and 3 kHz than at other frequencies. This is because the external auditory canal acted as a resonant tube near 3 kHz. TM motion displayed 1 peak at 1 kHz and 2 peaks at 3 kHz. Large amplitudes were detected in the posterosuperior quadrant (PSQ) at 1 kHz and in the PSQ and anteroinferior quadrant (AIQ) at 3 kHz. The entire TM showed synchronized movement centered on the PSQ at 1 kHz, with phase-shifting between PSQ and AIQ movement at 3 kHz. Amplitude was smaller at the umbo than at other parts. In contrast, amplitudes at high frequencies were too small and complicated to detect any obvious peaks. Sequential multipoint motion of the tympanic membrane showed that vibration characteristics of the TM differ according to the part and frequency.

  9. Doppler sonographic evaluation of ophthalmic arterial flow pattern in hypertensive patients

    International Nuclear Information System (INIS)

    Ryu, Dae Sik; Kim, Young Goo

    1994-01-01

    To compare the Doppler velocity waveform pattern of ophthalmic artery of hypertensive patients with that of normotensive subjects. Doppler velocity waveform was obtained from ophthalmic artery in 45 hypertensive patients and 60 normotensive subjects. Both hypertensives and normotensive subjects were classified according to age into those younger than and those older than 45 years. Doppler indices(pulsatility index(PI), resistance index(RI), the first systolic peak/the second systolic peak(S1/S2), the first systolic peak/diastolic peak(S1/D)) measured in hypertensive patients were compared with normotensive subjects. Among the various doppler indices, only S1/S2 showed significant difference(P < 0.05) between the hypertensive patients and normotensive subjects younger than 45 years. Doppler velocity waveform of hypertensive patients older than 45 years showed no significant difference from that of normotensive subjects with corresponding age. Doppler velocity waveform of ophthalmic artery in hypertensive patients younger than 45 years shows pattern with S2 higher than that of normotensive subjects. High S2 component(reflective-wave) may represent increased vascular impedance due to vasococonstriction of retinal arterioles in hypertensive patients

  10. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  11. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend

    Energy Technology Data Exchange (ETDEWEB)

    Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M.

    1982-12-01

    Laser-Doppler measurements are reported for laminar and turbulent flow through a 90/sup 0/ bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60, and 75/sup 0/ planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layerd, conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. This displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intended for use as benchmark data for calibrating flow calculation methods.

  12. Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement.

    Science.gov (United States)

    Naehle, Claas P; Steinberg, Verena A; Schild, Hans; Mommertz, Gottfried

    2015-05-01

    Noninvasive measurement of peripheral muscle microperfusion could potentially improve diagnosis, management, and treatment of peripheral arterial disease (PAD) and thus improve patient care. Contrast-enhanced ultrasound (CEUS) as a noninvasive diagnostic tool allows quantification of muscle perfusion. Increasing data on bolus technique CEUS reflecting microperfusion are becoming available, but only limited data on steady-state CEUS for assessment of muscle microperfusion are available. Therefore, the aim of this study was to evaluate steady-state CEUS for assessment of peripheral muscle microperfusion in a PAD animal model. In a porcine animal model, peripheral muscle microperfusion was quantified by steady-state CEUS replenishment kinetics (mean transit time [mTT] and wash-in rate [WiR]) of the biceps femoris muscle during intravenous steady-state infusion of INN-sulfur hexafluoride (SonoVue; Bracco, Geneva, Switzerland). In addition, macroperfusion was quantified at the external femoral artery with a Doppler flow probe. Peripheral muscle microperfusion and Doppler flow measurements were performed bilaterally at rest and under adenosine stress (70 μg/kg body weight) before and after unilateral creation of a moderate external iliac artery stenosis. All measurements could be performed completely in 10 pigs. Compared with baseline measurements, peripheral muscle microperfusion decreased significantly during adenosine stress (rest vs adenosine stress: mTT, 7.8 ± 3.3 vs 21.2 ± 17.8 s, P = .0006; WiR, 58.4 ± 38.1 vs 25.3 ± 15.6 arbitrary units [a.u.]/s, P flow, 122.3 ± 31.4 vs 83.6 ± 28.1 mL/min, P = .0067) and after stenosis creation (no stenosis vs stenosis: mTT, 8.1 ± 3.1 vs 29.2 ± 18.0 s, P = .0469; WiR, 53.0 ± 22.7 vs 13.6 ± 8.4 a.u./s, P = .0156; Doppler flow, 124.2 ± 41.8 vs 65.9 ± 40.0 mL/min, P = .0313). After stenosis creation, adenosine stress led to a further significant decrease of peripheral muscle microperfusion but had no effect on

  13. Comparing Methods for Cardiac Output: Intraoperatively Doppler-Derived Cardiac Output Measured With 3-Dimensional Echocardiography Is Not Interchangeable With Cardiac Output by Pulmonary Catheter Thermodilution.

    Science.gov (United States)

    Graeser, Karin; Zemtsovski, Mikhail; Kofoed, Klaus F; Winther-Jensen, Matilde; Nilsson, Jens C; Kjaergaard, Jesper; Møller-Sørensen, Hasse

    2018-01-09

    Estimation of cardiac output (CO) is essential in the treatment of circulatory unstable patients. CO measured by pulmonary artery catheter thermodilution is considered the gold standard but carries a small risk of severe complications. Stroke volume and CO can be measured by transesophageal echocardiography (TEE), which is widely used during cardiac surgery. We hypothesized that Doppler-derived CO by 3-dimensional (3D) TEE would agree well with CO measured with pulmonary artery catheter thermodilution as a reference method based on accurate measurements of the cross-sectional area of the left ventricular outflow tract. The primary aim was a systematic comparison of CO with Doppler-derived 3D TEE and CO by thermodilution in a broad population of patients undergoing cardiac surgery. A subanalysis was performed comparing cross-sectional area by TEE with cardiac computed tomography (CT) angiography. Sixty-two patients, scheduled for elective heart surgery, were included; 1 was subsequently excluded for logistic reasons. Inclusion criteria were coronary artery bypass surgery (N = 42) and aortic valve replacement (N = 19). Exclusion criteria were chronic atrial fibrillation, left ventricular ejection fraction below 0.40 and intracardiac shunts. Nineteen randomly selected patients had a cardiac CT the day before surgery. All images were stored for blinded post hoc analyses, and Bland-Altman plots were used to assess agreement between measurement methods, defined as the bias (mean difference between methods), limits of agreement (equal to bias ± 2 standard deviations of the bias), and percentage error (limits of agreement divided by the mean of the 2 methods). Precision was determined for the individual methods (equal to 2 standard deviations of the bias between replicate measurements) to determine the acceptable limits of agreement. We found a good precision for Doppler-derived CO measured by 3D TEE, but although the bias for Doppler-derived CO by 3D compared to

  14. Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.

    Science.gov (United States)

    Miller, Shawn William

    The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.

  15. Phenomena associated with rain deposition of radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Fujitaka, Kazunobu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-02-01

    Since Rn daughter nuclides generated from Rn gas in the air are generally absorbed on aerosol, its radioactivities are apt to deposit onto the ground with raindrop. Here, the effects of raining on the radiation level were investigated. The amount of precipitation was determined using a highly sensitive rain gauge (the nominal sensitivity of 0.0043 mm) and air radioactive level was measured using a scintillation monitor of 2``{phi}x2``NaI(Tl) which was set at 1.5 m height above the ground. The rising of {gamma}-radiation level associated with rainfall was expressed as percentage of the base line activity. The radiation level increased depending on the intervals between the successive rainfalls and the increase of radioactivity from base line was greater when the rainfall interval was less than 12 hours. Therefore, the amount of radiation deposit was suggested to be small when the rainfall interval is short. Ordinarily, the increase of air radiation level caused by rain deposition was thought to be within a range of 20-50%. (M.N.)

  16. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    Science.gov (United States)

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  17. Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar)

    Science.gov (United States)

    Kneifel, Stefan; Maahn, Maximilian; Peters, Gerhard; Simmer, Clemens

    2011-06-01

    Quantifying snowfall intensity especially under arctic conditions is a challenge because wind and snow drift deteriorate estimates obtained from both ground-based gauges and disdrometers. Ground-based remote sensing with active instruments might be a solution because they can measure well above drifting snow and do not suffer from flow distortions by the instrument. Clear disadvantages are, however, the dependency of e.g. radar returns on snow habit which might lead to similar large uncertainties. Moreover, high sensitivity radars are still far too costly to operate in a network and under harsh conditions. In this paper we compare returns from a low-cost, low-power vertically pointing FM-CW radar (Micro Rain Radar, MRR) operating at 24.1 GHz with returns from a 35.5 GHz cloud radar (MIRA36) for dry snowfall during a 6-month observation period at an Alpine station (Environmental Research Station Schneefernerhaus, UFS) at 2,650 m height above sea level. The goal was to quantify the potential and limitations of the MRR in relation to what is achievable by a cloud radar. The operational MRR procedures to derive standard radar variables like effective reflectivity factor ( Z e) or the mean Doppler velocity ( W) had to be modified for snowfall since the MRR was originally designed for rain observations. Since the radar returns from snowfall are weaker than from comparable rainfall, the behavior of the MRR close to its detection threshold has been analyzed and a method is proposed to quantify the noise level of the MRR based on clear sky observations. By converting the resulting MRR- Z e into 35.5 GHz equivalent Z e values, a remaining difference below 1 dBz with slightly higher values close to the noise threshold could be obtained. Due to the much higher sensitivity of MIRA36, the transition of the MRR from the true signal to noise can be observed, which agrees well with the independent clear sky noise estimate. The mean Doppler velocity differences between both radars

  18. Acid Rain: An Educational Opportunity?

    Science.gov (United States)

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  19. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    International Nuclear Information System (INIS)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A.; Kondrat’ev, A. N.; Kuratov, S. E.; Mazanov, V. A.; Rogozkin, D. B.; Stepushkin, S. N.; Khatunkin, V. Yu.

    2016-01-01

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  20. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Andriyash, A. V. [All-Russia Research Institute of Automatics (Russian Federation); Astashkin, M. V.; Baranov, V. K.; Golubinskii, A. G.; Irinichev, D. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Kondrat’ev, A. N., E-mail: an.kondratev@physics.msu.ru; Kuratov, S. E. [All-Russia Research Institute of Automatics (Russian Federation); Mazanov, V. A. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation); Rogozkin, D. B. [All-Russia Research Institute of Automatics (Russian Federation); Stepushkin, S. N.; Khatunkin, V. Yu. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.

  1. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  2. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics.

    Keywords

  3. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics. Keywords. Ionosphere (Ionosphere

  4. Doppler-guided retrograde catheterization system

    Science.gov (United States)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  5. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  6. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    International Nuclear Information System (INIS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  7. Positron life time and annihilation Doppler broadening measurements on transition metal complexes

    International Nuclear Information System (INIS)

    Levay, B.; Burger, K.

    1982-01-01

    Positron life time and annihilation Doppler broadening measurements have been carried out on 44 solid coordination compounds. Several correlations have been found between the annihilation life time (tau 1 ) and line shape parameters (L) and the chemical structure of the compounds. Halide ligands were the most active towards positrons. This fact supports the assumption on the possible formation of [e + X - ] positron-halide bound state. The life time was decreasing and the annihilation energy spectra were broadening with the increasing negative character of the halides. The aromatic base ligands affected the positron-halide interaction according to their basicity and space requirement and thus they indirectly affected the annihilation parameters, too. In the planar and tetrahedral complexes the electron density on the central met--al ion affected directly the annihilation parameters, while in the octahedral mixed complexes it had only an ind--irect effect through the polarization of the halide ligands. (author)

  8. Acid-rain induced changes in streamwater quality during storms on Catoctin Mountain, Maryland

    Science.gov (United States)

    Rice, Karen C.; Bricker, O.P.

    1992-01-01

    Catoctin Mountain receives some of the most acidic (lowest pH) rain in the United States. In 1990, the U.S. Geological Survey (USGS), in cooperation with the Maryland Department of the Environment (MDE) and the Maryland Department of Natural Resources (DNR), began a study of the effects of acid rain on the quality of streamwater on the part of Catoctin Mountain within Cunningham Falls State Park, Maryland (fig. 1). Samples of precipitation collected on the mountain by the USGS since 1982 have been analyzed for acidity and concentration of chemical constituents. During 1982-91, the volume-weighted average pH of precipitation was 4.2. (Volume weighting corrects for the effect of acids being washed out of the atmosphere at the beginning of rainfall). The pH value is measured on a logarithmic scale, which means that for each whole number change, the acidity changes by a factor of 10. Thus rain with a pH of 4.2 is more than 10 times as acidic as uncontaminated rain, which has a pH of about 5.6. The acidity of rain during several rainstorms on Catoctin Mountain was more than 100 times more acidic than uncontaminated rain.

