WorldWideScience

Sample records for doped semiconductor nanostructures

  1. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  2. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  3. A structurally-controllable spin filter in a δ-doped magnetically modulated semiconductor nanostructure with zero average magnetic field

    Science.gov (United States)

    Shen, Li-Hua; Ma, Wen-Yue; Zhang, Gui-Lian; Yang, Shi-Peng

    2015-07-01

    We report on a theoretical investigation of spin-polarized transport in a δ-doped magnetically modulated semiconductor nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a semiconductor heterostructure and by using the atomic layer doping technique such as molecular beam epitaxy (MBE). It is shown that although such a nanostructure has a zero average magnetic filed, a sizable spin polarization exists due to the Zeeman splitting mechanism. It is also shown that the degree of spin polarization varies sensitively with the weight and/or position of the δ-doping. Therefore, one can conveniently tailor the behaviour of the spin-polarized electron by tuning the δ -doping, and such a device can be employed as a controllable spin filter for spintronics.

  4. Manipulating spin spatial splitter in a δ-doped semiconductor nanostructure with zero average magnetic field

    Science.gov (United States)

    Liu, Gui-Xiang; Ma, Wen-Yue; Shen, Li-Hua

    2015-12-01

    Recently, based on a novel magnetic nanostructure with zero average magnetic field, a spin spatial splitter with a considerable spin-polarized lateral displacement was proposed [Appl. Surf. Sci. 313 (2014) 545]. To further manipulate its spin-polarized behaviour, in this work, we introduce a tunable δ-potential into the device by the atomic layer doping, and calculated its effect on spin-polarized lateral displacement of the electron. Both magnitude and sign of spin polarization are found to be sensitive to the δ-doping. Therefore, such a device can serve as a structurally-controllable spin-polarized source for spintronics applications.

  5. Synthesis of doped semiconductor nanostructures using microemulsions and liquid crystals as templates

    Science.gov (United States)

    Panzarella, Tracy Heckler

    Semiconductor nanocrystals, also known as quantum dots (QDs), are a relatively new class of materials with unique size-dependent optical properties that enable the use of these materials in a variety of applications, including fluorescent labels for biomolecules, illumination and display technologies and photovoltaics. When the size of the QD is smaller than the mean separation of an optically excited electron-hole pair, or exciton, size-dependent fluorescence is observed as their emission peak shifts to larger wavelengths with increasing size. Doping of QDs with transition metals enables the tuning of their optoelectronic properties, leading to emission wavelengths longer than their bulk emission. The doping of QDs has recently garnered significant attention because it allows for the ability to tune the QD emission without changing its size. Currently, the most common method for synthesizing QDs involves the injection of organometallic precursors into hot coordinating solvents. To obtain monodisperse nanocrystals with this technique, instantaneous injection of the reactants, uniform nucleation over the entire reactor volume and perfect mixing are required. These conditions are difficult to achieve in practice, and even more difficult in a scaled-up reactor system necessary for commercial applications. The use of microemulsions as templates can enable the synthesis of semiconductor nanocrystals of uniform size and shape, and allow for scalability. The template used in this work consists of para-xylene as the continuous phase, water as the dispersed phase, and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO37-PPO56-PEO37) block copolymer as the surfactant, with the reactants dissolved in the aqueous dispersed phase. Microemulsions formed by this technique, exhibit very slow droplet to droplet coalescence kinetics and allow for the growth of particles with narrow size distribution. A microemulsion template was used to synthesize Mn-doped Zn

  6. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  7. Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips.

    Science.gov (United States)

    Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.

  8. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  9. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Semiconductor nanostructures in biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexson, Dimitri [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Chen Hongfeng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Cho, Michael [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Dutta, Mitra [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Li Yang [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Shi, Peng [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Raichura, Amit [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ramadurai, Dinakar [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Parikh, Shaunak [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Stroscio, Michael A [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, IL 60607 (United States); Vasudev, Milana [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2005-07-06

    Semiconductor nanostructures in biological applications are discussed. Results are presented on the use of colloidal semiconductor quantum dots both as biological tags and as structures that interact with and influence biomolecules. Results are presented on the use of semiconducting carbon nanotubes in biological applications. (topical review)

  11. Method of doping a semiconductor

    Science.gov (United States)

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  12. Optical transitions in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions.

  13. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  14. Dimensional crossover in semiconductor nanostructures

    Science.gov (United States)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  15. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2012-04-01

    Full Text Available Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors.

  16. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  17. Second harmonic spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Yu, Ping; Bozhevolnyi, Sergey I.

    1999-01-01

    Semiconductor nanostructures and their application to optoelectronic devices have attracted much attention recently. Lower-dimensional structures, and in particular quantum dots, are highly anisotropic resulting in broken symmetry as compared to their bulk counterparts. This is not only reflected...

  18. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  19. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Birner, Stefan

    2011-11-15

    to recently developed graphene and diamond based solution gated field-effect transistors, and compare my calculations to experiment. All numerical examples presented in this thesis are available as input files for the nextnano{sup 3} and/or nextnano++ software. It is thus possible for other researchers to reproduce the results of all calculations of this thesis. Additionally, the respective input files can easily be modified to study variations of device characteristics, like geometry, choice of materials, doping, and many more. To date, the nextnano software has been used successfully in many master and doctoral theses, as well as in numerous scientific articles to provide either a qualitative understanding or a quantitative analysis of the electronic and optoelectronic properties of modern semiconductor nanostructures. (orig.)

  20. Dispersion relations in heavily-doped nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2016-01-01

    This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of light. The measurement of band gaps in optoelectronic materials in the presence of external photo-excitation is displayed. The influences of magnetic quantization, crossed electric and quantizing fields, intense electric fields on the on the dispersion relation in heavily doped semiconductors and super-lattices are also disc...

  1. Semiconductor nanostructures for optoelectronic devices processing, characterization and applications

    CERN Document Server

    Yi, Gyu-Chul

    2012-01-01

    This book summarizes the current state of semiconductor nanodevice development, examining nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene and describing their device applications.

  2. Colloquium: Persistent spin textures in semiconductor nanostructures

    Science.gov (United States)

    Schliemann, John

    2017-01-01

    Device concepts in semiconductor spintronics make long spin lifetimes desirable, and the requirements put on spin control by proposals for quantum information processing are even more demanding. Unfortunately, due to spin-orbit coupling electron spins in semiconductors are generically subject to rather fast decoherence. In two-dimensional quantum wells made of zinc-blende semiconductors, however, the spin-orbit interaction can be engineered to produce persistent spin structures with extraordinarily long spin lifetimes even in the presence of disorder and imperfections. Experimental and theoretical developments on this subject for both n -doped and p -doped structures are reviewed and possible device applications are discussed.

  3. Boron doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  4. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  5. Semiconductors and semimetals nanostructured systems

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Reed, Mark A

    1992-01-01

    This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D ele...

  6. Heavily Doped Semiconductor Nanocrystal Quantum Dots

    National Research Council Canada - National Science Library

    David Mocatta; Guy Cohen; Jonathan Schattner; Oded Millo; Eran Rabani; Uri Banin

    2011-01-01

    ... of fundamental understanding of this heavily doped limit under strong quantum confinement. We developed a method to dope semiconductor nanocrystals with metal impurities, enabling control of the band gap and Fermi energy...

  7. Semiconductor Nanostructures Quantum States and Electronic Transport

    CERN Document Server

    Ihn, Thomas

    2009-01-01

    This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect. The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band e

  8. Fractal properties of nanostructured semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhanabaev, Z.Zh. [Al-Farabi Khazakh National University, Tole bi Street, 96, Almaty 050012 (Kazakhstan); Grevtseva, T.Yu. [Al-Farabi Khazakh National University, Tole bi Street, 96, Almaty 050012 (Kazakhstan)]. E-mail: kenwp@mail.ru

    2007-03-15

    A theory for the temperature and time dependence of current carrier concentration in semiconductors with different non-equilibrium nanocluster structure has been developed. It was shown that the scale-invariant fractal self-similar and self-affine laws can exist near by the transition point to the equilibrium state. Results of the theory have been compared to the experimental data from electrical properties of semiconductor films with nanoclusters.

  9. Phosphorous doping a semiconductor particle

    Science.gov (United States)

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  10. Phosphorus doping a semiconductor particle

    Science.gov (United States)

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  11. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  12. Effects of spatial confinement on conduction electrons in semiconductor nanostructures

    NARCIS (Netherlands)

    Germeau, Alexander

    2003-01-01

    Semiconductor nanostructures show electrical and optical properties which can be very different from bulk semiconductors. The various effects that occur due to the spatial confinement of electrons in such structures are of scientific importance. In addition, semiconductor nanostructures are very pro

  13. Quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Tillmann Christoph

    2009-11-15

    The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer

  14. Quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Tillmann Christoph

    2009-11-15

    The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer

  15. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    Science.gov (United States)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  16. Electromagnetically induced grating via coherently driven the n-doped In0.47Ga0.53As semiconductor quantum well nanostructure

    Science.gov (United States)

    Naseri, Tayebeh

    2016-06-01

    A new scheme for investigating electromagnetically induced grating (EIG) in the vanishing two-photon absorption condition in a three-level ladder-configuration n-doped semiconductor quantum well is presented. By applying a standing-wave field interacting with the system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. It is shown that the first-order diffraction intensity sensitively depends on the intensity of coupling fields, detuning of applied laser fields and interaction length. Moreover, it can reach its maximum on varying the system parameters. A novel result shows the considerable efficiency of higher order diffractions is significantly improved via relative phase between applied laser fields. Furthermore, it is found that the intensity of the switching and coupling fields can increase the efficiency of the phase grating in the present model. Such a unique feature of the cooperative Electromagnetic Induced Grating may be extended to further develop diffraction based new photonic devices in quantum information networks and new photonic devices in all-optical switching and optical imaging.

  17. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  18. Optical limiting in semiconductor-doped glasses

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1996-02-01

    We report optical limiting at 527 nm in two Schott semiconductor-doped glasses OG530 and OG515. These two glasses show quite contrasting nonlinear optical behaviour. The glass OG515 shows strong clamping while OG530 shows no clamping in optical limiting inspite of having much larger nonlinear refractive index. Similarly OG530 exhibits saturation of absorption while OG515 does not.

  19. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.

    Science.gov (United States)

    Jiang, Ruibin; Li, Benxia; Fang, Caihong; Wang, Jianfang

    2014-08-20

    Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells. In this review, the developments in the field of (plasmonic metal)/semiconductor hybrid nanostructures are comprehensively described. The preparation of the hybrid nanostructures is first presented according to the semiconductor type, as well as the nanostructure morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then elucidated. Lastly, possible future research in this burgeoning field is discussed.

  20. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    Science.gov (United States)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  1. Electronegativity and doping in semiconductors

    KAUST Repository

    Schwingenschlögl, Udo

    2012-08-23

    Charge transfer predicted by standard models is at odds with Pauling’s electronegativities but can be reconciled by the introduction of a cluster formation model [Schwingenschlögl et al., Appl. Phys. Lett. 96, 242107 (2010)]. Using electronic structure calculations, we investigate p- and n-type doping in silicon and diamond in order to facilitate comparison as C has a higher electronegativity compared to Si. All doping conditions considered can be explained in the framework of the cluster formation model. The implications for codoping strategies and dopant-defect interactions are discussed.

  2. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  3. Method of doping organic semiconductors

    Science.gov (United States)

    Kloc, Christian Leo [Constance, DE; Ramirez, Arthur Penn [Summit, NJ; So, Woo-Young [New Providence, NJ

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  4. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  5. Electrodynamical enhancement of optical transitions in semiconductor and metal-semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Semiconductor and metal-semiconductor nanostructures are shown to exhibit electrodynamical resonances analogous to the Froehlich resonance for metal nanoparticles in a dielectric host. If the transition frequency of an optical transition in the nanostructure core coincides with one of the resonance frequencies of the nanostructure, the strength of the optical transition is dramatically enhanced by up to 4-6 orders of magnitude. The resonance frequencies are determined by dielectric permittivities of materials of host and nanostructure, and by sizes of the nanostructure. That enables to tune the resonance frequencies to desired values in an extremely wide spectral range-from ultraviolet to terahertz, engineering thus optical properties of high-efficiency nanostructured optical materials for numerous applications.

  6. pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures

    OpenAIRE

    Jyh-Liang Wang; Po-Yu Yang; Tsang-Yen Hsieh; Chuan-Chou Hwang; Miin-Horng Juang

    2013-01-01

    Highly sensitive and stable pH-sensing properties of an extended-gate field-effect transistor (EGFET) based on the aluminum-doped ZnO (AZO) nanostructures have been demonstrated. The AZO nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at 85°C. The AZO sensing nanostructures were connected with the metal-oxide-semiconductor field-effect transistor (MOSFET). Afterwards, the current-voltage (I-V) characteristics and ...

  7. Solution-phase Synthesis of One-dimensional Semiconductor Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Jianfeng YE; Limin QI

    2008-01-01

    The synthesis of one-dimensional (1D) semiconductor nanostructures has been studied intensively for a wide range of materials due to their unique structural and physical properties and promising potential for future technological applications. Among various strategies for synthesizing 1D semiconductor nanostructures, solution-phase synthetic routes are advantageous in terms of cost, throughput, modulation of composition, and the potential for large-scale and environmentally benign production. This article gives a concise review on the recent developments in the solution-phase synthesis of 1D semiconductor nanostructures of different compositions, sizes, shapes, and architectures. We first introduce several typical solution-phase synthetic routes based on controlled precipitation from homogeneous solutions, including hydrothermal/solvothermal process, solution-liquid-solid (SLS) process, high-temperature organic-solution process, and low-temperature aqueous-solution process. Subsequently, we discuss two solution-phase synthetic strategies involving solid templates or substrates, such as the chemical transformation of 1D sacrificial templates and the oriented growth of 1D nanostructure arrays on solid substrates. Finally, prospects of the solution-phase approaches to 1D semiconductor nanostructures will be briefly discussed.

  8. Optical properties of quasiperiodically arranged semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Werchner, Marco

    2009-12-18

    This work consists of two parts which are entitled ''One-Dimensional Resonant Fibonacci Quasicrystals'' and ''Resonant Tunneling of Light in Silicon Nanostructures''. A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL.. The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically.Light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close

  9. Doped semiconductor nanocrystal based fluorescent cellular imaging probes.

    Science.gov (United States)

    Maity, Amit Ranjan; Palmal, Sharbari; Basiruddin, S K; Karan, Niladri Sekhar; Sarkar, Suresh; Pradhan, Narayan; Jana, Nikhil R

    2013-06-21

    Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity.

  10. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    Science.gov (United States)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  11. Optical properties of organic and semiconductor nanostructures

    NARCIS (Netherlands)

    Jeukens, C.R.L.P.N.

    2005-01-01

    Nanostructures have at least one of their dimensions in the range 1-100 nm. Fabricating new, well-defined nanoscale objects and studying their physical properties is of importance, because it can lead to the development of potentially useful materials, novel device applications, and the discovery of

  12. Nanostructures having high performance thermoelectric properties

    Science.gov (United States)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  13. Review on nanostructured semiconductors for dye sensitized solar cells

    Science.gov (United States)

    Prakash, T.

    2012-06-01

    Nanostructured semiconductors with different morphologies are used widely in various applications in order to enhance their technological advancements compared with the bulk sample. This flourishing nanoscience field has enabled rapid developments that have created numerous opportunities for scienctific advancements with various devices. Considering large environmental impacts such as global warming, problems of nuclear waste storage and nuclear accidents, there is an urgent need for environmentally sustainable energy technologies such as solar cells and fuel cells. In the present paper, the role of nanostructured semiconductors in dyesensitized solar cells (DSSCs) is reviewed entensively. The review discusses the present developmental prospects of DSSCs and the problems associated with its layer materials and propose a method of overcoming these problems.

  14. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    of the photoconductivity is observed, due the release of carriers from the quantum dots into the conducting barrier states. Secondly, the carrier dynamics in InGaN/GaN quantum wells subject to a built-in piezoelectric eld is described. An initial fast decay of the photoconductivity as the piezoelectric eld is screened......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  15. Structural transformation in nickel doped zinc oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP 201307 (India); Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP 201307 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A systematic study of 1–10% Ni doped ZnO nanostructures (Ni:ZnO NS). ► Effect of Ni concentration on properties of Ni:ZnO NS was intensively investigated. ► Structural transformation in Ni:ZnO NS demonstrated through characterizations. ► Alteration in vibrational modes of Ni:ZnO NS were meticulously analyzed. ► Intricacies of structural evolution, from particles to rods, were comprehended. -- Abstract: In this article, structural transformation in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1–10% of nickel doping through a chemical precipitation method. The undoped and doped nanostructures were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The wurtzite phase of the material and associated lattice parameters were ascertained through XRD analysis. TEM/SEM images reveal the structural transformation of ZnO nanostructures with variation in nickel doping. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the pivotal role of doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.

  16. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    Science.gov (United States)

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  17. Imprinting the nanostructures on the high refractive index semiconductor glass

    Science.gov (United States)

    Silvennoinen, M.; Paivasaari, K.; Kaakkunen, J. J. J.; Tikhomirov, V. K.; Lehmuskero, A.; Vahimaa, P.; Moshchalkov, V. V.

    2011-05-01

    The centimeter range one- and two-dimensional nanostructures of 70 nm pitch have been imprinted by hot pressing with a quartz, silicon or nickel mold, at 240 °C, onto the surface of Ge 20As 20Se 14Te 46 semiconductor glass. Excellent glass stability of this glass allows multiple re-pressing of the nano-structures. With increasing the Te/Se ratio in the glass formula, the refractive index reaches a value of 3.5 with an option of free electron absorption at elevated temperatures pointing out the use of such nanostructures in submicron and micron scale electronic devices/chips, moth eye structures and photonic crystals.

  18. Nonlinear terahertz spectroscopy of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, C. [Department of Electrophysics, National Chiao Tung University, Hsinchu (Taiwan); Reimann, K.; Woerner, M.; Elsaesser, T. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, 12489, Berlin (Germany)

    2004-03-01

    Nonlinear frequency conversion and electro-optic sampling allow for the generation and phase-resolved characterization of few-cycle pulses in the frequency range up to 50 THz. Electric field transients with amplitudes of up to several MV/cm are applied to study coherent nonlinear excitations of low-dimensional semiconductors. We report the first observation of Rabi oscillations on intersubband transitions of electrons in GaAs/AlGaAs quantum wells. Frequency and phase of such oscillations are controlled in the 0.3- to 2.5-THz range via the strength and shape of the mid-infrared driving pulse. (orig.)

  19. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  20. Doped carbon nanostructure field emitter arrays for infrared imaging

    Science.gov (United States)

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  1. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  2. Soft chemical routes to semiconductor nanostructures

    Indian Academy of Sciences (India)

    Ujjal K Gautam; Kripsindhu Sardar; F L Deepak; C N R Rao

    2005-10-01

    Soft chemistry has emerged as an important means of generating nanocrystals, nanowires and other nanostructures of semiconducting materials. We describe the synthesis of CdS and other metal chalcogenide nanocrystals by a solvothermal route. We also describe the synthesis of nanocrystals of AlN, GaN and InN by the reaction of hexamethyldisilazane with the corresponding metal chloride or metal cupferronate under solvothermal conditions. Nanowires of Se and Te have been obtained by a self-seeding solution-based method. A single source precursor based on urea complexes of metal chlorides gives rise to metal nitride nanocrystals, nanowires and nanotubes. The liquid-liquid interface provides an excellent medium for preparing single-crystalline films of metal chalcogenides.

  3. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  4. Free spin quantum computation with semiconductor nanostructures

    CERN Document Server

    Zhang, W M; Soo, C; Zhang, Wei-Min; Wu, Yin-Zhong; Soo, Chopin

    2005-01-01

    Taking the excess electron spin in a unit cell of semiconductor multiple quantum-dot structure as a qubit, we can implement scalable quantum computation without resorting to spin-spin interactions. The technique of single electron tunnelings and the structure of quantum-dot cellular automata (QCA) are used to create a charge entangled state of two electrons which is then converted into spin entanglement states by using single spin rotations. Deterministic two-qubit quantum gates can also be manipulated using only single spin rotations with help of QCA. A single-short read-out of spin states can be realized by coupling the unit cell to a quantum point contact.

  5. Mesoscopic spin Hall effect in semiconductor nanostructures

    Science.gov (United States)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  6. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications.

    Science.gov (United States)

    Gui, Jing; Ji, Muwei; Liu, Jiajia; Xu, Meng; Zhang, Jiatao; Zhu, Hesun

    2015-03-16

    Phosphine-initiated cation exchange is a well-known inorganic chemistry reaction. In this work, different phosphines have been used to modulate the thermodynamic and kinetic parameters of the cation exchange reaction to synthesize complex semiconductor nanostructures. Besides preserving the original shape and size, phosphine-initiated cation exchange reactions show potential to precisely tune the crystallinity and composition of metal/semiconductor core-shell and doped nanocrystals. Furthermore, systematic studies on different phosphines and on the elementary reaction mechanisms have been performed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  8. Spin filtering in a δ-doped magnetic-electric-barrier nanostructure

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2014-09-01

    Full Text Available We report a theoretical study on spin-polarized transport in a δ-doped magnetic-electric-barrier nanostructure, which can be realized in experiments by depositing two ferromagnetic stripes on top and bottom of a semiconductor heterostructure under an applied voltage and by using atomic layer doping technique. The spin-polarized behavior of the electron in this device is found to be quite sensitive to the δ-doping. One can conveniently tune the degree of the electron spin polarization by adjusting the weight and/or position of the δ-doping. Thus, the involved nansosystem can be employed as a controllable spin filter, which may be helpful for exploiting new spin-polarized source for spintronics applications.

  9. Opto-electronic and quantum transport properties of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sabathil, M.

    2005-01-01

    In this work a novel and efficient method for the calculation of the ballistic transport properties of open semiconductor nanostructures connected to external reservoirs is presented. It is based on the Green's function formalism and reduces the effort to obtain the transmission and the carrier density to a single solution of a hermitian eigenvalue problem with dimensions proportional to the size of the decoupled device and the multiple inversion of a small matrix with dimensions proportional to the size of the contacts to the leads. Using this method, the 4-band GaAs hole transport through a 2-dimensional three-terminal T-junction device, and the resonant tunneling current through a 3-dimensional InAs quantum dot molecule embedded into an InP heterostructure have been calculated. The further extension of the method into a charge self-consistent scheme enables the efficient prediction of the IV-characteristics of highly doped nanoscale field effect transistors in the ballistic regime, including the influence of quasi bound states and the exchange-correlation interaction. Buettiker probes are used to emulate the effect of inelastic scattering on the current for simple 1D devices, systematically analyzing the dependence of the density of states and the resulting self-consistent potential on the scattering strength. The second major topic of this work is the modeling of the optical response of quantum confined neutral and charged excitons in single and coupled self-assembled InGaAs quantum dots. For this purpose the existing device simulator nextnano{sup 3} has been extended to incorporate particle-particle interactions within the means of density functional theory in local density approximation. In this way the exciton transition energies for neutral and charged excitons as a function of an externally applied electric field have been calculated, revealing a systematic reduction of the intrinsic dipole with the addition of extra holes to the exciton, a finding

  10. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  11. Nanostructured Semiconductor Device Design in Solar Cells

    Science.gov (United States)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  12. Rare earth doped III-nitride semiconductors for spintronic and optoelectronic applications (Conference Presentation)

    Science.gov (United States)

    Palai, Ratnakar

    2016-10-01

    Since last four decades the information and communication technologies are relying on the semiconductor materials. Currently a great deal of attention is being focused on adding spin degree-of-freedom into semiconductor to create a new area of solid-state electronics, called spintronics. In spintronics not only the current but also its spin state is controlled. Such materials need to be good semiconductors for easy integration in typical integrated circuits with high sensitivity to the spin orientation, especially room temperature ferromagnetism being an important desirable property. GaN is considered to be the most important semiconductor after silicon. It is widely used for the production of green, blue, UV, and white LEDs in full color displays, traffic lights, automotive lightings, and general room lighting using white LEDs. GaN-based systems also show promise for microwave and high power electronics intended for radar, satellite, wireless base stations and spintronic applications. Rare earth (Yb, Eu, Er, and Tm) doped GaN shows many interesting optoelectronic and magnetoptic properties e. g. sharp emission from UV through visible to IR, radiation hardness, and ferromagnetism. The talk will be focused on fabrication, optoelectronic (photoluminescence, cathodeluminescence, magnetic, and x-ray photoelectron spectroscopy) properties of some rare earth doped GaN and InGaN semiconductor nanostructures grown by plasma assisted molecular beam epitaxy (MBE) and future applications.

  13. Nanostructure of Er3+ doped silicates.

    Science.gov (United States)

    Yao, Nan; Hou, Kirk; Haines, Christopher D; Etessami, Nathan; Ranganathan, Varadh; Halpern, Susan B; Kear, Bernard H; Klein, Lisa C; Sigel, George H

    2005-06-01

    We demonstrate nanostructural evolution resulting in highly increased photoluminescence in silicates doped with Er3+ ions. High-resolution transmission electron microscopy (HRTEM) imaging, nano-energy dispersed X-ray (NEDX) spectroscopy, X-ray diffraction (XRD) and photoluminescence analysis confirm the local composition and structure changes of the Er3+ ions upon thermal annealing. We studied two types of amorphous nanopowder: the first is of the composition SiO2/18Al2O3/2Er2O3 (SAE), synthesized by combustion flame-chemical vapor condensation, and the second is with a composition of SiO2/8Y2O3/2Er2O3 (SYE), synthesized by sol-gel synthesis (composition in mol%). Electron diffraction and HRTEM imaging clearly show the formation of nanocrystallites with an average diameter of approximately 8 nm in SAE samples annealed at 1000 degrees C and SYE samples annealed at 1200 degrees C. The volume fraction of the nanocrystalline phase increased with each heat treatment, eventually leading to complete devitrification at 1400 degrees C. Further XRD and NEDX analysis indicates that the nanocrystalline phase has the pyrochlore structure with the formula Er(x)Al(2-x)Si2O7 or Er(x)Y(2-x)Si2O7 and a surrounding silica matrix.

  14. Electron Paramagnetic Studies Of Diluted Magnetic Semiconductor Nanostructures

    CERN Document Server

    Montes, L A

    1999-01-01

    In this thesis we investigate the Electron Paramagnetic Resonance (EPR) of Diluted Magnetic Semiconductor (DMS) nanostructures. The first chapter studies the appearance of strain-induced magnetic dipole forbidden transitions in the EPR spectrum of highly mismatched DMS superlattices grown by Molecular Beam Epitaxy (MBE). We investigated ZnTe/MnTe, ZnTe/CdTe:Mn and CdTe/ZnTe:Mn superlattices where the lattice mismatch between layers reaches values as large as 6%. We report the appearance of forbidden transitions even at orientations where strain should not produce any mixing, and interpret them as the onset of three dimensional growth of Quantum Dots (QD)...

  15. Magnetoresistive properties of nanostructured magnetic metals, manganites, and magnetic semiconductors

    Science.gov (United States)

    Solin, N. I.; Romashev, L. N.; Naumov, S. V.; Saranin, A. A.; Zotov, A. V.; Olyanich, D. A.; Kotlyar, V. G.; Utas, O. A.

    2016-02-01

    We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered-layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of p- n junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2-3 orders of magnitude.

  16. Quantum materials. Lateral semiconductor nanostructures, hybrid systems and nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Detlef (ed.) [Hamburg Univ. (Germany). Inst. fuer Angewandte Physik

    2010-07-01

    Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called ''Quantum Materials''.The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems. (orig.)

  17. Unusual Changes in Electronic Band-Edge Energies of the Nanostructured Transparent n-Type Semiconductor Zr-Doped Anatase TiO2 (Ti1-xZrxO2; x < 0.3).

    Science.gov (United States)

    Mieritz, Daniel G; Renaud, Adèle; Seo, Dong-Kyun

    2016-07-05

    By the establishment of highly controllable synthetic routes, electronic band-edge energies of the n-type transparent semiconductor Zr-doped anatase TiO2 have been studied holistically for the first time up to 30 atom % Zr, employing powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen gas sorption measurements, UV/vis spectroscopies, and Mott-Schottky measurements. The materials were produced through a sol-gel synthetic procedure that ensures good compositional homogeneity of the materials, while introducing nanoporosity in the structure, by achieving a mild calcination condition. Vegard's law was discovered among the homogeneous samples, and correlations were established between the chemical compositions and optical and electronic properties of the materials. Up to 20% Zr doping, the optical energy gap increases to 3.29 eV (vs 3.19 eV for TiO2), and the absolute conduction band-edge energy increases to -3.90 eV (vs -4.14 eV). The energy changes of the conduction band edge are more drastic than what is expected from the average electronegativities of the compounds, which may be due to the unnatural coordination environment around Zr in the anatase phase.

  18. High-efficiency photovoltaics based on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Paul K.L. [University of California, San Diego; Yu, Edward T. [University of Texas at Austin; Wang, Deli [University of California, San Diego

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  19. Low temperature doping of ZnO nanostructures

    Institute of Scientific and Technical Information of China (English)

    M.A.THOMAS; H.KANDEL; Y.C.SOO

    2009-01-01

    Doping of ZnO nanostructures was investigated by using a low temperature electrochemical process. Various dopant materials have been studied, including transition metals, group I, and group VII elements. The structure, composition, and optical properties of the doped ZnO nanostructures were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence, and x-ray diffraction. It was demonstrated that dopant elements were incorporated into the ZnO structures. The effects of dopant incorporation on the structure and properties of ZnO were also investigated. This low temperature approach is compatible with current micro-fabrication techniques and promising for large-scale production of doped ZnO nanostructures for optical and electronic applications.

  20. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jesse H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Surendranath, Yogesh [Univ. of California, Berkeley, CA (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  1. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam; Banerjee, Sanjay K., E-mail: banerjee@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Chou, Harry [Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Taegon [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Semiconductor R& D Center, Samsung Electronics Corporation, 1 Samsungjeonja-ro, Hwasung, Kyounggi 445-330 (Korea, Republic of); Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul 130-650 (Korea, Republic of)

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  2. Lasing and ion beam doping of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geburt, Sebastian

    2013-01-31

    Semiconductor nanowires exhibit extraordinary optical properties like highly localized light emission, efficient waveguiding and light amplification. Even the stimulation of laser oscillations can be achieved at optical pumping, making nanowires promising for optoelectronic applications. For successful integration into future devices, three major key challenges have to be faced: (1) the understanding of the fundamental properties, (2) the modification of the emission characteristics and (3) the investigation of the efficiency-limiting factors. All key challenges are addressed in this thesis: (1) The fundamental properties of CdS nanowire have been investigated to uncover the size limits for photonic nanowire lasers. Laser oscillations were observed at room temperature and the emission characteristics were correlated to the morphology, which allowed the determination of a minimum diameter and length necessary for lasing. (2) The emission characteristics of ZnO nanowires have been successfully modified by ion beam doping with Co. The structural investigations revealed a good recovery of the ion induced damage in the crystal lattice. Optical activation of the implanted Co ions was achieved and an intense intra-3d-emission confirmed successful modification. (3) The temporal decay of excited luminescence centers strongly depends on the interplay of luminescent ions and defects, thus offering an approach to investigate the efficiency-limiting processes. Mn implanted ZnS nanowires were investigated, as the temporal decay of the incorporated Mn ions can be described by a Foerster energy transfer model modified for nanostructures. The defect concentration was varied systematically by several approaches and the model could successfully fit the transients in all cases. The emission properties of Tb implanted ZnS nanowires were investigated and the temporal decay of the intra-4f-emission could also be fitted by the model, proving its accuracy for an additional element.

  3. One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    Directory of Open Access Journals (Sweden)

    Shen Guozhen

    2009-01-01

    Full Text Available Abstract The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities.

  4. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  6. The Mobility Edge in Disordered Ferromagnetic Doped Semiconductors

    Science.gov (United States)

    Nielsen, Erik; Bhatt, R. N.

    2007-03-01

    While the clearest example of ferromagnetism in doped semiconductors is seen in diluted magnetic semiconductors such as Ga1-xMnxAs, under certain conditions, semiconductors doped with non-magnetic impurities may also exhibit ferromagnetic ground states. We present numerical results of the nature of single particle states in such a positionally disordered three-dimensional system with a maximally spin-polarized ground state using a realistic potential for hydrogenic centers. In particular, we identify the mobility edges, which mark the energies at which single particle states become delocalized, and whose location relative to the Fermi energy determine electronic transport in the system. We describe the dependence of the mobility edges on impurity density and potential, and discuss the variation of conductivity with impurity and carrier density. H. Ohno, Science 281, 951 (1998) Erik Nielsen and R. N. Bhatt, APS March Meeting 2006. R. N. Bhatt and T. M. Rice, Physical Review B 23, 1920 (1981).

  7. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    Science.gov (United States)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  8. MBE-grown semiconductor nanostructures with electronic and photonic confinement

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis

    In this thesis the realization of semiconductor nanostructures in the InAlGaAs material system with molecular beam epitaxy (MBE) is described, as well as the characterization of their optical properties. First, the growth conditions used for different materials and surfaces are given......As, InGaAs and InAlGaAs is decribed, and it is shown how structures with very uniform quantum dots at energies near the visible red part of the spectrum may be realized. The second main part of the thesis deals with the growth of optical microcavities, where the light is strongly interacting......-called quantum wells, wires and dots. For quantum wells in the InAlGaAs material system, a detailed analysis is presented of the influence of surface segregation during growth, and it is shown how the measured energy levels and linewidths may be calculated with very high precision. Furthermore, the limits...

  9. Shadow mask assisted heteroepitaxy of compound semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schallenberg, T.