  9. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  10. Determination of Cs-134 and Cs-137 rain water samples

    International Nuclear Information System (INIS)

    Lima, M.F.; Mazzilli, B.

    1988-01-01

    In order to setting an environmental monitoring program at IPEN, was developed a fast and simple methodology for concentration of Cs-134 and Cs-137 in rain water. This procedure consists in the precipitation of cesium and others cathions of its family (NH 4 + , K + and Rb + ) by ammonium molybdophosphate. The measures of the desintegration rates of Cs-134 and Cs-137 was done by gamma spectrometry in a Ge(Li) detector. After setting up the ideal experimental conditions, the procedure was used to analyze four samples of rain water. (author) [pt

  11. Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristics

    Science.gov (United States)

    Beysens, D.; Mongruel, A.; Acker, K.

    2017-06-01

    This paper summarizes one year (April 2011 to March 2012) measurements on planar condensing surfaces of dew and rain events and related physico-chemical characteristics in the urban environment of Paris (city center). Yearly collected water was 3.48 mm for dew (63 events) and 593 mm for rain (146 events). The latter value compares well with rain data (547 mm and 107 events) collected within 12 km at Paris-Orly airport. An estimation of dew yield based on meteo data gives 2.35 mm and 74 events, to be compared with 17.11 mm and 196 events at Paris-Orly. These differences highlight the large reduction in dew events and dew yields in an urban area as compared to a close rural-like area. This reduction is not due to a sky view reduction but to heat island that increases air temperature and decreases relative humidity. Analysis of dew (34) and rain (77) samples were done concerning pH, electrical conductivity (EC), major anions and cations as well as selected trace metals and other minor ions. Mean pH values are found similar for both, dew (6.5) and rain (6.1), rain being slightly more acidic than dew. The mean dew total ionic content (TIC 1.8 meq/l) and EC value (124 μS/cm) are about four times that of rain (0.45 meq/l; 35 μS/cm), meaning that total dissolved solids in dew is nearly four times that in rain. Sulfate and nitrate are the most acidifying components, calcium the most neutralizing constituent with ratio of mean total acidity/total alkalinity comparable for dew and rain ( 0.9). Sulfate and nitrate have mainly anthropogenic sources, whereas chloride and magnesium are mostly connected with marine air masses. Dew is a considerable factor of wet deposition of pollutants; dew and rain ion concentrations, however, meet the WHO requirements for drinking water.

  12. Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures

    DEFF Research Database (Denmark)

    Smit Andersen, Jonas; Lerer, Sara Maria; Backhaus, Antje

    2017-01-01

    Local management of rainwater using stormwater control measures (SCMs) is gaining increased attention as a sustainable alternative and supplement to traditional sewer systems. Besides offering added utility values, many SCMs also offer a great potential for added amenity values. One way...... of achieving amenity value is to stage the rainwater and thus bring it to the attention of the public. We present here a methodology for creating a selection of rain events that can help bridge between engineering and landscape architecture when dealing with staging of rainwater. The methodology uses......; here we show its use for Danish conditions. We illustrate with a case study how CREs can be used in combination with a simple hydrological model to visualize where, how deep and for how long water is visible in a landscape designed to manage rainwater....

  13. Three-dimensional power Doppler sonography in screening for carotid artery disease.

    Science.gov (United States)

    Keberle, M; Jenett, M; Beissert, M; Jahns, R; Haerten, R; Hahn, D

    2000-01-01

    Color Doppler sonography has gained considerable recognition as a noninvasive method to detect carotid artery disease and to assess the degree of carotid artery stenosis. However, results are highly operator-dependent and cannot be presented as survey images. The purpose of this study was to evaluate real-time 3-dimensional (3D) power Doppler sonography as a method for screening for atherosclerosis in the carotid arteries. We prospectively screened 75 patients for carotid artery disease using both conventional color Doppler sonography and 3D power Doppler sonography, and the results from the 2 modalities were compared. A total of 150 common carotid arteries, 150 internal carotid arteries, and 150 external carotid arteries were examined utilizing a 7.5-MHz linear-array transducer combined with tissue harmonic imaging. Color Doppler sonography detected 297 normal or atherosclerotic arteries without stenosis, 57 arteries with mild (1-49%) stenosis, 41 with moderate (50-69%) stenosis, 32 with severe (70-99%) stenosis, and 9 with occlusions. The degree of stenosis determined by color Doppler sonography correlated with that determined by 3D power Doppler sonography (r = 0.982-0.998). Moreover, there was a good correlation between the measurements for both the length of the lesion and its distance from the bulb as determined by the 3D volume surveys and by color Doppler sonography (r = 0.986). The interobserver variability rate was 3.7% +/- 0.5%. Generally, the acquisition and reconstruction of the 3D data took less than 5 minutes. 3D power Doppler sonography is easy to perform and is an accurate method in screening for atherosclerotic lesions of the carotid arteries. Moreover, it provides excellent 3D volume surveys that may be helpful in the planning of surgical treatment. Copyright 2000 John Wiley & Sons, Inc.

  14. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  15. Estimating the planetary boundary layer height from radiosonde and doppler lidar measurements in the city of São Paulo - Brazil

    Science.gov (United States)

    Marques, Márcia T. A.; Moreira, Gregori de A.; Pinero, Maciel; Oliveira, Amauri P.; Landulfo, Eduardo

    2018-04-01

    This study aims to compare the planetary boundary layer height (PBLH) values estimated by radiosonde data through the bulk Richardson number (BRN) method and by Doppler lidar measurements through the Carrier to Noise Ratio (CNR) method, which corresponds to the maximum of the variance of CNR profile. The measurement campaign was carried during the summer of 2015/2016 in the city of São Paulo. Despite the conceptual difference between these methods, the results show great agreement between them.

  16. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  17. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    F. Søraas

    1994-08-01

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  18. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    K. Aarsnes

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  19. RAIN

    DEFF Research Database (Denmark)

    Monti, Matteo; Rasmussen, Steen

    2017-01-01

    We summarize the results and perspectives from a companion article, where we presented and evaluated an alternative architecture for data storage in distributed networks. We name the bio-inspired architecture RAIN, and it offers file storage service that, in contrast with current centralized clou...... will integrate multiple current and future infrastructures ranging from online services and cryptocurrency to parts of government administration....

  20. Measurement of nitrophenols in rain and air by two-dimensional liquid chromatography-chemically active liquid core waveguide spectrometry.

    Science.gov (United States)

    Ganranoo, Lucksagoon; Mishra, Santosh K; Azad, Abul K; Shigihara, Ado; Dasgupta, Purnendu K; Breitbach, Zachary S; Armstrong, Daniel W; Grudpan, Kate; Rappenglueck, Bernhard

    2010-07-01

    We report a novel system to analyze atmospheric nitrophenols (NPs). Rain or air sample extracts (1 mL) are preconcentrated on a narrow bore (2 mm) aliphatic anion exchanger. In the absence of strong retention of NPs exhibited by aromatic ion exchangers, retained NPs are eluted as a plug by injection of 100 microL of 0.1 M Na(2)SO(4) on to a short (2 x 50 mm) reverse phase C-18 column packed with 2.2 mum particles. The salt plug passes through the C-18 column unretained while the NPs are separated by an ammonium acetate buffered methanol-water eluent, compatible with mass spectrometry (MS). The eluted NPs are measured with a long path Teflon AF-based liquid core waveguide (0.15 x 1420 mm) illuminated by a 403 nm light emitting diode and detected by a monolithic photodiode-operational amplifier. The waveguide is rendered chemically active by suspending it over concentrated ammonia that permeates into the lumen. The NPs ionize to the yellow anion form (lambda(max) approximately 400 nm). The separation of 4-nitrophenol, 2,4-dinitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, and 2-nitrophenol (these are the dominant NPs, typically in that order, in both rain and air of Houston and Arlington, TX, confirmed by tandem MS) takes just over 5 min with respective S/N = 3 limits of detection (LODs) of 60, 12, 30, 67, and 23 pg/mL compared to MS/MS LODs of 20, 49, 11, 20, and 210 pg/mL. Illustrative air and rain data are presented.

  1. Deep Joint Rain Detection and Removal from a Single Image

    OpenAIRE

    Yang, Wenhan; Tan, Robby T.; Feng, Jiashi; Liu, Jiaying; Guo, Zongming; Yan, Shuicheng

    2016-01-01

    In this paper, we address a rain removal problem from a single image, even in the presence of heavy rain and rain streak accumulation. Our core ideas lie in the new rain image models and a novel deep learning architecture. We first modify an existing model comprising a rain streak layer and a background layer, by adding a binary map that locates rain streak regions. Second, we create a new model consisting of a component representing rain streak accumulation (where individual streaks cannot b...

  2. Use of the RAINS model in acid rain negotiations in Europe

    International Nuclear Information System (INIS)

    Hordijk, L.

    1991-01-01

    The use of models in international negotiations on environmental problems for which no compulsory action can be imposed is a recent trend. In the past, international agreements have been reached without any model being used. For example, the first step in reducing acid rain in Europe and North America was made in 1985 without using an integrated model. Neither was a model used to establish the Vienna Convention on Protection of the Ozone Layer (1986). Analyzing the reasons for using mathematical models in environmental negotiations is not the subject of this paper. Suffice it to say there are several recent examples of models being used in preparing international policy actions, for instance the Law of the Sea and the Intergovernmental Panel on Climate Change. The acceptance of models as tools in negotiations depends on many factors. The differences in the attitudes toward use of models in the case of assessment of acid rain in Europe and North America have been analyzed. In this paper, the author reviews the current use of the RAINS model and points out some lessons for the development of models that could be used in international environmental negotiations

  3. Transcranial Doppler velocimetry in aneurysmal subarachnoid haemorrhage

    DEFF Research Database (Denmark)

    Staalsø, J M; Edsen, T; Romner, B

    2013-01-01

    -coded transcranial Doppler (TCCD), with the secondary aim of describing prediction of angiographic vasospasm and mortality. METHODS: /st>Sixty patients and 70 healthy controls were each examined in duplicate by alternating operators. A total of 939 measurements divided on 201 examination sets were conducted by four...

  4. Toward the development of a low-cost laser Doppler module for ophthalmic microscopes

    Science.gov (United States)

    Cattini, Stefano; Rovati, Luigi

    2012-03-01

    A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.

  5. Prediction of cerebrovascular reserve by the MRI and doppler ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hui Joong; Kim, Yong Sun [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2005-07-15

    We investigated acute stroke patterns on diffusion weighted images and with doppler ultrasonography studies of ICA and MCA steno-occlusive diseases in order to predict the cerbrovascular reserve (CVR), as was measured by acetazolamide (ACZ)-challenged Tc-99m ECD brain perfusion SPECT. A retrospective analysis was performed of 76 patients who underwent MRI/MRA, ACZ-challenged Tc-99m ECD brain perfusion SPECT, and carotid and vertebral artery Doppler sonography. After dividing these patients into four groups-MCA and ICA ateno-occlusions, we analyzed the relationship between the CVR and topologic MR patterns and the flow volume, as was measured by Doppler sonography. The CVRs were preserved in 26 of 76 patients. The CVRs were impaired in those cases of occlusion that were detected on MRA and also by the pattern of the territorial involvement on the diffusion weighted image ({rho} < 0.05, x{sup 2} test). Yet in cases of preserved CVRs, the flow volume of the contralateral ICA, the anterior circulation, and the total cerebral flow volume were increased, as was checked by Doppler sonography ({rho} < 0.05, t-test). As calculated by logistic regression analysis, the accuracy for predicting the preserved CVR by using the statistically significant variables was 78%. We believe that the MRI-SPECT correlation study was helpful for understanding the hemodynamics and topographic patterns of ischemia in patients with ICA and MCA steno-occlusive disease, and that the flow volume measurement, which was done by using duplex US, was useful for predicting the CVR.

  6. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  7. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  8. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger.

    Science.gov (United States)

    Schoeppler, Diana; Schnitzler, Hans-Ulrich; Denzinger, Annette

    2018-03-15

    Bats of the Rhinolophidae and Hipposideridae families, and Pteronotus parnellii, compensate for Doppler shifts generated by their own flight movement. They adjust their call frequency such that the frequency of echoes coming from ahead fall in a specialized frequency range of the hearing system, the auditory fovea, to evaluate amplitude and frequency modulations in echoes from fluttering prey. Some studies in hipposiderids have suggested a less sophisticated or incomplete Doppler shift compensation. To investigate the precision of Doppler shift compensation in Hipposideros armiger, we recorded the echolocation and flight behaviour of bats flying to a grid, reconstructed the flight path, measured the flight speed, calculated the echo frequency, and compared it with the resting frequency prior to each flight. Within each flight, the average echo frequency was kept constant with a standard deviation of 110 Hz, independent of the flight speed. The resting and reference frequency were coupled with an offset of 80 Hz; however, they varied slightly from flight to flight. The precision of Doppler shift compensation and the offset were similar to that seen in Rhinolophidae and P. parnellii. The described frequency variations may explain why it has been assumed that Doppler shift compensation in hipposiderids is incomplete.

  9. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  10. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  11. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  12. Color doppler imaging of subclavian steal phenomenon

    International Nuclear Information System (INIS)

    Cho, Nari Ya; Chung, Tae Sub; Kim, Jai Keun

    1997-01-01

    To evaluate the characteristic color doppler imaging of vertebral artery flow in the subclavian steal phenomenon. The study group consisted of eight patients with reversed vertebral artery flow proved by color Doppler imaging. We classified this flow into two groups:(1) complete reversal;(2) partial reversal, as shown by Doppler velocity waveform. Vertebral angiography was performed in six of eight patients;color Doppler imaging and angiographic findings were compared. On color Doppler imaging, all eight cases with reversed vertebral artery flow showed no signal at the proximal subclavian or brachiocephalic artery. We confirmed shunting of six cases by performing angiography from the contralateral vertebral and basilar artery to the ipsilateral vertebral artery. On the Doppler spectrum, six cases showed complete reversal and two partial reversal. On angiography, one partial reversal case showed complete occlusion of the subclavian artery with abundant collateral circulation of muscular branches of the vertebral artery. On color Doppler imaging, a reversed vertebral artery suggests the subclavian steal phenomenon. In particular, partial reversal waveform may reflect collateral circulation

  13. Evaluation of factors influencing arterial Doppler waveforms in an in vitro flow phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Seung Hyup [Dept. of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    The aim of this study was to investigate factors that influence arterial Doppler waveforms in an in vitro phantom to provide a more accurate and comprehensive explanation of the Doppler signal. A flow model was created using a pulsatile artificial heart, rubber or polyethylene tubes, a water tank, and a glass tube. Spectral Doppler tracings were obtained in multiple combinations of compliance, resistance, and pulse rate. Peak systolic velocity, minimum diastolic velocity, resistive index (RI), pulsatility index, early systolic acceleration time, and acceleration index were measured. On the basis of these measurements, the influences of the variables on the Doppler waveforms were analyzed. With increasing distal resistance, the RI increased in a relatively linear relationship. With increasing proximal resistance, the RI decreased. The pulsus tardus and parvus phenomenon was observed with a small acceleration index in the model with a higher grade of stenosis. An increase in the distal resistance masked the pulsus tardus and parvus phenomenon by increasing the acceleration index. Although this phenomenon occurred independently of compliance, changes in the compliance of proximal or distal tubes caused significant changes in the Doppler waveform. There was a reverse relationship between the RI and the pulse rate. Resistance and compliance can alter the Doppler waveforms independently. The pulse rate is an extrinsic factor that also influences the RI. The compliance and distal resistance, as well as proximal resistance, influence the pulsus tardus and parvus phenomenon.

  14. Doppler color flow mapping of peripheral vessels: Comparison of angiodynography with conventional duplex US

    International Nuclear Information System (INIS)

    Merritt, C.R.B.; Bluth, E.I.; Sullivan, M.A.

    1986-01-01

    A new Doppler color flow imager was compared to duplex US in the evaluation of carotid and peripheral vessels in 50 patients. A 7.5-MHz transducer permitted simultaneous high-resolution real-time imaging of Doppler flow and tissue. The system was found to have excellent image quality and Doppler sensitivity. Flow characteristics and velocity measurements obtained with this system correlated well with those obtained using the duplex scanner and were obtained more quickly than with the conventional system, allowing more complete assessment of flow characteristics. Color Doppler flow imaging appears to be an extremely promising method for the rapid and effective evaluation of peripheral vascular flow

  15. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  16. Acid rain stimulation of Lake Michigan phytoplankton growth

    Science.gov (United States)

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  17. Quantitative precipitation climatology over the Himalayas by using Precipitation Radar on Tropical Rainfall Measuring Mission (TRMM) and a dense network of rain-gauges

    Science.gov (United States)

    Yatagai, A.

    2010-09-01

    Quantified grid observation data at a reasonable resolution are indispensable for environmental monitoring as well as for predicting future change of mountain environment. However quantified datasets have not been available for the Himalayan region. Hence we evaluate climatological precipitation data around the Himalayas by using Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation. To validate and adjust these patterns, we used a dense network of rain gauges collected by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE Water Resources) project (http://www.chikyu.ac.jp/precip/). We used more than 2600 stations which have more than 10-year monthly precipitation over the Himalayan region (75E-105E, 20-36N) including country data of Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. The region we studied is so topographically complicated that horizontal patterns are not uniform. Therefore, every path data of PR2A25 (near-surface rain) was averaged in a 0.05-degree grid and a 10-year monthly average was computed (hereafter we call PR). On the other hand, for rain-gauge, we first computed cell averages if each 0.05-degree grid cell has 10 years observation or more. Here we refer to the 0.05-degree rain-gauge climatology data as RG data. On the basis of comparisons between the RG and PR composite values, we defined the parameters of the regressions to correct the monthly climatology value based on the rain gauge observations. Compared with the RG, the PR systematically underestimated precipitation by 28-38% in summer (July-September). Significant correlation between TRMM/PR and rain-gauge data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in

  18. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  19. Effects of various factors on Doppler ultrasonographic measurements of radial and coccygeal arterial blood pressure in privately owned, conscious cats.

    Science.gov (United States)

    Whittemore, Jacqueline C; Nystrom, Michael R; Mawby, Dianne I

    2017-04-01

    OBJECTIVE To assess the effects of age, body condition score (BCS), and muscle condition score (MCS) on radial and coccygeal systolic arterial blood pressure (SAP) in cats. DESIGN Prospective randomized trial. ANIMALS 66 privately owned cats enrolled between May and December 2010. PROCEDURES BCS and MCS of cats were assessed by 2 investigators; SAP was measured via Doppler ultrasonic flow detector, with cats positioned in right lateral or sternal recumbency for measurements at the radial or coccygeal artery, respectively, with order of site randomized. Associations among variables were assessed through correlation coefficients, partial correlation coefficients, and ANCOVA. RESULTS Interrater reliability for BCS and MCS assessment was high (correlation coefficients, 0.95 and 0.83, respectively). No significant effect was identified for order of SAP measurement sites. Coccygeal and radial SAP were positively correlated (ρ = 0.45). The median difference in coccygeal versus radial SAP was 19 mm Hg, but differences were not consistently positive or negative. Radial SAP was positively correlated with age (ρ = 0.48) and negatively correlated with MCS (ρ = -0.30). On the basis of the correlation analysis, the association between radial SAP and MCS reflected the confounding influence of age. Coccygeal SAP was not significantly correlated with age, BCS, or MCS. CONCLUSIONS AND CLINICAL RELEVANCE Use of the coccygeal artery is recommended to reduce the confounding effects of age and sarcopenia on Doppler ultrasonographic SAP measurements in cats. Additionally, monitoring for changes in MCS is recommended for cats undergoing serial SAP measurement.

  20. Transthoracic Doppler echocardiography – noninvasive diagnostic window for coronary flow reserve assessment

    Directory of Open Access Journals (Sweden)

    Dimitrow Paweł

    2003-04-01

    Full Text Available Abstract This review focuses on transthoracic Doppler echocardiography as noninvasive method used to assess coronary flow reserve (CFR in a wide spectrum of clinical settings. Transthoracic Doppler echocardiography is rapidly gaining appreciation as popular tool to measure CFR both in stenosed and normal epicardial coronary arteries (predominantly in left anterior descending coronary artery. Post-stenotic CFR measurement is helpful in: functional assessment of moderate stenosis, detection of significant or critical stenosis, monitoring of restenosis after revascularization. In the absence of stenosis in the epicardial coronary artery, decreased CFR enable to detect impaired microvascular vasodilatation in: reperfused myocardial infarct, arterial hypertension with or without left ventricular hypertrophy, diabetes mellitus, hypercholesterolemia, syndrome X, hypertrophic cardiomyopathy. In these diseases, noninvasive transthoracic Doppler echocardiography allows for serial CFR evaluations to explore the effect of various pharmacological therapies.

  1. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  2. Ultrasonic Doppler color in glaucoma: Concordance study

    International Nuclear Information System (INIS)

    Uriza, Felipe; Useche, Nicolas

    2005-01-01

    Our study demonstrates that US color Doppler is a non invasive, reliable and reproducible method for the evaluation of the orbitary flow in normal and glaucomatous patients. However is suggested that every group evaluates the inter and intraobserver variability because of the lack of universal reference velocity measurements

  3. quantification of rain quantification of rain induced artifacts on digital

    African Journals Online (AJOL)

    eobe

    DSTV) ... satellite television, rain attenuation, digital artifacts, pixelation, rainfall rate. 1. ... screen and blocking are commonly observed in .... The precipitation data was collected using a self- ..... Networks: Comparison at Equatorial and Subtropical.

  4. Comparing Satellite Rainfall Estimates with Rain-Gauge Data: Optimal Strategies Suggested by a Spectral Model

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Validation of satellite remote-sensing methods for estimating rainfall against rain-gauge data is attractive because of the direct nature of the rain-gauge measurements. Comparisons of satellite estimates to rain-gauge data are difficult, however, because of the extreme variability of rain and the fact that satellites view large areas over a short time while rain gauges monitor small areas continuously. In this paper, a statistical model of rainfall variability developed for studies of sampling error in averages of satellite data is used to examine the impact of spatial and temporal averaging of satellite and gauge data on intercomparison results. The model parameters were derived from radar observations of rain, but the model appears to capture many of the characteristics of rain-gauge data as well. The model predicts that many months of data from areas containing a few gauges are required to validate satellite estimates over the areas, and that the areas should be of the order of several hundred km in diameter. Over gauge arrays of sufficiently high density, the optimal areas and averaging times are reduced. The possibility of using time-weighted averages of gauge data is explored.

  5. Delineation of Rain Areas with TRMM Microwave Observations Based on PNN

    Directory of Open Access Journals (Sweden)

    Shiguang Xu

    2014-12-01

    Full Text Available False alarm and misdetected precipitation are prominent drawbacks of high-resolution satellite precipitation datasets, and they usually lead to serious uncertainty in hydrological and meteorological applications. In order to provide accurate rain area delineation for retrieving high-resolution precipitation datasets using satellite microwave observations, a probabilistic neural network (PNN-based rain area delineation method was developed with rain gauge observations over the Yangtze River Basin and three parameters, including polarization corrected temperature at 85 GHz, difference of brightness temperature at vertically polarized 37 and 19 GHz channels (termed as TB37V and TB19V, respectively and the sum of TB37V and TB19V derived from the observations of the Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI. The PNN method was validated with independent samples, and the performance of this method was compared with dynamic cluster K-means method, TRMM Microwave Imager (TMI Level 2 Hydrometeor Profile Product and the threshold method used in the Scatter Index (SI, a widely used microwave-based precipitation retrieval algorithm. Independent validation indicated that the PNN method can provide more reasonable rain areas than the other three methods. Furthermore, the precipitation volumes estimated by the SI algorithm were significantly improved by substituting the PNN method for the threshold method in the traditional SI algorithm. This study suggests that PNN is a promising way to obtain reasonable rain areas with satellite observations, and the development of an accurate rain area delineation method deserves more attention for improving the accuracy of satellite precipitation datasets.