    2004-07-01

    Shadow Mask assisted Molecular Beam Epitaxy (SMMBE) is a technique enabling selected area epitaxy of semiconductor heterostructures through shadow masks. The objective of this work was the development of the SMMBE technique for the reliable fabrication of compound semiconductor nanostructures of high structural and optical quality. In order to accomplish this, technological processes have been developed and optimized. One of the technological developments to this effect, which has substantially enhanced the versatility of SMMBE, is the introduction of a new type of freestanding shadow masks. A consistent model has been developed, which successfully explains the growth dynamics of molecular beam epitaxy through shadow masks. The predictions of the model regarding the growth of II-VI and III-V compounds have been tested experimentally and the dependence of the growth rates on the growth parameters has been verified. Moreover, it has been shown, that selected area epitaxy of II-VI and III-V compounds are governed by different surface kinetics. In addition to the basic surface kinetic processes described by the model, the roles of orientation and strain-dependent growth dynamics, partial shadow, and material deposition on the mask (closure of apertures) have been discussed. The resulting advanced understanding of the growth dynamics (model and basic experiments) in combination with the implementation of technical improvements has enabled the development and application of a number of different processes for the fabrication of both II-VI and III-V nanostructures. In addition to specific material properties, various other phenomena have been exploited, e.g., self-organization. Bright cathodoluminescence demonstrates that the resulting quantum structures are of high structural and optical quality. In addition to these results the limitations of the method have also been discussed, and various approaches to overcome them have been suggested. Moreover, propositions for the

  10. pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Jyh-Liang Wang

    2013-01-01

    Full Text Available Highly sensitive and stable pH-sensing properties of an extended-gate field-effect transistor (EGFET based on the aluminum-doped ZnO (AZO nanostructures have been demonstrated. The AZO nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at 85°C. The AZO sensing nanostructures were connected with the metal-oxide-semiconductor field-effect transistor (MOSFET. Afterwards, the current-voltage (I-V characteristics and the sensing properties of the pH-EGFET sensors were obtained in different buffer solutions, respectively. As a result, the pH-sensing characteristics of AZO nanostructured pH-EGFET sensors with Al dosage of 3 at.% can exhibit the higher sensitivity of 57.95 mV/pH, the larger linearity of 0.9998, the smaller deviation of 0.023 in linearity, the lower drift rate of 1.27 mV/hour, and the lower threshold voltage of 1.32 V with a wider sensing range (pH 1 ~ pH 13. Hence, the outstanding stability and durability of AZO nanostructured ionic EGFET sensors are attractive for the electrochemical application of flexible and disposable biosensor.

  11. Manipulating Surface Energy to form Compound Semiconductor Nanostructures

    Science.gov (United States)

    DeJarld, Matthew T.

    Nanostructures have been lauded for their quantum confinement capabilities and potential applications in future devices. Compound semiconductor nanostructures are being integrated into the next generation of photovoltaic and light emitting devices to take advantage of their unique optical characteristics. Despite their promise, adoption of nanostructure based devices has been slow. This is due in large part to difficulties in effective fabrication and processing steps. By manipulating the surface energy of various components during growth, we can control the final structure and corresponding optoelectronic characteristics. Specifically I will present on GaSb quantum dots embedded in GaAs and GaAs nanowires using novel substrate and catalyst materials. GaSb quantum dots embedded in a GaAs matrix are ideal for devices that require capture of minority carriers as they exhibit a type II band offset with carrier concentration in the valence band. However, during GaAs capping, there is a strong driving force for the dot to demolish into a distribution of intact dots, rings, and GaSb material clusters. We demonstrate the ability to mitigate this effect using both chemical and kinetic means: we alter the surface chemistry via the addition of aluminum, and use droplet epitaxy as an alternative quantum dot formation method. Secondly, the growth of high quality GaAs on silicon has always been restricted due to material incompatibilities. With the emergence of increasingly smaller low power electronics, there is a demand to integrate optoelectronic devices directly on the surface of CMOS sensor stacks. Utilizing the vapor-liquid-solid growth mechanism we are able to demonstrate the growth of high quality GaAs nanowires on polycrystalline substrates at low temperatures. This allows for the growth of III-V nanowire based devices directly on the metal pads of pre-packaged CMOS chips. We also investigate the potential use of bismuth as an alternative to gold for catalyzing

  12. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  13. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    Science.gov (United States)

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.

  14. Acoustic charge manipulation in semiconductor nanostructures for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, Stefan

    2010-07-30

    Within this thesis, the influence of a surface acoustic wave (SAW) on the luminescence of semiconductor nanostructures is investigated. Beginning with the physics of low-dimensional semiconductor structures, the quantum mechanical and optical properties of quantum dot (QD) systems are discussed. In particular, intrinsic parameters of QDs such as morphology, composition, strain and occupation with carriers are taken into account. Subsequently, the influence of an applied electric field and of externally induced strain are introduced. From this general approach, the discussion is focused to quantum posts (QPs) which are columnar shaped semiconductor nanostructures. In contrast to conventional self-assembled QDs, the height of the QPs can be controlled by the epitaxial growth process. Due to the adjustable height, electronic states and therefore the exciton transition energies can be tailored. Furthermore, QPs are embedded in a matrix-quantum-well structure which has important influence on the carrier dynamic if a SAW is excited on the sample. Mainly, two effects have to be considered regarding the interaction of charge carriers with SAWs: deformation potential coupling and acousto-electric coupling. For the investigated material and used SAW frequencies, acousto-electric coupling dominates the interaction between charges and SAW. For a quantum well (QW) structure, the periodic band modulation dissociates excitons into sequential stripes of electrons and holes which then are conveyed by the SAW. This so called bipolar transport or charge conveyance effect can be used to inject carriers into remote QD structures and has already been demonstrated for QD ensembles. The injection of carriers into individual quantum posts is successfully demonstrated for the first time within this work. The spectrally resolved photoluminescence (PL) data of individual QPs show an unexpected switching of PL lines which cannot be induced by varying other parameters, e.g. the laser intensity

  15. Metal-insulator transition in films of doped semiconductor nanocrystals.

    Science.gov (United States)

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  16. Optical phase conjugation in semiconductor-doped glasses

    Science.gov (United States)

    Roussignol, P.; Ricard, D.; Rustagi, K. C.; Flytzanis, C.

    1985-08-01

    We have studied optical phase conjugation in two types of semiconductor-doped glasses. Corning 3.68 and Schott OG 530 at λ = 0.532 μm using picosecond pulses. We observe a slow nonlinearity in agreement with the slow decay of luminescence. The saturation of the reflectivity is strongly correlated with the absorption saturation of these glasses and may be interpreted in terms of a three-level system model.

  17. Electronic states of doped semiconductors: A multiple scattering approach

    Science.gov (United States)

    Ghazali, A.; Serre, J.

    1983-03-01

    The electronic structure of doped (and compensated) semiconductors is studied by using the Klauder's best multiple-scattering approximation. Electron correlations are also included. It is shown that as the impurity concentration is decreased, the band tail gradually splits off from the main band giving an impurity band. The domains of existence of extended states and localized states have been recognized by analyzing the shape of spectral densities. Lastly, our results are confronted with various experiments.

  18. Dot-array implantation for patterned doping of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wanzenboeck, H.D. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria)]. E-mail: heinz.wanzenboeck@tuwien.ac.at; Ostermaier, C. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Gruen, A. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Eichinger, B. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Karner, M. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria); Bertagnolli, E. [Institute f. Solid State Electronics, Vienna University of Technology, Floragasse 7, A-1040 Vienna (Austria)

    2006-01-15

    Novel ion beam processing for microelectronic applications has been performed by doping silicon with a focused ion beam tool. A Ga{sup +} ion beam with a energy between 10 and 50 keV was used for p-doping of Si. The ion beam could be focused to an effective beam diameter in the sub-micron range with the smallest focus own below 10 nm. In contrast to conventional implantation with a broad ion beam where the doped area is assigned by a hardmask the implantation was achieved by scanning a focused ion beam over the designated implantation area. With this approach not only the hardmask becomes obsolete because of the electronic beam guidance. Moreover, different doses may be implanted on the same wafer. An additional feature is the inhomogeneous implantation in a pixel-array, where the distance between exposed pixels can be deliberately varied. Even single spots can be independently doped with the focused gallium beam. Due to lateral scattering of ions in the semiconductor the circular implantation area is larger than the beam diameter. With a variation of the pixel spacing we could intentionally obtain either a overlap or a separation of implantation spots. With a four-point method we have investigated the conductivity of the dot-array implanted area. The conductivity of the p-doped region could be deliberately scaled by varying the pixel spacing, the implantation dose and the ion energy. The effective implantation diameter of a single pixel could be determined. This modified implantation approach was also used to fabricate functional p-channel MOSFET's. The Ga implantation with a focused ion beam was used for p-doping of source and drain regions of the transistor device. The utilization of this dot-array implantation with a FIB for semiconductor circuitry demonstrates the potential application of this approach. With the laterally inhomogeneous implantation dot-arrays of doped zones in the nanometer range could be fabricated.

  19. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    Science.gov (United States)

    2008-09-22

    CdSe nanoparticles nanorods nanostructures photocatalysis semiconductors Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...National Laboratory, Berkeley, CA 94720, USA Semiconductor photocatalysis has been identified as a promising avenue for the conversion of solar...sophistication leading to increasingly complex and multi-functional architectures. For photocatalysis in particular, the high surface- to- volume ratios in

  20. Fowler-Nordheim field emission. Effects in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sitangshu [Indian Institute of Science, Bangalore (India). Nano Scale Device Research Laboratory; Ghatak, Kamakhya Prasad [Calcutta Univ. (India). Dept. of Electronics Science

    2012-07-01

    This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb{sub 2}, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi{sub 2}Te{sub 3}, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The book can also serve as a basis for a graduate course on field emission from solids. (orig.)

  1. Fowler-Nordheim field emission effects in semiconductor nanostructures

    CERN Document Server

    Bhattacharya, Sitangshu

    2012-01-01

    This monograph solely presents the Fowler-Nordheim field emission (FNFE) from semiconductors and their nanostructures. The materials considered are quantum confined non-linear optical, III-V, II-VI, Ge, Te, carbon nanotubes, PtSb2, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V, Bi2Te3, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization and quantum wires of the aforementioned superlattices. The FNFE in opto-electronic materials and their quantum confined counterparts is studied in the presence of light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The importance of band gap measurements in opto-electronic materials in the presence of external fields is discussed from this perspective. This monograph contains 200 open research problems which form the very core and are useful for Ph. D students and researchers. The boo...

  2. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    Science.gov (United States)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  3. Possible room temperature ferromagnetism in silicon doped tellurium semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, P.K., E-mail: pkmishra@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Babu, P.D., E-mail: pdbabu@csr.res.in [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai 400085 (India); Ravikumar, G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, R.; Roy, Mainak; Phapale, S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-08-05

    Highlights: • In this work we report the observation of ferromagnetism in a silicon doped tellurium sample at room temperature. • Isothermal magnetization hysteresis measurements shows ferromagnetism persists up to room temperature. • We ascribe the origin of ferromagnetism to possible modification of electronic band or generation of local magnetic moment by silicon doping into the parent tellurium lattice. • Potentially this could be a new type of room-temperature magnetic semiconductor that is not based on any oxide or nitride. - Abstract: We have found direct evidence of ferromagnetism in a silicon doped tellurium sample, a new type of magnetic semiconductor that is not based on any oxide or nitride. Room temperature ferromagnetism was very apparent from the magnetization hysteresis. Isothermal magnetization hysteresis loop and differences in ZFC and FC branches of magnetization shows that the ferromagnetic transition temperature is above room temperature. Observation of magnetization hysteresis only at low magnetic fields is indicative of smaller domain size. Average estimated magnetic moment μ per domain is 2.6 μ{sub B}. The origin of ferromagnetism could be ascribed to modification of electronic band or generation of local magnetic moment by silicon doping into the parent tellurium lattice.

  4. The origin of magnetism in anatase Co-doped TiO2 magnetic semiconductors

    NARCIS (Netherlands)

    Lee, Yunjae

    2010-01-01

    Dilute magnetic semiconductors (DMS) can be tailored by doping a small amount of elements containing a magnetic moment into host semiconductors, which leads to a new class of semiconductors with the functionality of tunable magnetic properties. Recently, oxide semiconductors have attained interests

  5. Properties of infrared doped semiconductor Mie resonators (Presentation Recording)

    Science.gov (United States)

    Lewi, Tomer; Iyer, Prasad P.; Butakov, Nikita A.; Schuller, Jon A.

    2015-09-01

    Dielectric optical antenna resonators have recently emerged as a viable alternative to plasmonic resonators for metamaterials and nanophotonic devices, due to their ability to support multipolar Mie resonances with low losses. In this work, we experimentally investigate the mid-infrared Mie resonances in Si and Ge subwavelength spherical particles. In particular, we leverage the electronic and optical properties of these semiconductors in the mid-infrared range to design and tune Mie resonators through free-carrier refraction. Si and Ge semiconductor spheres of varying sizes of 0.5-4 μm were fabricated using femtosecond laser ablation. Using single particle infrared spectroscopy, we first demonstrate size-dependent Si and Ge Mie resonances spanning the entire mid-infrared (2-16 μm) spectral range. Subsequently we show that the Mie resonances can be tuned by varying material properties rather than size or geometry. We experimentally demonstrate doping-dependent resonance frequency shifts that follow simple Drude models of free-carrier refraction. We show that Ge particles exhibit a stronger doping dependence than Si due to the smaller effective mass of the free carriers. Using the unique size and doping dispersion of the electric and magnetic dipole modes, we identify and demonstrate a size regime where these modes are spectrally overlapping. We also demonstrate the emergence of plasmonic resonances for high doping levels and long wavelengths. These findings demonstrate the potential for tuning infrared semiconductor Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable electromagnetic metamaterials.

  6. Growth and Characterization of Semiconductor Nanostructures for Nanoelectronics

    Science.gov (United States)

    Zhong, Jiebin

    Recently, semiconductor nanostructures have generated a continuously growing interest owing to their intriguing physical properties and potential for future technology development. Quasi-one-dimensional nanowires (NWs), usually defined as round or polyhedral shaped cross-sectional structures with a high aspect ratio of 1000 or more, is one of the most active research areas for nanoelectronics, optoelectronics and sensors. Precise controlled growth of NWs, including dimensions, growth rate, morphology, growth direction, and composition, is essential from the viewpoints of fundamental materials fabrication and their performance in future applications. However, there are still many challenges in the fabrication of NWs with controlled dimensions and properties. This dissertation focuses on investigating the fundamental synthesis aspects of epitaxially grown III-V NWs by chemical vapor deposition (CVD). First, gold (Au) catalyst-assisted growth of InSb NWs directly on lattice mismatched (˜7%) InAs (100) substrates have been studied. The influences of NW diameter and growth temperature on the NW growth rate and morphology have been investigated. The results indicate that NW growth is limited by the growth species direct impingement and the diffusion of surface adatoms. Next, the dependence of morphology of epitaxial InSb NWs on CVD growth parameters over InSb (100) substrates has been investigated. NW length and tapering factors correlated to morphological variations are determined as a function of growth parameters including growth temperature (300°C--480°C), powder source, and duration of growth. Results showed that NW morphology is influenced by axial and radial growth modes, reflecting the competition of various growth mechanisms under different growth conditions. We discovered that Indium droplets may also promote the growth of NWs with a similar role to that of catalytic Au nanoparticles. A potential growth model is accordingly described and discussed. An

  7. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  8. Sn-doped hematite nanostructures for photoelectrochemical water splitting.

    Science.gov (United States)

    Ling, Yichuan; Wang, Gongming; Wheeler, Damon A; Zhang, Jin Z; Li, Yat

    2011-05-11

    We report on the synthesis and characterization of Sn-doped hematite nanowires and nanocorals as well as their implementation as photoanodes for photoelectrochemical water splitting. The hematite nanowires were prepared on a fluorine-doped tin oxide (FTO) substrate by a hydrothermal method, followed by high temperature sintering in air to incorporate Sn, diffused from the FTO substrate, as a dopant. Sn-doped hematite nanocorals were prepared by the same method, by adding tin(IV) chloride as the Sn precursor. X-ray photoelectron spectroscopy analysis confirms Sn(4+) substitution at Fe(3+) sites in hematite, and Sn-dopant levels increase with sintering temperature. Sn dopant serves as an electron donor and increases the carrier density of hematite nanostructures. The hematite nanowires sintered at 800 °C yielded a pronounced photocurrent density of 1.24 mA/cm(2) at 1.23 V vs RHE, which is the highest value observed for hematite nanowires. In comparison to nanowires, Sn-doped hematite nanocorals exhibit smaller feature sizes and increased surface areas. Significantly, they showed a remarkable photocurrent density of 1.86 mA/cm(2) at 1.23 V vs RHE, which is approximately 1.5 times higher than that of the nanowires. Ultrafast spectroscopy studies revealed that there is significant electron-hole recombination within the first few picoseconds, while Sn doping and the change of surface morphology have no major effect on the ultrafast dynamics of the charge carriers on the picosecond time scales. The enhanced photoactivity in Sn-doped hematite nanostructures should be due to the improved electrical conductivity and increased surface area.

  9. N-doping of organic semiconductors by bis-metallosandwich compounds

    Science.gov (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  10. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    Science.gov (United States)

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-01

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  11. Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Agnaldo S. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP (Brazil); Goes, Marcio S. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Fabregat-Santiago, Francisco, E-mail: fran.fabregat@fca.uji.es [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Moehl, Thomas [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Davolos, Marian R. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Bisquert, Juan [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Yanagida, Shozo [Center for Advanced Science and Innovation, Osaka University, Suita, Osaka, 565-0871 (Japan); Nogueira, Ana F. [Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP (Brazil); Bueno, Paulo R., E-mail: prbueno@iq.unesp.br [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil)

    2011-07-15

    Highlights: > ZnO:Ga-based photoelectrodes were compared to analogous ZnO solar cells. > The photoelectrodes capacitance is governed by Ga doping. > Short circuit current is determined by the increasing roughness factor. > The estimated donor density level exceeds 1021 cm-3. - Abstract: The origins of the performance of dye-sensitized solar cells based on ZnO:Ga nanostructured photoelectrodes, compared to analogous ZnO solar cells, were studied by means of impedance spectroscopy under illumination as a function of forward bias voltage. The film capacitance is governed by Ga doping. It can be assumed that the higher donor density of states of ZnO materials and, principally, ZnO:Ga-doped materials pin the Fermi level at a certain shallow energy level so that there is no photovoltage variation as a function of doping level. On the other hand, short circuit current is determined by the increasing roughness factor obtained at the higher doping levels while the lower fill factor values of DSCs based on ZnO:Ga, compared to analogous ZnO, were attributed to the higher ohmic resistive losses associated with the increasing photocurrent densities. In any case, the microstructure and morphological aspects were also considered as a possible origin of the low fill factor values. The estimated donor density level exceeds 10{sup 21} cm{sup -3}, indicating a high doping level in the semiconductor. As a consequence of the synthesis process of ZnO:Ga nanoparticles its size diminishes with the higher Ga contents producing an increase in the overall roughness factor of the films, and then a larger dye upload and short circuit current.

  12. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  13. Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures

    CERN Document Server

    Harrison, Paul

    2016-01-01

    Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...

  14. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures.

    Science.gov (United States)

    Banerjee, Arghya Narayan

    2011-02-15

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  15. Methods for enhancing P-type doping in III-V semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  16. Characterization of Coated Fe-Doped Zinc Oxide Nanostructures

    Directory of Open Access Journals (Sweden)

    M. Benhaliliba

    2013-07-01

    Full Text Available The nanostructures of iron-doped zinc oxide (FZO produced by a simple and low cost dip-coating route onto a glass substrate were studied. The structural, morphological, electrical and optical properties of FZO films were investigated. Nanochains were revealed by SEM analysis at high magnification. A (002-oriented wurzite structure with a lattice parameter of a = 3.24 Å and c = 5.19 Å was confirmed by X-rays diffraction. High transmittance was exhibited in the visible spectrum, T (550 nm > 83 %. Finally, electrical measurements revealed a resistivity and mobility of 10 kΩ·cm, and 5 cm² / Vs respectively.

  17. Characterization of Coated Fe-Doped Zinc Oxide Nanostructures

    OpenAIRE

    M. Benhaliliba; Y.S. Ocak; A. Tab

    2013-01-01

    The nanostructures of iron-doped zinc oxide (FZO) produced by a simple and low cost dip-coating route onto a glass substrate were studied. The structural, morphological, electrical and optical properties of FZO films were investigated. Nanochains were revealed by SEM analysis at high magnification. A (002)-oriented wurzite structure with a lattice parameter of a = 3.24 Å and c = 5.19 Å was confirmed by X-rays diffraction. High transmittance was exhibited in the visible spectrum, T (550 nm) > ...

  18. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  19. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

    Science.gov (United States)

    Sahai, A.; Kumar, Y.; Agarwal, V.; Olive-Méndez, S. F.; Goswami, N.

    2014-10-01

    In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1-10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn1-xFexO along with the secondary phases of cubic ZnFe2O4 and rhombohedric Fe2O3, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered. Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.

  20. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, A.; Goswami, N., E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307 (India); Kumar, Y.; Agarwal, V. [CIICAp-UAEM, Av. Universidad 1001, Col Chamilpa, Cuernavaca 62209 (Mexico); Olive-Méndez, S. F. [Centro de Investigación en Materiales Avanzados, S. C., CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chihuahua 31109 (Mexico)

    2014-10-28

    In this paper, systematic study of structural, vibrational, and optical properties of undoped and 1-10 at.% Fe doped ZnO nanostructures, synthesized adopting chemical precipitation route, has been reported. Prepared nanostructures were characterized employing an assortment of microscopic and spectroscopic techniques, namely Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Micro-Raman Spectroscopy (μRS), and UV-visible and Photoluminescence (PL) spectroscopy. With Fe incorporation, a gradual morphological transformation of nanostructures is demonstrated vividly through SEM/TEM characterizations. Interestingly, the morphology of nanostructures evolves with 1–10 at. % Fe doping concentration in ZnO. Nanoparticles obtained with 1 at. % Fe evolve to nanorods for 3 at. % Fe; nanorods transform to nanocones (for 5 at. % and 7 at. % Fe) and finally nanocones transform to nanoflakes at 10 at. % Fe. However, at all these stages, concurrence of primary hexagonal phase of Zn{sub 1-x}Fe{sub x}O along with the secondary phases of cubic ZnFe{sub 2}O{sub 4} and rhombohedric Fe{sub 2}O{sub 3}, is revealed through XRD analysis. Based on collective XRD, SEM, TEM, and EDX interpretations, a model for morphological evolution of nanostructures was proposed and the pivotal role of Fe dopant was deciphered. Furthermore, vibrational properties analyzed through Raman and FTIR spectroscopies unravel the intricacies of formation and gradual enhancement of secondary phases with increased Fe concentration. UV-visible and PL spectroscopic analyses provided further insight of optical processes altering with Fe incorporation. The blue shift and gradual quenching of visible photoluminescence with Fe doping was found in accordance with structural and vibrational analyses and explicated accordingly.

  1. Diffusion in Intrinsic and Highly Doped III-V Semiconductors

    CERN Multimedia

    Stolwijk, N

    2002-01-01

    %title\\\\ \\\\Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinsic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.\\\\ \\\\The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. P...

  2. Multiscale approach to the electronic structure of doped semiconductor surfaces

    Science.gov (United States)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-02-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising "pseudoatoms" possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic "clean-cleaved" Si(111) surface and its semiconducting (2 ×1 ) reconstructions.

  3. Enhancement of Light-Matter Interaction in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Stobbe, Søren

    This thesis reports research on enhancement of light-matter interaction in semi- conductor quantum nanostructures by means of nanostructure fabrication, optical measurements, and theoretical modeling. Photonic crystal membranes of very high quality and samples for studies of quantum dots...... coupling between quantum dot excitons and a photonic crystal waveguide. We show theoretically that the dipole approximation is not valid a priori for quantum dots and wells in nanostructures. A many-particle exciton formalism is developed by which the Wigner-Weisskopf result for spontaneous emission......-matter interaction is investigated. For the rst time the vacuum Rabi splitting is observed in an electrically tunable device....

  4. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    Directory of Open Access Journals (Sweden)

    Arghya Narayan Banerjee

    2011-02-01

    Full Text Available Arghya Narayan BanerjeeSchool of Mechanical Engineering, Yeungnam University, Gyeongsan, South KoreaAbstract: Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via

  5. Electrochemical impedance spectroscopy for quantitative interface state characterization of planar and nanostructured semiconductor-dielectric interfaces

    Science.gov (United States)

    Meng, Andrew C.; Tang, Kechao; Braun, Michael R.; Zhang, Liangliang; McIntyre, Paul C.

    2017-10-01

    The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.

  6. Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures.

    Science.gov (United States)

    Haldar, Krishna Kanta; Pradhan, Narayan; Patra, Amitava

    2013-10-25

    Formation of heteroepitaxy and designing different-shaped heterostructured nanomaterials of metal and semiconductor in solution remains a frontier area of research. However, it is evident that the synthesis of such materials is not straightforward and needs a selective approach to retain both metal and semiconductor identities in the reaction system during heterostructure formation. Herein, the epitaxial growth of semiconductor CdSe on selected facets of metal Au seeds is reported and different shapes (flower, tetrapod, and core/shell) hetero-nanostructures are designed. These results are achieved by controlling the reaction parameters, and by changing the sequence and timing for introduction of different reactant precursors. Direct evidence of the formation of heteroepitaxy between {111} facets of Au and (0001) of wurtzite CdSe is observed during the formation of these three heterostructures. The mechanism of the evolution of these hetero-nanostructures and formation of their heteroepitaxy with the planes having minimum lattice mismatch are also discussed. This shape-control growth mechanism in hetero-nanostructures should be helpful to provide more information for establishing the fundamental study of heteroepitaxial growth for designing new nanomaterials. Such metal-semiconductor nanostructures may have great potential for nonlinear optical properties, in photovoltaic devices, and as chemical sensors.

  7. X-ray absorption studies of atomic environments in semiconductor nanostructures

    CERN Document Server

    Boscherini, F

    2003-01-01

    The use of X-ray absorption fine structure spectroscopy in the investigation of the atomic environment in semiconductor nanostructures is illustrated. After a description of the experimental apparatus two specific examples are reported: the detection of Si-Ge intermixing in Ge quantum dots and the relation between long range elasticity and local distortions in strained InGaAs epilayers.

  8. Linear scaling calculation of band edge states and doped semiconductors.

    Science.gov (United States)

    Xiang, H J; Yang, Jinlong; Hou, J G; Zhu, Qingshi

    2007-06-28

    Linear scaling methods provide total energy, but no energy levels and canonical wave functions. From the density matrix computed through the density matrix purification methods, we propose an order-N [O(N)] method for calculating both the energies and wave functions of band edge states, which are important for optical properties and chemical reactions. In addition, we also develop an O(N) algorithm to deal with doped semiconductors based on the O(N) method for band edge states calculation. We illustrate the O(N) behavior of the new method by applying it to boron nitride (BN) nanotubes and BN nanotubes with an adsorbed hydrogen atom. The band gap of various BN nanotubes are investigated systematically and the acceptor levels of BN nanotubes with an isolated adsorbed H atom are computed. Our methods are simple, robust, and especially suited for the application in self-consistent field electronic structure theory.

  9. Ubiquitous electron-plasmon coupling in doped semiconductors

    Science.gov (United States)

    Caruso, Fabio; Giustino, Feliciano

    The interplay between electrons and bosonic excitations [as, e.g., phonons, collective charge-density fluctuations (plasmons), and magnons] is pervasive in matter and underlies an extremely broad spectrum of physical phenomena, as, for instance, current dissipation, superconductivity, hot-carrier thermalisation, and band structure replicas. At variance with phonons, however, questions pertaining the strength of electron-plasmon coupling in solids are still awaiting further investigations. We developed and implemented a first-principles theory of electron-plasmon coupling based on many-body perturbation theory. Our first-principles calculations reveal that electron-plasmon coupling alters ubiquitously the dynamical and optical properties of semiconductors at high doping concentrations. This behaviour stems from the emergence of low-energy extrinsic plasmons which may couple electronic states in the vicinity of the Fermi energy

  10. Comparison between highly doped semiconductor and metal infrared antenna

    Science.gov (United States)

    Yang, Yanxiang; Lai, Jianjun; Li, Hongwei; Chen, Changhong

    2015-10-01

    Optical antenna can strongly enhance the interaction of light with matter by their ability to localize electromagnetic fields on nano-metric scale. This allows for the engineering of absorption capabilities to visible and infrared detectors with very small active areas. In this study, we focused on the study of metal and semiconductor infrared antennas for nano-bolometer application. The infrared antennas are applied for increasing the effective absorbing across section, enhancing the field intensity at the gap of the antennas and improving the absorbance of bolometer materials located at the gap. We perform numerical simulation of the characteristics of infrared antennas and analysis the influence of various parameters of antennas (length, wide, and material types) and optimized these parameters to achieve the maximum field enhancement for an optical antenna. We also highlight the comparisons of field enhancement of infrared antenna materials between metal and highly doped semiconductor and discuss some practical issues related to the application of infrared antenna for infrared detectors.

  11. Second International Conference on Neutron Transmutation Doping in Semiconductors

    CERN Document Server

    Neutron Transmutation Doping in Semiconductors

    1979-01-01

    This volume contains the invited and contributed papers presented at the Second International Conference on Neutron Transmutation Doping in Semiconductors held April 23-26, 1978 at the University of Missouri-Columbia. The first "testing of the waters" symposium on this subject was organized by John Cleland and Dick Wood of the Solid-State Division of Oak Ridge National Laboratory in April of 1976, just one year after NTD-silicon appeared on the marketplace. Since this first meeting, NTD-silicon has become established as the starting material for the power device industry and reactor irradiations are now measured in tens of tons of material per annum making NTD processing the largest radiation effects technology in the semiconductor industry. Since the first conference at Oak Ridge, new applications and irradiation techniques have developed. Interest in a second con­ ference and in publishing the proceedings has been extremely high. The second conference at the University of Missouri was attended by 114 perso...

  12. Orthogonal Ambipolar Semiconductor Nanostructures for Complementary Logic Gates.

    Science.gov (United States)

    Huang, Weiguo; Markwart, Jens C; Briseno, Alejandro L; Hayward, Ryan C

    2016-09-27

    We report orthogonal ambipolar semiconductors that exhibit hole and electron transport in perpendicular directions based on aligned films of nanocrystalline "shish-kebabs" containing poly(3-hexylthiophene) (P3HT) and N,N'-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide (PDI) as p- and n-type components, respectively. Polarized optical microscopy, scanning electron microscopy, and X-ray diffraction measurements reveal a high degree of in-plane alignment. Relying on the orientation of interdigitated electrodes to enable efficient charge transport from either the respective p- or n-channel materials, we demonstrate semiconductor films with high anisotropy in the sign of charge carriers. Films of these aligned crystalline semiconductors were used to fabricate complementary inverter devices, which exhibited good switching behavior and a high noise margin of 80% of 1/2 Vdd. Moreover, complementary "NAND" and "NOR" logic gates were fabricated and found to exhibit excellent voltage transfer characteristics and low static power consumption. The ability to optimize the performance of these devices, simply by adjusting the solution concentrations of P3HT and PDI, makes this a simple and versatile method for preparing ambipolar organic semiconductor devices and high-performance logic gates. Further, we demonstrate that this method can also be applied to mixtures of PDI with another conjugated polymer, poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]) (PBTTT), with better hole transport characteristics than P3HT, opening the door to orthogonal ambipolar semiconductors with higher performance.

  13. Thermoluminescence properties of -irradiated Bi doped BaS nanostructures

    Indian Academy of Sciences (India)

    Surender Singh; Ankush Vij; S P Lochab; Ravi Kumar; Nafa Singh

    2011-07-01

    Bismuth doped barium sulphide nanocrystallities were prepared and characterized by XRD. Thermoluminescence (TL) studies of these samples after exposure to gamma radiation were carried out. The TL glow curve of the phosphors have two peaks at 403 K and 658 K while in their bulk counterparts these peaks were reported at 486 K and 570 K (Rao 1986). We noted that TL intensity increases with gamma exposure time in the range 30 min – 41 h which may be explained on the basis of track interaction model (TIM) and a high surface to volume ratio for the nanostructures. The kinetic parameters at various heating rates namely activation energy (E), order of kinetics (b) and frequency factor (s) of BaS : Bi (0.4 mol%) sample was determined using Chen’s method. The deconvolution of curve was done using the GCD function suggested by Kitis. The effect of different heating rates and different amount of dose has also been discussed.

  14. Boron doped nanostructure ZnO films deposited by ultrasonic spray pyrolysis

    Science.gov (United States)

    Karakaya, Seniye; Ozbas, Omer

    2015-02-01

    ZnO is an II-VI compound semiconductor with a wide direct band gap of 3.3 eV at room temperature. Doped with group III elements (B, Al or Ga), it becomes an attractive candidate to replace tin oxide (SnO2) or indium tin oxide (ITO) as transparent conducting electrodes in solar cell devices and flat panel display due to competitive electrical and optical properties. In this work, ZnO and boron doped ZnO (ZnO:B) films have been deposited onto glass substrates at 350 ± 5 °C by a cost-efficient ultrasonic spray pyrolysis technique. The optical, structural, morphological and electrical properties of nanostructure undoped and ZnO:B films have been investigated. Electrical resistivity of films has been analyzed by four-probe technique. Optical properties and thicknesses of the films have been examined in the wavelength range 1200-1600 nm by using spectroscopic ellipsometry (SE) measurements. The optical constants (refractive index (n) and extinction coefficient (k)) and the thicknesses of the films have been fitted according to Cauchy model. The optical method has been used to determine the band gap value of the films. Transmission spectra have been taken by UV spectrophotometer. It is found that both ZnO and ZnO:B films have high average optical transmission (≥80%). X-ray diffraction (XRD) patterns indicate that the obtained ZnO has a hexagonal wurtzite type structure. The morphological properties of the films were studied by atomic force microscopy (AFM). The surface morphology of the nanostructure films is found to depend on the concentration of B. As a result, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.

  15. Photocurrent Properties of Undoped and Pb-Doped SnS Nanostructures Grown Using Electrodeposition Method

    Science.gov (United States)

    Niknia, Farhad; Jamali-Sheini, Farid; Yousefi, Ramin

    2015-12-01

    Nanostructured Pb-doped SnS thin films were deposited onto fluorine-doped tin oxide-coated glass substrates by electrochemical deposition. The films were characterized using different techniques to study their structural, morphological, and optical properties. The x-ray diffraction analysis indicated that the films were polycrystalline in nature and had an orthorhombic crystal structure. Scanning electron microscopy studies showed that the Pb dopant could significantly change the morphology of the nanostructures. Energy dispersive spectroscopy showed different concentrations of Pb for different morphologies. Optical measurements suggested a red shift for the band gap values from 1.46 eV to 1.40 eV with an increase in the Pb concentration. Finally, the photocurrent responses of the nanostructures were studied. The results revealed that Pb-doped SnS nanostructures exhibited better response than the undoped SnS nanostructures.