  6. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  7. Parametric Investigation of Laser Doppler Microphones

    Science.gov (United States)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  8. Modeling and processing of laser Doppler reactive hyperaemia signals

    Science.gov (United States)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  9. Comparison of Global Sizing Velocimetry and Phase Doppler Anemometry measurements of alternative jet fuel sprays

    Science.gov (United States)

    Sadr, Reza; Kannaiyan, Kumaran

    2013-11-01

    Atomization plays a crucial precursor role in liquid fuel combustion that directly affects the evaporation, mixing, and emission levels. Laser diagnostic techniques are often used to study the spray characteristics of liquid fuels. The objective of this work is to compare the spray measurements of Gas-to Liquid (GTL) jet fuels obtained using Global Sizing Velocimetry (GSV) and Phase Doppler Anemometry (PDA) techniques at global and local levels, respectively. The chemical and physical properties of GTL fuels are different from conventional jet fuels, owing to the difference in their production methodology. In this work, the experimental facility, the measurement techniques, and spray characteristics of two different GTL fuels are discussed and compared with those of Jet A-1 fuel. Results clearly demonstrate that although the global measurement gives an overall picture of the spray, fine details are obtained only through local measurements and complement in gaining more inferences into the spray characteristics. The results also show a close similarity in spray characteristics between GTL and Jet A-1 fuels. Funded by Qatar Science and Technology Park.

  10. Chemical characteristics of rain-water

    International Nuclear Information System (INIS)

    Kasahara, Mikio; Ogiwara, Hiroshi; Park, Jeong-Ho; Takahashi, Kanji

    1994-01-01

    Rain drops were collected every 0.1mm precipitation. Rain water was passed through a Nuclepore filter with 0.2μm pore-size. Chemical species in the filtrate and the residue are defined as a soluble and an insoluble component, respectively. Dry PIXE samples from filtrate were prepared bydropping and evaporating successively ten 20μ l drops with a micropipet onto a non-hole thin film. The drops were dried in a spot-like of 4mmφ such that all of the samples were bombarded by 6mmφ ion beam. Elemental concentrations were determined with 2.0 MeV H + beam from a Tandem accelerator. X-rays with 0.5-14.8keV energy were detected by a Si(Li) detector after passing through a 39.3μm thick Maylar absorber. The concentrations of all analyzed 15 elements in both insoluble and soluble components decreased rapidly from the beginning of rain to the amount of 0.3mm rain fall as well asban electrical conductivity. Most of Si and Fe were insoluble, on the other hand, most of S and Cl were soluble. (author)

  11. Color doppler sonography in thickened gallbladder wall

    International Nuclear Information System (INIS)

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki

    1996-01-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes

  12. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface

    Science.gov (United States)

    Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran

    2016-04-01

    Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.

  13. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  14. Quantification of rain gauge measurement undercatch and wind speed correction

    Science.gov (United States)

    Pollock, Michael; Quinn, Paul; Dutton, Mark; Wilkinson, Mark

    2014-05-01

    Hydrological processes are adversely affected by systematic rain gauge inaccuracy due to wind induced undercatching. The implications of this are discussed and addressed. Despite evidence of the undercatch problem being cited in the past and the difficulty in solving such a complex problem; it has become an inconvenient truth to hydrologists that major inaccuracies in rainfall measurement exist. A two year long experiment using new equipment and improved data logging and telemetery techniques enriches this formative work to redress the wilful neglect with which accurate rainfall measurement has been treated in recent decades. Results from this work suggest that the annual systematic undercatch can be in the order of 20 percent in the UK. During specific periods (measured at high temporal resolution), this can rise to as high as 50 percent for a single wind impacted event. As one organisation, responsible for the environment in the UK, moves towards using fewer instruments (15 percent fewer in the next year), it is scarcely possible to overstate the importance in solving this problem. It had been hoped that new equipment, such as acoustic distrometer and weighing gauge technologies, would be able to reduce the magnitude of the bias. However, through data gathered in the 2 year experiment and through secondary sources from the 1970s and 1980s, it is demonstrated that this is not the case and that the same problems with undercatching remain now as they did then. We further postulate that wider, denser networks of inexpensive telemetered equipment are now possible but they must still address the undercatch issue. There is little merit in pointing out an age old problem if no solution is put forward to fix it. The aforementioned experiment has furnished new ideas and further work has been commissioned to address this problem. This will be achieved via the medium of a Knowledge Transfer Partnership between Newcastle University and an innovative equipment manufacturer

  15. Differences in rain rate intensities between TRMM observations and community atmosphere model simulations

    Science.gov (United States)

    Deng, Yi; Bowman, Kenneth P.; Jackson, Charles

    2007-01-01

    Precipitation related latent heating is important in driving the atmospheric general circulation and in generating intraseasonal to decadal atmospheric variability. Our ability to project future climate change, especially trends in costly precipitation extremes, hinges upon whether coupled GCMs capture processes that affect precipitation characteristics. Our study compares the tropical-subtropical precipitation characteristics of simulations by the NCAR CAM3.1 atmospheric GCM and observations derived from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite. Despite a fairly good simulation of the annual mean rain rate, CAM rains about 10-50% more often than the real world and fails to capture heavy rainfall associated with deep convective systems over subtropical South America and U.S. Southern Plains. When it rains, there is a likelihood of 0.96-1.0 that it rains lightly in the model, compared to values of 0.84-1.0 in TRMM data. On the other hand, the likelihood of the occurrence of moderate to heavy rainfall is an order of magnitude higher in observations (0.12-0.2) than that in the model (model compensates for the lack of heavy precipitation through raining more frequently within the light rain category, which leads to an annual rainfall amount close to what is observed. CAM captures the qualitative change of rain rate PDF from a "dry" oceanic to a "wet" oceanic region, but it fails to simulate the change of precipitation characteristics from an oceanic region to a land region where thunderstorm rainfall dominates.

  16. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  17. Principles of doppler tomography

    International Nuclear Information System (INIS)

    Juhlin, P.

    1992-08-01

    This paper shows how the radon transform can be used to determine vector fields. A scheme to determine the velocity field of a moving fluid by measurements with a continuous doppler signal is suggested. When the flow is confined to a bounded domain, as is the case in most applications, it can be uniquely decomposed into one gradiental and one rotational part. The former vanishes if the fluid is incompressible and source-free, and the latter can be completely reconstructed by the methods proposed in this paper if the domain is simply connected. Special attention is paid to laminar flow in a long cylindrical vessel with circular cross-section. Under such conditions the flow profile becomes parabolic, which makes the vessel recognizable as a typical 'N-shaped' pattern in an image describing the rotation of the velocity field. The vessel yields the same doppler tomographic pattern, no matter how it is sectioned. The ideas presented should be applicable also when studying the flow in blood vessels, even if the flow profile in these is not quite parabolic. The discrepancies only make the 'N-shape' somewhat distorted

  18. Rain-induced spring wheat harvest losses

    Science.gov (United States)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  19. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  20. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-09-01

    Full Text Available In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI, a novel triple-etalon Fabry-Perot interferometer (FPI designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s−1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s−1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  1. Rain garden guidelines for southwest Ohio

    Science.gov (United States)

    Rain gardens are a unique and practical landscape feature that can enhance the beauty of home gardens. When properly installed, they are one method of limiting the negative effects of rainfall runoff in urban areas. Indeed, rain gardens turn a "negative" into a "positive" by capt...

  2. Erosion by rain in the western Congo

    International Nuclear Information System (INIS)

    Ploey, J. de

    1967-01-01

    Vast expanses of the western part of central and southern Africa are covered with uniform, sandy formations of the Kalahari type. The topography of these areas and their present morphological characteristics are mainly the result of erosion by rain. Information on the hydrology of the surface waters in these areas is fairly limited and is insufficient to permit any conclusions regarding the way in which erosion by rain takes place. To obtain a better understanding of these phenomena, the author devised a series of experiments based on the use of 46 Sc-labelled radioactive sand. These experiments began at the beginning of the 1964/65 rainy season and are continuing. The experimental plot corresponds to convex and rectilinear portions of a hillside with a slope varying between 0 and 12 degrees. The vegetation consists of grassy savannah of substeppe appearance and secondary forests. Series of labelled samples were placed successively on the surface of the experimental plot and the erosive effect of rain was determined by measuring the residual concentrations after rainfall. Some samples were placed below a shield so as to eliminate the effects of splash and reveal the part played by runoff. Radiographic films were used to study the dispersion of labelled particles in the surrounding area. This radiographic method made it possible to determine the scale of erosion by splash for different rainfall conditions. The erosion diagrams obtained from these experiments show the correlations that exist between the intensity and duration of the rainfall and the erosion of the soil. Examination of the erosion diagrams and the shielded samples and analysis of the radiographs showed that erosion by rain on Kalahari ground covered with substeppe savannah is caused mainly by splash erosion and by dispersed, intermittent runoff. Sheet wash plays no part if the slope is less than 12 degrees. (author) [fr

  3. Vascular response to ischemia in the feet of falanga torture victims and normal controls--color and spectral Doppler findings

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Amris, Kirstine; Holm, Christian Cato

    2009-01-01

    to controls. On color Doppler this would be seen as less color after ischemia and on spectral Doppler as elevated resistive index (RI). METHODS: Ten male torture victims from the Middle East and nine age, sex and ethnically matched controls underwent Doppler examination of the abductor hallucis and flexor...... digitorum brevis muscles before and after two minutes ischemia induced with a pressure cuff over the malleoli. The color Doppler findings were quantified with the color fraction (CF) before and after ischemia. On spectral Doppler the resistive index was measured once before and three consecutive times after....... However, the trend in RI still supports the hypothesis. The negative findings may be due to inadequate design where the CF and RI were measured in one setting, perhaps resulting in both methods being applied imperfectly. The response to ischemia seems short-lived and we suggest that the Doppler methods...

  4. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    Science.gov (United States)

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  5. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  6. Modal parameter determination of a lightweight aerospace panel using laser Doppler vibrometer measurements

    Science.gov (United States)

    de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.

    2016-06-01

    The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.

  7. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  8. The medical Doppler in hand surgery: its scientific basis, applications, and the history of its namesake, Christian Johann Doppler.

    Science.gov (United States)

    Ghori, Ahmer K; Chung, Kevin C

    2007-12-01

    The word Doppler is used synonymously in hand surgery for evaluating patency of vascular structures; however, the science and history behind the Doppler effect are not as well-known. We will present the theories behind the Doppler effect and the history of the person who made this discovery.

  9. Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry

    Science.gov (United States)

    Gu, Yan

    2017-06-01

    Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.

  10. Anomalous Doppler effects in bulk phononic crystal

    International Nuclear Information System (INIS)

    Cai Feiyan; He Zhaojian; Zhang Anqi; Ding Yiqun; Liu Zhengyou

    2010-01-01

    Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.

  11. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  12. Endosonographic and color doppler flow imaging alterations observed within irradiated rectal cancer

    International Nuclear Information System (INIS)

    Alexander, Archie A.; Palazzo, Juan P.; Ahmad, Neelofur R.; Liu, J.-B.; Forsberg, Flemming; Marks, John

    1996-01-01

    Purpose: To correlate the endosonographic and color Doppler flow imaging alterations observed in irradiated rectal cancers with the pathologic features of radiation response, and to evaluate the potential impact of altered blood flow on the integrity of the surgical anastamosis. Methods and Materials: Endosonography with color and pulsed wave Doppler was performed on 20 rectal cancer masses before and after high dose preoperative radiation (XRT). Pre- and post-XRT observations included comparing alterations in tumor size, sonographic echotexture, color Doppler flow, and pulsatility indices. Comparisons were made with pathologic findings in the irradiated specimens and with the incidence of anastomotic failure. Results: Compared to pre-XRT observations, irradiated rectal cancers decreased in size and became either mixed in echogenicity with less apparent color Doppler flow (16 of 20) or unchanged in color Doppler flow and echotexture (4 of 20). Those with less flow (16 of 20) were imaged later (mean = 90.2 ± 12.1 days) than those without change in color Doppler flow (mean = 21.7 ± 2.7 days). Pathologically, the group of four without change in color Doppler signal had features of acute inflammation which were not observed in 16 of 20 imaged later. Based on pulsatility index measurements, both high and low resistance vessels were detected and confirmed by immunohistochemical staining, and features of postradiation obliterative vasculitis were observed. Only one primary anastomosis in 14 patients with decreased flow failed. Conclusions: The sonographic and color Doppler flow imaging alterations observed within irradiated rectal cancer correlated with changes of postradiation obliterative vasculitis. The apparent diminished local blood flow within high and low resistance vessels post-XRT did not result in an increased incidence of anastomotic failures

  13. Tissue Doppler echocardiography – A case of right tool, wrong use

    Directory of Open Access Journals (Sweden)

    Thomas George

    2004-08-01

    Full Text Available Abstract Background The developments in echocardiography or ultrasound cardiography (UCG have improved our clinical capabilities. However, advanced hardware and software capabilities have resulted in UCG facilities of dubious clinical benefits. Is tissue Doppler echocardiography (TDE is one such example? Presentation of the hypothesis TDE has been touted as advancement in the field of echocardiography. The striking play of colors, impressive waveforms and the seemingly accurate velocity values could be deceptive. TDE is a clear case of inappropriate use of technology. Testing the hypothesis To understand this, a comparison between flow Doppler and tissue Doppler is made. To make clinically meaningful velocity measurements with Doppler, we need prior knowledge of the line of motion. This is possible in blood flow but impossible in the complex myocardial motion. The qualitative comparison makes it evident that Doppler is best suited for flow studies. Implications of the hypothesis As of now TDE is going backwards using an indirect method when direct methods are better. The work on TDE at present is only debatable 'research and publication' material and do not translate into tangible clinical benefits. There are several advances like curved M-mode, strain rate imaging and tissue tracking in TDE. However these have been disappointing. This is due to the basic flaw in the application of the principles of Doppler. Doppler is best suited for flow studies and applying it to tissue motion is illogical. All data obtained by TDE is scientifically incorrect. This makes all the published papers on the subject flawed. Making diagnostic decisions based on this faulty application of technology would be unacceptable to the scientific cardiologist.