  16. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  17. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.

    Science.gov (United States)

    Herring, Natalie P; Panchakarla, Leela S; El-Shall, M Samy

    2014-03-04

    We report herein the development of a facile microwave irradiation (MWI) method for the synthesis of high-quality N-doped ZnO nanostructures with controlled morphology and doping level. We present two different approaches for the MWI-assisted synthesis of N-doped ZnO nanostructures. In the first approach, N-doping of Zn-poor ZnO prepared using zinc peroxide (ZnO2) as a precursor is carried out under MWI in the presence of urea as a nitrogen source and oleylamine (OAm) as a capping agent for the shape control of the resulting N-doped ZnO nanostructures. Our approach utilizes the MWI process for the decomposition of ZnO2, where the rapid transfer of energy directly to ZnO2 can cause an instantaneous internal temperature rise and, thus, the activation energy for the ZnO2 decomposition is essentially decreased as compared to the decomposition under conductive heating. In the second synthesis method, a one-step synthesis of N-doped ZnO nanostructures is achieved by the rapid decomposition of zinc acetate in a mixture of urea and OAm under MWI. We demonstrate, for the first time, that MWI decomposition of zinc acetate in a mixture of OAm and urea results in the formation of N-doped nanostructures with controlled shape and N-doping level. We report a direct correlation between the intensity of the Raman scattering bands in N-doped ZnO and the concentration of urea used in the synthesis. Electrochemical measurements demonstrate the successful synthesis of stable p-type N-doped ZnO nanostructures using the one-step MWI synthesis and, therefore, allow us to investigate, for the first time, the relationship between the doping level and morphology of the ZnO nanostructures. The results provide strong evidence for the control of the electrical behavior and the nanostructured shapes of ZnO nanoparticles using the facile MWI synthesis method developed in this work.

  18. Charge transport through a semiconductor quantum dot-ring nanostructure.

    Science.gov (United States)

    Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M

    2015-07-08

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.

  19. Creation of Metal and Semiconductor Nanostructures Using DPN Nanolithography Techniques

    Science.gov (United States)

    2006-02-01

    polymers, including polypyrroles and polythiophenes , can be polymerized electrochemically. To create nanostructures of conducting polymers using DPN...surface and monitor the Figure 1. DPN of thiols on Au. From changes in tunneling current between a metal tip and a conducting Piner et. al, Science 283...surface. Si wafers coated with a tin layer of native oxide provides enough conductivity for the reduction of the precursor ions. This development

  20. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

    Science.gov (United States)

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2015-10-14

    Copper doped ZnO nanostructures have been synthesized by a facile wet chemical method. Structural properties of as-synthesized nanomaterials have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, while UV-visible absorption spectroscopy and Raman spectroscopy have been used to study their optical properties. Sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water was used to evaluate the photocatalytic activities of Cu doped ZnO nanostructures using UV-visible absorption spectroscopy. The results showed that there is an optimum Cu doping level which leads to the highly enhanced photocatalytic activity of Cu doped ZnO nanostructures, as compared to pure ZnO nanostructures. A mechanism for the enhanced photocatalytic activity of Cu-ZnO nanostructures is tentatively proposed. The enhanced photocatalytic activity of Cu-ZnO nanostructures is attributed to the combined effects of improved separation of photogenerated charge carriers due to optimal Cu doping in ZnO nanostructures and the formation of ZnO-CuO nanoheterojunctions.

  1. Photoelectron spectroscopy on doped organic semiconductors and related interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Selina Sandra

    2010-06-08

    Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2.10{sup 20} cm{sup -3}. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16 eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to oat on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built

  2. Effect of Cobalt Doping on Nanostructured CuO Thin Films

    Science.gov (United States)

    Bayansal, Fatih; Taşköprü, Turan; Şahin, Bünyamin; Çetinkara, Hacı Ali

    2014-07-01

    The growth of cobalt-doped nanostructured CuO thin films using the successive ionic layer adsorption and reaction (SILAR) method is presented. It is found that Co doping considerably influences the structural (X-ray diffraction (XRD)), morphological (finite-element-scanning electron microscopy (FESEM)), and optical (ultraviolet/visible (UV/vis.) and Raman) properties of the films. XRD experiments evidence that the crystallite size of the films decreased with increasing Co doping. FESEM images reveal that the grain size of the nanostructures decreased with increasing doping concentration. By UV/vis. analysis, it is found that Co doping has a decreasing effect on band gap energy. The broadening and downshift of the Raman peaks are mainly attributed to the quantum confinement effect of CuO nanostructures.

  3. Study on synthesis and optical properties of Al-doped ZnO hierarchical nanostructures

    OpenAIRE

    2011-01-01

    Highly densified Al-doped ZnO (denoted as Al-ZnO) hierarchical nanostructures were synthesized on transparent quartz substrate by chemical vapor deposition. It is found that the heating temperature plays a key role on controlling the morphologies of the Al-ZnO hierarchical nanostructures through a temperature dependent migration of Al atoms. Such uneven distribution of Al element in the hierarchical nanostructures is clearly evidenced by the x-ray photoelectron spectrum (XPS) measurements. Th...

  4. Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Atta ur; Rafiq, M A; Hasan, M M [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, PO Nilore, Islamabad, 45650 (Pakistan); Karim, S; Maaz, K; Siddique, M, E-mail: fac221@pieas.edu.pk [Physics Division, Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, 45650 (Pakistan)

    2011-04-27

    In this paper we report semiconductor to metal transition and polaron conduction in nanostructured cobalt ferrite. The material was prepared by the coprecipitation technique. Average particle size was determined to be {approx}10 nm by x-ray diffraction and transmission electron microscope analysis. A detailed electrical characterization was performed in the frequency range 20 Hz-2 MHz and temperature range between 300 and 400 K. Nanostructured cobalt ferrite exhibits semiconductor behaviour from 300 to 330 K. From 330 to 400 K it has metallic behaviour. The change at {approx}330 K is attributed to a change in cation distribution as obtained from Moessbauer spectroscopy. The ac conductivity of cobalt ferrite followed {sigma}{sub ac} {approx} {omega}{sup s} dependence. The observed variation of the exponent 's' with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism from 300 to 400 K and in the frequency range 20 Hz-2 MHz.

  5. Controlling the stoichiometry and doping of semiconductor materials

    Science.gov (United States)

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  6. Carbon doping of III-V compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Amy Jo [Univ. of California, Berkeley, CA (United States)

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 1014/cm2. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  7. Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties

    Science.gov (United States)

    Sahoo, Pranati

    Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity. This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered

  8. New highly fluorescent biolabels based on II VI semiconductor hybrid organic inorganic nanostructures for bioimaging

    Science.gov (United States)

    Santos, B. S.; Farias, P. M. A.; Menezes, F. D.; Brasil, A. G., Jr.; Fontes, A.; Romão, L.; Amaral, J. O.; Moura-Neto, V.; Tenório, D. P. L. A.; Cesar, C. L.; Barbosa, L. C.; Ferreira, R.

    2008-11-01

    Semiconductor quantum dots based on II-VI materials may be prepared to develop good biolabeling properties. In this study we present some well-succeeded results related to the preparation, functionalization and bioconjugation of CdY (Y = S, Se and Te) to biological systems (live cells and fixed tissues). These nanostructured materials were prepared using colloidal synthesis in aqueous media resulting nanoparticles with very good optical properties and an excellent resistance to photodegradation.

  9. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  10. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties

    Directory of Open Access Journals (Sweden)

    T. Rakshit

    2013-11-01

    Full Text Available Pure and Sn doped ZnO nanostructures have been grown on SiO2/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002 growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.

  11. Energy Conversion Application of Chemicurrents Induced in Metal-Semiconductor Nanostructured Devices

    Science.gov (United States)

    Dasari, Suhas Kiran

    Hydrogen is one the most attractive and suitable energy systems for generation of power in the future with high efficiencies and renewable properties. Nanoscale materials, because of their surface and physical properties are the promising candidates for the development of high performance energy conversion devices, essential components to ensure the efficient operation of the infrastructure and to facilitate the wide spread implementation of hydrogen technologies. This work realizes the use of solid state energy conversion concept to develop metal-semiconductor, metal-oxide architecture devices for electrolyte free conversion of chemical energy to electrical energy by hydrogen oxidation process. This investigation addresses the synthesis of these nanostructure devices by selection of suitable system material combinations, electrical and surface morphological characterization leading to the successful implementation in generation of chemicurrents. Also, the hydrogen oxidation process on each nanostructure device is elucidated with the help of corresponding mechanisms and the performance of each system developed was evaluated based on the resulting output efficiency. The two systems (metal-semiconductor and metal-oxide) realized, showed excellent chemical to electrical energy conversion abilities. Compared to metal-semiconductor nanostructure devices, metal-oxide systems exhibited better energy conversion abilities for indefinitely long duration of time at room temperature. The electron yield observed in considered metal-oxide systems can be sufficient for their use in practical applications. A continued realization of these metal-oxide systems with different material combinations would lead to more ecologically friendly and sustainable energy economics.

  12. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen Sang

    2013-08-01

    Full Text Available Ultraviolet (UV photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications.

  13. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  14. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    National Research Council Canada - National Science Library

    Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously...

  15. Engineering magnetism in semiconductors

    Directory of Open Access Journals (Sweden)

    Tomasz Dietl

    2006-11-01

    Full Text Available Transition metal doped III-V, II-VI, and group IV compounds offer an unprecedented opportunity to explore ferromagnetism in semiconductors. Because ferromagnetic spin-spin interactions are mediated by holes in the valence band, changing the Fermi level using co-doping, electric fields, or light can directly manipulate the magnetic ordering. Moreover, engineering the Fermi level position by co-doping makes it possible to modify solubility and self-compensation limits, affecting magnetic characteristics in a number of surprising ways. The Fermi energy can even control the aggregation of magnetic ions, providing a new route to self-organization of magnetic nanostructures in a semiconductor host.

  16. Growth and magnetization study of transition metal doped GaN nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Shalini; Kang, Hun; Park, Eun-Hyun [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA (United States); Kane, Matthew H.; Ferguson, Ian T. [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA (United States); Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA (United States)

    2008-07-01

    This work presents the MOCVD growth and characterization of optically active GaN nanostructures which have been doped with the transition metals manganese and iron for potential spintronic applications. Introduction of both these transition metals in GaN nanostructures enhanced the nucleation of the nanostructures resulting in reduced lateral dimensions and increased nanostructure density. Both Ga{sub 1-x}Mn{sub x}N and Ga{sub 1-x}Fe{sub x}N nanostructures showed hysteresis behaviour at 5 K. Further VSM measurements on Ga{sub 1-x}Fe{sub x}N nanostructures at 300 K showed a hysteresis curve with a reduced coercive filed and displayed superparamagnetic behaviour. These magnetically active nanostructures are promising and provide an incentive to further study them with the aim of eventually utilizing them in spintronic applications and improving device efficiency. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Synthesis and Characterization of Hydrophilic and Semiconductor Cadmium Chromite Nanostructures

    Science.gov (United States)

    Mousavi, Zahra; Salavati-Niasari, Masoud; Soofivand, Faezeh; Esmaeili-Zare, Mahdiyeh; Hamadanian, Masood

    2016-11-01

    Cadmium chromite nanostructures were synthesized in high yield by a simple co-precipitation method. CdCr2O4 nanostructures have been achieved using cadmium nitrate tetrahydrate and CrCl3·6H2O as precursors by a co-precipitation method. The effects of various parameters including alkaline agent, pH value, reaction temperature, and surfactant type were investigated to discover the optimum conditions, and it was found that the size and morphology of products can be affected by these parameters. The structure, morphology and surface chemistry of CdCr2O4 powder were investigated by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 20 nm. The hydrophilicity of the calcined oxides was investigated by wetting experiments and the sessile drop technique which were carried out at room temperature in air to determine the surface and interfacial interactions.

  18. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  19. Quantum coherence in semiconductor nanostructures for improved lasers and detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Weng Wah Dr. (; .); Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm

    2006-02-01

    The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.

  20. Nonlinear optical effects in pure and N-doped semiconductors

    CERN Document Server

    Donlagic, N S

    2000-01-01

    the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features of the linear response can directly be related to features of the nonlinear experiments. For example, the exponent which describes the algebraic decay of the time-integrated four-wave-mixing signal is functionally dependent on the exponent of the algebraic singularity in the linear absorption spectrum reflecting the common origin of the different phenomena. Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear res...

  1. Study on synthesis and optical properties of Al-doped ZnO hierarchical nanostructures

    Directory of Open Access Journals (Sweden)

    X. H. Wang

    2011-03-01

    Full Text Available Highly densified Al-doped ZnO (denoted as Al-ZnO hierarchical nanostructures were synthesized on transparent quartz substrate by chemical vapor deposition. It is found that the heating temperature plays a key role on controlling the morphologies of the Al-ZnO hierarchical nanostructures through a temperature dependent migration of Al atoms. Such uneven distribution of Al element in the hierarchical nanostructures is clearly evidenced by the x-ray photoelectron spectrum (XPS measurements. The obtained Al-ZnO hierarchical nanostructures have transmittance of above 60% in the visible region. The photoluminescence (PL spectra at low-temperature (20 K were also measured.

  2. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Auttasit Tubtimtae; Suwanna Sheangliw; Kritsada Hongsith; Supab Choopun

    2014-10-01

    We studied the photovoltaic performance of boron-doped MnTe semiconductor-sensitized solar cells (B-doped MnTe SSCs). The B-doped MnTe semiconductor was grown on ZnO using two stages of the successive ionic layer adsorption and reaction (SILAR) technique. The two phases of B-doped semiconductor nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately 15–30 nm. The result of the energy conversion efficiency of the sample with boron doping was superior compared to that of an undoped sample, due to the substantial change in the short-circuit current density and the open-circuit voltage. In addition, plots of ( ℎ )2 vs ℎ with band gaps of 1.30 and 1.27 eV were determined for the undoped and B-doped MnTe NPs, respectively. It can be noted that the boron doping effects with the change in the band gap and lead to an improvement in the crystalline quality and also intimate contact between the larger sizes of MnTe NPs. Hence, a noticeably improved photovoltaic performance resulted. However, this kind of semiconductor sensitizer can be further extended by experiments on yielding a higher power conversion efficiency and greater stability of the device.

  3. Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures

    Science.gov (United States)

    Milla, M. J.; Barho, F.; González-Posada, F.; Cerutti, L.; Bomers, M.; Rodriguez, J.-B.; Tournié, E.; Taliercio, T.

    2016-10-01

    We report a detailed analysis of the influence of the doping level and nanoribbon width on the localized surface plasmon resonance (LSPR) by means of reflectance measurements. The plasmonic system, based on one-dimensional periodic gratings of highly Si-doped InAsSb/GaSb semiconductor nanostructures, is fabricated by a simple, accurate and large-area technique fabrication. Increasing the doping level blueshifts the resonance peak while increasing the ribbon width results in a redshift, as confirmed by numerical simulations. This provides an efficient means of fine-tuning the LSPR properties to a target purpose of between 8-20 μm (1250-500 cm-1). Finally, we show surface plasmon resonance sensing to absorbing polymer layers. We address values of the quality factor, sensitivity and figure of merit of 16 700 nm RIU-1 and 2.5, respectively. These results demonstrate Si-doped InAsSb/GaSb to be a low-loss/high sensitive material making it very promising for the development of biosensing devices in the mid-infrared.

  4. Spatial solitons in periodic semiconductor-dielectric nano-structures

    CERN Document Server

    Gorbach, A V

    2009-01-01

    A detailed analysis of the existence and stability of TE and TM nonlinear guided modes in one-dimensional sub-wavelength periodic semiconductor-dielectric structures is done using the full vector nonlinear Maxwell equations. Linear spectra for both light polarizations gradually transform towards those of a quasi-homogeneous medium with decreasing structure period. The properties of TE solitons change accordingly, so that for small enough periods, TE solitons stop feeling the presence of the structure. However TM sotitons are demonstrated to sustain inhomogeneous field distribution for any small period of the structure, developing strong intensity peaks inside dielectric slots. Qualitative transfomation in the structure of TM solitons occurs as the structure period is decreased, and is accompained by the change in their stability properties. This is linked to the corresponding qualitative changes in the linear modes structure, related to the Brewster condition.

  5. Excitonic Coherence in Semiconductor Nanostructures Measured by Speckle Analysis

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    A new method to measure the time-dependent coherence of optical excitations in solids is presented, in which the coherence degree of light emission is deduced from its intensity fluctuations over the emission directions (speckles). With this method the decays of intensity and coherence...... are determined separately, thus distinguishing lifetime from pure dephasing. In particular, the secondary emission of excitons in semiconductor quantum wells is investigated. Here, the combination of static disorder and inelastic scattering leads to a partially coherent emission. The temperature dependence...... is well explained by phonon scattering. Spin-relaxation is found to be dominated by disorder, and is preserving the coherence, while phonon-assisted energy-relaxation is foundto destroy the coherence....

  6. Multidimensional Coherent Photocurrent Spectroscopy of a Semiconductor Nanostructure

    CERN Document Server

    Nardin, Gaël; Silverman, Kevin L; Cundiff, Steven T

    2013-01-01

    Multidimensional Coherent Optical Photocurrent Spectroscopy (MD-COPS) is implemented using unstabilized interferometers. Photocurrent from a semiconductor sample is generated using a sequence of four excitation pulses in a collinear geometry. Each pulse is tagged with a unique radio frequency through acousto-optical modulation ; the Four-Wave Mixing (FWM) signal is then selected in the frequency domain. The interference of an auxiliary continuous wave laser, which is sent through the same interferometers as the excitation pulses, is used to synthesize reference frequencies for lock-in detection of the photocurrent FWM signal. This scheme enables the partial compensation of mechanical fluctuations in the setup, achieving sufficient phase stability without the need for active stabilization. The method intrinsically provides both the real and imaginary parts of the FWM signal as a function of inter-pulse delays. This signal is subsequently Fourier transformed to create a multi-dimensional spectrum. Measurements ...

  7. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Hernandez, G. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Escobedo-Morales, A., E-mail: alejandroescobedo@hotmail.com [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Postal J-48, C.P. 72570 Puebla, Pue. (Mexico); Chigo-Anota, E. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2012-08-15

    In the present article, the effect of gallium doping on the morphology, structural, and vibrational properties of hydrothermally grown ZnO nanostructures has been studied. It has been observed that incorporated gallium plays an important role on the growth kinetics and hence on the morphology evolution of the ZnO crystals. Ga doping in high concentration results in the contraction of ZnO unit cell, mainly along c-axis. Although Ga has high solubility in ZnO, heavy doping promotes the segregation of Ga atoms as a secondary phase. Incorporated Ga atoms strongly affect the vibrational characteristics of ZnO lattice and induce anomalous Raman modes. Possible mechanisms of morphology evolution and origin of anomalous Raman modes in Ga doped ZnO nanostructures are discussed. -- Highlights: Black-Right-Pointing-Pointer Ga doped ZnO nanostructures were successfully grown by hydrothermal chemical route. Black-Right-Pointing-Pointer Ga doping has strong effect on the resulting morphology of ZnO nanostructures. Black-Right-Pointing-Pointer Anomalous vibrational modes in wurtzite ZnO lattice are induced by Ga doping. Black-Right-Pointing-Pointer Incorporated Ga atoms accommodate at preferential lattice sites.

  8. Tunable Optical Phenomena and Carrier Recombination Dynamics in III-V Semiconductor Nanostructures

    Science.gov (United States)

    Kumar Thota, Venkata Ramana

    Semiconductor nanostructures such as quantum dots, quantum wires and quantum wells have gained significant attention in the scientific community due to their peculiar properties, which arise from the quantum confinement of charge carriers. In such systems, confinement plays key role and governs the emission spectra. With the advancements in growth techniques, which enable the fabrication of these nanostructured devices with great precision down to the atomic scale, it is intriguing to study and observe quantum mechanical effects through light-matter interactions and new physics governed by the confinement, size, shape and alloy composition. The goal is to reduce the size of semiconductor bulk material to few nanometers, which in turn localizes the charge carriers inside these structures such that the spin associated with them is used to carry and process information within ultra-short time scales. The main focus of this dissertation is the optical studies of quantum dot molecule (QDM) systems. A system where the electrons can tunnel between the two dots leading to observable tunneling effects. The emission spectra of such system has been demonstrated to have both intradot transitions (electron-hole pair residing in the same dot) and interdot transitions (electron-hole pair participating in the recombination origin from different dots). In such a system, it is possible to apply electric field such that the wavefunction associated with the charge carriers can be tuned to an extent of delocalizing between the two dots. This forms the first project of this dissertation, which addresses the origin of the fine structure splitting in the exciton-biexciton cascade. Moreover, we also show how this fine structure can be tuned in the quantum dot molecule system with the application of electric field along the growth direction. This is demonstrated through high resolution polarization dependent photoluminescence spectroscopy on a single QDM, which was described in great detail

  9. DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts.

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Raid Edward; Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; Nuttall, H. Eric; Watt, Richard K.; Singl, Anup K.; Challa, Sivakumar R.; Wang, Zhongchun; van Swol, Frank B.; Pereira, Eulalia; Qiu, Yan; Jiang, Ying-Bing; Xu, Huifang; Medforth, Craig J.; Song, Yujiang

    2003-10-01

    Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient

  10. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.

    Science.gov (United States)

    Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H

    2016-11-24

    To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron

  11. Observation of ferromagnetic semiconductor behavior in manganese-oxide doped graphene

    Directory of Open Access Journals (Sweden)

    Chang-Soo Park

    2014-08-01

    Full Text Available We have doped manganese-oxide onto graphene by an electrochemical method. Graphene showed a clear ferromagnetic semiconductor behavior after doping of manganese-oxide. The manganese-oxide doped graphene has a coercive field (Hc of 232 Oe at 10 K, and has the Curie temperature of 270 K from the temperature-dependent resistivity using transport measurement system. The ferromagnetism of manganese-oxide doped graphene attributes to the double-exchange from the coexistence of Mn3+ and Mn4+ on the surface of graphene. In addition, the semiconducting behavior is caused by the formation of manganese-oxide on graphene.

  12. Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Martin, E-mail: mh@nus.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore 117456 (Singapore); Kluska, Sven [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, D-79110 Freiburg (Germany); Hameiri, Ziv; Hoex, Bram [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117456 (Singapore)

    2013-12-23

    We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes.

  13. Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, H.H.; Kitoh, Kenshin; Nemoto, Hiroshi [NGK Insulators Ltd., Nagoya (Japan). Corporate Research and Development Group

    1997-10-01

    Hard carbons from various precursors heat-treated at 1000-2000 C follow a common rule with regard to their structure-capacity correlation for lithium intercalation. A nanostructure containing a large fraction of highly strained carbon layers with large interlayer spacings and small crystallite sizes is a prerequisite to achieve reversible capacities in the range 300-450 mAh/g. P-doping of carbon derived from a polymer precursor causes a softening of the hard carbon structure by decreasing the strain on carbon layers, reducing interlayer spacing and increasing the crystallite sizes. It also induces a reduction of the number of nanopores which become large in size. The amount of space reduction by the softening effect, however, is more than compensated by the dopant so that capacities of 550 mAh/g and first cycle efficiencies improved up to 83% are achieved. (orig.)

  14. Ion beam sputtered nanostructured semiconductor surfaces as templates for nanomagnet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, C [Institute of Physics, University of Leoben, 8700 Leoben (Austria); De Miguel, J J [Department of Condensed Matter Physics, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Bobek, T [Institute of Semiconductor Technology, University of Aachen, 52074 Aachen (Germany)], E-mail: teichert@unileoben.ac.at

    2009-06-03

    The ongoing tendency for increasing the storage densities in magnetic recording techniques requires a search for efficient routes to fabricate and characterize nanomagnet arrays on solid supports. Spontaneous pattern formation in semiconductor heteroepitaxy or under ion erosion of semiconductor surfaces yields nanostructured substrates that can serve as templates for subsequent deposition of magnetic material. The nanostructured morphology of the template can easily be replicated into the magnetic coating by means of the shadow deposition technique which allows one to selectively cover specific areas of the template with magnetic material. Here, we demonstrate that ion bombardment induced hexagonally arranged GaSb dots are suitable templates for fabricating by shadow deposition close-packed nanomagnets with a lateral extension of {<=}50 nm, i.e. with a resulting storage density of up to 0.2 Tbit in{sup -2}. Magnetic-force microscopy (MFM) measurements revealed that the individual nanomagnets-which are located on the tops of the semiconductor hillocks-are single domain and show mainly independent magnetization. The coupling behaviour was estimated from correlation function analysis of the MFM data. In addition, magneto-optical Kerr effect measurements demonstrate that the nanomagnets can be magnetized either out-of-plane or in-plane and show remanence at room temperature, with a coercive field of 120 mT.

  15. GaN nanostructure-based light emitting diodes and semiconductor lasers.

    Science.gov (United States)

    Viswanath, Annamraju Kasi

    2014-02-01

    GaN and related materials have received a lot of attention because of their applications in a number of semiconductor devices such as LEDs, laser diodes, field effect transistors, photodetectors etc. An introduction to optical phenomena in semiconductors, light emission in p-n junctions, evolution of LED technology, bandgaps of various semiconductors that are suitable for the development of LEDs are discussed first. The detailed discussion on photoluminescence of GaN nanostructures is made, since this is crucial to develop optical devices. Fabrication technology of many nanostructures of GaN such as nanowires, nanorods, nanodots, nanoparticles, nanofilms and their luminescence properties are given. Then the optical processes including ultrafast phenomena, radiative, non-radiative recombination, quantum efficiency, lifetimes of excitons in InGaN quantum well are described. The LED structures based on InGaN that give various important colors of red, blue, green, and their design considerations to optimize the output were highlighted. The recent efforts in GaN technology are updated. Finally the present challenges and future directions in this field are also pointed out.

  16. Optical properties of semiconductor nanostructures in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Grochol, M.

    2007-04-03

    In this work, the near bandgap linear optical properties of semiconductor quantum structures under applied magnetic field are investigated. First, the exciton theory is developed starting with the one-electron Hamiltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamiltonian, and ending with the exciton Hamiltonian in the envelope function approximation. Further, concentrating on the quantum well and thus assuming strong confinement in the growth direction, the motion parallel and perpendicular to the xy-plane is factorized leading to the well-known single sublevel approximation. A magnetic field perpendicular to the xy-plane is applied, and a general theorem describing the behavior of the energy eigenvalues is derived. The strain calculation within the isotropic elasticity approach is described in detail. The Schroedinger equation is solved numerically for both the full model and the factorization with artificially generated disorder potentials. Furthermore the statistical properties of the disorder in a real quantum well have been analyzed. In particular, temperature dependent photoluminescence spectra and diamagnetic shift statistics, have been compared with the experimental ones and very good agreement has been found. The second part of this thesis deals predominantly with highly symmetrical structures embedded in the quantum well: namely quantum rings and dots. First, adopting an ansatz for the wave function, the Hamiltonian matrix is derived discussing which matrix elements are non-zero according to the symmetry of the potential. Additionally, the expectation values of the current and magnetization operators are evaluated. Then, concentrating on the case of the highest (circular) symmetry, the model of zero width ring is introduced. Within this model the close relation between the oscillatory component of the exciton energy (exciton Aharonov-Bohm effect) and the persistent current is revealed. Examples for different material systems follow

  17. Determination of Doping Density in GaAs Semiconductor by Wavelength-Dependent Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jongtae; Choi, Oklim; Boo, Doo Wan; Choi, Joonggill [Yonsei Univ., Seoul (Korea, Republic of)

    2014-03-15

    The wavelength dependence of the photoacoustic signal for n-type GaAs semiconductors in the region of the band-gap energies was investigated. The significant changes in the phase and amplitude of the photoacoustic signal near the band-gap absorption wavelengths were observed to occur when the Si-doping densities in GaAs were varied. Particularly, the first derivatives of the photoacoustic phase vs. wavelength graphs were evaluated and fitted with single Gaussian functions. The peak centers and the widths of the Gaussian curves clearly showed linear relationships with the log values of the Si-doping densities in n-type GaAs semiconductors. It is proposed that the wavelength-dependent PA spectroscopy can be used as a simple and nondestructive method for measuring the doping densities in bulk semiconductors.

  18. MnTe semiconductor-sensitized boron-doped TiO2 and ZnO photoelectrodes for solar cell applications.

    Science.gov (United States)

    Tubtimtae, Auttasit; Arthayakul, Khanittha; Teekwang, Bussayanee; Hongsith, Kritsada; Choopun, Supab

    2013-09-01

    We report a new tailoring MnTe semiconductor-sensitized solar cells (MnTe SSCs) using successive ionic layer adsorption and reaction (SILAR) technique. X-ray diffraction and SAED patterns reveal the orthorhombic MnTe and cubic MnTe2 phases were grown on boron-doped TiO2 and ZnO nanoparticles. The diameter of MnTe NPs ranged from 15 to 30nm on both B-doped metal oxide structures. The energy gaps of metal oxide become narrower after boron doping, which have an advantage for enhancing the light absorption from UV to visible region. Also, the energy gap of MnTe NPs on B-doped metal oxide was determined ~1.27-1.30eV. The best power conversion efficiency (η) of 0.033% and 0.030% yielded from B-doped TiO2/MnTe(7) and B-doped ZnO/MnTe(9), respectively. The reduction in power conversion efficiency by 103% and 91% was due to the absence of boron doping into TiO2 and ZnO nanostructures, respectively.

  19. Multiferroic properties of nanostructured barium doped bismuth ferrite

    Energy Technology Data Exchange (ETDEWEB)

    El–Desoky, M.M., E-mail: mmdesoky@suezuniv.edu.eg [Physics Department, Faculty of Science, Suez University, Suez (Egypt); Ayoua, M.S.; Mostafa, M.M. [Physics Department, Faculty of Science, Suez University, Suez (Egypt); Ahmed, M.A. [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2016-04-15

    Multiferroic nanoparticles of Bi{sub 1−x}Ba{sub x}FeO{sub 3} (x=0.10, 0.15, 0.20, 0.25 mol%) samples were prepared using conventional solid-state method. The nanostructural, multiferroic properties of the prepared samples was investigated. X-ray diffraction (XRD) patterns show the formation of BiBaFeO{sub 3} with single-phase rhombohedral-hexagonal structure. Spin canting or impurity phase could be a probable reason for the origin of ferromagnetism. At room temperature, remnant magnetization increased 18 times more than its initial value. A change in the magnetization is observed around 742–833 K. Néel temperature (T{sub N}) registers an increase of 30 times of Ba-doped BiFeO{sub 3} in comparison with undoped BiFeO{sub 3}. The dielectric properties were affected by the properties of the substitutional ions as well as the crystalline structure of the present samples. Substitution with Ba{sup 2+} ions also improved the ferroelectric polarization with remanent polarization of 89 μC/cm{sup 2}. The simultaneous occurrence of ferromagnetism and ferroelectric hysteresis loops in BiBaFeO{sub 3} multiferroic nanoparticles system at room temperature makes it a potential candidate for information storage and spintronics. - Highlights: • We prepared multiferroic nanoparticles of Bi{sub 1−x}Ba{sub x}FeO{sub 3}. • A change in the magnetization is observed around 742–833 K. • We conclude that this nanomaterial is suitable for information storage and spintronics.

  20. Ballistic transport in semiconductor nanostructures: From quasi-classical oscillations to novel THz-emitters

    Indian Academy of Sciences (India)

    G H Döhler; M Eckardt; A Schwanhäußer; F Renner; S Malzer; S Trumm; M Betz; F Sotier; A Leitenstorfer; G Loata; T Löffler; H Roskos; T Müller; K Unterrainer; D Driscoll; M Hanson; A C Gossard

    2006-07-01

    By suitable design it is possible to achieve quasi-ballistic transport in semiconductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensemble, generated by fs-pulses become possible in wide potential wells. Using a two-color pump-and-probe technique we have been able to observe this new phenomenon in excellent agreement with the theoretical predictions. Apart from its fundamental significance, ballistic transport in nanostructures can also be used for high-efficiency coherent THz- sources. The concept of these THz-emitters and its experimental confirmation will also be presented.

  1. Highly Branched Sn-Doped ZnO Nanostructures for Sunlight Driven Photocatalytic Reactions

    Directory of Open Access Journals (Sweden)

    Yangyang Liu

    2014-01-01

    Full Text Available Ultralong, highly branched Sn-doped zinc oxide (ZnO nanostructures were fabricated using a simple substrate-free chemical vapor deposition (CVD method. The nanostructures exhibited efficient photocatalytic activities in degradation of methylene blue (MB under natural sunlight. 100% of MB with the concentration of 10 mg/L could be completely removed within 36 minutes. Possible reasons for the enhanced photocatalytic effect were analyzed.

  2. Highly Branched Sn-Doped ZnO Nanostructures for Sunlight Driven Photocatalytic Reactions

    OpenAIRE

    2014-01-01

    Ultralong, highly branched Sn-doped zinc oxide (ZnO) nanostructures were fabricated using a simple substrate-free chemical vapor deposition (CVD) method. The nanostructures exhibited efficient photocatalytic activities in degradation of methylene blue (MB) under natural sunlight. 100% of MB with the concentration of 10 mg/L could be completely removed within 36 minutes. Possible reasons for the enhanced photocatalytic effect were analyzed.

  3. Effects of defects and doping on wide band gap ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S.J.; Abernathy, C.R.; Thaler, G.T.; Frazier, R.; Ren, F.; Hebard, A.F.; Park, Y.D.; Norton, D.P.; Tang, W.; Stavola, M.; Zavada, J.M.; Wilson, R.G

    2003-12-31

    Both ion implantation and epitaxial crystal growth provide convenient methods of introducing transition metals such as Mn,Cr,Fe,Ni and Co into GaN, GaP, SiC and ZnO for creating dilute magnetic semiconductors exhibiting room temperature ferromagnetism. In this paper we review progress in wide band gap ferromagnetic semiconductors and the role of defects and doping on the resulting magnetic properties.