  14. Acid rain information book. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of increasingly widespread acid rain demand that this phenomenon be carefully evaluated. Reveiw of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses major aspects of the acid rain phenomenon, points out areas of uncertainty, and summarizes current and projected research by responsible government agencies and other concerned organizations.

  15. Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields

    OpenAIRE

    Hipp, Susanne

    2015-01-01

    This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...

  16. Low-temperature positron lifetime and Doppler-broadening measurements for single-crystal nickel oxide containing cation vacancies

    International Nuclear Information System (INIS)

    Waber, J.T.; Snead, C.L. Jr.; Lynn, K.G.

    1985-01-01

    Lifetime and Doppler-broadening measurements for positron annihilation in substoichiometric nickelous oxide have been made concomitantly from liquid-helium to room temperature. The concentration of cation vacancies is readily controlled by altering the ambient oxygen pressure while annealing the crystals at 1673 0 K. It was found that neither of the three lifetimes observed or their relative intensities varied significantly with the oxygen pressure, and the bulk rate only increased slightly when the specimen was cooled from room to liquid-helium temperatures. These results are interpreted as indicating that some of the positrons are trapped by the existing cation vacancies and a smaller fraction by vacancy clusters

  17. Application of Positron Doppler Broadening Spectroscopy to the Measurement of the Uniformity of Composite Materials

    International Nuclear Information System (INIS)

    Quarles, C. A.; Sheffield, Thomas; Stacy, Scott; Yang, Chun

    2009-01-01

    The uniformity of rubber-carbon black composite materials has been investigated with positron Doppler Broadening Spectroscopy (DBS). The number of grams of carbon black (CB) mixed into one hundred grams of rubber, phr, is used to characterize a sample. A typical concentration for rubber in tires is 50 phr. The S parameter measured by DBS has been found to depend on the phr of the sample as well as the type of rubber and carbon black. The variation in carbon black concentration within a surface area of about 5 mm diameter can be measured by moving a standard Na-22 or Ge-68 positron source over an extended sample. The precision of the concentration measurement depends on the dwell time at a point on the sample. The time required to determine uniformity over an extended sample can be reduced by running with much higher counting rate than is typical in DBS and correcting for the systematic variation of S parameter with counting rate. Variation in CB concentration with mixing time at the level of about 0.5% has been observed.

  18. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  19. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR......After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found...

  20. The role of Doppler ultrasonography in the evaluation of the renal function

    International Nuclear Information System (INIS)

    Krasteva, R.; Kiperova, B.; Andreev, E.; Kostadinova, I.; Petrov, T.; Hadjidekov, V.; Simeonova, A.

    2008-01-01

    The purpose of the study was to evaluate Doppler ultrasonography in the detection of the renal function. Sixty six patients with unilateral kidney changes were enrolled in this prospective study. 16 had hypoplastic kidney, 24 had hypofunctioned kidney and 26 had afunctioned kidney. 15 healthy potential donors were controls. A dynamic renal scintigraphy was performed with 74-111 MBq 99mTc-MAG3. The Color, Pulsed and Power Doppler were performed. The Vp and δVp derived from the spectrum of the segmental arteries were measured during Pulsed Doppler examination. There are not any difference between kidneys of health and hypoplastic kidneys on color and Power Doppler. The hypofunctioning kidneys had reduced blood flow and afunctioning kidneys had markedly reduced blood flow. The Vp of donors (48.8±7.6) and Vp of hypoplastic kidneys (49.9±4.8) were significantly higher compared to Vp of hypofunctioning kidneys (31.6±10.0) and to Vp of afunctioning kidneys (26.6±9.1), (p 14.5 cm/s in 93%, and from hypofunctioning kidney by delta Vp>10.5 cm/s in 87%. The Doppler ultrasonography is very useful in the evaluation of renal function. The changes of the Doppler parameters accurately marked the loss of function which can not be detected by elevation of the creatinine level. (authors)

  1. Analysis of placenta vascularization in patients with uterine altered artery Doppler flow velocity exams.

    Science.gov (United States)

    Gilio, Daniel Bruno; Miranda Corrêa, Rosana Rosa; Souza de Oliveira Guimarães, Camila; Peres, Luiz Cesar; Marques Salge, Ana Karina; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; Costa da Cunha Castro, Eumenia

    2009-08-01

    One of the frequent questions in obstetric practice is to determine placental vascular changes that may account for abnormal Doppler flow velocity alterations in maternal uterine vessels from women and fetuses without pregnancy pathology. A retrospective morphometric study was realized using 27 placentas from patients submitted for Doppler flow velocity exam during pregnancy. The placentas were morphologically examined using hematoxylin-eosin staining. Measurements of villi were made with the use of a video camera coupled to a common light microscope and a computer with automatic image analyzing software. Of the 27 placentas, 13 (48%) were of patients showing unaltered Doppler and 14 (52%) showing altered Doppler. The number of stem villi vessels was significantly larger in the placentas of patients with Doppler exam alterations (P = 0.003). This group also presented greater stem villi vessel thickness, although without significant difference. The number of intermediary and terminal villi vessels was greater in the placentas of patients with altered Doppler exams (P < 0.001), and a greater terminal villi area was observed in these cases (P < 0.001). The morphological proof that uterine artery Doppler flow velocity exam alterations are associated with placental vascular alterations demonstrates the importance of this exam during prenatal care, even in the absence of maternal-fetal alterations.

  2. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  3. Doppler-broadening of positron annihilation in a biological environment

    International Nuclear Information System (INIS)

    Torrisi, L.; La Mela, C.; Catania, Univ.

    1997-01-01

    The aim of this study was to investigate the Doppler effect of the 511 keV γ peak from positron annihilation in biological matter: The broadening of the annihilation peak is due to positron annihilation with electrons that have high momentum. In aqueous solutions annihilation depends on the temperature and it is linked positronium formation. Measurements in vivo, on human brain, were taken during the diagnosis of positron emission tomography (PET) on healthy patients by injecting them with the beta emitter of short lifetime 18F . The Doppler-broadening in biological tissues rich in water content decreased significantly compared to biological solutions and water

  4. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  5. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  6. Acid Rain. LC Science Tracer Bullet.

    Science.gov (United States)

    Hollmann, Pauline, Comp.

    The term "acid rain," also called "acid precipitation," generally refers to any precipitation having a pH value of less than 5.6. This guide to the literature on acid rain in the collections of the Library of Congress is not necessarily intended to be a comprehensive bibliography. It is designed to provide the reader with a set…

  7. Can Emergency Physicians Perform Common Carotid Doppler Flow Measurements to Assess Volume Responsiveness?

    Directory of Open Access Journals (Sweden)

    Stolz, Lori A.

    2015-02-01

    Full Text Available Introduction: Common carotid flow measurements may be clinically useful to determine volume responsiveness. The objective of this study was to assess the ability of emergency physicians (EP to obtain sonographic images and measurements of the common carotid artery velocity time integral (VTi for potential use in assessing volume responsiveness in the clinical setting. Methods: In this prospective observational study, we showed a five-minute instructional video demonstrating a technique to obtain common carotid ultrasound images and measure the common carotid VTi to emergency medicine (EM residents. Participants were then asked to image the common carotid artery and obtain VTi measurements. Expert sonographers observed participants imaging in real time and recorded their performance on nine performance measures. An expert sonographer graded image quality. Participants were timed and answered questions regarding ease of examination and their confidence in obtaining the images. Results: A total of 30 EM residents participated in this study and each performed the examination twice. Average time required to complete one examination was 2.9 minutes (95% CI [2.4-3.4 min]. Participants successfully completed all performance measures greater than 75% of the time, with the exception of obtaining measurements during systole, which was completed in 65% of examinations. Median resident overall confidence in accurately performing carotid VTi measurements was 3 (on a scale of 1 [not confident] to 5 [confident]. Conclusion: EM residents at our institution learned the technique for obtaining common carotid artery Doppler flow measurements after viewing a brief instructional video. When assessed at performing this examination, they completed several performance measures with greater than 75% success. No differences were found between novice and experienced groups. [West J Emerg Med. 2015;16(2:255–259.

  8. Verification of the Global Precipitation Measurement (GPM) Satellite by the Olympic Mountains Experiment (OLYMPEX)

    Science.gov (United States)

    McMurdie, L. A.; Houze, R.

    2017-12-01

    Measurements of global precipitation are critical for monitoring Earth's water resources and hydrological processes, including flooding and snowpack accumulation. As such, the Global Precipitation Measurement (GPM) Mission `Core' satellite detects precipitation ranging from light snow to heavy downpours in a wide range locations including remote mountainous regions. The Olympic Mountains Experiment (OLYMPEX) during the 2015-2016 fall-winter season in the mountainous Olympic Peninsula of Washington State provide physical and hydrological validation for GPM precipitation algorithms and insight into the modification of midlatitude storms by passage over mountains. The instrumentation included ground-based dual-polarization Doppler radars on the windward and leeward sides of the Olympic Mountains, surface stations that measured precipitation rates, particle size distributions and fall velocities at various altitudes, research aircraft equipped with cloud microphysics probes, radars, lidar, and passive radiometers, supplemental rawinsondes and dropsondes, and autonomous recording cameras that monitored snowpack accumulation. Results based on dropsize distributions (DSDs) and cross-sections of radar reflectivity over the ocean and windward slopes have revealed important considerations for GPM algorithm development. During periods of great precipitation accumulation and enhancement by the mountains on windward slopes, both warm rain and ice-phase processes are present, implying that it is important for GPM retrievals be sensitive to both types of precipitation mechanisms and to represent accurately the concentration of precipitation at the lowest possible altitudes. OLYMPEX data revealed that a given rain rate could be associated with a variety of DSDs, which presents a challenge for GPM precipitation retrievals in extratropical cyclones passing over mountains. Some of the DSD regimes measured during OLYMPEX stratiform periods have the same characteristics found in prior

  9. Ophthalmic artery color Doppler ultrasonography in mild-to-moderate preeclampsia

    International Nuclear Information System (INIS)

    Ayaz, Tunahan; Akansel, Gur.; Hayirlioglu, Alper; Arslan, Arzu; Suer, Necdet; Kuru, Ihsan

    2003-01-01

    Objective: To evaluate the hemodynamic changes in mild-moderate preeclampsia using ophthalmic artery Doppler ultrasonography technique. Methods: Ophthalmic artery pulsatility and resistivity indices were calculated in 30 mild-moderate preeclamptic women and 30 normotensive gravid women of matched gestational age. Student's t-test was performed to test the significance of difference. Results: Both indices of peripheral resistance were found to be significantly lower in the ophthalmic arteries of mild-moderately preeclamptic women than those measured in normotensive gravid women at similar stage of pregnancy. In a small number patients whose disease progressed to severe preeclampsia, both indices increased. Conclusion: In patients with mild-moderate preeclampsia, ophthalmic artery color Doppler ultrasonography detects hemodynamic changes that are not present in normotensive gravid women. Reversal of Doppler patterns in a small number of patients with progressive disease supports the hypotheses suggesting the presence of early vasodilation and late vasospasm in the etiology of preeclampsia

  10. TCSP ER-2 DOPPLER RADAR (EDOP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 DOPPLER RADAR (EDOP) dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of the ER-2...

  11. CAMEX-4 ER-2 DOPPLER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Doppler Radar dataset was collected by the ER-2 Doppler radar (EDOP), which is an X-band (9.6 GHz) Doppler radar mounted in the nose of ER-2. The...

  12. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation...... was found between the successful amputation levels and the maximal blood perfusion of the skin measured in this way....

  13. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  14. A Wearable Transcranial Doppler Ultrasound Phased Array System.

    Science.gov (United States)

    Pietrangelo, Sabino J; Lee, Hae-Seung; Sodini, Charles G

    2018-01-01

     Practical deficiencies related to conventional transcranial Doppler (TCD) sonography have restricted its use and applicability. This work seeks to mitigate several such constraints through the development of a wearable, electronically steered TCD velocimetry system, which enables noninvasive measurement of cerebral blood flow velocity (CBFV) for monitoring applications with limited operator interaction. A highly-compact, discrete prototype system was designed and experimentally validated through flow phantom and preliminary human subject testing. The prototype system incorporates a custom two-dimensional transducer array and multi-channel transceiver electronics, thereby facilitating acoustic beamformation via phased array operation. Electronic steering of acoustic energy enables algorithmic system controls to map Doppler power throughout the tissue volume of interest and localize regions of maximal flow. Multi-focal reception permits dynamic vessel position tracking and simultaneous flow velocimetry over the time-course of monitoring. Experimental flow phantom testing yielded high correlation with concurrent flowmeter recordings across the expected range of physiological flow velocities. Doppler power mapping has been validated in both flow phantom and preliminary human subject testing, resulting in average vessel location mapping times testing. A wearable prototype CBFV measurement system capable of autonomous vessel search and tracking has been presented. Although flow phantom and preliminary human validation show promise, further human subject testing is necessary to compare velocimetry data against existing commercial TCD systems. Additional human subject testing must also verify acceptable vessel search and tracking performance under a variety of subject populations and motion dynamics-such as head movement and ambulation.

  15. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  16. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    1996-08-01

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  17. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  18. Direct Doppler auscultation of the carotid arteries

    International Nuclear Information System (INIS)

    Nix, L.

    1984-01-01

    The results of the carotid Doppler examinations and contrast arteriograms are presented. The overall sensitivity of the carotid Doppler examinations in detecting severe stenosis or occlusion of the carotid artery was 92%. The Doppler studies correctly differentiated these two conditions in 84% of the diseased vessels. In carotid arteries with stenosis greater than or equal to 50%, the sensitivity of the Doppler examinations was 90%, and these studies suggested stenosis in all but two of the 36 abnormal examinations. In two patent carotids with greater than 90% stenosis, a signal could not be elicited, presumably because of the low blood flow through the severely stenotic segment

  19. 40 CFR 76.3 - General Acid Rain Program provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false General Acid Rain Program provisions. 76.3 Section 76.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.3 General Acid Rain Program provisions...

  20. Chemical characterization of fog and rain water collected at the eastern Andes cordillera

    Science.gov (United States)

    Beiderwieden, E.; Wrzesinsky, T.; Klemm, O.

    2005-09-01

    During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the "El Tiro" site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl-, NO3-, PO43-, and SO42- were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 μS cm-1 for the fog and 6 μS cm-1 for the rain. The continent samples exhibit higher concentrations of most ions as compared to the pacific samples, but these differences could not be detected statistically.

  1. Doppler coherence imaging of ion dynamics in VINETA.II and ASDEX-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gradic, Dorothea; Ford, Oliver; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lunt, Tilmann [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    In magnetically confining plasma experiments, diagnosis of ion flows is of great importance to measure the plasma response to the magnetic field or the exhaust particle flows in the divertor areas. Doppler coherence imaging spectroscopy (CIS) is a relatively new technique for the observation of plasma bulk ion dynamics. It is a passive optical diagnostic enabling line-integrated measurements to obtain 2D images of the ion flow and ion temperature. The general principle is similar to traditional Doppler spectroscopy, however CIS uses an imaging interferometer to perform narrow-bandwidth Fourier spectroscopy. A major advantage of the coherence imaging technique is the large amount of spatial information recovered. This allows tomographic inversion of the line-integrated measurements. With existing CIS setups, scrape-off-layer and high field side edge impurity flows could be observed in the MAST, core and edge poloidal He II flows in the WEGA stellarator and divertor impurity flows in DIII-D. The main objective of this study is the research of ion dynamics in the small linear plasma experiment VINETA.II and ASDEX-Upgrade. First Doppler CIS measurements from Ar-II plasma discharges in VINETA.II and He-II, C-III divertor flows in ASDEX-Upgrade and their preliminary interpretation will be presented.

  2. Acid rain. Les pluies acides

    Energy Technology Data Exchange (ETDEWEB)

    Curren, T

    1979-11-28

    This report was produced for the use of Members of Parliament and House of Commons committees. The document describes the formation of acid rain, emissions of acidifying pollutants in North America, the growth of the problem and its environmental effects on aquatic and terrestrial ecosystems, human health and man-made structures. Areas of Canada which are most susceptible are identified. Actions taken by Parliament are given, including the formation of a sub-committee on acid rain and the passing of Bill C-51 in 1980 to amend the Clean Air Act, bringing it closer to a similar law in the U.S. A chronology of government responses to acid rain at the international, national and provincial level, is given. The most recent government actions included the passing of the US Clean Air Act by the Senate, the amending of the act into law, and commencement of negotiations to develop a Canada-US Air Quality Accord. 10 refs.

  3. The combined effect of wind and rain on interrill erosion processes

    International Nuclear Information System (INIS)

    Erpul, G.; Gabriels, D.; Norton, L.D.

    2004-01-01

    Wind-driven rain is described as raindrops falling through a wind field at an angle from vertical under the effects of both gravitational and drag forces. Wind-driven raindrops gain some degree of horizontal velocity and strike the soil surface with an angle deviated from vertical. Additionally, the distribution and intensity of rainfall on sloping surfaces differs depending on wind direction and velocity. The changes in raindrop trajectory and frequency with wind velocity and direction can have significant effects on rain splash detachment process. The resultant impact velocity, impact angle, and impact frequency of raindrops determine the magnitude of rain splash detachment by wind-driven rain. This differs from the detachment process by windless rain, in which a straight-line trajectory of raindrops and accordingly greatest rainfall intensity for a given rain are implicitly assumed. Wind, as well as slope and overland flow, is another possible factor capable of transporting detached particles by raindrop impact. Once soil particles are entrained in the splash droplets that have risen into the air by raindrop impact, wind velocity gradient will transport these particles. Obviously, in addition to its role in the rain splash detachment process, the wind accompanying rain is an important consideration in the rain splash transport process, which can cause a net transportation in wind direction. In wind-driven rains, wind velocity and direction is expected to affect not only rain splash detachment and transport processes but also shallow flow sediment transport induced by raindrop impacts with an angle on flow and the rain splash trajectories of soil particles within flow. Under wind-driven rain, the interrill transport process is a combined work of both rain splash sediment transport and raindrop-impacted shallow flow sediment transport. The rain splash process acts alone until runoff occurs, and net soil transport is caused by wind. As soon as runoff starts, the

  4. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  5. Performance of a piezoelectric energy harvester in actual rain

    International Nuclear Information System (INIS)

    Wong, Voon-Kean; Ho, Jee-Hou; Chai, Ai-Bao

    2017-01-01

    When raindrops impact on the surface of a piezoelectric beam, strain energy produced by the impinging raindrop will be converted to harvestable electrical energy by the piezoelectric layers in a cantilever beam. The novelty of this study is to investigate the performance of the harvester in actual rain and provide practical insights on implementation. The influences of rain parameters such as rain rate, rainfall depth, raindrop count, and drop size distribution (DSD) are discussed in this study. The raindrops accumulated on the surface of the piezoelectric beam will form a water layer. It is described using added mass coefficient in this study. In an actual rain experiment, a piezoelectric beam with surface area of 0.0018 m 2 is able to produce 2076 μJ of energy over a duration of 301 min. The energy generation of a raindrop impact piezoelectric energy harvester is highly dependent on the rain rate. Due to the inconsistency of the energy generation, the piezoelectric energy harvester would require an integration of suitable energy storage device for continuous operation. Nevertheless, this work shows the feasibility of harvesting raindrop energy using a piezoelectric beam. - Highlights: • The performance of a piezoelectric rain energy harvester is tested in actual rain. • The energy generation is highly dependent on the rain rate. • Practical insights on the implementation of the harvester are discussed. • A total energy of 2076 μJ is generated over a duration of 301 min.

  6. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  7. Spatial variability and trends of the rain intensity over Greece

    Science.gov (United States)

    Kambezidis, H. D.; Larissi, I. K.; Nastos, P. T.; Paliatsos, A. G.

    2010-07-01

    In this study, the spatial and temporal variability of the mean annual rain intensity in Greece are examined during a 41-year period (1962-2002). The meteorological datasets concern monthly rain amounts (mm) and the respective monthly durations (h) recorded at thirty two meteorological stations of the Hellenic National Meteorological Service, which are uniformly distributed on Greek territory, in order to calculate the mean monthly rain intensity. All the rain time series used in the analysis were tested by the application of the short-cut Bartlett test of homogeneity. The spatial distribution of the mean annual rain intensity is studied using the Kriging interpolation method, while the temporal variability, concerning the mean annual rain intensity trends along with their significance (Mann-Kendall test), is analysed. The findings of the analysis show that statistically significant negative trends (95% confidence level) appear mainly in the west sub-regions of Greece, while statistically significant positive trends (95% confidence level) appear in the wider area of Athens and the complex of Cyclades Islands. Further analysis concerning the seasonal rain intensity is needed, because there are different seasonal patterns, taking into account that, convective rain in Greece occurs mainly within the summer season.

  8. Rain forest provides pollinating beetles for atemoya crops.

    Science.gov (United States)

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.

  9. Maximisation of the Doppler effect in thermal reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1998-03-01

    Increase of the fuel temperature in a nuclear reactor leads, or can lead, to (1) A Doppler broadening of the resonances of the nuclides in the fuel; (2) An expansion of the fuel; and (3) A shift of the Maxwellian part of the spectrum to higher energies. These processes together introduce a certain amount of reactivity, which can be expressed in the so-called fuel temperature reactivity coefficient. The reactivity effect of the third process is very small, because the Maxwell spectrum is to a major extent determined by the moderator temperature. Moreover, the reactivity effect due to an expansion of the fuel is small too, for most thermal systems. When the second and third processes can be neglected, the fuel temperature reactivity effect is fully determined by the Doppler effect. The fuel temperature reactivity coefficient is then called the Doppler coefficient of reactivity. The Doppler broadening of the resonances causes an increase of resonance absorption, due to a decrease of self-shielding. The competition between resonance fission at the one hand and resonance capture at the other hand determines the sign and magnitude of the reactivity induced by an increase of the fuel temperature. In well-designed nuclear reactors the Doppler effect due to resonance capture by fertile nuclides exceeds the Doppler effect due to resonance fission, which implies that an increase of the fuel temperature causes a negative reactivity effect and a correspondingly negative Doppler coefficient. Since the Doppler effect is a prompt effect, occurring simultaneously with the dissipation of kinetic energy of the fission products into temperature, it is very important in the study of rapid power transients. In this report, the Doppler coefficient of reactivity is defined in chapter 2. Chapter 3 discusses the geometry of the unit-cell for which the calculations are performed and describes the fuel types that have been investigated. In chapter 4 the 'Doppler efficiency' is introduced and

  10. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    Directory of Open Access Journals (Sweden)

    Lawrence H. Lin

    Full Text Available Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  11. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    Science.gov (United States)

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-12-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: "Gestational trophoblastic disease AND Ultrasonography, Doppler." Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  12. Performance of an alpha-vane and pitot tube in simulated heavy rain environment

    Science.gov (United States)

    Luers, J. K.; Fiscus, I. B.

    1985-01-01

    Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected.