  4. Möbius semiconductor nanostructures and deformation potential strain effects

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2011-01-01

    A discussion of Möbius nanostructures is presented with focus on (1) the accuracy of the approximate differential-geometry formalism by Gravesen and Willatzen and (2) to assess the influence of bending-induced strain on Schrödinger equation eigenstates in semiconductor Möbius structures....... The differential-geometry model assumed complete confinement of a quantum-mechanical particle to a zero-thickness Möbius structure where the shape was computed based on minimization of elastic bending energy only and imposing the relevant boundary conditions. In the latter work, while bending was accounted...

  5. Optical characterization of individual semiconductor nanostructures using a scanning tunneling microscope.

    Science.gov (United States)

    Tsuruoka, Tohru; Ushioda, Sukekatsu

    2004-01-01

    By injecting low-energy minority carriers from the tip of a scanning tunneling microscope (STM) and analyzing the light emitted from the tip-sample gap of the STM, it is possible to study the optical and electronic properties of individual semiconductor nanostructures with an extremely high spatial resolution close to the atomic scale. This technique has been applied to investigate the transport properties of hot electrons injected into AlGaAs/GaAs quantum well structures and the optical properties of single self-assembled InAs/AlGaAs quantum dots. The physical principles, usefulness and future expectations of this novel technique are discussed.

  6. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  7. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Thorbeck, Ted, E-mail: tcthorbeck@wisc.edu [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States); Joint Quantum Institute and Dept. of Physics, University of Maryland, College Park, Maryland (United States); Zimmerman, Neil M. [Quantum Measurement Division, NIST, Gaithersburg, Maryland (United States)

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  8. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex.

    Science.gov (United States)

    Ma, Zheng; Zhang, Yong-Lai; Wang, Lei; Ming, Hai; Li, Haitao; Zhang, Xing; Wang, Fang; Liu, Yang; Kang, Zhenhui; Lee, Shuit-Tong

    2013-06-12

    Compared to nature's photoelectric conversion processes, artificial devices are still far inferior in efficiency and stability. Inspired by light absorption and resonance energy transfer processes of chlorophyll, we developed a highly efficient photoelectric conversion system by introducing Carbon quantum dots (CQDs) as an electron transfer intermediary. Compared with conventional dye-sensitized semiconductor systems, the present CQD-doped system showed significantly higher photoelectric conversion efficiency, as much as 7 times that without CQDs. The CQD-doped dye/semiconductor system may provide a powerful approach to the development of highly efficient photoelectric devices.

  9. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    Science.gov (United States)

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  10. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun

    2013-03-05

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.

  11. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    colloidal CdS and CdSe/CdS core/shell nanocrystals. Among the II-VI semiconductors, CdS is of particular interest because it has the correct band alignment for water photolysis[2] and has been demonstrated to be photocatalytically active.[11-16] We have found that the photoexcitation of CdS and CdSe/CdS in the presence of an organometallic Pt precursor leads to deposition of Pt nanoparticles on the semiconductor surface. Stark differences are observed in the Pt nanoparticle location on the two substrates, and the photodeposition can be completely inhibited by the modification of the semiconductor surface. Our results suggest that tuning of the semiconductor band structure, spatial organization and surface chemistry should be crucial in the design of photocatalytic nanostructures.

  12. Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature.

    Science.gov (United States)

    Lahiri, Abhishek; Borisenko, Natalia; Olschewski, Mark; Gustus, René; Zahlbach, Janine; Endres, Frank

    2015-09-28

    Group III-V semiconductor nanostructures are important materials in optoelectronic devices and are being researched in energy-related fields. A simple approach for the synthesis of these semiconductors with well-defined nanostructures is desired. Electroless deposition (galvanic displacement) is a fast and versatile technique for deposition of one material on another and depends on the redox potentials of the two materials. Herein we show that GaSb can be directly synthesized at room temperature by galvanic displacement of SbCl3 /ionic liquid on electrodeposited Ga, on Ga nanowires, and also on commercial Ga. In situ AFM revealed the galvanic displacement process of Sb on Ga and showed that the displacement process continues even after the formation of GaSb. The bandgap of the deposited GaSb was 0.9±0.1 eV compared to its usual bandgap of 0.7 eV. By changing the cation in the ionic liquid, the redox process could be varied leading to GaSb with different optical properties.

  13. Synthesis and Characterization of Co-Doped SnO2/TiO2 Semiconductor Nano Crystallites Via Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    H.Z.R. Hamoon

    2011-01-01

    Full Text Available SnO2/TiO2 nano particles are novel wide band gap semiconductors with modified applications of SnO2 and TiO2 in some fields including gas sensing, photo catalytic, solar cells and so on. The Co-doped SnO2/TiO2 nano particles were obtained via sol-gel method with different amounts of doping material as 2.5 %, 6 % and 10 mol %. The crystallite sizes of resulting material were from 3.8 nm for 0.1 wt % Co-doped SnO2/TiO2 to 19.1 nm for un-doped. Morphology and nanostructure of the crystalline SnO2/TiO2 nano particles were characterized by means of X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR, Thermal gravimetric analysis (TGA, field emission scanning electron microscopy (FESEM and energy dispersive X-ray spectroscopy (EDX. It has been shown that fine semiconductor nano structures were formed.

  14. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    Science.gov (United States)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  15. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  16. Band tailing in heavily doped semiconductors. Scattering and impurity-concentration-fluctuation effects

    Science.gov (United States)

    Serre, J.; Ghazali, A.; Hugon, P. Leroux

    1981-02-01

    Using a self-consistent multiple-scattering method, we estimate the relative importance of both effects of scattering and of impurity-concentration fluctuations on band states in heavily doped semiconductors and thus we account for band tailing. We apply this formalism to the estimate of the interband absorption spectrum in a typical case, in satisfactory agreement with experiment.

  17. Sensitized Emission in Ln3+-Doped TiO2 Semiconductor Nanoparticles

    NARCIS (Netherlands)

    Stouwdam, Jan W.; Veggel, van Frank C.J.M.

    2004-01-01

    The doping of lanthanide ions in semiconductor TiO2 nanoparticles is studied. The presence of the TiO2 absorption band in the excitation spectrum of the lanthanide (see graphic; excitation and emission) proves the existence of energy transfer from the host material to the lanthanide ion. Energy tran

  18. Synthesis of one-dimensional N-doped Ga2O3 nanostructures: different morphologies and different mechanisms

    Indian Academy of Sciences (India)

    S C Vanithakumari; K K Nanda

    2011-12-01

    N-doped monoclinic Ga2O3 nanostructures of different morphologies have been synthesized by heating Ga metal in ambient air at 1150°C to 1350°C for 1 to 5 h duration. Neither catalyst nor any gas flow has been used for the synthesis of N-doped Ga2O3 nanostructures. The morphology was controlled by monitoring the curvature of the Ga droplet. Plausible growth mechanisms are discussed to explain the different morphology of the nanostructures. Elemental mapping by electron energy loss spectroscopy of the nanostructures indicate uniform distribution of Ga, O and N. It is interesting to note that we have used neither nitride source nor any gas flow but the synthesis was carried out in ambient air. We believe that ambient nitrogen acts as the source of nitrogen. Unintentional nitrogen doping of the Ga2O3 nanostructures is a straightforward method and such nanostructures could be promising candidates for white light emission.

  19. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.; Spisak, B. J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, Kraków (Poland)

    2015-07-07

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  20. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  1. Manipulable wave-vector filtering in a δ-doped magnetic-barrier nanostructure

    Science.gov (United States)

    Liu, Yu; Zhang, Lan-Lan; Lu, Mao-Wang; Zhou, Yong-Long; Li, Fei

    2017-03-01

    We theoretically explore the control of the wave-vector filtering (WVF) effect in a realistic magnetic-barrier nanostructure with a δ -doping, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a GaAs /AlxGa1-x As heterostructure. It is shown that an obvious WVF effect still exists when a δ-doping is introduced into the device. It is also shown that the degree of the WVF effect can be controlled by tuning the weight and/or the position of the δ-doping.

  2. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.

    Science.gov (United States)

    Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju; Choy, Jin-Ho

    2007-11-01

    We have tried to control the aspect ratio and physicochemical properties of 1D nanostructured manganese oxides through copper doping. Copper-doped manganese oxide nanostructures have been synthesized by one-pot hydrothermal treatment for the mixed solution of permanganate anions and copper cations. According to powder X-ray diffraction and electron microscopic analyses, all the present materials commonly crystallize with alpha-MnO2-type structure but their aspect ratio decreases significantly with increasing the content of copper. Such a variation of crystallite dimension is attributable to the limitation of crystal growth by the incorporation of copper ions. X-ray absorption spectroscopic studies at Mn K- and Cu K-edges clearly demonstrate that the average oxidation state of manganese ions is increased by the substitution of divalent copper ions. Electrochemical measurements reveal the improvement of the electrode performance of nanostructured manganate upon copper doping, which can be interpreted as a result of the decrease of aspect ratio and the increase of Mn valence state. From the present experimental findings, it becomes certain that the present Cu doping method can provide an effective way of controlling the crystal dimension and electrochemical property of 1D nanostructured manganese oxide.

  3. Theoretical prediction and experimental realization of transition metal doped rutiles as diluted magnetic semiconductors

    Institute of Scientific and Technical Information of China (English)

    GU Yousong; LI Jianmin; ZHAN Xiaoyuan; ZHANG Xiaomei; FENG Ziqi; ZHANG Yue

    2006-01-01

    First principle calculations have been performed to study the electron structures and magnetic properties of transition metal doped rutiles in order to predict room temperature diluted magnetic semiconductors. Different doping configurations have been calculated to find the preferred doping site. The ground state energies of both FM and AFM states have been calculated to study the magnetic coupling between the dopants. The calculation results show the Co doped rutile has a Curie temperature of 1438 K. Co doped rutile films have been prepared on Si substrate by magnetron sputtering. X-ray dif fraction results show that the deposited film is rutile. Hysteresis loop curves measured by vibration sample magnetization show that the film is ferromagnetic at root temperature.

  4. Spectroscopy of Charge Carriers and Traps in Field-Doped Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang; Frisbie, C Daniel

    2012-08-13

    This research project aims to achieve quantitative and molecular level understanding of charge carriers and traps in field-doped organic semiconductors via in situ optical absorption spectroscopy, in conjunction with time-resolved electrical measurements. During the funding period, we have made major progress in three general areas: (1) probed charge injection at the interface between a polymeric semiconductor and a polymer electrolyte dielectric and developed a thermodynamic model to quantitatively describe the transition from electrostatic to electrochemical doping; (2) developed vibrational Stark effect to probe electric field at buried organic semiconductor interfaces; (3) used displacement current measurement (DCM) to study charge transport at organic/dielectric interfaces and charge injection at metal/organic interfaces.

  5. Theory of light propagation in nano-structured materials and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaarschmidt, M.

    2006-05-03

    This work presents a theory for the propagation of intense electromagnetic radiation in nano-structures materials and semiconductors. One main area is the modelling and simulation of the microscopic material dynamics of low dimensional semiconductors, both structured and bulk, and of a laser induced plasma. The ultrafast microscopic dynamics of these electronic many particle systems under the influence of light fields and scattering mechanisms like electron-electron interaction or interaction with lattice vibrations is described in the density matrix formalism. This description in second quantization yields the temporal nonlocal and nonlinear response of the material to electromagnetic fields. Laser induced plasma in quantum wells will be shown to be a possible new semiconductor source for terahertz-emission (wavelength mm to micrometer). The second focus of interest of this work lies in the simulation of the propagation of electromagnetic waves in different systems like photonic crystals, optical fibers and wave guides. The propagation in bulk semiconductors and waveguides is considered in both slowly varying envelope approximation (SVEA) and with the nonlinear Schroedinger equation. For complex systems like photonic band gap structures with high symmetry a matrix-transfer formalism is applied. For arbitrary structured systems (which may include local breaches of symmetry) a very flexible finite-differences algorithm is employed. The combination of microscopic material dynamics and light propagation enables the calculation of reflection and transmission properties of nano-structured materials not only in linear excitation but also for high intensities where nonlinear light-matter coupling dominates and novel effects arise. One used model system are Bragg-resonant multiple quantum wells. On this one dimensional resonant absorbing photonic crystal new nonlinear effects are studied. Some effect to mention are the possible application as an ultrafast optical switch

  6. Unexpected Au Alloying in Tailoring In-Doped SnTe Nanostructures with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Samuel Atherton

    2017-03-01

    Full Text Available Materials with strong spin-orbit interaction and superconductivity are candidates for topological superconductors that may host Majorana fermions (MFs at the edges/surfaces/vortex cores. Bulk-superconducting carrier-doped topological crystalline insulator, indium-doped tin telluride (In-SnTe is one of the promising materials. Robust superconductivity of In-SnTe nanostructures has been demonstrated recently. Intriguingly, not only 3-dimensional (3D nanostructures but also ultra-thin quasi-2D and quasi-1D systems can be grown by the vapor transport method. In particular, nanostructures with a controlled dimension will give us a chance to understand the dimensionality and the quantum confinement effects on the superconductivity of the In-SnTe and may help us work on braiding MFs in various dimensional systems for future topological quantum computation technology. With this in mind, we employed gold nanoparticles (GNPs with well-identified sizes to tailor In-SnTe nanostructures grown by vapor transport. However, we could not see clear evidence that the presence of the GNPs is necessary or sufficient to control the size of the nanostructures. Nevertheless, it should be noted that a weak correlation between the diameter of GNPs and the dimensions of the smallest nanostructures has been found so far. To our surprise, the ones grown under the vapor–liquid–solid mechanism, with the use of the GNPs, contained gold that is widely and inhomogeneously distributed over the whole body.

  7. Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A., E-mail: yildizab@gmail.com [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Cansizoglu, H. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Turkoz, M. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Electrical-Electronic Engineering, Faculty of Engineering, University of Karabuk, Karabuk (Turkey); Abdulrahman, R.; Al-Hilo, Alaa; Cansizoglu, M.F.; Demirkan, T.M.; Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2015-08-31

    Al-doped ZnO (AZO) nanostructure arrays with different shapes (tilted rods, vertical rods, spirals, and zigzags) were fabricated by utilizing glancing angle deposition (GLAD) technique in a DC sputter growth unit at room temperature. During GLAD, all the samples were tilted at an oblique angle of about 90° with respect to incoming flux direction. In order to vary the shapes of nanostructures, each sample was rotated at different speeds around the substrate normal axis. Rotation speed did not only affect the shape but also changed the microstructural and optical properties of GLAD AZO nanostructures. The experimental results reveal that GLAD AZO nanostructures of different shapes each have unique morphological, crystal structure, mechanical, and optical properties determined by scanning electron microscopy, X-ray diffraction, transmission, and reflectance measurements. Vertical nanorods display the largest grain size, minimum strain, lowest defect density, and highest optical transmittance compared to the other shapes. Growth dynamics of GLAD has been discussed to explain the dependence of structural and optical properties of nanostructures on the substrate rotation speed. - Highlights: • Al-doped ZnO (AZO) nanostructures with different shapes were fabricated. • They have unique morphological, crystal structure, and optical properties. • Vertical AZO nanorods show an enhanced optical transmittance.

  8. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David

    2016-09-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  9. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    Science.gov (United States)

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    Science.gov (United States)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  11. Structural, morphological and photoluminescence properties of W-doped ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ngom, B.D., E-mail: bdngom@tlabs.ac.za [Groupes de physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques Universite Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar (Senegal); NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Sakho, O. [Groupes de physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques Universite Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar (Senegal); Manyala, N. [Department of Physics, Institute of Materials, University of Pretoria, Pretoria (South Africa); Kana, J.B. [Departement de physique, Universite Yaounde 1, Yaounde (Cameroon); Mlungisi, N. [NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Guerbous, L. [Nuclear Research Center of Algiers - CRNA, 02 Bd Frantz Fanon BP 399 Alger Gare, Algiers (Algeria); Fasasi, A.Y. [Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria); Maaza, M. [NANO-Sciences Laboratories, Materials Research Group, iThemba LABS, National Research Foundation (South Africa); Beye, A.C. [Groupes de physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques Universite Cheikh Anta Diop de Dakar (UCAD), B.P. 25114, Dakar-Fann Dakar (Senegal)

    2009-05-30

    W-doped ZnO nanostructures were synthesized at substrate temperature of 600 deg. C by pulsed laser deposition (PLD), from different wt% of WO{sub 3} and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.

  12. Doped and Undoped Zinc Oxide Nanostructures on Silicon Wafers

    Science.gov (United States)

    Chubenko, E.; Bondarenko, V.

    2013-05-01

    We present results of hydrothermal deposition of undoped and Al doped ZnO nanocrystals on nanocrystalline silicon. ZnO nanocrystals were deposited in an equimolar zinc nitride and hexamethylenetetramine solution. Aluminum nitride was used as Al precursor. The difference of the morphology of doped and undoped ZnO nanocrystals is discussed. Photoluminescence properties of the obtained nanocrystals are shown.

  13. Doping-assisted defect control in compound semiconductors

    Science.gov (United States)

    Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell

    2006-07-11

    The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.

  14. Coherent Exciton and Biexciton Nonlinearities in Semiconductor Nanostructures: Effects of Disorder

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Borri, Paola; Hvam, Jørn Märcher

    1999-01-01

    The coherent response of excitons in semiconductor nanostructures measured in four-wave mixing (FWM) depends strongly on the inhomogenous broadening of the exciton transition. We investigate InAs/Al0.3Ga0.7As single quantum wells (SQW) and AlxGa1-xAs mixed crystals. Additional to the usual phase......-exciton-states. Here, the third-order polarization at X-XX is not at the same resonance as the first-order polarization at 0-X. Consequently, the rephasing of the microscopic third-order polarization to the macroscopic FWM photon echo is blurred by the non-perfect correlation of X and XX energies, leading to a fast...

  15. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells.

    Science.gov (United States)

    Xu, Jun; Chen, Zhenhua; Zapien, Juan Antonio; Lee, Chun-Sing; Zhang, Wenjun

    2014-08-20

    Semiconductor-sensitized solar cells (SSCs) are emerging as promising devices for achieving efficient and low-cost solar-energy conversion. The recent progress in the development of ZnO-nanostructure-based SSCs is reviewed here, and the key issues for their efficiency improvement, such as enhancing light harvesting and increasing carrier generation, separation, and collection, are highlighted from aspects of surface-engineering techniques. The impact of other factors such as electrolyte and counter electrodes on the photovoltaic performance is also addressed. The current challenges and perspectives for the further advance of ZnO-based SSCs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correction: Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.

    Science.gov (United States)

    Zhang, Teng; Zhu, Zonglong; Chen, Haining; Bai, Yang; Xiao, Shuang; Zheng, Xiaoli; Xue, Qingzhong; Yang, Shihe

    2015-09-07

    Correction for 'Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study' by Teng Zhang et al., Nanoscale, 2015, 7, 2933-2940.

  17. The low resistive and transparent Al-doped SnO{sub 2} films: p-type conductivity, nanostructures and photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Benouis, C.E. [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Benhaliliba, M., E-mail: mbenhaliliba@gmail.com [Department of Material Technology, Physics Faculty, USTOMB University, BP1505 Oran (Algeria); Mouffak, Z. [Department of Electrical and Computer Engineering California State University, Fresno, CA (United States); Avila-Garcia, A. [Cinvestav-IPN, Dept. Ingeniería Eléctrica-SEES, Apdo. Postal 14-740, 07000 México, D.F. (Mexico); Tiburcio-Silver, A. [ITT-DIE, Apdo, Postal 20, Metepec 3, 52176 Estado de Mexico (Mexico); Ortega Lopez, M.; Romano Trujillo, R. [Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias-BUAP, 14 Sur y Av. San Claudio, C.U. Puebla, Pue. (Mexico); Ocak, Y.S. [Dicle University, Education Faculty, Science Department, 21280 Diyarbakir (Turkey)

    2014-08-01

    Highlights: • Low resistive and high transparency Al doped SnO{sub 2} films. • Films are deposited onto ITO substrate by spray pyrolysis. • Nanostructured films are revealed. • p-Type conductivity is exhibited. • Photoluminescence of films is studied. - Abstract: In this work, we study the crystalline structure, surface morphology, transmittance, optical bandgap and n/p type inversion of tin oxide (SnO{sub 2}). The Nanostructured films of Al-doped SnO{sub 2} were successfully produced onto ITO-coated glass substrates via the spray pyrolysis method at a deposition temperature of 300 °C. A (1 0 1) and (2 1 1)-oriented tetragonal crystal structure was confirmed by X-ray patterns; and grain sizes varied within the range 8−42 nm. The films were polycrystalline, showing a high transparency in the visible (VIS) and infrared (IR) spectra. The optical bandgap was estimated to be around 3.4 eV. The atomic force microscopy (AFM) analysis showed the nanostructures consisting of nanotips, nanopatches, nanopits and nanobubbles. The samples exhibited high conductivity that ranged from 0.55 to 10{sup 4} (S/cm) at ambient and showed an inversion from n to p-type as well as a degenerate semiconductor characters with a bulk concentration reaching 1.7 x 10{sup 19} cm{sup −3}. The photoluminescence measurements reveal the detection of violet, green and yellow emissions.

  18. Doping effect on the optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, M. [Frederick Seitz Materials Research Laboratory, University of Illinois,104 South Goodwin Avenue, Urbana, IL 61801 (United States); Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Juillaguet, S. [Groupe d' Etude des Semi-conducteurs, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Kyaw, T.M.; Wen, J.G. [Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France)

    2007-04-15

    High quality undoped and Ga{sub 2}O{sub 3} or In{sub 2}O{sub 3} doped ZnO nanostructures are grown by chemical vapor transport and condensation. The doping effect on the optical properties is investigated by photoluminescence. At room temperature, photoluminescence on Ga{sub 2}O{sub 3} doped ZnO nanostructures reveals an enhancement of the ultraviolet near band edge emission at 390 nm, while the intensity of the deep level emission at 530 nm weakens. At 5 K, an intense neutral-donor-bound exciton (D{sup 0}X) line dominates the undoped and doped ZnO photoluminescence spectra. The presence of well resolved two-electron satellite lines allow to determine the type of donors. At 5 K, the results indicate that ZnO nanostructures grown with 10% of Ga{sub 2}O{sub 3} display an excellent optical quality, proved by an intense D{sup 0}X line, a high intensity ratio between the D{sup 0}X line and the deep level emission as well as the presence of numerous phonon replicas of the main lines. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Julia, W. P.

    2008-09-01

    Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti

  20. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  1. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  2. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  3. Lead Monoxide: Two-Dimensional Ferromagnetic Semiconductor Induced by Hole-Doping

    KAUST Repository

    Wang, Yao

    2017-04-12

    We employ first-principles calculations to demonstrate ferromagnetic ground states for single- and multi-layer lead monoxide (PbO) under hole-doping, originating from a van Hove singularity at the valence band edge. Both the sample thickness and applied strain are found to have huge effects on the electronic and magnetic properties. Multi-layer PbO is an indirect band gap semiconductor, while a direct band gap is realized in the single-layer limit. In hole-doped single-layer PbO, biaxial tensile strain can enhance the stability of the ferromagnetic state.

  4. Semiconductor quantum dots enhanced graphene/CdTe heterostructure solar cells by photo-induced doping

    CERN Document Server

    Li, Xiaoqiang; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian; Lin, Shisheng

    2015-01-01

    Photo-induced doping is employed into graphene based solar cell through designing of a novel type of solar cell based on graphene/CdTe Schottky heterostructure. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the performance of the graphene/CdTe solar cell is improved by about 50%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by resistance, photoluminescence and quantum efficiency measurements. This work demonstrates a general and feasible way of designing novel type of solar cells based on two dimensional materials/semiconductor heterostructures.

  5. Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Suneel Kumar

    2016-11-01

    Full Text Available Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO under visible light (only irradiation and under natural sunlight. The results reveal that the RGO-supported CdS–ZnO photocatalyst performs considerably better than the unsupported CdS–ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures.

  6. Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

    Science.gov (United States)

    Kumar, Suneel; Sharma, Rahul; Sharma, Vipul; Harith, Gurunarayanan; Sivakumar, Vaidyanathan

    2016-01-01

    Summary Photocatalytic activity of semiconductor nanostructures is gaining much importance in recent years in both energy and environmental applications. However, several parameters play a crucial role in enhancing or suppressing the photocatalytic activity through, for example, modifying the band gap energy positions, influencing the generation and transport of charge carriers and altering the recombination rate. In this regard, physical parameters such as the support material and the irradiation source can also have significant effect on the activity of the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly characterized using different spectroscopic and microscopic techniques. The photocatalytic activity was evaluated by studying the degradation of a model dye (methyl orange, MO) under visible light (only) irradiation and under natural sunlight. The results reveal that the RGO-supported CdS–ZnO photocatalyst performs considerably better than the unsupported CdS–ZnO nanostructures. In addition, both the catalysts perform significantly better under natural sunlight than under visible light (only) irradiation. In essence, this work paves way for tailoring the photocatalytic activity of semiconductor nanostructures. PMID:28144518

  7. Gadolinium-doped Ⅲ-nitride diluted magnetic semiconductors for spintronics applications

    Directory of Open Access Journals (Sweden)

    ZHOU Yikai

    2015-08-01

    Full Text Available The present status of the Gd (gadolinium-Ⅲ-nitride semiconductor layers grown by plasma-assisted molecular beam epitaxy is described.No phase separation and substitutional incorporation are confirmed by X-ray Diffraction and X-ray Absorption Fine Structure measurements.Photoluminescence peak energy for the Gd-doped InGaN is shifted with InN molar fraction.Clear hysteresis and saturation are observed in the magnetization versus magnetic field curves at room temperature.Si co-doping as well as superlattice structures enhances the magnetization.Results are understood with the carrier-mediated ferromagnetism.Finally,examples of the spintronic semiconductor devices,where the relation between the spin-polarized carriers and the circular-polarized light is used,and the present status to realize such devices are described.

  8. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A., E-mail: arkac123@gmail.com [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India); Mandal, K. [Department of Applied Science, Haldia Institute of Technology, Dist.- Purba Medinipur, Haldia- 721657, West Bengal (India); Department of Condensed Matter Physics and Material Science, S.N. Bose National Center for Basic Sciences, Block JD, Salt Lake, Kolkata 700098 (India)

    2014-03-15

    Nanostructured multiferroic Bi{sub (1−x)}Ba{sub x}FeO{sub 3}x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm{sup 2} for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C.

  9. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    OpenAIRE

    2015-01-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase....

  10. The Excitation Mechanism of Praseodymium-Doped Semiconductors

    Science.gov (United States)

    1994-06-01

    Pomrenke et al., 1989:339; Ennen et al., 1983:943; Pomrenke et al., 1991b:415), while neodymiuml ha mission line at 1.1 microns in GaP and GaAs ( Muller et...insulator bandgaps are so large as to pose an effective barrier between the bands. In a metal, conducto of electrons takes place in the partially...34 Soviet Physics-Semiconductors 17(10): 1201 (October 1983). 148 Emen, H., J. Wagner, H. D. Muller , and R. S. Smith. "Photoluminescece Excitation

  11. Optical nonlinearities in semiconductor-doped glasses near and below the band edge

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1998-03-01

    We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.

  12. Self-similar asymptotic optical beams in semiconductor waveguides doped with quantum dots

    Science.gov (United States)

    He, Jun-Rong; Yi, Lin; Li, Hua-Mei

    2017-01-01

    The self-similar propagation of asymptotic optical beams in semiconductor waveguides doped with quantum dots is reported. The possibility of controlling the shape of output asymptotic optical beams is demonstrated. The analytical results are confirmed by numerical simulations. We give a possible experimental protocol to generate the obtained asymptotic parabolic beams in realistic waveguides. As a generalization to the present work, the self-similar propagation of asymptotic optical beams is proposed in a power-law nonlinear medium.

  13. Characteristic analysis on the physical properties of nanostructured Mg-doped CdO thin films-Doping concentration effect

    Institute of Scientific and Technical Information of China (English)

    K. Usharani; A.R. Balu; V.S. Nagarethinam; M. Suganya

    2015-01-01

    Highly conductive and transparent magnesium-doped cadmium oxide (CdO:Mg) thin films have been deposited on suitably cleaned glass substrates maintained at 375 1C by spray pyrolysis technique using perfume atomizer. The magnesium content in the films is varied from 0 to 8 at%in steps of 2 at%. The effect of Mg doping on the structural, morphological, optical and electrical properties of the CdO thin films has been studied. All the films exhibited cubic structure with a preferential orientation along the (1 1 1) plane irrespective of the Mg doping level. SEM analysis showed that the film morphology modifies from spherical shaped grains to closely packed cauliflower shaped nanostructures with Mg doping. Except for the film coated with 2 at%Mg dopant, all the other doped films exhibited a blue shift in the optical band gap. Electrical studies revealed that the CdO:Mg film coated with 8 at%Mg dopant had a minimum resistivity of 0.0853 ? 101Ω-cm.

  14. Characteristic analysis on the physical properties of nanostructured Mg-doped CdO thin films—Doping concentration effect

    Directory of Open Access Journals (Sweden)

    K. Usharani

    2015-06-01

    Full Text Available Highly conductive and transparent magnesium-doped cadmium oxide (CdO:Mg thin films have been deposited on suitably cleaned glass substrates maintained at 375 °C by spray pyrolysis technique using perfume atomizer. The magnesium content in the films is varied from 0 to 8 at% in steps of 2 at%. The effect of Mg doping on the structural, morphological, optical and electrical properties of the CdO thin films has been studied. All the films exhibited cubic structure with a preferential orientation along the (1 1 1 plane irrespective of the Mg doping level. SEM analysis showed that the film morphology modifies from spherical shaped grains to closely packed cauliflower shaped nanostructures with Mg doping. Except for the film coated with 2 at% Mg dopant, all the other doped films exhibited a blue shift in the optical band gap. Electrical studies revealed that the CdO:Mg film coated with 8 at% Mg dopant had a minimum resistivity of 0.0853×101 Ω-cm.

  15. Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces

    Science.gov (United States)

    Janipour, Mohsen; Misirlioglu, Ibrahim Burc; Sendur, Kursat

    2016-10-01

    Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs-dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell’s equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons’ interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs- dielectric interface.

  16. Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces

    Science.gov (United States)

    Janipour, Mohsen; Misirlioglu, Ibrahim Burc; Sendur, Kursat

    2016-01-01

    Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs–dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell’s equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons’ interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs– dielectric interface.

  17. Structural and optoelectronic properties of glucose capped Al and Cu doped ZnO nanostructures

    Directory of Open Access Journals (Sweden)

    Patwari Gunjan

    2016-03-01

    Full Text Available Al and Cu doped ZnO nanoparticles are considered as appropriate for modulation of structural and optoelectronic properties. Al atoms are found to substitute the host Zn whereas Cu dopants mainly segregate in grain boundaries and thereby determine the optical properties. The undoped as well as Al and Cu doped ZnO exhibit spherical well defined particles. The spherical nanoparticles change to rod type structures on co-doping. The average particle size decreases on doping what consequently results in an increment in band gap. Blue shift in UV absorption is governed by the functional group of glucose; further blue shift occurring on metal doping may be attributed to Burstein-Moss effect. PL spectra of doped and undoped ZnO show a dominant near band gap UV emission along with visible emission owing to the defects. The PL peak intensity increases on doping with Cu and Al. The linear I-V characteristics indicate the ohmic behavior of ZnO nanostructures.

  18. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Young Chul, E-mail: youngchul.jun@inha.ac.kr [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Luk, Ting S., E-mail: tsluk@sandia.gov; Brener, Igal [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Robert Ellis, A.; Klem, John F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-09-29

    We utilize the unique dispersion properties of leaky plasmon polaritons in epsilon-near-zero (ENZ) thin films to demonstrate thermal radiation control. Owing to its highly flat dispersion above the light line, a thermally excited leaky wave at the ENZ frequency out-couples into free space without any scattering structures, resulting in a narrowband, wide-angle, p-polarized thermal emission spectrum. We demonstrate this idea by measuring angle- and polarization-resolved thermal emission spectra from a single layer of unpatterned, doped semiconductors with deep-subwavelength film thickness (d/λ{sub 0} ∼ 6×10{sup −3}, where d is the film thickness and  λ{sub 0} is the free space wavelength). We show that this semiconductor ENZ film effectively works as a leaky wave thermal radiation antenna, which generates far-field radiation from a thermally excited mode. The use of semiconductors makes the radiation frequency highly tunable by controlling doping densities and also facilitates device integration with other components. Therefore, this leaky plasmon polariton emission from semiconductor ENZ films provides an avenue for on-chip control of thermal radiation.

  19. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.

    Science.gov (United States)

    Regulacio, Michelle D; Han, Ming-Yong

    2016-03-15

    Semiconductor nanostructures that can effectively serve as light-responsive photocatalysts have been of considerable interest over the past decade. This is because their use in light-induced photocatalysis can potentially address some of the most serious environmental and energy-related concerns facing the world today. One important application is photocatalytic hydrogen production from water under solar radiation. It is regarded as a clean and sustainable approach to hydrogen fuel generation because it makes use of renewable resources (i.e., sunlight and water), does not involve fossil fuel consumption, and does not result in environmental pollution or greenhouse gas emission. Another notable application is the photocatalytic degradation of nonbiodegradable dyes, which offers an effective way of ridding industrial wastewater of toxic organic pollutants prior to its release into the environment. Metal oxide semiconductors (e.g., TiO2) are the most widely studied class of semiconductor photocatalysts. Their nanostructured forms have been reported to efficiently generate hydrogen from water and effectively degrade organic dyes under ultraviolet-light irradiation. However, the wide band gap characteristic of most metal oxides precludes absorption of light in the visible region, which makes up a considerable portion of the solar radiation spectrum. Meanwhile, nanostructures of cadmium chalcogenide semiconductors (e.g., CdS), with their relatively narrow band gap that can be easily adjusted through size control and alloying, have displayed immense potential as visible-light-responsive photocatalysts, but the intrinsic toxicity of cadmium poses potential risks to human health and the environment. In developing new nanostructured semiconductors for light-driven photocatalysis, it is important to choose a semiconducting material that has a high absorption coefficient over a wide spectral range and is safe for use in real-world settings. Among the most promising candidates

  20. Diffusion-induced parametric dispersion and amplification in doped semiconductor plasmas

    Indian Academy of Sciences (India)

    N Yadav; S Ghosh

    2007-01-01

    Using the hydrodynamic model of semiconductor plasma, the diffusion-induced nonlinear current density and the consequent second-order effective susceptibility are obtained under off-resonant laser irradiation. The analysis deals with the qualitative behaviour of the anomalous parametric dispersion and the gain profile with respect to the excess doping concentration and pump electric field. The analysis suggests that a proper selection of doping level and pump field may lead to either positive or negative enhanced parametric dispersion, which can be of great use in the generation of sequeezed states. It is found that gain maximizes at moderate doping concentration level, which may drastically reduce the fabrication cost of parametric amplifier based on this interaction.

  1. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    Science.gov (United States)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  2. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    Science.gov (United States)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  3. Modulation spectroscopy of InAs semiconductor nanostructures grown on (631) high index substrates

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Velis, I.; Rojas-Ramirez, J.S.; Contreras-Guerrero, R.; Ramirez-Lopez, M.; Hernandez-Rosas, J. [Physics Department, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico); Garcia-Linan, G.; Gorbatchev, A.Yu. [Optical Communications Research Institute (IICO), Universidad Autonoma de San Luis Potosi, San Luis Potosi(Mexico); Zamora-Peredo, L. [Universidad Politecnica de San Luis Potosi, San Luis Potosi (Mexico); Lopez-Lopez, M. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico (Mexico); Mendez-Garcia, Victor H.

    2009-05-15

    The molecular beam epitaxial (MBE) growth of InAs nanostructures on GaAs(631)-oriented substrates is studied by photoluminescence (PL) and photoreflectance spectroscopy (PR). First, a corrugated surface conformed by regularly spaced grooves aligned along the [ anti 593] azimuth was formed by the GaAs homoepitaxial growth on the (631) substrate. On this template, we proceeded with the deposition of InAs at several thicknesses in the range of 1 to 4.5 monolayers (MLs). An atomic force microscopy (AFM) analysis of samples without GaAs capping, revealed that assemblage of QDs occurs only after the deposition of the equivalent to {proportional_to}1.9 ML of InAs. On these samples, we observed changes on the PR line-shape in the near-bandgap GaAs region linked to the quantity of InAs deposited. The intensity of the built in electric fields was correlated with the strain state at the heterointerface, as a consequence of the self induced piezoelectric effect, typical from high index surfaces. On the other hand, when the samples were capped with a 100 Aa thick GaAs layer, strong emission of the nanostructures occurs even for deposited quantities of InAs as low as 1 ML. Since for this InAs thickness the self-assemblage of QDs is not observed, the optical transitions observed were associated with the optical emission of self assembled semiconductor quantum wires, promoted by surface diffusion anisotropy, characteristic of the (631) plane. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Controlling Light-Matter Interaction in Semiconductors with Hybrid Nano-Structures

    Science.gov (United States)

    Gehl, Michael R.

    Nano-structures, such as photonic crystal cavities and metallic antennas, allow one to focus and store optical energy into very small volumes, greatly increasing light-matter interactions. These structures produce resonances which are typically characterized by how well they confine energy both temporally (quality factor -- Q) and spatially (mode volume -- V). In order to observe non-linear effects, modified spontaneous emission (e.g. Purcell enhancement), or quantum effects (e.g. vacuum Rabi splitting), one needs to maximize the ratio of Q/V while also maximizing the coupling between the resonance and the active medium. In this dissertation I will discuss several projects related by the goal of controlling light-matter interactions using such nano-structures. In the first portion of this dissertation I will discuss the deterministic placement of self-assembled InAs quantum dots, which would allow one to precisely position an optically-active material, for maximum interaction, inside of a photonic crystal cavity. Additionally, I will discuss the use of atomic layer deposition to tune and improve both the resonance wavelength and quality factor of silicon based photonic crystal cavities. Moving from dielectric materials to metals allows one to achieve mode-volumes well below the diffraction limit. The quality factor of these resonators is severely limited by Ohmic loss in the metal; however, the small mode-volume still allows for greatly enhanced light-matter interaction. In the second portion of this dissertation I will investigate the coupling between an array of metallic resonators (antennas) and a nearby semiconductor quantum well. Using time-resolved pump-probe measurements I study the properties of the coupled system and compare the results to a model which allows one to quantitatively compare various antenna geometries.

  5. Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sumithra, S., E-mail: ssmithra@gmail.com; Victor Jaya, N.

    2016-07-15

    The effect of Co doping on structural, optical and magnetic behavior of pure and Co doped Zinc stannate (ZTO) nanostructures was investigated. Pure and Co (1%, 3% & 5%) doped Zn{sub 2}SnO{sub 4} compounds were prepared through simple precipitation route. Formation of cubic inverse spinel structure and metal oxide vibrations of the samples were investigated using XRD and FTIR. Co doping influences the crystallite size producing micro strain in ZTO lattice. Poly dispersed rod like shape of the particles was examined by FESEM. Elemental composition of prepared samples was identified by EDAX analysis. Optical Absorption spectra shows significant red shift on increasing the dopant concentration which indicates the reduction in optical band gap. Visible luminescence observed from photoluminescence studies confirms the presence of oxygen vacancies and trap sites in the lattice. Magnetization analysis reveals the enhanced ferromagnetic behavior in all Co doped ZTO samples. The amplified ferromagnetic ordering in Co doped ZTO compounds has been explained in terms of defects serving as free spin polarized prophetic carriers.

  6. Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Yanzhen He

    2016-10-01

    Full Text Available Heteroatom-doped carbon materials have been one of the most remarkable families of materials with promising applications in fuel cells, supercapacitors, and batteries. Among them, conjugated polymer (CP-derived heteroatom-doped carbon materials exhibit remarkable electrochemical performances because the heteroatoms can be preserved at a relatively high content and keep stable under harsh working conditions. In this review, we summarized recent advances in the rational design and various applications of CP-derived heteroatom-doped carbon materials, including polyaniline (PANI, polypyrrole (PPy, and their ramification-derived carbons, as well as transition metal-carbon nanocomposites. The key point of considering CP-derived heteroatom-doped carbon materials as important candidates of electrode materials is that CPs contain only nonmetallic elements and some key heteroatoms in their backbones which provide great chances for the synthesis of metal-free heteroatom-doped carbon nanostructures. The presented examples in this review will provide new insights in designing and optimizing heteroatom-doped carbon materials for the development of anode and cathode materials for electrochemical device applications.

  7. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    Science.gov (United States)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  8. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    Science.gov (United States)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities

  9. Improved photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation.

    Science.gov (United States)

    Liu, Xianbin; Du, Hejun; Sun, Xiao Wei; Zhan, Zhaoyao; Sun, Gengzhi; Li, Fengji; Zheng, Lianxi; Zhang, Sam

    2014-09-01

    We report synthesis of multiple carbon-doped ZnO nanostructures by using carbon cloth as substrates to obtain multiple hollow ZnO microtube-nanowire structures. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy analysis clearly show that carbon is doped into ZnO through substitution of carbon for oxygen in the growth and annealing processes. Upon exposure to 633-nm red laser, a distinct photoresponse can be observed, which indicates that carbon doping in ZnO can well extend its light harvesting to visible light region. Furthermore, a prototype of photovoltaic cell was fabricated to demonstrate the photovoltaic performance of multiple carbon-doped ZnO nanostructures under UV and visible light irradiation. This result shows that carbon-doped ZnO can act as effective photoactive materials for photoelectric components.

  10. A Solution‐Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    Science.gov (United States)

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy‐Quiles, Mariano

    2016-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution‐doped conjugated polymer poly(3‐hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer‐thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free‐standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends. PMID:28105396

  11. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases.

    Science.gov (United States)

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2016-01-01

    A one-step electrochemical method based on sacrificial anode electrolysis (SAE) was used to deposit stabilized gold nanoparticles (Au NPs) directly on the surface of nanostructured ZnO powders, previously synthesized through a sol-gel process. The effect of thermal annealing temperatures (300 and 550 °C) on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO) was investigated. Transmission and scanning electron microscopy (TEM and SEM), as well as X-ray photoelectron spectroscopy (XPS), revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  12. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

    Directory of Open Access Journals (Sweden)

    Elena Dilonardo

    2016-01-01

    Full Text Available A one-step electrochemical method based on sacrificial anode electrolysis (SAE was used to deposit stabilized gold nanoparticles (Au NPs directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO was investigated. Transmission and scanning electron microscopy (TEM and SEM, as well as X-ray photoelectron spectroscopy (XPS, revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  13. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-03-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  14. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers.

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-12-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er (3+)-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er (3+) ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al (3+) or P (5+) ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er (3+)-doped alumina nanoparticles (NPs), as precursor of Er (3+) ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  15. Doping dependent properties of Cr-doped ZnO nanostructures prepared by microwave irradiation.

    Science.gov (United States)

    Ahmed, Faheem; Arshi, Nishat; Anwar, M S; Koo, Bon Heun

    2014-11-01

    In this work, undoped and Cr-doped single-crystalline ZnO nanorods were prepared by a facile microwave assisted solution method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that Cr-doped ZnO was comprised of single phase nature with hexagonal wurtzite structure up to 5% Cr doping, however, secondary phase ZnCr2O4 appeared upon further increasing the Cr dopant concentration. Field emission scanning electron microscopy (FESEM) and TEM micrographs suggested that the undoped nanorods with an average length of -~2 μm and a diameter in the range of 150-200 nm, respectively were observed. Interestingly, the size of nanorods decreased with the increase of Cr concentration in ZnO. Optical studies depicted that the energy bandgap was decreased with the increase of Cr concentration. Raman scattering spectra of Cr-doped ZnO revealed the lower frequency shift of E2(high) phonon mode with the increase in concentration of Cr dopant, suggested the successful doping of Cr into Zn site in ZnO. Magnetic studies showed that Cr-doped ZnO exhibited room temperature ferromagnetism (RTFM) and the value of magnetization was continuously decreased with the increase in Cr doping.

  16. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films

    Science.gov (United States)

    Basyooni, Mohamed A.; Shaban, Mohamed; El Sayed, Adel M.

    2017-01-01

    In this report, the structures, morphologies, optical, electrical and gas sensing properties of ZnO and ZnO: Na spin-coated films are studied. X-ray diffraction (XRD) results reveal that the films are of a single phase wurtzite ZnO with a preferential orientation along (002) direction parallel to c-axis. Na doping reduces the crystalline quality of the films. The plane surface of ZnO film turned to be wrinkle net-work structure after doping. The reflectance and the optical band gap of the ZnO film decreased after Na doping. The wrinkle net-work nanostructured Na-doped film shows an unusually sensitivity, 81.9% @ 50 sccm, for CO2 gas at room temperature compared to 1.0% for the pure ZnO film. The signals to noise ratio (SNR) and detection limit of Na-doped ZnO sensor are 0.24 and 0.42 sccm, respectively. These enhanced sensing properties are ascribed to high surface-to-volume ratio, hoping effect, and the increase of O- vacancies density according to Kroger VinK effect. The response time increased from 179 to 240 s by the incorporation of Na atoms @50 sccm. This response time increased as the CO2 concentration increased. The recovery time is increased from 122 to 472 s by the incorporation of Na atoms @50 sccm. PMID:28145506

  17. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria

    Directory of Open Access Journals (Sweden)

    Jan T

    2013-09-01

    Full Text Available Tariq Jan,1 Javed Iqbal,1 Muhammad Ismail,2 M Zakaullah,3 Sajjad Haider Naqvi,4 Noor Badshah51Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, Islamabad, Pakistan; 2Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan; 3Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan; 4Department of Biochemistry, University of Karachi, Karachi, Pakistan; 5Department of Basic Science, University of Engineering and Technology, Peshawar, PakistanAbstract: Highly ionic metal oxide nanostructures are attractive, not only for their physiochemical properties but also for antibacterial activity. Zinc oxide (ZnO nanostructures are known to have inhibitory activity against many pathogens but very little is known about doping effects on it. The antibacterial activity of undoped ZnO and tin (Sn doped ZnO nanostructures synthesized by a simple, versatile, and wet chemical technique have been investigated against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa bacterial strains. It has been interestingly observed that Sn doping enhanced the inhibitory activity of ZnO against S. aureus more efficiently than the other two bacterial strains. From cytotoxicity and reactive oxygen species (ROS production studies it is found that Sn doping concentration in ZnO does not alter the cytotoxicity and ROS production very much. It has also been observed that undoped and Sn doped ZnO nanostructures are biosafe and biocompatible materials towards SH-SY5Y Cells. The observed behavior of ZnO nanostructures with Sn doping is a new way to prevent bacterial infections of S. aureus, especially on skin, when using these nanostructures in creams or lotions in addition to their sunscreen property as an ultraviolet filter. Structural investigations have confirmed the formation of a single phase wurtzite structure of ZnO. The morphology of ZnO nanostructures is found to vary

  18. Nonlinear optical studies in semiconductor-doped glasses under femtosecond pulse excitation

    Indian Academy of Sciences (India)

    C P Singh; K S Bindra; S M Oak

    2010-12-01

    Nonlinear optical studies in semiconductor-doped glasses (SDGs) are performed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger two-photon absorption than GG 420 and both the samples exhibit positive nonlinearity. However, in resonantly excited RG 850 the intensity-dependent Z-scan shows transition from saturable to reverse saturable absorption behaviour with the increase in intensity.

  19. Synthesis of Cu doped ZnS nanostructures on flexible substrate using low cost chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin, E-mail: nitinmishra97@gmail.com; Purohit, L. P., E-mail: lppurohit@gmail.com [Gurukula Kangari University, Haridwar UK (India); Goswami, Y. C., E-mail: y-goswami@yahoo.com [ITM University, Turari, Gwalior, MP (India)

    2015-08-28

    Flexible electronics is one of the emerging area of this era. In this paper we have reported synthesis of Cu doped Zinc sulphide nanostructures on filter paper flexible substrates. Zinc chloride and Thio urea were used as a precursor for Zinc and Sulphur. The structures were characterized by XRD, FE-SEM and UV visible spectrometer. All the peaks identified for cubic structure of ZnS. Appearance of small Cu peaks indicates incorporation of Cu into ZnS lattice. Zns nanostructures assembled as nanobelts and nanofibers as shown in FE-SEM micrographs. Compound Structures provide the reasonable electrical conductivity on filter paper. Absorption in UV region makes them suitable for flexible electronic devices.

  20. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial

    Science.gov (United States)

    Mohtar, Abeer Al; Kazan, Michel; Taliercio, Thierry; Cerutti, Laurent; Blaize, Sylvain; Bruyant, Aurélien

    2017-03-01

    We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers–Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

  1. Optimally doped hybridization gap semiconductor FeGa3 as potential thermoelectric alloy*

    Science.gov (United States)

    Ponnambalam, Vijayabarathi; Morelli, Donald T.

    2014-03-01

    FeGa3, a hybridization gap semiconductor with a band gap of ~ 0.5 eV can be a potential thermoelectric material if optimally doped. Due to the involvement of d-band in the transport, high Seebeck coefficient is a possibility. To achieve the optimum doping level, Mn, Co and Zn containing FeGa3 alloys are being prepared either via the flux or solid state reaction method. Phase characterization will be carried out. Electrical and transport properties including resistivity, Seebeck and Hall coefficients and thermal conductivity will be measured over a wide temperature range of 80- 1000 K. These results will be presented and the potential of these compositions as thermoelectrics will be discussed.

  2. Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Murtaza Saleem

    2014-01-01

    Full Text Available Zn0.95Mn0.05O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800°C for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process.

  3. Inclusion of degeneracy in the analysis of heavily doped regions in silicon solar cells and other semiconductor devices

    Science.gov (United States)

    Shibib, M. A.

    1981-02-01

    A simple analytic approximation of Fermi-Dirac integrals of order 1/2 is presented and is used to derive an expression for the square of the effective intrinsic carrier concentration (n sub ie squared) in a semiconductor with energy band gap narrowing and degeneracy of the charge carriers. This expression is useful in the analysis of solar cells and of other semiconductor devices containing regions of heavy doping concentration.

  4. Ab initio search for novel bipolar magnetic semiconductors: Layered YZnAsO doped with Fe and Mn

    Science.gov (United States)

    Bannikov, V. V.; Ivanovskii, A. L.

    2013-02-01

    Very recently, the newest class of spintronic materials, where reversible spin polarization can be controlled by applying gate voltage: so-called bipolar magnetic semiconductors (Xingxing Li et al., arXiv:1208.1355) was proposed. In this work, a novel way to creation of bipolar magnetic semiconductors by doping of non-magnetic semiconducting 1111 phases with magnetic d n < 10 atoms is discussed using ab initio calculations of layered YZnAsO doped with Fe and Mn. In addition, more complex materials with several spectral intervals with opposite 100% spin polarization where multiple gate-controlled spin-polarization can be expected are proposed.

  5. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures

    Science.gov (United States)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe

    2014-11-01

    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  6. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures.

    Science.gov (United States)

    Algarni, H; El-Gomati, M M; Al-Assiri, M S

    2014-07-01

    The effect of gallium ion concentrations (0.5 and 2%) on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures are presented. Ga-doped ZnO nanostructures were synthesized on silicon substrates by simple thermal evaporation process using metallic zinc and Ga powders in the presence of oxygen. Interestingly, it was observed that Ga-ions incorporation in ZnO nanomaterials play an important role on the growth kinetics and hence on the morphologies of as-grown Ga-doped ZnO nanostructures. It was seen that at low Ga-concentration, needle-shaped Ga-doped ZnO nanostructures are formed, presumably by subsequent stacking of hexagonal plates. However, when increasing the Ga-concentration, multipods of Ga-doped ZnO were grown. In addition to the morphologies, incorporating Ga-ions into ZnO also affect the room-temperature photoluminescence properties. Therefore, at lower Ga-ion concentration, an intense UV emission was observed while at high Ga-concentration a deep level emission was seen in the room-temperature photoluminescence spectra. This research demonstrates that by controlling the Ga-ion concentration the morphologies and optical properties of ZnO nanomaterials can be tailored.

  7. Microwave-assisted synthesis of Gd3+ doped PbI2 hierarchical nanostructures for optoelectronic and radiation detection applications

    Science.gov (United States)

    Shkir, Mohd.; AlFaify, S.; Yahia, I. S.; Ganesh, V.; Shoukry, H.

    2017-03-01

    In this work, we report the simple, low temperature and rapid microwave-assisted synthesis of undoped and Gadolinium (III) doped lead iodide with different morphologies, i.e. nanorods of average diameter 200 nm and hierarchical (flower-shaped) nanosheets of thicknesses less than 100 nm. Prepared nanostructures were typify in details using a variety of analytical techniques that reveal the well crystallinity with hexagonal structure. We found that by changing the concentrations of Gadolinium (III) one can tailor the size and shape of nanostructures of lead iodide. The presence of Gadolinium (III) doping was assessed by energy dispersive X-ray analysis. Optical band gap and Photoluminescence intensity are found to be enhanced due to Gadolinium (III) doping. The value of Gamma linear absorption coefficient is found to be enriched with doping, which suggests its application in radiation detection.

  8. Al-doped ZnO Nanostructured Thin Films: Density Functional Theory and Experiment

    Science.gov (United States)

    Sarma, J. V. N.; Rahman, A.; Jayaganthan, R.; Chowdhury, Rajib; Haranath, D.

    2015-06-01

    Nanostructured Al-doped ZnO (AZO) films are deposited on glass substrates by electroless deposition technique in the present work. AZO films with Al concentration from 1 at.% to 5 at.% are investigated for their structural and morphological properties by X-ray diffraction (XRD), and atomic force microscopy (AFM). An excellent homogeneity is achieved with average crystallite sizes of below 32 nm and a nearly constant root mean square (RMS) surface roughness between 1 nm and 3 nm, for various Al doping concentrations. These smooth and uniform films are characterized for their optical and photoluminescence (PL) properties. A higher value of average transparency between 79% and 92% in the wavelength range of 300-800 nm is achieved, and the PL intensity is found to be a strong function of doping. Density functional theory (DFT) calculations agree with the measured transmittance values, in addition to their predicted electronic structure. Moreover, time-resolved PL measurements indicate that the luminescence decay time decreases with increased doping concentration.

  9. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals

    Science.gov (United States)

    Kudrynskyi, Z. R.; Bakhtinov, A. P.; Vodopyanov, V. N.; Kovalyuk, Z. D.; Tovarnitskii, M. V.; Lytvyn, O. S.

    2015-11-01

    The growth morphology, composition and structure of PbSe nanostructures grown on the atomically smooth, clean, nanoporous and oxidized van der Waals (0001) surfaces of GaSe layered crystals were studied by means of atomic force microscopy, x-ray diffractometry, photoelectron spectroscopy and Raman spectroscopy. Semiconductor heterostructures were grown by the hot-wall technique in vacuum. Nanoporous GaSe substrates were fabricated by the thermal annealing of layered crystals in a molecular hydrogen atmosphere. The irradiation of the GaSe(0001) surface by UV radiation was used to fabricate thin Ga2O3 layers with thickness clusters with a square or rectangular symmetry on the clean low-energy (0001) GaSe surface, and (001)-oriented growth of PbSe thin films takes place on this surface. Using this growth technique it is possible to grow PbSe nanostructures with different morphologies: continuous epitaxial layers with thickness quantum dots with a high lateral density (more than 1011 cm-2) on the oxidized van der Waals (0001) surfaces and faceted square pillar-like nanostructures with a low lateral density (˜108 cm-2) on the nanoporous GaSe substrates. We exploit the ‘vapor-liquid-solid’ growth with low-melting metal (Ga) catalyst of PbSe crystalline branched nanostructures via a surface-defect-assisted mechanism.

  10. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal-semiconductor-metal nanostructure

    Institute of Scientific and Technical Information of China (English)

    Yu Tan; Yanguo Wang

    2014-01-01

    The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW) in the metal-semiconductor-metal (M-S-M) nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M-S-M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  11. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    Science.gov (United States)

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  12. Room temperature ferromagnetism in undoped and Mn doped CdO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet [Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Yashpal, Madhu [Electron Microscope Facility Department of Anatomy Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Ojha, Animesh K., E-mail: animesh198@gmail.com [Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004 (India)

    2015-11-01

    Cd{sub 1−x}Mn{sub x}O (x=00–0.07) nanostructures were synthesized and their structural, optical and magnetic properties were investigated. The shift of diffraction peaks towards lower angle side with increase of Mn content indicates the incorporation of Mn{sup 2+} ions into the CdO lattice. The values of optical band gaps were calculated at each value of Mn concentration. The values of band gap were increased by increasing the Mn concentrations as a direct consequence of the quantum confinement effect. The undoped CdO [Cd{sub 1−x}Mn{sub x}O (x=0.00)] nanostructure shows weak ferromagnetic nature at room temperature. The ferromagnetic nature increases consistently with increase of Mn concentrations from x=0.01 to 0.05 and then slightly drops for x=0.07. As there were no magnetic impurities present in the samples, we assume that the origin of ferromagnetism in the undoped CdO nanostructures could be due to formation of CdO structure in triplet state (S=1). However, the consistent increase of magnetic nature with Mn doped (x=0.01–0.05) CdO nanostructures might be attributed to the ferromagnetic coupling between the spins and enhancement of spin concentrations due to entering of Mn atom into the lattice. The sudden drop of ferromagnetic nature at x=0.07 may be due to the presence of anti-ferromagnetic coupling. - Highlights: • Simple synthesis method is used to synthesize Cd{sub 1−x}Mn{sub x}O nanostructures. • The optical band gap of Cd{sub 1−x}Mn{sub x}O nanostructures is calculated. • Cd{sub 1−x}Mn{sub x}O (x=0) nanostructure shows weak RTFM. • The RTFM of Cd{sub 1−x}Mn{sub x}O (x=0) is explained by a model based on electronic distribution. • The RTFM nature of Cd{sub 1−x}Mn{sub x}O is increased consistently from x=0.01 to 0.05.

  13. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures

    Science.gov (United States)

    Mohamed Basith, N.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M.

    2013-09-01

    Pure CuO and Fe-doped CuO nanostructures with different weight ratios (0.5, 1.0, 1.5, and 2.0 at wt% of Fe) were synthesized via the microwave combustion method. The synthesized samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). XRD patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure and also confirmed that Fe ions successfully incorporated into CuO crystal lattice by occupying Cu ionic sites. Interestingly, the morphology was found to change considerably from nanoflowers to nano-rod and disk-shaped then to nanoparticles with the variation of Fe content. The optical band gap calculated using DRS was found to be 2.8 eV for pure CuO and increases up to 3.4 eV with increasing ‘Fe’ content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures are found to be room temperature ferromagnetism (RTF) with an optimum value of saturation magnetization at 2.0 wt% of Fe-doped CuO, i.e. 1.2960×10-3 emu/g.

  14. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  15. Optoelectronic and thermoelectric properties in Ga doped {beta}- PbS{sub 2} nanostructured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Geethu, R.; Jacob, Rajani [Thin Film Research Lab, U.C. College, Aluva, Cochin, Kerala (India); Shripathi, T.; Okram, G.S.; Ganesan, V.; Tripathi, Shilpa; Fatima, Anees [UGC-DAE CSR, Khandwa Road, Indore-452 001, Madhya Pradesh (India); Sreenivasan, P.V. [Department of Chemistry, U.C. College, Aluva, Cochin, Kerala (India); Urmila, K.S.; Pradeep, B. [Solid State Physics Laboratory, Cochin University of Science and Technology, Cochin, Kerala (India); Philip, Rachel Reena, E-mail: reenatara@rediffmail.com [Thin Film Research Lab, U.C. College, Aluva, Cochin, Kerala (India)

    2012-06-15

    Lead sulphide nanostructured thin films were grown on soda lime glass substrates by chemical bath deposition. The films were then doped with gallium using vacuum evaporation technique. X-ray diffraction (XRD) established the structural type of the host films to be tetragonal {beta}-PbS{sub 2} with average grain size of the order of 15 nm. The nanostructure of films was further confirmed from scanning electron and atomic force micrographs. The shift in the binding energies of the 4f and 4d states of lead, 2p state of sulphur and the 2p states of Ga from their elemental binding energy values, determined from X-ray photoelectron spectroscopy (XPS), indicated intact chemical bonding in the compound. Compositional analysis showed about 0.01% doping of Ga into PbS{sub 2}. Low temperature thermopower measurements indicated p-type conductivity for the films with Fermi level positioned at about 0.017 eV above the maxima of valence band. Optical absorption studies in conjunction with photo sensitivity measurements established its pertinence in junction formation in photovoltaic applications due to the blue shift in the band gap to 2.37 eV and the increased photoconductivity of the films.

  16. Modification on upconversion luminescence of Er3 +-Yb3 + co-doped BiOCl semiconductor nanosheets through interaction between nanohost and doping lanthanide

    Science.gov (United States)

    Xu, Zuyuan; Li, Yongjin; Song, Yapai; Zhang, Xiangzhou; Hu, Rui; Qiu, Jianbei; Yang, Zhengwen; Song, Zhiguo

    2017-04-01

    We reported the upconversion luminescence (UCL) properties of Er3 +-Yb3 + co-doped BiOCl semiconductor nanosheets synthesized by hydrothermal method. Under 980 nm excitation, the red and green UCL of Er3 + ions were observed to be populated by a four and three-photon process in the case of absent or low concentration Yb3 + dopant. However, an increase of Yb3 + dopants show a completely opposite effect on the emission intensity of red and green one, accompanying with the change of upconverting process. It indicates that the red-shifting absorption edge of semiconductor and the super saturation UC processes involved with Yb3 + and Er3 + doping in BiOCl semiconductor nanosheets, respectively, are mainly responsible for the above UC phenomena.

  17. Field-emission stability of hydrothermally synthesized aluminum-doped zinc oxide nanostructures.

    Science.gov (United States)

    Hsieh, Tsang-Yen; Wang, Jyh-Liang; Yang, Po-Yu; Hwang, Chuan-Chou; Shye, Der-Chi

    2012-07-01

    The Al-doped ZnO (AZO) nanostructures field-emission arrays (FEAs) were hydrothermally synthesized on AZO/glass substrate. The samples with Al-dosage of 3 at.% show the morphology as nanowires vertically grown on the substrates and a structure of c-axis elongated single-crystalline wurtzite. The good field-emission (i.e., the large anode current and low fluctuation of 15.9%) can be found by AZO nanostructure FEAs with well-designed Al-dosage (i.e., 3 at.%) because of the vertical nanowires with the less structural defects and superior crystallinity. Moreover, the Full width at half maximum (FWHM) of near band-edge emission (NBE) decreased as the increase of annealing temperature, representing the compensated structural defects during oxygen ambient annealing. After the oxygen annealing at 500 degrees C, the hydrothermal AZO nanostructure FEAs revealed the excellent electrical characteristics (i.e., the larger anode current and uniform distribution of induced fluorescence) and enhanced field-emission stability (i.e., the lowest current fluctuation of 5.97%).

  18. Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer

    Science.gov (United States)

    Zhao, Qian; Xiong, Zhihua; Luo, Lan; Sun, Zhenhui; Qin, Zhenzhen; Chen, Lanli; Wu, Ning

    2017-02-01

    To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic-antiferromagnetic transformation occurs under compressive strain of -9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.

  19. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures%多级复合半导体纳米材料的制备

    Institute of Scientific and Technical Information of China (English)

    李涛; 陈德良

    2011-01-01

    Transition-metal oxides,Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductors have been widely applied in optical,electrical,solar-transfer and catalytic fields because of their unique properties.The synthesis and property control of these semiconductor nanomaterials have been one of the hot topics in advanced materials.Multifunction and high-efficiency are the basic requirements for the design of novel semiconducting materials.Multicomponents and hierarchical structures are the efficient approach to fulfill the above requirements,not only it is helpful to modulate the optic,electrical and catalytic properties by tuning the energy band structures,but also helpful to overcome the agglomeration problem via the steric effect of "house of cards" formed by anisotropic low-dimensional semiconductor nanostructures.Firstly,this paper introduces the concept and classification of hierarchical semiconductor composite nanostructures.Secondly,it reviews the synthesis of some typical hierarchical semiconductor composite nanostructures,with emphases on synthetic methods of wet-chemical,vapor growth and electrospinning processes for the construction of hierarchical semiconductor composite nanostructures.Thirdly,the newly developed hierarchical semiconductor composite nanostructures on the basis of graphene and its functional derivatives are also reviewed.Finally,the future research trends in the fields of hierarchical composite nanostructures are discussed.%金属氧化物、Ⅲ-Ⅴ、Ⅱ-Ⅵ等半导体纳米材料由于其独特的功能性质已广泛应用于光学、电子、太阳能转化、催化等领域,是当今先进材料领域的研究前沿与热点。随着科技的发展,人们对材料的高效、多功能要求已成为必然,对半导体材料发展要求亦如此。多组分复合、多层次结构协同是实现半导体纳米材料多功能化与高效化的有效途径。构筑多级结构组合纳米半导体,不但可以调控其能带结构而提高半导体材料的

  20. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Batenina, I.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Kuptsov, K.A. [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Zhitnyak, I.Y.; Anisimova, N.Yu.; Gloushankova, N.A. [N.N. Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation)

    2013-11-15

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4–4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC{sub 0.5}–Ca{sub 3}(PO{sub 4}){sub 2} target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  1. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Science.gov (United States)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  2. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    Science.gov (United States)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  3. Photoluminescence quenching and enhanced optical conductivity of P3HT derived Ho3+-doped ZnO nanostructures

    CSIR Research Space (South Africa)

    Kabongo, GL

    2016-12-01

    Full Text Available In this article, we demonstrate the surface effect and optoelectronic properties of holmium (Ho(sup3+))-doped ZnO in P3HT polymer nanocomposite. We incorporated ZnO:Ho(sup3+) (0.5 mol% Ho) nanostructures in the pristine P3HT-conjugated polymer...

  4. Evaluation of charge storage ability of chrome doped Mn2O3 nanostructures derived by cathodic electrodeposition

    Directory of Open Access Journals (Sweden)

    Hamideh Darjazi

    2016-12-01

    Full Text Available A facile synthetic route has been proposed to prepare cauliflower-like nanostructures of Cr doped Mn2O3. The synthesis was carried out by constant current cathodic electrodeposition from Mn2+ nitrate solutions containing minor amounts of dichromate. It was found that the presence of Cr mediates the formation of cathodic MnO2 which then reacts with the excess Mn2+ species to form Mn2O3 nanostructures. X-Ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Differential Thermal Analysis (DTA were used to characterize the nanostructures. The storage ability of the obtained nanostructures was investigated by cyclic voltammetry (CV in 0.5 M Na2SO4 solution. The results indicated that the Cr doped manganese oxide material shows better performance than the non-doped one, and the charge capacity (SC of doped manganese oxide (218 F/g was higher than pure manganese oxide (208 F/g.

  5. Single ion implantation in semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Niepelt, Raphael; Johannes, Andreas; Gnauck, Martin; Slowik, Irma; Geburt, Sebastian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet, Jena (Germany)

    2011-07-01

    Ion implantation is well established as a standard doping technique for semiconductor nanowires. The concentration of dopant atoms per area is typically determined by total beam current monitoring during the irradiation. However, at extremely low ion fluencies, it is not possible to distinguish the exact number of implanted ions in a nanometer sized structure, as the ions are distributed statistically over the irradiated area that is usually far wider than the nanostructure of interest. In our experiments we implanted electrically contacted semiconductor nanostructures that were connected to a preamplifier/amplifier setup. As with every impinging ion a certain amount of energy is deposited inside the material, one can detect signals directly induced by the ion implantation and the nanostructures themselves can act as a radiation sensor. This leads to a countable and very precisely adjustable ion dose during the implantation down to doping with single ions.

  6. Semiconductor-metal and semiconductor-magnetic half-metal phase transitions in layered SrAgSeF phases doped with oxygen and nitrogen

    Science.gov (United States)

    Bannikov, V. V.; Ivanovskii, A. L.