  13. Ophthalmic artery color Doppler ultrasonography in mild-to-moderate preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Ayaz, Tunahan; Akansel, Gur. E-mail: gakansel@superonline.com; Hayirlioglu, Alper; Arslan, Arzu; Suer, Necdet; Kuru, Ihsan

    2003-06-01

    Objective: To evaluate the hemodynamic changes in mild-moderate preeclampsia using ophthalmic artery Doppler ultrasonography technique. Methods: Ophthalmic artery pulsatility and resistivity indices were calculated in 30 mild-moderate preeclamptic women and 30 normotensive gravid women of matched gestational age. Student's t-test was performed to test the significance of difference. Results: Both indices of peripheral resistance were found to be significantly lower in the ophthalmic arteries of mild-moderately preeclamptic women than those measured in normotensive gravid women at similar stage of pregnancy. In a small number patients whose disease progressed to severe preeclampsia, both indices increased. Conclusion: In patients with mild-moderate preeclampsia, ophthalmic artery color Doppler ultrasonography detects hemodynamic changes that are not present in normotensive gravid women. Reversal of Doppler patterns in a small number of patients with progressive disease supports the hypotheses suggesting the presence of early vasodilation and late vasospasm in the etiology of preeclampsia.

  14. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    Science.gov (United States)

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  15. Changes in Doppler flow velocity waveforms and fetal size at 20 weeks gestation among cigarette smokers.

    Science.gov (United States)

    Kho, E M; North, R A; Chan, E; Stone, P R; Dekker, G A; McCowan, L M E

    2009-09-01

    To compare umbilical and uterine artery Doppler waveforms and fetal size at 20 weeks between smokers and nonsmokers. Prospective cohort study. Auckland, New Zealand and Adelaide, Australia. Nulliparous participants in the Screening for Pregnancy Endpoints (SCOPE) study. Self-reported smoking status was determined at 15 +/- 1 weeks' gestation. At the 20 +/- 1 week anatomy scan, uterine and umbilical Doppler resistance indices (RI) and fetal measurements were compared between smokers and nonsmokers. Umbilical and mean uterine artery Doppler RI values, abnormal umbilical and uterine Doppler (RI > 90th centile) and fetal biometry. Among the 2459 women, 248 (10%) were smokers. Smokers had higher umbilical RI [0.75 (SD 0.06) versus 0.73 (0.06), P gestation, women who smoke have higher umbilical artery RI, a surrogate measure for an abnormal placental villous vascular tree. This may contribute to later fetal growth restriction among smokers. Further research is needed to explore the clinical significance of these findings.

  16. Relationship between hemodynamic changes of portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis

    Directory of Open Access Journals (Sweden)

    CHENG Xiaofei

    2014-11-01

    Full Text Available ObjectiveTo explore the relationship between hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound and FibroScan value in patients with liver cirrhosis. MethodsA total of 192 patients with hepatitis B cirrhosis who were admitted to our hospital from March 2010 to December 2013, as well as 100 healthy persons, were recruited. The mean portal vein blood flow velocity (PVVmean, hepatic artery pulsatility index (HAPI, and hepatic artery resistance index (HARI were measured by color Doppler ultrasound. FibroScan was also carried out. All data were statistically analyzed using SPSS 13.0. Continuous data were expressed as mean±SD and compared between groups by t-test. ResultsThe HAPI, HARI, and FibroScan value of the patient group were 1.56±024, 0.73±0.05, and 25.38±7.73, respectively, significantly higher than those of the control group (1.36±0.14, 0.65±0.07, and 7.8±3.6 (P<0.05; the PVVmean of the patient group was 14.43±1.86, significantly lower than that of the control group (17.35±0.56 (P<0.05. FibroScan value was positively correlated with HAPI and HARI (r1=0.59, r2=0.66, P<0.001, but negatively correlated with PVVmean (r=-0.64, P<0.001. ConclusionThe liver stiffness assessed by FibroScan and the hemodynamic changes of the portal vein and hepatic artery measured by color Doppler ultrasound are vitally important for evaluating the severity of liver cirrhosis.

  17. Chemical analysis using coincidence Doppler broadening and supporting first-principles theory: Applications to vacancy defects in compound semiconductors

    International Nuclear Information System (INIS)

    Makkonen, I.; Rauch, C.; Mäki, J.-M.; Tuomisto, F.

    2012-01-01

    The Doppler broadening of the positron annihilation radiation contains information on the chemical environment of vacancy defects trapping positrons in solids. The measured signal can, for instance, reveal impurity atoms situated next to vacancies. As compared to integrated quantities such as the positron annihilation rate or the annihilation line shape parameters, the full Doppler spectrum measured in the coincidence mode contains much more useful information for defect identification. This information, however, is indirect and complementary understanding is needed to fully interpret the results. First-principles calculations are a valuable tool in the analysis of measured spectra. One can construct an atomic-scale model for a given candidate defect, calculate from first principles the corresponding Doppler spectrum, and directly compare results between experiment and theory. In this paper we discuss recent examples of successful combinations of coincidence Doppler broadening measurements and supporting first-principles calculations. These demonstrate the predictive power of state-of-the-art calculations and the usefulness of such an approach in the chemical analysis of vacancy defects.

  18. Vasomotor response of the human face: laser-Doppler measurements during mild hypo- and hyperthermia.

    Science.gov (United States)

    Rasch, W; Cabanac, M

    1993-04-01

    The skin of the face is reputed not to vasoconstrict in response to cold stress because the face skin temperature remains steady during hypothermia. The purpose of the present work was to measure the vasomotor response of the human face to whole-body hypothermia, and to compare it with hyperthermia. Six male subjects were immersed in cold and in warm water to obtain the two conditions. Skin blood flow, evaporation, and skin temperature (Tsk) were recorded in three loci of the face, the forehead, the infra orbital area, and the cheek. Tympanic (Tty) and oesophageal (Toes) temperatures were also recorded during the different thermal states. Normothermic measurements served as control. Blood flow was recorded with a laser-Doppler flowmeter, evaporation measured with an evaporimeter. Face Tsk remained stable between normo-, hypo-, and hyperthermia. Facial blood flow, however, did not follow the same pattern. The facial blood flow remained at minimal vasoconstricted level when the subjects' condition was changed from normo- to hypothermia. When the condition changed from hypo- to hyperthermia a 3 to 9-fold increase in the blood flow was recorded. From these results it was concluded that a vasoconstriction seems to be the general vasomotor state in the face during normothermia.

  19. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  20. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  1. Calculation of the Doppler broadening function using Fourier analysis;Calculo da funcao de alargamento Doppler utilizando analise de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da Cruz

    2010-07-01

    An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function {psi}(x,{zeta}) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for {psi}(x,{zeta}), enables to obtain a simple analytic solution for the Doppler broadening function. (author)

  2. A Comparison of Theoretical and Experimental Values of the Activation Doppler Effect in Some Fast Reactor Spectra

    International Nuclear Information System (INIS)

    Haeggblom, H.; Tiren, L.I.

    1968-08-01

    Results of activation Doppler measurements on the U 238 (n,γ) and U 235 (n, fission) reactions in the FR0 and MSCA fast critical assemblies have been compared with theoretical values. The study covers neutron spectra with median fission energies from 50 to 240 keV. The calculated Doppler effect in U 238 in the FR0 cores is 20 - 35 % lower than the measured values. The sensitivity of the theoretical result with regard to changes in cross sections and neutron spectrum has been studied. The theoretical value for U 235 (FR0 core 5) is 4 times higher than the measured one. The report includes a brief description of the DORIX-2 method of calculating effective resonance cross sections appropriate to activation Doppler measurements. References to the cross section data used for the comparisons are also given

  3. A Comparison of Theoretical and Experimental Values of the Activation Doppler Effect in Some Fast Reactor Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haeggblom, H; Tiren, L I

    1968-08-15

    Results of activation Doppler measurements on the U{sup 238} (n,{gamma}) and U{sup 235} (n, fission) reactions in the FR0 and MSCA fast critical assemblies have been compared with theoretical values. The study covers neutron spectra with median fission energies from 50 to 240 keV. The calculated Doppler effect in U{sup 238} in the FR0 cores is 20 - 35 % lower than the measured values. The sensitivity of the theoretical result with regard to changes in cross sections and neutron spectrum has been studied. The theoretical value for U{sup 235} (FR0 core 5) is 4 times higher than the measured one. The report includes a brief description of the DORIX-2 method of calculating effective resonance cross sections appropriate to activation Doppler measurements. References to the cross section data used for the comparisons are also given.

  4. Doppler Ultrasonographic Parameters for Predicting Cerebral Vascular Reserve in Patients with Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jung, Han Young; Lee, Hui Joong; Kim, Hye Jung; Kim, Yong Sun; Kang, Duk Sik

    2006-01-01

    We investigated Doppler ultrasonographic (US) parameters of patients with acute stroke to predict the cerebral vascular reserve (CVR) measured by SPECT. We reviewed the flow velocity and cross-sectional area of the circular vessel at the common, external, and internal carotid arteries (ICA) and the vertebral arteries (VA) in 109 acute stroke patients who underwent SPECT. Flow volume (FV) of each artery was calculated as the product of the angle-corrected time averaged flow velocity and cross-sectional area of the circular vessel. Total cerebral FV (TCBFV) was determined as the sum of the FVs of the right and left ICA and VA. We compared the Doppler US parameters between 44 cases of preserved and 65 cases of impaired CVR. In the preserved CVR group, ICA FV, anterior circulating FV (ACFV) and TCBFV were higher than in the impaired CVR group (p < 0.05, independent t-test). In the impaired CVR group, the ROC curves showed ACFV and TCBFV were suitable parameters to predict CVR (p < 0.05). Doppler US was helpful for understanding the hemodynamic state of acute stroke. FV measurement by Doppler US was useful for predicting CVR

  5. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    International Nuclear Information System (INIS)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation. -- Highlights: ► An exploratory study on physics-based warm rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  6. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  7. Human Ecology: Acid Rain and Public Policy.

    Science.gov (United States)

    Bybee, Rodger W.

    1983-01-01

    A connection between science and society can be seen in the human and ecological dimensions of one contemporary problem: acid rain. Introduces a human ecological theme and relationships between acid rain and public policy, considering scientific understanding and public awareness, scientific research and public policy, and national politics and…

  8. The phenomenon of Doppler

    International Nuclear Information System (INIS)

    Stoll, I.; Seidlerova, I.; Schwippel, J.; Poss, O.; Solc, M.

    1992-01-01

    The book is devoted to the life and work of Christian Doppler and particularly to his links to Prague and to the Slovak town of Banska Stiavnica. Many historical facts concerning Doppler's activities as well as the history of physics and astronomy are collected. Information is also presented about the Czech Technical University, the Society of Czechoslovak Mathematicians and Physicists, the Czechoslovak Astronomical Society, the Czechoslovak Spectroscopic Society and the Czechoslovak Society for the History of Science and Technology. The publication is amply supplemented with historical pictorial material (M.D.). 92 figs., 82 refs

  9. The Doppler echocardiographic myocardial performance index predicts left-ventricular dilation and cardiac death after myocardial infarction

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H

    2001-01-01

    To investigate the value of the Doppler-derived myocardial performance index to predict early left-ventricular (LV) dilation and cardiac death after a first acute myocardial infarction (AMI), Doppler echocardiography was performed within 24 h of hospital admission, on day 5, 1 and 3 months after...... AMI in 125 consecutive patients. The index measured on day 1 correlated well with the change in end-diastolic volume index observed from day 1 to 3 months following AMI (r = 0.66, p 0.0001). One-year survival in patients with Doppler index index > or = 0......, we conclude that the Doppler echocardiographic myocardial performance index is a predictor of LV dilation and cardiac death after a first AMI....

  10. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  11. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  12. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Maulik, D.

    2005-01-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  13. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  14. Impact of wind on the spatial distribution of rain over micro-scale topography : numerical modelling and experimental verification

    NARCIS (Netherlands)

    Blocken, B.J.E.; Poesen, J.; Carmeliet, J.

    2006-01-01

    The wind-driven-rain effect refers to the redistribution of rainfall over micro-scale topography due to the existence of local perturbed wind-flow patterns. Rainfall measurements reported in the literature point to the fact that the wind-driven-rain distribution can show large variations over

  15. Acid rain may cause senile dementia

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, F

    1985-04-25

    Aluminium, released from the soil by acid rain, may be a cause of several forms of senile dementia including Parkinson's disease and Alzheimer's disease. Many upland reservoirs, fed by acid rain, supply homes with water laced with significant amounts of aluminium. Studies in the Pacific have shown that communities living on soils that are extremely rich in bauxite, the rock containing aluminium, have a very high incidence of Alzheimer's disease.

  16. New Insights from Inside-Out Doppler Tomography

    Directory of Open Access Journals (Sweden)

    E. J. Kotze

    2015-02-01

    Full Text Available We present preliminary results from our investigation into using an “inside-out” velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.