    2012-11-01

    Results of ab initio band calculations for a layered nonmagnetic SrAgSeF semiconductors consisting of [SrF]/[AgSe] alternating blocks show that the partial O → F substitution leads to a semiconductormetal phase transition due to "metallization" of the [AgSe] bocks. The oxygen-doped SrAgSeF1 - x O x phase possesses a metal/semiconductor periodic structure formed by alternating [AgSe] and [SrF1 - x O x ] blocks, respectively. On the contrary, the partial N → F substitution induces a semiconductor-magnetic half-metal phase transition. The resulting SrAgSeF1 - x N x system may be of interest as a new material for spintronics.

  7. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.

    Science.gov (United States)

    Zhang, Teng; Zhu, Zonglong; Chen, Haining; Bai, Yang; Xiao, Shuang; Zheng, Xiaoli; Xue, Qingzhong; Yang, Shihe

    2015-02-21

    In this paper, we have studied Fe-doping of nanostructured tungsten trioxide (WO3) and its pronounced effect in promoting the photoelectrochemical (PEC) water splitting performance. Vertically aligned Fe-doped WO3 nanoflakes on fluorine-doped tin oxide (FTO) were synthesized via the hydrothermal method. An X-ray photoelectron spectroscopy (XPS) analysis confirmed the Fe(3+) substitution at the W(6+) site in the prepared films. Broadened visible light absorption was observed in doped films, likely due to the formation of extra band states through doping. The Fe-doping was shown to greatly improve the PEC water splitting performance of WO3. More specifically, the 2 mol% Fe-doped WO3 achieved a photocurrent density of 0.88 mA cm(-2) at 1.23 V versus RHE, approximately 30% higher than that of the undoped WO3 (0.69 mA cm(-2) at 1.23 V versus RHE). This enhancement was attributed to the reduced band gap and the doping-enhanced charge carrier density as confirmed by the absorption spectra and the Mott-Schottky plots, respectively. Finally, first-principles density functional theory (DFT) calculations confirmed that the formation of oxygen vacancies was favored after Fe-doping, contributing to the increased charge carrier density in slightly doped films.

  8. Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-08-29

    The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen- deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited super‐ paramagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM.

  9. Enhancing thermoelectric properties of semiconductors by heavily doping isoelectronic elements with electronegativities distinct from the host atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H., E-mail: xiuhuiyang@126.com

    2014-05-01

    Highlights: • A new approach is proposed to enhance the thermoelectric properties efficiently. • Heavy doping of O or Ba atom in ZnTe induces sharp DOSs near the valence band tops. • Seebeck coefficients and electronic figures of merit are enhanced significantly. • The approach is probably universal. - Abstract: The electronic energy bands and densities of states (DOSs) in isoelectronically doped semiconductors ZnTe{sub 1-x}O{sub x} and Zn{sub 1−x}TeBa{sub x} (x = 1/32, 1/16, 1/8 and 1/4) are calculated by first-principles approach. The results show that O and Ba atoms induce sharp DOSs or flat energy bands near the valence band tops due to the large differences in the electronegativities between the elements O and Zn or Te and Ba, implying that both semiconductors are favorable for further p-type dopings. The Seebeck coefficients, electrical conductivities and electronic thermal conductivities for dilute virtual dopings of holes are calculated from energy band data within the Boltzmann transportation theory under constant relaxation time approximation. The power factors and electronic figures of merit can be enhanced significantly at high temperatures (800–1000 K) when increasing the fraction x due to the significant enhancements of Seebeck coefficients arising from the sharpness of DOSs (or flat energy bands). The investigation demonstrates that the heavy isoelectronic doping is probably a universal approach for enhancing the thermoelectric performances of bulk semiconductors efficiently.

  10. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    Science.gov (United States)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  11. Sandwich structure of Pd doped nanostructure TiO2 film as O2 sensor.

    Science.gov (United States)

    Wang, Hairong; Sun, Quantao; Chen, Lei; Zhao, Yulong

    2013-09-01

    In this paper, we investigated the sensing properties of sandwich structure of TiO2/Pd/TiO2 thin films at various operating temperatures and oxygen partial pressures. The nanostructure TiO2 thin films were prepared by the sol-gel method. Various thickness of Pd buried layer was deposited by magnetron sputtering of a pure Pd target. The films were characterized using X-ray diffraction analysis and SEM. It was found that TiO2/Pd/TiO2 thin films have the p-type behavior while the pure TiO2 thin film is n-type semiconductor materials. We found that the structure of TiO2/Pd/TiO2 thin films with 10 s sputtering Pd layer has a better stability at 240 °C.

  12. Effect of W-DOPING on Morphology, Structural and Optical Properties of ZnO Nanostructures Synthesized via Thermal Evaporation

    Science.gov (United States)

    Eshghi, Hosein; Arjmand, Yaser

    2012-10-01

    Undoped and W-doped ZnO nanostructures were prepared by heating Zn and WO3 powders in the presence of oxygen gas without any catalyst, using the thermal evaporation method at 950°C. Samples were characterized by FESEM images, also EDS, XRD and PL spectra. FESEM images showed the formation of nanowires in the undoped sample and porous nanostructures as flat-surface granules with various sizes in the doped samples. XRD spectra of the samples confirmed the formation of wurtzite hexagonal structure with (002) as the preferred orientation, while its intensity has reduced as the doping concentration has increased. Meanwhile, the room temperature PL spectra have indicated this variation is in conjunction with the reduction in the intensity of UV emission and appearance of a violet emission at 420 nm (2.95 eV).

  13. Simple and large scale refluxing method for preparation of Ce-doped ZnO nanostructures as highly efficient photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, M. [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of); Habibi-Yangjeh, A., E-mail: ahabibi@uma.ac.ir [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2013-01-15

    Graphical abstract: A simple method was applied for the preparation of Ce-doped ZnO nanostructures (mole fractions of Ce{sup 4+} ions are 0, 0.025, 0.05, 0.075 and 0.10) in water by refluxing for 3 h about at 90 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer A simple refluxing method was applied for preparation of Ce-doped ZnO nanostructures. Black-Right-Pointing-Pointer The XRD patterns demonstrate that loading of Ce{sup 4+} ions does not change the structure of ZnO. Black-Right-Pointing-Pointer The results indicate that the nanostructures with 0.05 mole fraction of Ce{sup 4+} ions exhibit highest photocatalytic activity. Black-Right-Pointing-Pointer The nanostructures have highest photocatalytic activity at solutions with pH between 5.4 and 9. - Abstract: A simple method was applied for preparation of Ce-doped ZnO nanostructures (mole fractions of Ce{sup 4+} ions are 0, 0.025, 0.05, 0.075 and 0.10) in water by refluxing for 3 h about at 90 Degree-Sign C. This method is large scale, mild and involve no templates, surfactants or additives. The prepared nanostructures were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (DRS) techniques. The XRD patterns demonstrate that the nanostructures have the same crystal structure, and loading of Ce{sup 4+} ions does not change the structure of ZnO. The SEM images show that with increasing mole fraction of Ce{sup 4+} ions, morphology of the nanostructures changes from nanoplates to nanospheres. Photocatalytic activity of the nanostructures toward photodegradation of methylene blue (MB) was evaluated under UV irradiation. The results indicate that the nanostructures with 0.05 mole fraction of Ce{sup 4+} ions exhibit highest photocatalytic activity among the prepared samples. The influence of various operational parameters such as refluxing time, catalyst weight, calcinations temperature and pH of solution on the photodegradation reaction

  14. Characterisation and Optical Studies of Copper Oxide Nanostructures Doped with Lanthanum Ions

    Directory of Open Access Journals (Sweden)

    Varughese G.

    2014-12-01

    Full Text Available Copper Oxide is an extensively studied group II-VI semiconductor with optical properties. It exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the CuO crystal. CuO nano materials with an average particle size of 15-27 nm are synthesized by chemical route. XRD, SEM, FTIR UV-Vis and EDS characterize the samples. The percentage of doping material is confirmed from the EDS spectra. The average crystal size of the prepared CuO: La nanopowder is determined by XRD. The UV absorption spectra revealed the absorption edge at wavelength 389 nm indicating the smaller size of CuO:La nano particle. The optical direct band gap energy of doped CuO nanoparticle is found to be in the range 3.149 eV. The increasing red shift with decreasing particle size suggests that the defects responsible for the intra gap states are primarily surface defect. The La doped CuO is highly effective and can significantly enhance the photo catalytic degradation.

  15. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1999-01-01

    We report measurements of degenerate four-wave-mixing reflectivity at a frequency below the band gap of semiconductor-doped glasses in the intensity range 0.5-10 GW/cm2. Up to intensities ~2.5 GW/cm2, the conjugate reflectivity varies like the fourth power of intensity signifying a fifth-order nonlinearity due to band filling by two-photon absorption. Surprisingly, at a higher intensity range the conjugate signal showed a cubic dependence on the pump intensity, which is typical of the χ(3) process. We show that this cubic dependence does not necessarily indicate a third-order process as usually assumed. Instead, it is shown to arise due to a reduction of the effective intensity by nonlinear absorption of the interacting beams.

  16. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  17. Emergence of competing magnetic interactions induced by Ge doping in the semiconductor FeGa3

    Science.gov (United States)

    Alvarez-Quiceno, J. C.; Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A.; Dalpian, G. M.; Osorio-Guillén, J. M.

    2016-07-01

    FeGa3 is an unusual intermetallic semiconductor that presents intriguing magnetic responses to the tuning of its electronic properties. When doped with Ge, the system evolves from diamagnetic to paramagnetic to ferromagnetic ground states that are not well understood. In this work, we have performed a joint theoretical and experimental study of FeGa3 -xGex using density functional theory and magnetic susceptibility measurements. For low Ge concentrations we observe the formation of localized moments on some Fe atoms and, as the dopant concentration increases, a more delocalized magnetic behavior emerges. The magnetic configuration strongly depends on the dopant distribution, leading even to the appearance of antiferromagnetic interactions in certain configurations.

  18. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  19. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  1. Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO.

    Science.gov (United States)

    Gondoni, P; Ghidelli, M; Di Fonzo, F; Carminati, M; Russo, V; Li Bassi, A; Casari, C S

    2012-09-14

    The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycrystalline films to mesoporous, hierarchically organized cluster assemblies, are grown by pulsed laser deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens up opportunities for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.

  2. Manipulating transmission and reflection properties of a photonic crystal doped with quantum dot nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G.; Panahi, M.; Sangachin, E. A.; Asadpour, S. H., E-mail: s.hosein.asadpour@gmail.com, E-mail: S.Hosein.Asadpour@miau.ac.ir [Islamic Azad University, Department of Physics, Marvdasht Branch (Iran, Islamic Republic of)

    2016-12-15

    The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light can be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.

  3. Luminescence Properties of Ce3 +-Doped Terbium Aluminum Garnet Phosphor Prepared with Use of Nanostructured Reagents

    Directory of Open Access Journals (Sweden)

    I.V. Berezovskaya

    2013-03-01

    Full Text Available The paper describes the synthesis of Ce3 +-doped terbium aluminum garnet (TAG phosphors with use of nanostructured oxides of aluminum and rare earths. Aluminum oxide nanoparticles were obtained by gaseous-disperse synthesis and characterized by X-ray diffraction, differential thermal analysis and scanning electron microscopy. It was shown that the Ce3 + ions in TAG exhibit the intense broad band emission with a maximum at about 563 nm and the quantum efficiency of luminescence of the Тb3(1 – xCe3xAl5O12 (х = 0.03 phosphor was found as high as 0.83.

  4. A multi-scale approach to the electronic structure of doped semiconductor surfaces

    Science.gov (United States)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-03-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. We present a multi-scale technique that addresses these difficulties. It is based on the introduction of excess charge, mimicking free charge carriers from the SCR, along with a fixed sheet of counter-charge mimicking the SCR-related field. Self-consistency is obtained by imposing charge conservation and Fermi level equilibration between the bulk, treated semi-classically, and the electronic states of the slab/surface, which are treated quantum-mechanically. The method, called CREST - the Charge-Reservoir Electrostatic Sheet Technique - can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic clean-cleaved Si(111) surface and its semiconducting (2x1) reconstructions.

  5. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers

    Science.gov (United States)

    Xie, Haiting; Wu, Qi; Xu, Ling; Zhang, Lei; Liu, Guochao; Dong, Chengyuan

    2016-11-01

    The amorphous oxide semiconductor (AOS) thin film transistors (TFTs) with the double-stacked channel layers (DSCL) combing the amorphous InZnO (a-IZO) films and the nitrogen-doped amorphous InGaZnO (a-IGZO:N) films were proposed and fabricated, which showed the excellent performance with the field-effect mobility of 49.6 cm2 V-1 s-1 and the subthreshold swing of 0.5 V/dec. More interestingly, very stable properties were observed in the bias stress and light illumination tests for these a-IZO/a-IGZO:N TFTs, as seemed to be the evident improvements over the prior arts. The improved performance and stability might be mainly due to the hetero-junctions in the channel layers and less interface/bulk trap density from the in situ nitrogen doping process in the a-IGZO layers. In addition, the passivation effect of the a-IGZO:N films also made some contributions to the stable properties exhibited in these novel DSCL TFTs.

  6. Field-emission characteristics of Al-doped ZnO nanostructures hydrothermally synthesized at low temperature.

    Science.gov (United States)

    Yang, Po-Yu; Wang, Jyh-Liang; Tsai, Wei-Chih; Wang, Shui-Jinn; Lin, Jia-Chuan; Lee, I-Che; Chang, Chia-Tsung; Cheng, Huang-Chung

    2011-07-01

    The aluminum-doped ZnO (AZO) nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at a temperature as low as 85 degrees C. The morphologies, crystallinity, optical emission properties, and chemical bonding states of AZO nanostructures show evident dependence on the aluminum dosage. The morphologies of AZO nanostructures were changed from vertically aligned nanowires (NWs), and NWs coexisted with nanosheets (NSs), to complete NSs in respect of the Al-dosages of 0-3 at.%, 5 at.%, and 7 at.%, correspondingly. The undoped ZnO and lightly Al-doped AZO (< or = 3 at.%) NWs are single-crystalline wurtzite structure. In contrast, heavily Al-doped AZO sample is polycrystalline. The AZO nanostructure with 3 at.% Al-dosages reveals the optimal crystallinity and less structural defects, reflecting the longest carrier lifetime and highest conductivity. Consequently, the field-emission characteristics of such an AZO emitter can exhibit the higher current density, larger field-enhancement factor (beta) of 3131, lower turn-on field of 2.17 V/microm, and lower threshold field of 3.43 V/microm.

  7. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles

    Science.gov (United States)

    Lai, Chao-Shun; Chen, Yi-Chen; Wang, Hsiao-Fang; Ho, Hsin-Chia; Ho, Rong-Ming; Tsai, De-Hao

    2017-01-01

    We report a systematic study of the controlled gas-phase synthesis of silver-silica hybrid nanostructures (Ag-SiO2 NP) using the concept of evaporation-induced self-assembly. The approach includes the use of a direct gas-phase electrophoresis for size classification and in situ characterization of mobility size. Transmission electron microscopy and ultraviolet-visible light spectroscopy were employed complementarily to determine the morphology and surface plasmon resonance of Ag-SiO2 NP. Results show that two types of Ag-SiO2 NPs were successfully synthesized: (1) AgNPs decorated on a SiO2-NP (Ag-T-SiO2 NP), and (2) AgNPs doped in a cluster of SiO2-NPs (Ag-C-SiO2 NP). The physical size, morphology, and compositions of Ag-SiO2 NPs were tunable through the adjustments of precursor concentrations and the selected mobility sizes. The results also show that SPR performance, colloidal stability, and dispersibility of AgNPs enhanced significantly in an aqueous environment after the hybridization with SiO2-NP (especially for Ag-C-SiO2 NP). The results and corresponding methodology summarized here provide the proof of concept to fabricate high-purity AgNP-based hybrid nanostructures through gas-phase evaporation-induced self-assembly for future biomedical applications (e.g., hyperthermal therapy, targeted drug delivery, and antibacterial applications).

  8. Nanostructured TiO2 Doped with Nb as a Novel Support for PEMFC

    Directory of Open Access Journals (Sweden)

    Edgar Valenzuela

    2013-01-01

    Full Text Available Nowadays, one of the major issues of the PEMFC concerns the durability. Historically, carbon has been used as a catalyst support in PEMFC; nevertheless, under the environmental conditions of the cell, the carbon is oxidized, leaving the catalyst unsupported. In order to increase the stability and durability of the catalyst in the PEMFC, a novel nanostructured metallic oxide support is proposed. In this work, TiO2 was doped with Nb to obtain a material that combines chemical stability, high surface area, and an adequate electronic conductivity in order to be a successful catalyst support candidate for long-term PEMFC applications. The TiO2-Nb nanostructured catalyst support was physically and electrochemically characterized. According to the results, the TiO2-Nb offers high surface area and good particle dispersion; also, the electrochemical activity and stability of the support were evaluated under high potential conditions, where the TiO2-Nb proved to be much more stable than carbon.

  9. Ferromagnetic instability in a doped band gap semiconductor FeGa3

    Science.gov (United States)

    Umeo, K.; Hadano, Y.; Narazu, S.; Onimaru, T.; Avila, M. A.; Takabatake, T.

    2012-10-01

    We report the effects of electron doping on the ground state of a diamagnetic semiconductor FeGa3 with a band gap of 0.5 eV. By means of electrical resistivity, magnetization, and specific heat measurements we have found that gradual substitution of Ge for Ga in FeGa3-yGey yields metallic conduction at a very small level of y=0.006, then induces weak ferromagnetic (FM) order at y=0.13 with a spontaneous moment of 0.1 μB/Fe and a Curie temperature TC=3.3 K, which continues increasing to TC=75 K as doping reaches y=0.41. The emergence of the FM state is accompanied by quantum critical behavior as observed in the specific heat, C/T∝-ln T, and in the magnetic susceptibility, M/B∝T-4/3. At y=0.09, the specific heat divided by temperature C/T reaches a large value of 70 mJ K-2 (mol Fe)-1, twice as large as that reported for FeSi1-xGex with xc=0.37 and Fe1-xCoxSb2 with xc=0.3 at their respective FM quantum critical points. The critical concentration yc=0.13 in FeGa3-yGey is quite small, despite the fact that its band gap is one order of magnitude larger than those in FeSi and FeSb2. In contrast, no FM state emerges by substituting Co for Fe in Fe1-xCoxGa3 in the whole range 0≤x≤1, although both types of substitution should dope electrons into FeGa3. The FM instability found in FeGa3-yGey indicates that strong electron correlations are induced by the disturbance of the Fe-3d-Ga-4p hybridization.

  10. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tian, E-mail: tianz@student.unsw.edu.au; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan [Australian Centre for Advanced Photovoltaics, UNSW Australia, Kensington, New South Wales 2052 (Australia)

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  11. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Science.gov (United States)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  12. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    Science.gov (United States)

    Abbas, Fazal; Iqbal, Javed; Maqbool, Qaisar; Jan, Tariq; Ullah, Muhammad Obaid; Nawaz, Bushra; Nazar, Mudassar; Naqvi, M. S. Hussain; Ahmad, Ishaq

    2017-09-01

    To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2) at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV) energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS) generations involved in cancer cells' death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  13. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density.

    Science.gov (United States)

    Kondofersky, Ilina; Dunn, Halina K; Müller, Alexander; Mandlmeier, Benjamin; Feckl, Johann M; Fattakhova-Rohlfing, Dina; Scheu, Christina; Peter, Laurence M; Bein, Thomas

    2015-03-04

    Nanostructuring has proven to be a successful strategy in overcoming the trade-off between light absorption and hole transport to the solid/electrolyte interface in hematite photoanodes for water splitting. The suggestion that poor electron (majority carrier) collection hinders the performance of nanostructured hematite electrodes has led to the emergence of host-guest architectures in which the absorber layer is deposited onto a transparent high-surface-area electron collector. To date, however, state of the art nanostructured hematite electrodes still outperform their host-guest counterparts, and a quantitative evaluation of the benefits of the host-guest architecture is still lacking. In this paper, we examine the impact of host-guest architectures by comparing nanostructured tin-doped hematite electrodes with hematite nanoparticle layers coated onto two types of conducting macroporous SnO2 scaffolds. Analysis of the external quantum efficiency spectra for substrate (SI) and electrolyte side (EI) illumination reveals that the electron diffusion length in the host-guest electrodes based on an undoped SnO2 scaffold is increased substantially relative to the nanostructured hematite electrode without a supporting scaffold. Nevertheless, electron collection is still incomplete for EI illumination. By contrast, an electron collection efficiency of 100% is achieved by fabricating the scaffold using antimony-doped SnO2, showing that the scaffold conductivity is crucial for the device performance.

  14. Cobalt doped titanium dioxide, a possible candidate for dilute magnetic semiconductor

    Science.gov (United States)

    Rumaiz, Abdul K.

    Semiconductor spintronics is a promising new area of research where both the spin and transport of mobile charge carriers are manipulated in a quest to make faster electronic devices. The most important challenge in this exciting field is the integration of spintronics into conventional semiconductor devices. This requires a successful fabrication of a room temperature ferromagnetic semiconductor into which we can effectively generate and inject spin-polarized currents. In the first part of this study, it is our goal to investigate the structural, magnetic, transport, and electronic properties of Co doped and undoped TiO 2 thin films synthesized by pulsed laser deposition (PLD). For that purpose, TiO2 was doped with different Co concentrations and the role of oxygen vacancies in determining the structural, magnetic, and electronic properties wad studied. Four different doping levels (starting target composition 1,2,3 and 6%) of Co in TiO2 films have been prepared. All the targets for laser ablation were prepared by standard solid-state route. In each doping level, different vacancy levels are also investigated by ablating the films under two different oxygen partial pressures. All the samples prepared have shown room temperature ferromagnetism. Crystal structure, transport, and magnetic properties of CoxTi1-xO2-delta (0 ≤ x ≤ 0.06) thin films are investigated and are found to have a strong dependence on the oxygen partial pressure. X-Ray Diffraction (XRD) data reveal the presence of mixed phase material containing both anatase and rutile. However, these phases intertransform with the change in the oxygen partial pressure during the growth of the films. Both X-ray Photoemission Spectroscopy (XPS) and X-ray Absorption Near Edge Spectroscopy (XANES) confirm the oxidation state of Co as +2, suggesting a well-substituted Co in the TiO2 matrix. In addition to that, the asymmetry in the O 1s core level peak also suggests the presence of oxygen vacancies. The transport

  15. Influence of metallic and semiconducting nanostructures on the optical properties of dye-doped polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro; Matei, E.

    2016-09-01

    Dye-doped polymer thin films were obtained by spin-coating of 8% polyvinylpyrrolidone (PVP) solutions (in ethanol). Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films (10{sup −4} M dye concentration). Optical and morphological properties of simple dye-doped polymer films and films containing metallic or semiconducting nanostructures were investigated. Optical microscopy and scanning electron microscopy were used to image the nanowires. The presence of Ni nanowires induces a small shift (2–3 nm) to longer wavelengths on the emission band of Rh 6G doped PVP film. The ZnO nanowires' presence was confirmed by X-ray diffraction measurements. An enhancement of the emission of the dye doped polymer is induced by the semiconducting structures. - Highlights: • Rhodamine 6G doped polyvinylpyrrolidone thin films were obtained by spin-coating. • Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films. • Ni nanowires' presence induces a shift to shorter wavelengths on the emission band. • Enhancement of dye-doped polymer emission induced by the semiconducting structures.

  16. Crystallization and Thermoelectric Transport in Semiconductor Micro- and Nanostructures Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gokirmak, Ali [Univ. of Connecticut, Storrs, CT (United States); Silva, Helena [Univ. of Connecticut, Storrs, CT (United States)

    2017-08-30

    This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias, carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the past years

  17. Unique nanostructural features in Fe, Mn-doped YBCO thin films

    Science.gov (United States)

    Meledin, A.; Turner, S.; Cayado, P.; Mundet, B.; Solano, E.; Ricart, S.; Ros, J.; Puig, T.; Obradors, X.; Van Tendeloo, G.

    2016-12-01

    An attempt to grow a thin epitaxial composite film of YBa2Cu3O7-δ (YBCO) with spinel MnFe2O4 (MFO) nanoparticles on a LAO substrate using the CSD approach resulted in a decomposition of the spinel and various doping modes of YBCO with the Fe and Mn cations. These nanostructural effects lead to a lowering of T c and a slight J c increase in field. Using a combination of advanced transmission electron microscopy (TEM) techniques such as atomic resolution high-angle annular dark field scanning TEM, energy dispersive x-ray spectroscopy and electron energy-loss spectroscopy we have been able to decipher and characterize the effects of the Fe and Mn doping on the film architecture. The YBaCuFeO5 anion-deficient double perovskite phase was detected in the form of 3D inclusions as well as epitaxially grown lamellas within the YBCO matrix. These nano-inclusions play a positive role as pinning centers responsible for the J c/J sf (H) dependency smoothening at high magnetic fields in the YBCO-MFO films with respect to the pristine YBCO films.

  18. Obtaining and doping of InAs-QD/GaAs(001 nanostructures by ion beam sputtering

    Directory of Open Access Journals (Sweden)

    Sergei N. Chebotarev

    2017-01-01

    Full Text Available The features of InAs quantum dots obtained on GaAs(001 single-crystal substrates by ion-beam sputtering were investigated. It has been shown that in the range of ion energies of 150 to 200 eV at a temperature of 500 °C and a beam current of 120 µA InAs quantum dots with average dimensions below 15 nm and a surface density of 1011 cm−2 are formed. The technique of controlled doping of InAs/GaAs nanostructures using a SnTe solid-state source was proposed. It has been established that a maximum donor concentration of 8.7·1018 cm−3 in the GaAs spacer layer is reached at an evaporation temperature of 415 °С. At the same time, impurity accumulation in the growth direction was observed. We have shown that increasing the impurity doping of the GaAs barrier layer increases the intensity of photoluminescence peaks of the ground state and the first excited state of the InAs quantum dots.

  19. Synthesis and characterization of one-dimensional Ag-doped ZnO/Ga-doped ZnO coaxial nanostructure diodes.

    Science.gov (United States)

    Chiu, Hsien-Ming; Chang, Yu-Tsui; Wu, Wen-Wei; Wu, Jenn-Ming

    2014-04-09

    In the pursuit of high injection current diode nanodevices, entire one-dimensional (1D) ZnO coaxial nanostructures with p-n homojunctions is one of the ideal structures. In this study, we synthesized entire 1D ZnO-based coaxial homojunction diodes with p-type Ag-doped ZnO (SZO) nanostructure shells covering n-type Ga-doped ZnO (GZO) nanopagoda (NPG) cores by a metal-organic chemical vapor deposition (MOCVD) technique. The entire 1D SZO-GZO and SZO-ZnO coaxial nanostructures exhibit better diode characteristics, such as lower threshold voltage, better rectification ratios, and better ideality factor n, than that reported for either 2D or 2D-1D p-n heterojunction and/or homojunction diodes. The binding energies of Ga and Ag were evaluated by low-temperature and temperature-dependent photoluminescence. In comparison, the SZO-GZO coaxial p-n nanostructures display better diode performance than the SZO-ZnO ones.

  20. Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor

    KAUST Repository

    Song, Zhibo

    2017-07-28

    Two-dimensional (2D) semiconductors offer a convenient platform to study 2D physics, for example, to understand doping in an atomically thin semiconductor. Here, we demonstrate the fabrication and unravel the electronic properties of a lateral doped/intrinsic heterojunction in a single-layer (SL) tungsten diselenide (WSe2), a prototype semiconducting transition metal dichalcogenide (TMD), partially covered with a molecular acceptor layer, on a graphite substrate. With combined experiments and theoretical modeling, we reveal the fundamental acceptor-induced p-doping mechanism for SL-WSe2. At the 1D border between the doped and undoped SL-WSe2 regions, we observe band bending and explain it by Thomas-Fermi screening. Using atomically resolved scanning tunneling microscopy and spectroscopy, the screening length is determined to be in the few nanometer range, and we assess the carrier density of intrinsic SL-WSe2. These findings are of fundamental and technological importance for understanding and employing surface doping, for example, in designing lateral organic TMD heterostructures for future devices.

  1. Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1999-09-01

    The limitations of the Z-scan method in separating the third order and fifth order nonlinearities in dilute nonlinear systems like semiconductor-doped glasses are discussed. By simulating various experimental situations, we show that rather sensitive detection is required in such cases to separate the two contributions. The earlier Z-scan data on semiconductor doped glasses is shown to be consistent with a dominantly fifth order nonlinearity.

  2. Synthesis and characterization of nanostructured undoped and Sn-doped ZnO thin films via sol–gel approach

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, H., E-mail: cihataydin_26@hotmail.com [Department of Metallurgical and Materials Engineering, Engineering Faculty, Tunceli University, Tunceli 62000 (Turkey); El-Nasser, H.M. [Department of Physics, Al al-Bayt University, Mafraq (Jordan); Aydin, C. [Department of Metallurgy and Materials Engineering, Faculty of Technology, Firat University, Elazig 23119 (Turkey); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig 23119 (Turkey); Nanoscience and Nanotechnology Laboratory, Firat University, Elazig 23119 (Turkey)

    2015-09-30

    Graphical abstract: - Highlights: • Sn-doped ZnO films were prepared via facile sol–gel spin coating method. • The grain size of the films changes from 39.23 to 71.84 nm with Sn doping. • The refractive index dispersion of the films obeys the single oscillator model. - Abstract: Thin films of Sn-doped ZnO were prepared via facile sol–gel spin coating method. The structural and optical properties of the films were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-VIS-NIR spectrophotometer. The X-ray results confirmed that all the ZnO thin films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation of (002) plane. The crystallite size and lattice parameter values of the films were obtained. Atomic force microscopy results indicate that the Sn-doped ZnO films have the nanostructure. The grain size values of the films were found to vary from 39.23 to 71.84 nm with Sn doping. The nanostructure of the Sn-doped ZnO films was also confirmed by scanning electron microcopy. The optical bandgaps of the films were calculated for the various Sn contents. The refractive index dispersion curves obey the single oscillator model. The optical constants and dispersion parameters of the ZnO films were changed with Sn doping. The obtained results suggest that the structural and optical properties of ZnO films can be controlled by Sn doping.

  3. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  4. PHOTOCATALYTIC PROPERTIES OF Cr DOPED TiO2–SiO2 NANOSTRUCTURE THIN FILM

    OpenAIRE

    Akbar Eshaghi; Ameneh Eshaghi

    2012-01-01

    Cr doped TiO2–SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer were used to characterize the structural, chemical and optical properties of the thin film. The XRD showed that thin films contain only anatase phase. FE-SEM images illustrated that anatase average crystallite size in the pure TiO2 and Cr doped TiO2–SiO2 thin films are 15 nm and 10 nm, respecti...

  5. Preparation, Characterization, Electrical and Magnetic Properties of Mn-Doped Dilute Magnetic Semiconductors

    Science.gov (United States)

    Malik, Samiksha; Mohite, Komal; Naik, Pranav; Tangsali, R. B.

    2016-10-01

    Nanoparticle dilute magnetic semiconductors (DMS) are becoming increasingly important due to their possible applications in spintronics, an emerging field where the conduction process in the materials is a spin-based process. Nanoparticles of Mn-doped ZnO (DMS) material with general formula Zn1-xMnxO (x=0.05,0.15,0.2) were prepared by opting single stage combustion synthesis process. The samples characterized, exhibited formation of monophasic nanoparticles of the sample with average particle size ranging between 17 nm to 23 nm. The calculations of energy bandgap made from UV absorption spectra showed variation of the bandgap from 2.18 eV to 2.32 eV. The magnetic measurements (VSM) made on the samples confirmed formation of a single diamagnetic (Zn0.95Mn0.05O) and two namely (Zn0.85Mn0.15O) (Zn0.8Mn0.2O) paramagnetic samples. It is interesting to see that all the three magnetic profiles exhibit hysteresis type behavior both in diamagnetic form and paramagnetic form. The resistivity of the samples was of the order of 1010 Ohm-cm (Ω-cm) at lower temperatures. Temperature-dependent resistivity curves exhibited peaking behavior for all the three samples which is very interesting. Temperature-dependent thermo-power profiles give an indication of n-type semiconductor behavior with significantly deep and broad minima around 100∘C which becomes sharper for sample with higher Mn concentration.

  6. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study

    Science.gov (United States)

    Zhang, Teng; Zhu, Zonglong; Chen, Haining; Bai, Yang; Xiao, Shuang; Zheng, Xiaoli; Xue, Qingzhong; Yang, Shihe

    2015-02-01

    In this paper, we have studied Fe-doping of nanostructured tungsten trioxide (WO3) and its pronounced effect in promoting the photoelectrochemical (PEC) water splitting performance. Vertically aligned Fe-doped WO3 nanoflakes on fluorine-doped tin oxide (FTO) were synthesized via the hydrothermal method. An X-ray photoelectron spectroscopy (XPS) analysis confirmed the Fe3+ substitution at the W6+ site in the prepared films. Broadened visible light absorption was observed in doped films, likely due to the formation of extra band states through doping. The Fe-doping was shown to greatly improve the PEC water splitting performance of WO3. More specifically, the 2 mol% Fe-doped WO3 achieved a photocurrent density of 0.88 mA cm-2 at 1.23 V versus RHE, approximately 30% higher than that of the undoped WO3 (0.69 mA cm-2 at 1.23 V versus RHE). This enhancement was attributed to the reduced band gap and the doping-enhanced charge carrier density as confirmed by the absorption spectra and the Mott-Schottky plots, respectively. Finally, first-principles density functional theory (DFT) calculations confirmed that the formation of oxygen vacancies was favored after Fe-doping, contributing to the increased charge carrier density in slightly doped films.In this paper, we have studied Fe-doping of nanostructured tungsten trioxide (WO3) and its pronounced effect in promoting the photoelectrochemical (PEC) water splitting performance. Vertically aligned Fe-doped WO3 nanoflakes on fluorine-doped tin oxide (FTO) were synthesized via the hydrothermal method. An X-ray photoelectron spectroscopy (XPS) analysis confirmed the Fe3+ substitution at the W6+ site in the prepared films. Broadened visible light absorption was observed in doped films, likely due to the formation of extra band states through doping. The Fe-doping was shown to greatly improve the PEC water splitting performance of WO3. More specifically, the 2 mol% Fe-doped WO3 achieved a photocurrent density of 0.88 mA cm-2 at 1

  7. Direct laser writing of topographic features in semiconductor-doped glass

    Science.gov (United States)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  8. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering.

    Science.gov (United States)

    Chen, Lin; Yang, Xiang; Yang, Fuhua; Zhao, Jianhua; Misuraca, Jennifer; Xiong, Peng; von Molnár, Stephan

    2011-07-13

    We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.

  9. Dynamic behavior of correlated electrons in the insulating doped semiconductor Si:P

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Elvira

    2009-06-04

    At low energy scales charge transport in the insulating Si:P is dominated by activated hopping between the localized donor electron states. Theoretical models for a disordered electronic system with a long-range Coulomb interaction are appropriate to interpret the electric conductivity spectra. With a novel and advanced method we perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 5 GHz, employing a vector network analyzer with a 2.4 mm coaxial sensor, which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity and dielectric function, we present a closed calibration and evaluation procedure with an optimized theoretical and experimental complexity, based on the rigorous solution for the electromagnetic field inside the insulating sample, combined with the variational principle. Basically no limiting assumptions are necessary in a strictly defined parameter range. As an application of our new method, we have measured the complex broadband microwave conductivity of Si:P in a broad range of phosphorus concentration n/n{sub c} from 0.56 to 0.9 relative to the critical value n{sub c}=3.5 x 10{sup 18} cm{sup -3} of the metal-insulator transition driven by doping at temperatures down to 1.1 K, and studied unresolved issues of fundamental research concerning the electronic correlations and the metal-insulator transition. (orig.)

  10. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T. [Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hueting, R. J. E. [Semiconductor Components, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands)

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.

  11. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  12. Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Svetlana

    2012-05-23

    Modern development of information technologies requires an introduction of new fundamental concepts, in order to create more efficient devices and to decrease their size. One of the most promising ways is to increase the functionality of silicon by integrating novel materials into Si-based production. This PhD thesis reports on the fabrication and investigation of the growth of semiconductor nanostructures on Si substrates by molecular beam epitaxy (MBE). In-situ scanning tunneling microscopy (STM) is a powerful technique in order to study morphological and electronic properties of the grown structures directly under ultra high vacuum (UHV) conditions. It is shown that the combination of MBE and in-situ STM enables the study of nucleation and growth dynamics at the atomic scale. It provides us with numerous information concerning the nucleation mechanism, the growth mode of the structures, adatom kinetics, influence of the lattice mismatch between the substrate and the grown structure as well as formation and morphology of crystal defects. The first part of the thesis focuses on the experimental realization based upon an existing setup. The construction of an in-situ UHV STM compatible with the MBE cluster and the technical improvement of the STM setup are described. Subsequently, test measurements are performed on the technologically most important surfaces, Ge (100) and Si (111). The second part of the thesis is dedicated to ordered small-period arrays of self-assembled Ge quantum dots (QDs) grown on pre-patterned Si (100) substrates. Small-period Ge QD crystals are highly interesting since band structure calculations indicate coupled electronic states of the QDs in the case of the small lateral period of approximately 30 nm. Small-period hole patterns with a period of 56 nm are fabricated by e-beam lithography on Si substrates. The evolution of the hole morphology during the in-situ pre-growth annealing and the Si buffer layer growth are studied. Deposition of 5

  13. Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Svetlana

    2012-05-23

    Modern development of information technologies requires an introduction of new fundamental concepts, in order to create more efficient devices and to decrease their size. One of the most promising ways is to increase the functionality of silicon by integrating novel materials into Si-based production. This PhD thesis reports on the fabrication and investigation of the growth of semiconductor nanostructures on Si substrates by molecular beam epitaxy (MBE). In-situ scanning tunneling microscopy (STM) is a powerful technique in order to study morphological and electronic properties of the grown structures directly under ultra high vacuum (UHV) conditions. It is shown that the combination of MBE and in-situ STM enables the study of nucleation and growth dynamics at the atomic scale. It provides us with numerous information concerning the nucleation mechanism, the growth mode of the structures, adatom kinetics, influence of the lattice mismatch between the substrate and the grown structure as well as formation and morphology of crystal defects. The first part of the thesis focuses on the experimental realization based upon an existing setup. The construction of an in-situ UHV STM compatible with the MBE cluster and the technical improvement of the STM setup are described. Subsequently, test measurements are performed on the technologically most important surfaces, Ge (100) and Si (111). The second part of the thesis is dedicated to ordered small-period arrays of self-assembled Ge quantum dots (QDs) grown on pre-patterned Si (100) substrates. Small-period Ge QD crystals are highly interesting since band structure calculations indicate coupled electronic states of the QDs in the case of the small lateral period of approximately 30 nm. Small-period hole patterns with a period of 56 nm are fabricated by e-beam lithography on Si substrates. The evolution of the hole morphology during the in-situ pre-growth annealing and the Si buffer layer growth are studied. Deposition of 5

  14. CuO nanostructures grown by the SILAR method: Influence of Pb-doping on the morphological, structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bayansal, F., E-mail: fbayansal@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Gülen, Y. [Department of Physics, Faculty of Arts and Sciences, Marmara University, İstanbul (Turkey); Şahin, B. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Kahraman, S. [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Çetinkara, H.A. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey)

    2015-01-15

    Highlights: • CuO nanostructures with Pb-doping by the SILAR method is reported for the first time. • CuO nanostructures of different morphologies were grown by different Pb ratios. • E{sub g} values of the films can be altered by changing Pb doping concentrations. - Abstract: CuO nanostructures with and without Pb were synthesized by the Successive Ionic Layer Adsorption and Reaction method. The films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and ultraviolet–visible spectrophotometry. Scanning electron microscopy results showed that the morphology of the film surface was changed from plate-like to coral-like nanostructures with increasing Pb concentration. The X-ray diffraction patterns showed the monoclinic crystal structure with preferential planes of (1{sup ¯}11) and (1 1 1). Furthermore, ultraviolet–visible spectra showed that the band gap of the films was tailored by Pb doping.

  15. Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells.

    Science.gov (United States)

    Fan, Xi; Fang, Guojia; Guo, Shishang; Liu, Nishuang; Gao, Huimin; Qin, Pingli; Li, Songzhan; Long, Hao; Zheng, Qiao; Zhao, Xingzhong

    2011-10-04

    Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.

  16. Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells

    Directory of Open Access Journals (Sweden)

    Fan Xi

    2011-01-01

    Full Text Available Abstract Flake-like Al-doped ZnO (AZO nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes.

  17. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2

    Science.gov (United States)

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.

    2017-02-01

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  18. Optical and Magnetic Properties of Fe-Doped GaN Diluted Magnetic Semiconductors Prepared by MOCVD Method

    Institute of Scientific and Technical Information of China (English)

    TAG Zhi-Kuo; ZHANG Rong; CUI Xu-Gao; XIU Xiang-Qian; ZHANG Guo-Yu; XIE Zi-Li; GU Shu-Lin; SHI Yi; ZHENG You-Dou

    2008-01-01

    @@ Fe-doped GaN thin films are grown on c-sapphires by metal organic chemical vapour deposition method (MOCVD).Crystalline quality and phase purity are characterized by x-ray diffraction and Raman scattering measurements.There are no detectable second phases formed during growth and no significant degradation in crystalline quality as Fe ions are doped. Fe-related optical transitions are observed in photoluminescence spectra. Magnetic measurements reveal that the films show room-temperature ferromagnetic behaviour. The ferromagnetism may originate from carrier-mediated Fe-doped CaN diluted magnetic semiconductors or nanoscale iron dusters and Fe-N compounds which we have not detected.

  19. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

    Science.gov (United States)

    Roy, Nitish; Hirano, Yuiri; Kuriyama, Haruo; Sudhagar, Pitchaimuthu; Suzuki, Norihiro; Katsumata, Ken-Ichi; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Serizawa, Izumi; Takayama, Tomoaki; Kudo, Akihiko; Fujishima, Akira; Terashima, Chiaki

    2016-11-01

    Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligible amount of reduction products. Silver nanoparticles were then deposited on BDDL because of their selective electrochemical CO2 reduction ability. Excellent selectivity (estimated CO:H2 mass ratio of 318:1) and recyclability (stable for five cycles of 3 h each) for photoelectrochemical CO2 reduction were obtained for the optimum silver nanoparticle-modified BDDL electrode at -1.1 V vs. RHE under 222-nm irradiation. The high efficiency and stability of this catalyst are ascribed to the in situ photoactivation of the BDDL surface during the photoelectrochemical reaction. The present work reveals the potential of BDDL as a high-energy electron source for use with co-catalysts in photochemical conversion.

  20. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    Science.gov (United States)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  1. Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films

    Science.gov (United States)

    Kotkata, M. F.; Abdel-Wahab, F. A.; Maksoud, H. M.

    2006-05-01

    The ac and dc conductivities (σac and σdc) of amorphous semiconductor Sm doped Se (namely, SeSm0.005) films, prepared by thermal evaporation, were measured under vacuum in a wide range of frequency and temperature. The ac conductivity versus frequency plots were analysed by considering a power law: σac ~ ωs (s values of the index s with those numerically calculated from different conduction models reveals that correlated barrier hopping (CBH) is a fairly good model to describe the dominant ac conduction mechanism. The concept of the Meyer-Neldel (MN) rule in the expression of the relaxation time is considered for both ac and dc experimental data. The validity of the CBH model based on the MN (normal and inverted) rule is studied and discussed. Besides, results of the real dielectric constant (ɛ'), loss factor (ɛ') and loss tangent (tan δ) together with the Cole-Cole diagrams and the optical (ɛ∞) and static (ɛs) dielectric constants for a-SeSm0.005 films are given and discussed.

  2. Tailoring p- and n- type semiconductor through site selective oxygen doping in Cu3N: density functional studies

    Science.gov (United States)

    Sahoo, Guruprasad; Kashikar, Ravi; Jain, Mahaveer K.; Nanda, B. R. K.

    2016-06-01

    Using ab initio density functional calculations, we have investigated the stability and electronic structure of pure and oxygen doped semiconducting Cu3N. The oxygen can be accommodated in the system without structural instability as the formation energy either decreases when oxygen substitutes nitrogen, or remains nearly same when oxygen occupies the interstitial position. The interstitial oxygen (OI) prefers to stabilize in the unusual charge neutral state and acts as an acceptor to make the system a p-type degenerate semiconductor. In this case the hole pockets are formed by the partially occupied OI-p states. On the other hand, oxygen substituting nitrogen (OS) stabilizes in its usual -2 charge state and acts as a donor to make the system an n-type degenerate semiconductor. The electron pockets are formed by the conducting Cu-p states. In the case of mixed doping, holes are gradually compensated by the donor electrons and an intrinsic gap is obtained for {{{Cu}}}3{{{N}}}{1-2{x}}{{{{O}}}{{S}}}2{x}{{{{O}}}{{I}}}{x} stoichiometry. Our calculations predict the nature of doping as well as optical band gap ({{E}{{g}}}{{o}{{p}}{{t}}}) variation in experimentally synthesized copper oxynitride. While interstitial doping contracts the lattice and increases the {{E}{{g}}}{{o}{{p}}{{t}}}, substitutional doping increases both lattice size and {{E}{{g}}}{{o}{{p}}{{t}}}. Mixed doping reduces {{E}{{g}}}{{o}{{p}}{{t}}}. Additionally we show that a rare intra-atomic d-p optical absorption can be realized in the pristine Cu3N as the Fermi level lies in the gap between the Cu-d dominated anti-bonding valence state and Cu-p conducting state.

  3. Electrodeposition of Sn-doped hollow α-Fe{sub 2}O{sub 3} nanostructures for photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiajia; Li, Song; Li, Zhe; Wang, Jiansheng; Ren, Yuping; Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn

    2013-10-15

    Highlights: •Fabricating hollow structure α-Fe{sub 2}O{sub 3} film on hard template by electrodeposition. •Morphology of α-Fe{sub 2}O{sub 3} film is changed largely by Sn concentration in electrolyte. •Nanocrystals in hollow structure α-Fe{sub 2}O{sub 3} film separate carries effectively. •Photocurrent of the α-Fe{sub 2}O{sub 3} film can be enhanced by Sn{sup 4+} doping. -- Abstract: The hollow nanostructured hematite photoanodes were prepared by using template-assisted electrodeposition and heat-treatment process. The morphologies of the films were regulated through the synthesis parameters such as potential sweep rate, annealing temperature and Sn concentration in electrolyte, and confirmed by scanning electron microscopy and transmission electron microscopy. Sn-doping of hematite was achieved by using electrolyte containing tin salt. The photocurrent of Sn-doped hematite film reaches 0.25 mA/cm{sup 2} in 1 M NaOH at 1.23 V vs. RHE by optimizing the synthesis parameters. It is noted that both Sn doping and hollow nanostructure can affect and improve the PEC performance of hematite film.

  4. Magnetic-ion-doped silicon nanostructures fabricated by ion implantation and electron beam annealing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang, E-mail: v.fang@gns.cri.nz [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Johnson, Peter B. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Kennedy, John; Markwitz, Andreas [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2013-07-15

    Magnetic-ion-doped Si nanostructures (nanowhiskers) were fabricated by a two-step process on Si (1 0 0) substrates. The substrates were implanted with 7 keV Fe{sup +} to a fluence (F) in the range 1 × 10{sup 13}–4 × 10{sup 15} Fe{sup +} cm{sup −2} prior to electron beam annealing (EBA) for 15 s at a maximum temperature, T, in the range 600–1100 °C. The two-step process was found to produce nanowhiskers at higher surface densities than those produced by applying EBA alone. With increase in Fe{sup +} fluence there is a striking increase in the surface density of the Si nanowhiskers, together with a decrease in the average height. For example, for T = 1000 °C, the density and average height are respectively 12 μm{sup −2} and 8.8 nm for F = 1 × 10{sup 13} Fe{sup +} cm{sup −2}, and 82 μm{sup −2} and 3.1 nm for F = 4 × 10{sup 15} Fe{sup +} cm{sup −2}. The results are compared with those from a three-step process in which the nanowhiskers are pre-formed in a prior EBA treatment. The two-step process is found to be superior for producing high densities with height distributions having lower fractional spreads. The mechanism of the nucleation and growth of nanowhiskers in the final EBA step is discussed. Selected results are presented to show the possibility of controlling the density and average height of Si nanowhiskers doped with magnetic ions for spin-dependent enhanced field emission.

  5. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  6. Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho(3+)-Doped ZnO Nanostructures.

    Science.gov (United States)

    Kabongo, Guy L; Mbule, Pontsho S; Mhlongo, Gugu H; Mothudi, Bakang M; Hillie, Kenneth T; Dhlamini, Mokhotjwa S

    2016-12-01

    In this article, we demonstrate the surface effect and optoelectronic properties of holmium (Ho(3+))-doped ZnO in P3HT polymer nanocomposite. We incorporated ZnO:Ho(3+) (0.5 mol% Ho) nanostructures in the pristine P3HT-conjugated polymer and systematically studied the effect of the nanostructures on the optical characteristics. Detailed UV-Vis spectroscopy analysis revealed enhanced absorption coefficient and optical conductivity in the P3HT-ZnO:Ho(3+) film as compared to the pristine P3HT. Moreover, the obtained photoluminescence (PL) results established the improvement of exciton dissociation as a result of ZnO:Ho(3+) nanostructures inclusion. The occurrence of PL quenching is the result of enhanced charge transfer due to ZnO:Ho(3+) nanostructures in the polymer, whereas energy transfer from ZnO:Ho(3+) to P3HT was verified. Overall, the current investigation revealed a systematic tailoring of the optoelectronic properties of pristine P3HT after inclusion of ZnO:Ho(3+) nanostructures, thus opening brilliant perspectives for applications in various optoelectronic devices.

  7. Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho3+-Doped ZnO Nanostructures

    Science.gov (United States)

    Kabongo, Guy L.; Mbule, Pontsho S.; Mhlongo, Gugu H.; Mothudi, Bakang M.; Hillie, Kenneth T.; Dhlamini, Mokhotjwa S.

    2016-09-01

    In this article, we demonstrate the surface effect and optoelectronic properties of holmium (Ho3+)-doped ZnO in P3HT polymer nanocomposite. We incorporated ZnO:Ho3+ (0.5 mol% Ho) nanostructures in the pristine P3HT-conjugated polymer and systematically studied the effect of the nanostructures on the optical characteristics. Detailed UV-Vis spectroscopy analysis revealed enhanced absorption coefficient and optical conductivity in the P3HT-ZnO:Ho3+ film as compared to the pristine P3HT. Moreover, the obtained photoluminescence (PL) results established the improvement of exciton dissociation as a result of ZnO:Ho3+ nanostructures inclusion. The occurrence of PL quenching is the result of enhanced charge transfer due to ZnO:Ho3+ nanostructures in the polymer, whereas energy transfer from ZnO:Ho3+ to P3HT was verified. Overall, the current investigation revealed a systematic tailoring of the optoelectronic properties of pristine P3HT after inclusion of ZnO:Ho3+ nanostructures, thus opening brilliant perspectives for applications in various optoelectronic devices.

  8. Doping highly ordered organic semiconductors: experimental results and fits to a self-consistent model of excitonic processes, doping, and transport.

    Science.gov (United States)

    Chen, Si-Guang; Stradins, Paul; Gregg, Brian A

    2005-07-21

    An in-depth study of n-type doping in a crystalline perylene diimide organic semiconductor (PPEEB) reveals that electrostatic attractions between the dopant electron and its conjugate dopant cation cause the free carrier density to be much lower than the doping density. Measurements of the dark currents as a function of field, doping density, electrode spacing, and temperature are reported along with preliminary Hall-effect measurements. The activation energy of the current, E(aJ), decreases with increasing field and with increasing dopant density, n(d). It is the measured change in E(aJ) with n(d) that accounts primarily for the variations between PPEEB films; the two adjustable parameters employed to fit the current-voltage data proved to be almost constants, independent of n(d) and temperature. The free electron density and the electron mobility are nonlinearly coupled through their shared dependences on both field and temperature. The data are fit to a modified Poole-Frenkel-like model that is shown to be valid for three important electronic processes in organic (excitonic) semiconductors: excitonic effects, doping, and transport. At room temperature, the electron mobility in PPEEB films is estimated to be 0.3 cm(2)/Vs; the fitted value of the mobility for an ideal PPEEB crystal is 3.4 +/- 2.7 cm(2)/Vs. The modified Poole-Frenkel factor that describes the field dependence of the current is 2 +/- 1 x 10(-4) eV (cm/V)(1/2). The analytical model is surprisingly accurate for a system that would require a coupled set of nonlinear tensor equations to describe it precisely. Being based on general electrostatic considerations, our model can form the requisite foundation for treatments of more complex systems. Some analogies to adventitiously doped materials such as pi-conjugated polymers are proposed.

  9. Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

    Science.gov (United States)

    Odoi, Michael Yemoh

    Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd

  10. Structural investigations on semiconductor nanostructures: wet chemical approaches for the synthesis of novel functional structures

    OpenAIRE

    2014-01-01

    Recently nanotechnology is experiencing a flourishing progress in a variety of arenas from science to engineering and to biology. The fabrication of nanoscale building blocks, understanding their properties, and organizing these building blocks in to devices for various applications are the main objectives of nanotechnology. As an active field in nanotechnology, the work presented in this thesis is mostly focused on the fundamental study about the fabrication of functional semiconductor nanos...

  11. Tailoring of boron-doped MnTe semiconductor-sensitized TiO2 photoelectrodes as near-infrared solar cell devices

    Science.gov (United States)

    Tubtimtae, Auttasit; Hongto, Timakorn; Hongsith, Kritsada; Choopun, Supab

    2014-02-01

    We studied the photovoltaic performance of a new tailoring of boron-doped MnTe semiconductor-sensitized solar cells (B-doped MnTe SSCs). The B-doped MnTe semiconductor was grown on TiO2 using two-stages of the successive ionic layer adsorption and reaction (SILAR) technique as a photoelectrode. The phase of the boron-doped MnTe and MnTe2 semiconductor as sensitizers were characterized with ˜20-50 nm in diameter. The B-doped MnTe(5) exhibited the best efficiency of 0.04%, compared to that of the undoped sample of 0.006%. In addition, the band gaps of 1.30 and 1.26 eV were determined for the undoped and B-doped MnTe NPs, respectively. The change in the band gap after boron doping was performed due to crystal quality improvement and the larger size of the MnTe NPs, leading to a broader absorption of the sensitizer and a noticeable improvement in the photovoltaic performance. This kind of semiconductor and synthesis procedure can be applied for further improvement in a higher efficiency and more stability in SSCs.

  12. Photo electrical and optical anomaly in ferromagnetic cobalt doped ZnO nanostructures

    Science.gov (United States)

    Zia, Amir; Ahmed, S.; Shah, N. A.; Khan, E. U.

    2015-06-01

    For the development of novel devices, the correlation of oxygen vacancies and room temperature ferromagnetism in cobalt doped zinc oxide nanostructures synthesized by Co precipitation route reported earlier Zia et al (2014 Phys. Scr. 89 105802) has been further explored on the basis of structural, optical, magnetic and photoelectrical measurements. In the current study, x-ray diffraction data is further exploited for the measurement of d-spacing, c-direction growth for the plane (002) and cell volume. Increased volume of the unit cell is observed with the increase in cobalt content. UV-visible absorption spectroscopy analysis reveals the reduction in optical energy band gap with the increase in cobalt concentration. The saturated and remanence magnetization were found to be increasing with cobalt addition during the magnetic analysis. The photoelectrical conductivity has maximum value for the sample Co (3% mol) and least recovery time as compared to Co (0% mol). The sensing response was found to be decreasing with the addition of cobalt. The anomalies in the photoelectric parameters clearly reflect the presence of photoconductive nature, which may have ramifications for device engineers.

  13. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Kranthi Kumar Gangu

    2016-09-01

    Full Text Available An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD, Fourier transform infra-red spectroscopy (FT-IR, field emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX, high resolution transmission electron microscopy (HR-TEM, N2-adsorption/desorption isotherm, temperature programmed desorption (TPD and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min. The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material.

  14. To the theory of hybrid organics/semiconductor nanostructures in microcavity

    Science.gov (United States)

    Dubovskiy, O. A.; Agranovich, V. M.

    2017-02-01

    We consider the hybrid structure in microcavity where the energy of Frenkel exciton in organic layer is equal to the energy of Wannier - Mott exciton in semiconductor quantum well (QW). The exciton located in QW of semiconductor layer can interact with molecules of organic layer and under influence of this interaction can change the position jumping and exciting one of organic molecules. The exciton located in molecule of organic layer also can change the position jumping to semiconductor QW. The number of such jumps depends on the intensity of interaction. In the paper we consider the influence of direct Coulomb dipole-dipole interaction and indirect interaction through the optical field of microcavity on the kinetics of excitation. It was shown that the dispersion of hybrid states are modified by Coulomb interaction particularly when the distance between layers is enough small. The lowest branch of dispersion curves with deep minimum at nonzero wave vector may be useful in the studies of the condensation of low energy hybrid excitations.

  15. Investigating the effects of capping layer on optical gain of nitride based semiconductor nanostructure lasers

    Science.gov (United States)

    Annabi Milani, E.; Mohadesi, V.; Asgari, A.

    2017-04-01

    In this study, the effects of GaN capping layer on the behaviour of AlGaN/GaN nanostructure based laser is considered. We have employed the self-consistent solution of Poisson and Schrodinger equations for calculation of the energy levels, wave functions and conduction and valance bands profile. The impact of different thicknesses of the capping layer has been studied for sheet carrier density, then on optical gain. The results indicate that, by increasing the thickness of the cap layer, the optical gain decreases.

  16. Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Waurisch C

    2009-01-01

    Full Text Available Abstract Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time.

  17. Effect of Cr Content on the Properties of Magnetic Field Processed Cr-Doped ZnO-Diluted Magnetic Semiconductors

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    2012-01-01

    Full Text Available Cr-doped ZnO-diluted magnetic semiconductor (DMS nanocrystals with various Cr contents were synthesized by hydrothermal method under high magnetic field. The result indicated that both the amount of Cr contents and high magnetic field significantly influenced crystal structure, morphology, and magnetic property of Cr-doped ZnO DMSs. When the Cr contents increased from 1 at% to 5 at%, the morphology of grains sequentially changed from flower-like to rod-like and then to the flake-like form. All the samples remained hexagonal wurtzite structure after Cr ions were doped into the ZnO crystal lattice. The Cr doping led to the increasing amount of defects and even enhanced the magnetic property of the matrix materials. All the Cr-doped ZnO DMSs obtained under high magnetic field exhibited obvious ferromagnetic behavior at room temperature. The results have also shown the successful substitution of the Cr3+ ions for the Zn2+ ions in the crystal lattice.

  18. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  19. Improving open-circuit voltage in DSSCs using Cu-doped TiO{sub 2} as a semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Navas, J.; Fernandez-Lorenzo, C.; Aguilar, T.; Alcantara, R.; Martin-Calleja, J. [Physical Chemistry Department, Science Faculty, University of Cadiz, Campus Universitario de Puerto Real, Cadiz (Spain)

    2012-02-15

    TiO{sub 2} doping has been widely used in photocatalysis and photovoltaic cells to improve the performance of this semiconductor. This paper studies the use of copper as a dopant in TiO{sub 2} in dye-sensitized solar cells (DSSC), analysing the effect on the photovoltaic properties of the cells of different concentrations of copper incorporated into the semiconductor. The copper-doped TiO{sub 2} semiconductor was characterized with several instrumental techniques, including X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning transmission electron microscopy (STEM), and UV-Vis spectroscopy in order to know its structure, composition and band gap energies with different concentrations of the dopant. An analysis was also performed of the variations in open-circuit voltage depending on the concentration of copper. This showed that the presence of copper in DSSCs made with a standard configuration - using a ruthenium complex (N3) as a dye and the redox pair I{sup -}/I{sub 3}{sup -} as the electrolyte with 3-methoxypropionitrile as a solvent - leads to improvements of up to 10% in the open-circuit voltage of DSSCs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Luminescence properties or rare earth doped III-V and II- VI semiconductors

    Science.gov (United States)

    Alshawa, Amer Kamal

    Two novel step impact optical devices have been proposed by H. J. Lozykowski, the step impact electroluminescence device (SIED) and the step photon amplifier converter (SPAC). The realization of the proposed devices requires systematic study of the optical properties of rare earth doped semiconductors. The experimental data is explained using a kinetics model of energy transfer from the host lattice to the localized core excited states of rare earth isoclectronic structured traps (REI-trap). The numerically simulated lun-finescence rise and decay times show a good general quantitative agreement with experimental data, over a wide range of generation rates. A new quenching mechanism of ytterbium luminescence involving Yb and Fe ions is proposed. Detailed experimental and theoretical studies of the electrolurninescence excitation mechanism of Yb3+ in InP are presented. The electroluminescence (EL) spectra and the kinetics of Yb implanted InP are investigated under pulsed and dc excitations at different temperatures. The plot of natural logarithm (In) of I versus V-1/2 indicates that the direct impact excitation mechanism is a dominant process. A systematic study of the effect of oxygen on ytterbium 4f-4f emission by coimplanting Yb and O into InP is performed. The PL spectra and kinetic processes of InP: Yb and InP: (Yb+O) are recorded as a function of temperature, excitation intensity and annealing temperature and duration. No luminescence was observed after oxygen co-implantation and that is because the exciton bound to a YbIn-OP complex center will not have sufficient energy to excite the core Yb 4f electrons. The photoluminescence spectra and kinetics of Nd- and Yb-implanted CdS were investigated as a function of excitation intensity and temperature. The ac electroluminescence of thulium doped ZnS embedded in boric acid matrix was investigated as a function of voltage, frequency and temperature. The plot of In(I) versus V-1/2 shows a straight line characteristic

  1. Large Magnetic Moments of Arsenic-Doped Mn Clusters and their Relevance to Mn-Doped III-V Semiconductor Ferromagnetism

    CERN Document Server

    Kabir, M; Mookerjee, A; Kabir, Mukul; Mookerjee, Abhijit

    2005-01-01

    We report electronic and magnetic structure of arsenic-doped manganese clusters from density-functional theory using generalized gradient approximation for the exchange-correlation energy. We find that arsenic stabilizes manganese clusters, though the ferromagnetic coupling between Mn atoms are found only in Mn$_2$As and Mn$_4$As clusters with magnetic moments 9 $\\mu_B$ and 17 $\\mu_B$, respectively. For all other sizes, $x=$ 3, 5-10, Mn$_x$As clusters show ferrimagnetic coupling. It is suggested that, if grown during the low temperature MBE, the giant magnetic moments due to ferromagnetic coupling in Mn$_2$As and Mn$_4$As clusters could play a role on the ferromagnetism and on the variation observed in the Curie temperature of Mn-doped III-V semiconductors.

  2. Heterovalent Cation Substitutional and Interstitial Doping in Semiconductor Sensitizers for Quantum Dot Cosensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Ningning Zhang

    2015-01-01

    Full Text Available Doped films of TiO2/PbS/CdS have been prepared by successive ionic layer adsorption and reaction (SILAR method. Bi- and Ag-doped-PbS quantum dot (QD were produced by admixing Bi3+ or Ag+ during deposition and the existing forms of the doping element in PbS QD were analyzed. The results show that Bi3+ entered the cube space of PbS as donor yielding interstitial doping Bi-doped-PbS QD, while Ag+ replaced Pb2+ of PbS as acceptor yielding substitutional doping Ag-doped-PbS QD. The novel Bi-doped-PbS/CdS and Ag-doped-PbS/CdS quantum dot cosensitized solar cell (QDCSC were fabricated and power conversion efficiency (PCE of 2.4% and 2.2% was achieved, respectively, under full sun illumination.

  3. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles.

    Science.gov (United States)

    Li, Hongbo; Qiao, Yunfei; Li, Jing; Fang, Hailin; Fan, Dahe; Wang, Wei

    2016-03-15

    Co-doped ZnO diluted magnetic semiconductor as a novel photoelectric beacon was first constructed for photoelectrochemical (PEC) aptasensor of acetamiprid. The fabricated PEC sensing is based on the specific binding of acetamiprid and its aptamer, which induces the decreasement of enhanced photocurrent produced by the electron donor of quercetin. Co(2+) doping has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers due to the sp-d exchange interactions existing between the band electrons and the localized d electrons of Co(2+). The fabricated aptasensor was linear with the concentration of acetamiprid in the range of 0.5-800 nmolL(-1) with the detection limit of 0.18 nmolL(-1). The presence of same concentration of other conventional pesticides did not interfere in the detection of acetamiprid and the recovery is between 96.2% and 103.7%. This novel PEC aptasensor has good performances with high sensitivity, good selectivity, low cost and portable features. The strategy of Co-doped ZnO diluted magnetic semiconductor paves a new way to improve the performances of PEC aptasensor.

  4. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    Science.gov (United States)

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-02-01

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013 e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. The ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.

  5. Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures

    CERN Document Server

    Harrison, Paul

    2011-01-01

    Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their

  6. Effect of Al Doping on Structural, Electrical, Optical and Photoluminescence Properties of Nano-Structural ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    M. Mozibur Rahman; M.K.R. Khan; M. Rafiqul Islam; M.A. Halim; M. Shahjahan; M.A. Hakim; Dilip Kumar Saha; Jasim Uddin Khan

    2012-01-01

    The nano-structural Al-doped ZnO thin films of different morphologies deposited on glass substrate were successfully fabricated at substrate temperature of 350 ℃ by an inexpensive spray pyrolysis method. The structural, electrical, optical and photoluminescence properties were investigated. X-ray diffraction study revealed the crystalline wurtzite (hexagonal) structure of the films with nano-grains. Scanning electron microscopy (SEM) micrographs indicated the formation of a large variety of nano-structures during film growth. The spectral absorption of the films occurred at the absorption edge of -410 nm. In the present study, the optical band gap energy 3.28 eV of ZnO decreased gradually to 3.05 eV for 4 mol% of AI doping. The deep level activation energy decreased and carrier concentrations increased substantially with increasing doping. Exciting with the energy 3.543 eV (A=350 nm), a narrow and a broad characteristic photoluminescence peaks that correspond to the near band edge (NBE) and deep level emissions (DLE), respectively emerged.

  7. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    Institute of Scientific and Technical Information of China (English)

    吴绍航; 张楠; 胡永生; 陈红; 蒋大鹏; 刘星元

    2015-01-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel.

  8. Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase-amplitude coupling

    CERN Document Server

    Kumar, Pramod

    2013-01-01

    We numerically investigate the complex nonlinear dynamics for two independent coupled lasers systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nano-structures lasers. A comparative study in dependence on the dynamical role of alpha parameter, that determines phase-amplitude coupling of the optical field, in both the cases is probed. The variation of alpha leads to conspicuous changes of the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength for the fixed coupled-cavity delay time. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on alpha. The amplitude death and existence ...

  9. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics

    Science.gov (United States)

    Bucella, Sadir G.; Luzio, Alessandro; Gann, Eliot; Thomsen, Lars; McNeill, Christopher R.; Pace, Giuseppina; Perinot, Andrea; Chen, Zhihua; Facchetti, Antonio; Caironi, Mario

    2015-09-01

    High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the deposition of highly crystalline films, orientational alignment of polymer chains, albeit commonly achieved by non-scalable/slow bulk alignment schemes, is a more robust approach towards large-area electronics. By combining pre-aggregating solvents for formulating the semiconductor and by adopting a room temperature wired bar-coating technique, here we demonstrate the fast deposition of submonolayers and nanostructured films of a model electron-transporting polymer. Our approach enables directional self-assembling of polymer chains exhibiting large transport anisotropy and a mobility up to 6.4 cm2 V-1 s-1, allowing very simple device architectures to operate at 3.3 MHz. Thus, the proposed deposition strategy is exceptionally promising for mass manufacturing of high-performance polymer circuits.