  17. I like riding my bike. If it doesn't rain of course'. Accounts of embodied practices of rain in the face of climate change

    DEFF Research Database (Denmark)

    Lindegaard, Laura Bang

    . Secondly, the paper focuses more thoroughly on conceptualisations of cycling in rain by showing how rain is used in making socially legitimate meanings of everyday transportation practices. It shows the subtle ways in which matters of rain are used as justifications for not biking. It also shows...

  18. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    Directory of Open Access Journals (Sweden)

    Ketsaya Vacharanukul

    2006-06-01

    Full Text Available To achieve dynamic error compensation in CNC machine tools, a non-contactlaser probe capable of dimensional measurement of a workpiece while it is being machinedhas been developed and presented in this paper. The measurements are automatically fedback to the machine controller for intelligent error compensations. Based on a well resolvedlaser Doppler technique and real time data acquisition, the probe delivers a very promisingdimensional accuracy at few microns over a range of 100 mm. The developed opticalmeasuring apparatus employs a differential laser Doppler arrangement allowing acquisitionof information from the workpiece surface. In addition, the measurements are traceable tostandards of frequency allowing higher precision.

  19. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  20. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  1. Chemical characterization of fog and rain water collected at the eastern Andes cordillera

    Directory of Open Access Journals (Sweden)

    E. Beiderwieden

    2005-01-01

    Full Text Available During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the 'El Tiro' site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl−, NO3−, PO43−, and SO42− were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 μS cm−1 for the fog and 6 μS cm−1 for the rain. The continent samples exhibit higher concentrations of most ions as compared to the pacific samples, but these differences could not be detected statistically.

  2. Laser Doppler measurement and CFD validation in 3 × 3 bundle flow

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbiao, E-mail: xiongjinbiao@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Yang [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Nan; Fu, Xiaoliang [State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China); Wang, Hongyan [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Cheng, Xu [Karlsruhe Institute of Technology (Germany); Yang, Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); State Nuclear Power Software Development Center, National Energy Key Laboratory of Nuclear Power Software (China)

    2014-04-01

    Highlights: • Five-beam LDV is operated in the three-beam mode to measure 3 × 3 bundle flow. • Correlation and FFT techniques are applied to analyze the flow structure. • Large coherent structure is observed in gaps between different subchannels. • The Reynolds stress models predict weak mixing between different subchannels. - Abstract: The five-beam three-component laser Doppler system is operated in the three-beam two-component mode to measure the 3 × 3 bundle flow with simple grid spacer. Experiment has been conducted at Re = 15,200 and 29,900. According to the experiment result, the root mean square (RMS) of axial velocity fluctuation shows large value in the gap and the near-wall region of the edge sub-channel which is induced by the axial velocity gradient. Significant intensity of lateral velocity fluctuation is observed which indicates the strong lateral mixing in a 3 × 3 rod bundle. Through the correlation analysis coherent structures have been observed in the gap region. The spectral analysis shows that the LDV measurement complies to the Komogorov spectrum law, f{sup −5/3}, well. The low-frequency peak spectral density of the axial velocity fluctuation has been observed in the gap region connecting sub-channels with velocity difference. The performance of the SSG model and the baseline Reynolds stress model are investigated based on the experiment result. The models predict higher axial velocity in the interior sub-channel and lower in the edge and corner ones than the experiment result. Large discrepancy between the calculated and measured axial flow velocity is resulted from failure in calculating the strong negative u{sup ′}w{sup ′¯} in the gap region connecting different sub-channels.

  3. Speed of light demonstration using Doppler beat

    Science.gov (United States)

    Bernal, Luis; Bilbao, Luis

    2018-05-01

    From an apparatus previously designed for measuring the Doppler shift using a rotating mirror, an improved, versatile version was developed for speed of light demonstrations in a classroom or a teaching laboratory. By adding a second detector and adequate beam-splitter and mirrors, three different configurations are easily assembled. One configuration is used for time-of-flight measurements between a near and a far detector, allowing one to measure the speed of light provided that the path length between detectors is known. Another variation is the interferometric method obtained by superposing the far and near signals in such a way that a minimum of the combined signal is obtained when the time delay makes the signals arrive out of phase by π radians. Finally, the standard Doppler configuration allows the measurement of the frequency beat as a function of the rotation frequency. The main advantages of the apparatus are (a) the experimental setup is simple and completely accessible to undergraduate students, (b) the light is visible, students can see the rays, which, with the use of appropriate screens, can be blocked at any point along their paths, (c) the experiment can take place entirely within the teaching laboratory or demonstration room (using the interferometric method, the shortest distance to the far mirror was as small as 0.5 m), and (d) different configurations can be built, including some economical setups within the budget of teaching laboratories.

  4. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  5. Improved Gradation for Rain Garden of Low Impact Development

    Science.gov (United States)

    Lee, Sandra; Chang, Fu-Ming

    2016-04-01

    With rapid urban and economic development, living standard improves in urban areas but urban ecological environments deteriorate rapidly. Urban waterlogging and flooding have become a serious problem for urban water security. As urbanization continues, sustainability is the key to balance between urban development and healthy environment. Rain garden is recommended to be one of the best ways to reduce urban pollutants. It not only diminishes runoff flooding but also purify water in the urban area. The studies on rain gardens are mainly about how to incorporate rain garden to purify water quality, but lack of researches on runoff control. This project focuses on rain garden under Low Impact Development using indoor laboratory to test and quantify the water holding capacities of two different Taiwan indigenous rain garden plants, Taiwan Cyclosorus and Sour Grass. The results show that the water holding capacity of Sour Grass (10%-37%) is better than that of Taiwan Cyclosorus (6.8%-17.3%). The results could be a helpful reference for Low Impact Development in urban flood prevention and urban planning. Keywords: Low Impact Development; rain garden; indoor laboratory experiments; water holding capacity; porosity

  6. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    Science.gov (United States)

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  7. Aircraft micro-doppler feature extraction from high range resolution profiles

    CSIR Research Space (South Africa)

    Berndt, RJ

    2015-10-01

    Full Text Available The use of high range resolution measurements and the micro-Doppler effect produced by rotating or vibrating parts of a target has been well documented. This paper presents a technique for extracting features related to helicopter rotors...

  8. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean

    Science.gov (United States)

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-03-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species.

  9. Instrumental neutron activation analysis of dry atmospheric fall-out and rain-water

    International Nuclear Information System (INIS)

    Schutyser, P.; Maenhaut, W.; Dams, R.

    1978-01-01

    An automated precipitation sampler and an instrumental neutron activation analysis (i.n.a.a.) method for the determination of some major and trace elements in dry atmospheric fall-out and rain-water are presented. The sampler features a rain detector which makes separate collections of dry atmospheric fall-out and rain-water possible. The sampler is equipped with u.v. lamps in order to avoid algal growth during extended collection periods. After collection, the samples are separated into water-soluble and insoluble fractions. The soluble fraction is preconcentrated before analysis by freeze-drying. The i.n.a.a. method involves the measurement of both short- and long-lived radioactivities so that a total of 35 elements can be determined. The possibility of losses during freeze-drying and the accuracy of the i.n.a.a. method were investigated for 7 elements by analysis of a soluble fraction with an independent method, viz. inductively coupled plasma atomic emission spectrometry. (Auth.)

  10. Doppler ion program description

    International Nuclear Information System (INIS)

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities

  11. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    International Nuclear Information System (INIS)

    Anderson, P.D.; Houpis, J.L.J.

    1991-01-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution

  12. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    Directory of Open Access Journals (Sweden)

    T. D. Borisova

    2002-09-01

    Full Text Available Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs in the auroral E-region were carried out on the London – Tromsø – St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London – Tromsø – St. Petersburg path.Key words. Ionosphere (active experiments; ionospheric irregularities Radio science (ionospheric propagation

  13. Biometric, B-mode and color Doppler ultrasound assessment of eyes in healthy dogs

    Directory of Open Access Journals (Sweden)

    Elzivânia G. Silva

    Full Text Available ABSTRACT: B-scan ultrasonography is an important diagnostic tool that allows characterization of internal organ anatomy and, when complemented by Doppler ultrasound, allows vascular hemodynamic assessment, increasing the diagnostic accuracy. Thus, the aim of the present study was the B-scan ultrasound characterization and measurement of the eyeball segments and assessment of the external ophthalmic artery by color and pulsed Doppler. Sixty eyeballs were assessed from 30 dogs of different breeds using an 8.5MHz microconvex transductor. First, biometry was performed by B-scan of the following segments: axial length (M1, anterior chamber depth (M2, lens thickness (M3, lens length (M4, vitreous chamber depth (M5, optical disc length (M6 and optic nerve diameter (M7. Colored Doppler identified the external ophthalmic article and pulsed Doppler assessed its flow, and the following were measured: systolic peak velocity (VPS, final diastolic velocity (VDF, resistivity index (IR and pulse index (IP. No statistical difference was observed for the biometric values of the eye segments between the right and left eyes (p>0.05. The vitreous chamber depth (M5 was shown to be the biometric variable with greatest bilateral symmetry, varying from 0.79 to 0.87cm and 0.78 to 0.86cm for the right and left eye, respectively. The ophthalmic artery was visualized over the optic nerve towards the eyeball, with flow stained red. There was no significant statistical difference between the Doppler velocimetric values for the ophthalmic artery between the right and left eye of the animals assessed (p>0.05. The mean resistivity index (RI showed average values equal to 0.63±0.03, bilaterally. The mean base velocity was 17.50cm/s and 18.18cm/s at the systolic peak and 6.21cm/s and 6.68cm/s at the end of the diastole, for the right and left eyes respectively. The anatomic, biometric and hemodynamic characterization using the ultrasound B-scan and the Doppler modalities

  14. Spin-Orbit Misalignments of Three Jovian Planets via Doppler Tomography

    Science.gov (United States)

    Johnson, Marshall C.; Cochran, William D.; Addison, Brett C.; Tinney, Chris G.; Wright, Duncan J.

    2017-10-01

    We present measurements of the spin-orbit misalignments of the hot Jupiters HAT-P-41 b and WASP-79 b, and the aligned warm Jupiter Kepler-448 b. We obtain these measurements with Doppler tomography, where we spectroscopically resolve the line profile perturbation during the transit due to the Rossiter-McLaughlin effect. We analyze time series spectra obtained during portions of five transits of HAT-P-41 b, and find a value of the spin-orbit misalignment of λ =-{22.1}-6.0{+0.8^\\circ }. We reanalyze the radial velocity Rossiter-McLaughlin data on WASP-79 b obtained by Addison et al. using Doppler tomographic methodology. We measure λ =-{99.1}-3.9{+4.1^\\circ }, consistent with but more precise than the value found by Addison et al. For Kepler-448 b we perform a joint fit to the Kepler light curve, Doppler tomographic data, and a radial velocity data set from Lillo-Box et al. We find an approximately aligned orbit (λ =-{7.1}-2.8{+4.2^\\circ }), in agreement with the value found by Bourrier et al. Through analysis of the Kepler light curve we measure a stellar rotation period of {P}{rot}=1.27+/- 0.11 days, and use this to argue that the full three-dimensional spin-orbit misalignment is small, \\psi ˜ 0^\\circ . Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  15. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    Directory of Open Access Journals (Sweden)

    Mergheni Ali Mohamed

    2008-01-01

    Full Text Available For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

  16. A review on wind-driven rain research in building science

    NARCIS (Netherlands)

    Blocken, B.J.E.; Carmeliet, J.E.

    2004-01-01

    Wind-driven rain (WDR) or driving rain is rain that is given a horizontal velocity component by the wind. WDR research is of importance in a number of research areas including earth sciences, meteorology and building science. Research methods and results are exchangeable between these domains but no

  17. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  18. Flow Dynamics and Nutrient Reduction in Rain Gardens

    Science.gov (United States)

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  19. Muscle blood volume assessment during exercise with Power Doppler Ultrasound

    NARCIS (Netherlands)

    Heres, H.M.; Tchang, B.C.Y.; Schoots, T.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

    2016-01-01

    Assessment of perfusion adaptation in muscle during exercise can provide diagnostic information on cardiac and endothelial diseases. Power Doppler Ultrasound (PDUS) is known for its feasibility in the non-invasive measurement of moving blood volume (MBV), a perfusion related parameter. In this

  20. Model of multicomponent micro-Doppler signal in environment MatLab

    Directory of Open Access Journals (Sweden)

    Kucheryavenko Alexander

    2017-01-01

    Full Text Available The article illustrates the problem of measuring the speed glider component targets in the presence of a turboprop effect of the reflected signal in a pulse-Doppler radar, proposed a model turboprop signal component and an algorithm for its suppression