  10. Predicting the electronic properties of 3D, million-atom semiconductor nanostructure architectures

    Science.gov (United States)

    Zunger, A.; Franceschetti, A.; Bester, G.; Jones, W. B.; Kim, Kwiseon; Graf, P. A.; Wang, L.-W.; Canning, A.; Marques, O.; Voemel, C.; Dongarra, J.; Langou, J.; Tomov, S.

    2006-09-01

    The past ~10 years have witnessed revolutionary breakthroughs both in synthesis of quantum dots (leading to nearly monodispersed, defect-free nanostructures) and in characterization of such systems, revealing ultra narrow spectroscopic lines of quantum entanglement, multiexciton recombination and more. These discoveries have led to new technological applications including quantum computing and ultra-high efficiency solar cells. Our work in this project is based on two realizations/observations: First, that the dots exhibiting clean and rich spectroscopic and transport characteristics are rather big. Indeed, the phenomenology indicated above is exhibited only by the well-passivated defect-free quantum dots containing at least a few thousand atoms (colloidal) and even a few hundred thousand atoms (self assembled). Understanding the behavior of nanotechnology devices requires the study of even larger, million-atom systems composed of multiple components such as wires+dots+films. Second, first-principles many-body computational techniques based on current approaches (Quantum Monte-Carlo, GW, Bethe-Salpeter) are unlikely to be adaptable to such large structures and, at the same time, the effective mass-based techniques are too crude to provide insights on the many-body/atomistic phenomenology revealed by experiment. Thus, we have developed a set of methods that use an atomistic approach (unlike effective-mass based techniques) and utilize single-particle + many body techniques that are readily scalable to ~103-106 atom nanostructures. New mathematical and computational techniques have also been developed to accelerate our calculations and go beyond simple conjugate gradient based methods allowing us to study larger systems. In this short paper based on a poster presented at the DOE SciDAC06 conference we will present the overall structure as well as highlights of our computational nanoscience project.

  11. Defect engineered d{sup 0} ferromagnetism in tin-doped indium oxide nanostructures and nanocrystalline thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com, E-mail: sghoshphysics@gmail.com; Sarkar, Ayan [Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Technology Campus, Block JD-2, Sector III, Salt Lake City, Kolkata 700 098 (India); Ghosh, Shyamsundar, E-mail: gobinda.gk@gmail.com, E-mail: sghoshphysics@gmail.com [Department of Physics, Bejoy Narayan Mahavidyalaya, P.O. Itachuna, Hooghly 712 147 (India); Mandal, Guruprasad; Mukherjee, Goutam Dev [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, BCKV Campus Main Office, Nadia 741 252 (India); Manju, Unnikrishnan [Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Banu, Nasrin; Dev, Bhupendra Nath [Department of Material Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India)

    2015-08-21

    Origin of unexpected defect engineered room-temperature ferromagnetism observed in tin-doped indium oxide (ITO) nanostructures (Nanowires, Nano-combs) and nanocrystalline thin films fabricated by pulsed laser deposition has been investigated. It is found that the ITO nanostructures prepared under argon environment exhibit strongest ferromagnetic signature as compared to that nanocrystalline thin films grown at oxygen. The evidence of singly ionized oxygen vacancy (V{sub 0}{sup +}) defects, obtained from various spectroscopic measurements, suggests that such V{sub 0}{sup +} defects are mainly responsible for the intrinsic ferromagnetic ordering. The exchange interaction of the defects provides extensive opportunity to tune the room-temperature d{sup 0} ferromagnetism and optical properties of ITOs.

  12. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    Science.gov (United States)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin

    2016-08-01

    K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  13. Synthesis of iron(Ⅲ)-doped nanostructure TiO2/SiO2 and their photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiCl4 as a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe3+-doped TiO/SiO2 is higher than tnat of undoped TiO2/SiO2.

  14. Control of dynamical instability in semiconductor quantum nanostructures diode lasers: Role of phase-amplitude coupling

    Science.gov (United States)

    Kumar, P.; Grillot, F.

    2013-07-01

    We numerically investigate the complex nonlinear dynamics for two independently coupled laser systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nanostructures lasers. A comparative study in dependence on the dynamical role of α parameter, which determine the phase-amplitude coupling of the optical field, in both the cases is probed. The variation of α lead to conspicuous changes in the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength η for the fixed coupled-cavity delay time τ. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on α. The amplitude death and the existence of multiple amplitude death islands could be implemented for applications including diode lasers stabilization.

  15. Microwave-assisted synthesis of Gd{sup 3+} doped PbI{sub 2} hierarchical nanostructures for optoelectronic and radiation detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Shkir, Mohd, E-mail: shkirphysics@gmail.com; AlFaify, S.; Yahia, I.S.; Ganesh, V.; Shoukry, H.

    2017-03-01

    In this work, we report the simple, low temperature and rapid microwave-assisted synthesis of undoped and Gadolinium (III) doped lead iodide with different morphologies, i.e. nanorods of average diameter ~200 nm and hierarchical (flower-shaped) nanosheets of thicknesses less than 100 nm. Prepared nanostructures were typify in details using a variety of analytical techniques that reveal the well crystallinity with hexagonal structure. We found that by changing the concentrations of Gadolinium (III) one can tailor the size and shape of nanostructures of lead iodide. The presence of Gadolinium (III) doping was assessed by energy dispersive X-ray analysis. Optical band gap and Photoluminescence intensity are found to be enhanced due to Gadolinium (III) doping. The value of Gamma linear absorption coefficient is found to be enriched with doping, which suggests its application in radiation detection.

  16. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    Science.gov (United States)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Mohamed, R.; Rusop, M.; Khusaimi, Z.

    2016-07-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  17. Photocatalytic Degradation of Mecoprop and Clopyralid in Aqueous Suspensions of Nanostructured N-doped TiO2

    Directory of Open Access Journals (Sweden)

    Tatiana Giannakopoulou

    2010-04-01

    Full Text Available The work describes a study of the oxidation power of N-doped and undoped anatase TiO2, as well as TiO2 Degussa P25 suspensions for photocatalytic degradation of the herbicides RS-2-(4-chloro-o-tolyloxypropionic acid (mecoprop and 3,6-dichloro-pyridine-2-carboxylic acid (clopyralid using visible and UV light. Undoped nanostructured TiO2 powder in the form of anatase was prepared by a sol-gel route. The synthesized TiO2, as well as TiO2 Degussa P25 powder, were modified with urea to introduce nitrogen into the structure. N-doped TiO2 appeared to be somewhat more efficient than the starting TiO2 (anatase powder when visible light was used for mecoprop degradation. N-doped TiO2 Degussa P25 was also slightly more efficient than TiO2 Degussa P25. However, under the same experimental conditions, no degradation of clopyralid was observed in the presence of any of the mentioned catalysts. When the kinetics of mecoprop degradation was studied using UV light, more efficient were the undoped powders, while in the case of clopyralid, N-doped TiO2 Degussa P25 powder was most efficient, which is probably a consequence of the difference in the molecular structure of the two herbicides.

  18. PHOTOCATALYTIC PROPERTIES OF Cr DOPED TiO2–SiO2 NANOSTRUCTURE THIN FILM

    Directory of Open Access Journals (Sweden)

    Akbar Eshaghi

    2012-07-01

    Full Text Available Cr doped TiO2–SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating method. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and UV-vis spectrophotometer were used to characterize the structural, chemical and optical properties of the thin film. The XRD showed that thin films contain only anatase phase. FE-SEM images illustrated that anatase average crystallite size in the pure TiO2 and Cr doped TiO2–SiO2 thin films are 15 nm and 10 nm, respectively. XPS spectra confirmed the presence of Cr3+ in the thin film. UV-vis absorption spectra indicated that absorption edge in Cr doped TiO2–SiO2 thin film shifted to the visible light region. The photocatalytic results pointed that Cr doping in TiO2–SiO2 improved decoloring rate of methyl orange in comparison to pure TiO2 thin film.

  19. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Huang, Shiqiang; Cheong, Ling-Zhi; Wang, Deyu; Shen, Cai

    2017-07-19

    Silicon as the potential anode material for lithium-ion batteries suffers from huge volume change (up to 400%) during charging/discharging processes. Poor electrical conductivity of silicon also hinders its long-term cycling performance. Herein, we report a two-step ball milling method to prepare nanostructured P-doped Si/graphite composite. Both P-doped Si and coated graphite improved the conductivity by providing significant transport channels for lithium ions and electrons. The graphite skin is able to depress the volume expansion of Si by forming a stable SEI film. The as-prepared composite anode having 50% P-doped Si and 50% graphite exhibits outstanding cyclability with a specific capacity of 883.4 mAh/g after 200 cycles at the current density of 200 mA/g. The cost-effective materials and scalable preparation method make it feasible for large-scale application of the P-doped Si/graphite composite as anode for Li-ion batteries.

  20. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng [Laboratory for Quantum Design of Functional Material, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Liu, Xinjuan [Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuejun [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou 416000, Hunan (China); Zhu, Zhe [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2015-09-28

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the band gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.

  1. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    Science.gov (United States)

    Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.

    2016-03-01

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  2. Diluted magnetic semiconductors based on Mn-doped In{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Olmos, America R., E-mail: america.vazquez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, A.P. 70-186, Delegación Coyoacán, CP 04510 México, DF (Mexico); Gomez-Peralta, Juan I., E-mail: igoformexico@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, A.P. 70-186, Delegación Coyoacán, CP 04510 México, DF (Mexico); Sato-Berru, Roberto Y., E-mail: roberto.sato@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, A.P. 70-186, Delegación Coyoacán, CP 04510 México, DF (Mexico); Fernandez-Osorio, Ana L., E-mail: ana8485@unam.mx [Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, CP 54740 Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2014-12-05

    Highlights: • In{sub 2}O{sub 3} and Mn(III)-doped In{sub 2}O{sub 3} NPs were obtained by a novel synthesis pathway. • This method is suitable for large-scale synthesis of oxides semiconductors NPs. • The PL and the paramagnetic behavior are owing to the formation of many defects. - Abstract: Here we report a novel pathway for the synthesis of Indium oxide and Mn(III)-doped indium oxide nanoparticles (NPs) from mechanochemical activation in absence of basic medium. Nps ∼8 nm were obtained after annealing the powder precursor in air at 400 °C for 1 h. X-ray diffraction (XRD) analysis and high resolution transmission electron microscopy (HR-TEM) reveal that the Nps are single-phase cubic structure of In{sub 2}O{sub 3}. Fourier transform infrared spectroscopy (FTIR), Raman, and ultraviolet–visible (UV–vis) spectra suggest the In(III) substitution by Mn(III). Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra show clear evidence of paramagnetic centers as oxygen and indium defects. This synthesis pathway is particularly suitable for large-scale and high-quality of semiconductor metallic oxide nanoparticles production due to its simple process and low cost.

  3. Low temperature photoluminescence of a nanostructured silicon-based semiconductor for potential applications

    Science.gov (United States)

    Raddenzati, A.; Hosatte, M.; Basta, M.; Kuznicki, Z. T.; Remouche, M.; Meyrueis, P.; Haeberlé, O.

    2016-05-01

    A nanoscale layer of amorphized silicon is obtained by implantations with silicon ions through a P-doped FZ-silicon wafer material few nanometers below the wafer surface. After a controlled annealing, the amorphized silicon material is sandwiched between two layers of recrystallized silicon. Defects remain at the interface c-Si/a-Si/c-Si. Photoluminescence at very low temperature is experimented to determine the energy levels generated by this design. TEM pictures show that some nanocrystalline elements are located close to the interface surrounded by a-Si. However, the photoluminescence spectra do not present any signal of luminescence from them. This could be due to random sizes of nanocrystals. Then, a scan from energies below the silicon bandgap has been realized at 8 K. The spectrum is composed of multiple narrow peaks close to the conduction band and a broadband from 0.78 eV to 1.05 eV. In order to determine the origin of these signals, spectra of three distinct peaks were collected at different temperatures from 8 K to 120 K. The broadband collapses more rapidly by increasing the temperature than the narrow lines and theirs maxima of intensity differ.

  4. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  5. Beyond modulation doping: Engineering a semiconductor to be ambipolar, or making an ON-OFF-ON transistor

    Science.gov (United States)

    Gupta, K. Das; Croxall, A. F.; Zheng, B.; Sfigakis, F.; Farrer, I.; Nicoll, C. A.; Beere, H. E.; Ritchie, D. A.

    2014-04-01

    Semiconductors are traditionaly either p-type or n-type, meaning that the mobile charge carriers in them are either "holes" in the valence band or electrons in the conduction band. Ambipolar conduction implies that the experimenter should be able to populate the same channel with either electrons or holes in a controlled manner. This has been shown to be possible in newer materials like Graphene and some organic semiconductors. "Ambipolarity" can open up new device possibilities as well as new ways to study fundamental scattering mechanisms in semiconductors. However, achieving this in a conventional high mobility structure like a GaAs-AlGaAs heterostructure/quantum well requires new thinking. It was realized, that to do this modulation doping must be given up and techniques to make an undoped heterostructure conduct, must be developed first. Such structures have been developed by only a few groups worldwide. They are of great interest to low temperature physicists working with Quantum Hall states and mesoscopic/nano structures in the ballistic regime. We discuss the reason behind this interest and the analysis of scattering mechanisms in such structures. Finally very recent experimental success in developing fully gate controlled ambipolar structures where both electron and hole mobilites exceed 1 million cm2/Vs at low temperatures (T˜1Kelvin) are discussed. Such gated ambipolar structures can be used to analyse scattering mechanisms in ultra-high mobility 2dimensional electron and hole gases in a way that is not possible using other techniques.

  6. Electric-field-induced low temperature oxidation of metal and semiconductor nanostructures; Feldinduzierte Tieftemperaturoxidation nanoskaliger Metall- und Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Carsten

    2008-10-14

    At the surface of almost all metals and semiconductors oxide formation occurs when exposed to atmosphere. The oxidation reaction proceeds along a number of partial reaction steps with the reacting species usually being charged. Thus, electric fields change the driving force and therefore the kinetics of the reaction. This effect occurs very pronounced at free-standing nanoscale objects, since their strongly curved surface yields electric fields of the order of volts per nanometer even if only moderate voltages are applied. This experimental study focuses on the characterisation of the influence of electric fields on the oxidation behaviour of free-standing nanoscale tips. Tungsten, aluminium and silicon where used as model systems. Oxygen was provided as H{sub 2}O or as O{sub 2}, and experiments where carried out at a temperature of 296 K. It is shown that the oxidation behaviour of nanoscale tips under the influence of an electric field changes dramatically if H{sub 2}O is available for the reaction. There exists a critical electric field above which field-induced oxidation is observed. The critical field strength is of the order of some volts per nanometer and shows a specific dependence on the partial pressure of H{sub 2}O. Below the critical field strength the oxidation reaction is kinetically hindered. A detailed investigation of the partial reaction steps reveals that a reaction of H{sub 2}O at the oxide-vapour-interface is rate limiting for field-induced oxidation. Comparing the oxidation behaviour of the investigated model systems, it is concluded that field-induced oxidation is an universal, material independent effect. The critical field strength determines the region of kinetic stability against oxidation and thus gives a restriction for nanostructure applications. (orig.)

  7. Tin-Doped Indium Oxide-Titania Core-Shell Nanostructures for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Luping Li

    2014-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs hold great promise in the pursuit of reliable and cheap renewable energy. In this work, tin-doped indium oxide (ITO-TiO2 core-shell nanostructures are used as the photoanode for DSSCs. High-density, vertically aligned ITO nanowires are grown via a thermal evaporation method and TiO2 is coated on nanowire surfaces via TiCl4 treatment. It is found that high TiO2 annealing temperatures increase the crystallinity of TiO2 shell and suppress electron recombination in the core-shell nanostructures. High annealing temperatures also decrease dye loading. The highest efficiency of 3.39% is achieved at a TiO2 annealing temperature of 500°C. When HfO2 blocking layers are inserted between the core and shell of the nanowire, device efficiency is further increased to 5.83%, which is attributed to further suppression of electron recombination from ITO to the electrolyte. Open-circuit voltage decay (OCVD measurements show that the electron lifetime increases by more than an order of magnitude upon HfO2 insertion. ITO-TiO2 core-shell nanostructures with HfO2 blocking layers are promising photoanodes for DSSCs.

  8. Solvothermal synthesis of carbon coated N-doped TiO{sub 2} nanostructures with enhanced visible light catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yan Xuemin, E-mail: yanzhangmm2002@163.com [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China); Kang Jialing; Gao Lin; Xiong Lin; Mei Ping [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Chitosan was used as carbon and nitrogen resource to modify TiO{sub 2} nanostructure. Black-Right-Pointing-Pointer Nanocomposites with mesostructure were obtained by one-step solvothermal method. Black-Right-Pointing-Pointer Carbon species were modified on the surface of TiO{sub 2}. Black-Right-Pointing-Pointer Nitrogen was doped into the anatase titania lattice. Black-Right-Pointing-Pointer CTS-TiO{sub 2} nanocomposites show superior visible light photocatalytic activity. - Abstract: Visible light-active carbon coated N-doped TiO{sub 2} nanostructures(CTS-TiO{sub 2}) were prepared by a facile one-step solvothermal method with chitosan as carbon and nitrogen resource at 180 Degree-Sign C. The as-prepared samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. The CTS-TiO{sub 2} nanocomposites possess anatase phase of nanocrystalline structure with average particle size of about 5-7 nm. A wormhole mesostructure can be observed in the CTS-TiO{sub 2} nanocomposites due to the constituent agglomerated of nanoparticles. It has been evidenced that the nitrogen was doped into the anatase titania lattice and the carbon species were modified on the surface of TiO{sub 2}. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methylene blue (MB) under visible light irradiation at {lambda} {>=} 400 nm. The results show that CTS-TiO{sub 2} nanostructures display a higher visible light photocatalytic activity than pure TiO{sub 2}, commercial P25 and C-coated TiO{sub 2} (C-TiO{sub 2}) photocatalysts. The higher photocatalytic activity could be attributed to the band-gap narrowed by N-doping and the accelerated separation of the photo-generated electrons

  9. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  10. High speed traveling wave electrooptic intensity modulator with a doped PIN semiconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Vawter, G.A.; Hietala, V.M.; Wendt, J.R.; Fuchs, B.A.; Hafich, M.; Housel, M.; Armendariz, M.; Sullivan, C.T.

    1996-02-01

    A high-electrooptic-efficiency Mach-Zehnder intensity modulator is demonstrated with a bandwidth exceeding 40 GHZ. The 1 mm-long modulator has a switching voltage comparable to undoped semiconductor designs of much greater length.

  11. Effective electron mass in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sitangshu [Indian Institute of Science, Bangalore (India). Nano Scale Device Research Lab.; Ghatak, Kamakhya Prasad [National Institute of Technology, Agartala, Tripura West (India). Dept. of Electronics and Communication Engineering

    2013-07-01

    Provides a treatment of the effective electron mass in nanodevices. Explains changes of the band structure of optoelectronic semiconductors by intense electric fields and light waves. Gives insight into the electronic behavior in doped semiconductors and their nanostructures. Supports tuition by 200 open problems and questions. This book deals with the Effective Electron Mass (EEM) in low dimensional semiconductors. The materials considered are quantum confined non-linear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, Bismuth, carbon nanotubes, GaSb, IV-VI, Te, II-V, Bi2Te3, Sb, III-V, II-VI, IV-VI semiconductors and quantized III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices. The presence of intense electric field and the light waves change the band structure of optoelectronic semiconductors in fundamental ways, which have also been incorporated in the study of the EEM in quantized structures of optoelectronic compounds that control the studies of the quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under strong electric field and external photo excitation has also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the EEM and the EEM in heavily doped semiconductors and their nanostructures is discussed. This book contains 200 open research problems which form the integral part of the text and are useful for both Ph. D aspirants and researchers in the fields of solid-state sciences, materials science, nanoscience and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures. The book is written for post graduate students, researchers and engineers, professionals in the fields of solid state sciences, materials science, nanoscience and technology, nanostructured materials and condensed matter physics.

  12. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hodeck, Kai Friedrich

    2009-02-19

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  13. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sreelekha, N.; Subramanyam, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Physics, Raghu Engineering College, Visakhapatnam, Andrapradesh 531162 (India); Amaranatha Reddy, D. [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609735 (Korea, Republic of); Murali, G. [Department of BIN Fusion Technology & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Ramu, S. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Rahul Varma, K. [Department of Mechanical Engineering, University of California, Berkeley (United States); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-08-15

    Highlights: • Cu{sub 1−x}Co{sub x}S nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  14. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping

    Science.gov (United States)

    Mhlongo, Gugu H.; Shingange, Katekani; Tshabalala, Zamaswazi P.; Dhonge, Baban P.; Mahmoud, Fawzy A.; Mwakikunga, Bonex W.; Motaung, David E.

    2016-12-01

    Undoped and transition metal (Cu, Co and Mn) doped ZnO nanostructures were successfully prepared via a microwave-assisted hydrothermal method followed by annealing at 500 °C. Numerous characterization facilities such as X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) were employed to acquire the structural and morphological information of the prepared ZnO based products. Combination of defect structure analysis based on photoluminescence (PL) and electron paramagnetic resonance (EPR) indicated that co-existing oxygen vacancies (VO) and zinc interstitials (Zni) defects are responsible for the observed ferromagnetism in undoped and transition metal (TM) doped ZnO systems. PL analysis demonstrated that undoped ZnO has more donor defects (VO and Zni) which are beneficial for gas response enhancement. Undoped ZnO based sensor exhibited a higher sensor response to NH3 gas compared to its counterparts owing to high content of donor defects while transition metal doped sensors showed short response and recovery times compared to undoped ZnO.

  15. Defect Structure of Li-Doped BPO 4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries

    Science.gov (United States)

    Jak, M. J. G.; Kelder, E. M.; Schoonman, J.

    1999-01-01

    In this paper the defect chemistry of Li-doped BPO4(BPO4-xLi2O, 0≤x≤0.1) is studied. This nanostructured ceramic electrolyte is used in all-solid-state Li-ion batteries. By changing the Li-doping level the influence on the crystal structure is studied and related to t he properties of the material. X-ray diffraction, Fourier-transformed infra-red spectroscopy (FT-IR),31P,11B, and7Li magic-angle-spinning solid state nuclear magnetic resonance, neutron diffraction, and inductively coupled plasma optical-emission spectroscopy measurements are used in order to study the structure. The electrical properties are studied with AC-impedance spectroscopy (AC-IS). The experimental data show that the defect structure of Li-doped BPO4can be described with two defect models, Li″B+2Li·iand V‴B+3Li·i, suggesting that the ionic conductivity takes place via interstitial Li ions.

  16. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; García Lastra, Juan Maria

    2009-01-01

    We address one of the main challenges to TiO2 photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2’s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different...... approximations within density functional theory and GW calculations. In particular, we propose very small (R 5 Å) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod....... Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For undercoordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while...

  17. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells

    Science.gov (United States)

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-01-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability. PMID:27877804

  18. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells.

    Science.gov (United States)

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-06-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability.

  19. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    Science.gov (United States)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  20. Universal increase in the superconducting critical temperature of two-dimensional semiconductors at low doping by the electron-electron interaction.

    Science.gov (United States)

    Calandra, Matteo; Zoccante, Paolo; Mauri, Francesco

    2015-02-20

    In two-dimensional multivalley semiconductors, at low doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. By performing first-principles calculations beyond density functional theory, we prove that this effect accounts for the unconventional doping dependence of the superconducting transition temperature (T(c)) and of the magnetic susceptibility measured in Li(x)ZrNCI. Finally, we discuss what are the conditions for a maximal T(c) enhancement in weakly doped two-dimensional semiconductors.

  1. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Martin, E-mail: mh.seris@gmail.com [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456 (Singapore); Kluska, Sven; Binder, Sebastian [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg (Germany); Hameiri, Ziv [The School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney NSW 2052 (Australia); Hoex, Bram [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117456 (Singapore)

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given on how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.

  2. Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    Tao Zhikuo; Simon P Ringer; Zhang Rong; Xiu Xiangqian; Cui Xugao; Li Li; Li Xin; Xie ZiLi; Zheng Youdou; Zheng Rongkun

    2012-01-01

    We have grown transition metal (Fe,Mn ) doped GaN thin films on c-oriented sapphire by metal-organic chemical vapor deposition,By varying the flow of the metal precursor,a series of samples with different ion concentrations are synthesized.Microstructural properties are characterized by using a high-resolution transmission electron microscope.For Fe over-doped GaN samples,hexagonal Fe3N closters are observed with Fe3N (0002) parallel to GaN (0002) while for Mn over-doped GaN,hexagonal Mn6N2.58 phases are observed with Mn6N2.58(0002)parallel to GaN (0002).In addition,with higher concentration ions doping into the lattice matrix,the partial lattice orientation is distorted,leading to the tilt of GaN (0002) planes.The magnetization of the Fe over-doped GaN sample is increased,which is ascribed to the participation of ferromagnetic iron and Fe3N.The Mn over-doped sample displays very weak ferromagnetic behavior,which probably originates from the Mn6N2.58.

  3. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Science.gov (United States)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  4. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hui; Kim, Yong Sung; Lee, Woo; Kim, Young Heon; Song, Jae Yong; Jang, Jong Shik; Park, Jae Hee; Kim, Kyung Joong [Korea Research Institute of Standards and Science (KRISS), Yuseong, 305-340 Daejeon (Korea, Republic of); Choi, Suk-Ho, E-mail: kjkim@kriss.re.kr [Department of Applied Physics, Kyung Hee University, Yongin 446-701 (Korea, Republic of)

    2011-10-21

    Active doping of B was observed in nanometer silicon layers confined in SiO{sub 2} layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of [SiO{sub 2} (8 nm)/B-doped Si(10 nm)]{sub 5} films turned out to be segregated into the Si/SiO{sub 2} interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above 1.1 x 10{sup 20} atoms cm{sup -3} and high active doping of 3 x 10{sup 20} atoms cm{sup -3} could be achieved. The active doping in ultra-thin Si layers was implemented for silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy-conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of 4 x 10{sup 20} atoms cm{sup -3}.

  5. From band tailing to impurity-band formation and discussion of localization in doped semiconductors: A multiple-scattering approach

    Science.gov (United States)

    Serre, J.; Ghazali, A.

    1983-10-01

    Klauder's best multiple-scattering approximation which allows the use of a realistic interaction potential and in which electron-electron interactions may be incorporated is shown to constitute a sound basis for the study of the electronic structure of doped semiconductors. The implementation of this formalism requires the solution of a self-consistent set of nonlinear integral equations. This has been done numerically over a large impurity-concentration range. We have thus shown that as the concentration decreases, the band tail gradually splits off from the main band, giving an impurity band. Spectral-density analysis allows one to distinguish between localized and extended states. Compensation effects have also been analyzed. Finally, our results are discussed and compared with various experiments.

  6. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  7. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    Science.gov (United States)

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  8. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Directory of Open Access Journals (Sweden)

    Tamil Many K Thandavan

    Full Text Available Vapor phase transport (VPT assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn was used to prepare un-doped and Al-doped zinc oxide (ZnO nanostructures (NSs. The structure and morphology were characterized by field emission scanning electron microscopy (FESEM and x-ray diffraction (XRD. Photoluminescence (PL properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni, oxygen interstitials (Oi, zinc vacancy (Vzn, singly charged zinc vacancy (VZn-, oxygen vacancy (Vo, singly charged oxygen vacancy (Vo+ and oxygen anti-site defects (OZn in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  9. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    Science.gov (United States)

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  10. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Simimol, A. [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Anappara, Aji A. [Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Greulich-Weber, S. [Department of Physics, Nanophotonic Materials, Faculty of Science, University of Paderborn, 33095 Paderborn (Germany); Chowdhury, Prasanta [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Barshilia, Harish C., E-mail: harish@nal.res.in

    2015-06-07

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopant concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the

  11. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    Science.gov (United States)

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  12. Nanocrystal diffusion doping.

    Science.gov (United States)

    Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R

    2013-09-25

    A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.

  13. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  14. Characterization and Electrical Properties of Al-Doped Cu(In,Ga)Se2 Semiconductors with Various Cu Contents

    Science.gov (United States)

    Monsefi, Mehrdad; Kuo, Dong-Hau

    2014-04-01

    Cu(In,Ga)Se2 (CIGSe) semiconductor, which shows record photovoltaic conversion efficiencies near 20%, has become a leading material for thin-film solar cell applications. In this work, Al-doped CIGSe (Al-CIGSe) bulk material with different Cu contents has been prepared by a liquid-phase reactive sintering method at 650°C. Sintering of the Al-CIGSe bulk material has been carried out in the presence of Sb2S3 and Te. The bulk Cu x [(In0.6Al0.1)Ga0.3]Se2 semiconductor was n-type for x = 0.7 and p-type for higher Cu content. The defect chemistry of Al-CIGSe was studied by measuring the electrical properties as a function of copper content. The changes in the conductivity type and carrier concentration were related to defect states involving Cu vacancy and antisite defects of In Cu 2+ and Cu B 2 - in a Cu B IIISe2-type phase. The lattice parameters were in good agreement with other evidence for the existence of different defect states.

  15. Effects of Co2+ doping on physicochemical behaviors of hierarchical NiO nanostructure

    Science.gov (United States)

    Ding, Caihua; Gao, WenChao; Zhao, Yongjie; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2016-12-01

    A series of Co2+ doped NiO materials (Ni1-xCoxO with x = 0, 0.125, 0.25 and 0.5) were synthesized using a facile hydrothermal method followed by a calcination process. The effects of Co2+ doping on the structural, morphological, magnetic and catalytic properties of NiO were systematically investigated. The results indicated that Co2+ doping would bring about a series influence to the as-obtained NiO product. The XRD results indicated that within the region of 0 ≤ x ≤ 0.25 the doped products revealed a pure NiO phase. The elementary unit for the hierarchy NiO gradually transformed from nanosheets to nanoneedles with the increase of Co2+ doping content. As-obtained Co2+ doped NiO products showed ferromagnetism at room temperature and the magnetization value was increased with the increase of Co2+ doping content. The catalytic properties of NiO concerning the thermal decomposition of ammonium perchlorate (AP) were significantly improved via the introduction of Co2+. The Ni1-xCoxO products with x = 0.25 showed the best catalytic performance to AP, which could decrease the beginning and ending decomposition temperature of AP by 44 and 108 °C. The change of morphology, enhancement of electrical conductivity and the synergistic effect between Co2+ and NiO were the main factors responsible for the improvement of physicochemical behaviors.

  16. Probing Spin and Spin-Orbit Coupling effects in Narrow-gap Semiconductor Nano-structures by THz Magneto-photoresponse Spectroscopy and Magneto-transport Measurements

    Science.gov (United States)

    Pakmehr, Mehdi

    Using the spin degree of freedom in a emergent field Known as Spintronics has motivated scientist in different disciplines including physicist within last 10 years. Due to different interaction mechanisms which affects the physical behavior of spin (eg its state and transport properties) within solid medium (Semiconductors in our case), one needs to distinguish these mechanisms and their importance for making any practical spin based devices. For example the idea of making spin based transistors with electrons being transported within InGaAs and their spin state is being controlled by Rashba type field has been around for around 25 years but injection of spin polarized currents from a source into the channel has not been solved yet. Spin orbit coupling (SOC) is one of the mechanisms which changes the spin state of electrons and avoid the existence of pure spin state as a favorable one from device point of view. SOC could have a different origin depending on material type or structure of device. One method of measuring and quantifying this mechanisms within semiconductor nanostructures is through measuring the parameters known as Lande g-factor. This parameters turns out to be a promising one to probe different effects on electronic band structure including quantum confinement, strain, electric filed, etc. We probe a combination of these effects (SOC, Strain, band mixing, etc) by measuring different g-factor tensor components of narrow gap Zinc blend semiconductor nanostructures which we hope finally serve to the purpose of making reliable spin based devices* (Spintronics). To reach this goal we have developed and implemented THz magneto-Photoresponse spectroscopy in conjunction with magneto-transport measurements at cryogenic temperatures. The samples include InAs and HgTe based Quantum wells as well as InAs based quantum point contact. Our findings clarify the situation where the combination of SOC, Strain, quantum confinements as well as many body electron effect

  17. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....

  18. On the ferromagnetic exchange in Mn-doped III-V semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M.; Fleurov, V.; Kikoin, K

    2003-05-01

    We propose a microscopic model for double exchange in GaAs:Mn, GaP:Mn which is based on the interaction between the transition metal impurities and the heavy holes of host semiconductor. The kinematic exchange is derived and the Curie temperature is calculated which agrees with recent experiments.

  19. Aqueous Synthesis of Ru Doped Hematite Nanostructures: A Morphological, Structural, Optical, and Magnetic Study

    Directory of Open Access Journals (Sweden)

    Ceboliyozakha Leonard Ndlangamandla

    2015-01-01

    Full Text Available Hematite nanorods doped with ruthenium were successfully deposited on fluorine doped tin oxide (FTO glass substrates using aqueous chemical growth. Using complementary surface/interface investigation techniques, the Ru incorporation in the Ru-α-Fe2O3 nanorods was evidenced. The optical band gap was found to be Ru doping concentration dependent: varying from 2.32 (2 to 2.47 (2 eV. These band gap values are well suited for the targeted water splitting process without application of an external bias.

  20. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light.

    Science.gov (United States)

    Maeda, Kazuhiko

    2014-02-12

    Rhodium-doped barium titanate (BaTiO3:Rh) powder was prepared by the polymerized complex (PC) method, and the photocatalytic activity for H2 evolution from water was examined. BaTiO3 is a wide-gap n-type semiconductor having a band gap of 3.0 eV. Doping Rh species into the lattice of BaTiO3 resulted in the formation of new absorption bands in visible light region. Upon visible light (λ > 420 nm), BaTiO3:Rh modified with nanoparticulate Pt as a water reduction promoter was capable of producing H2 from water containing an electron donor such as methanol and iodide. The best material prepared by the PC method exhibited higher activity than that made by a conventional solid-state reaction method. Visible-light-driven Z-scheme water splitting was also accomplished using Pt/BaTiO3:Rh as a building block for H2 evolution in combination with PtOx-loaded WO3 as an O2 evolution photocatalyst in the presence of an IO3(-)/I(-) shuttle redox mediator. Photoelectrochemical analysis indicated that a porous BaTiO3:Rh electrode exhibited cathodic photoresponse due to water reduction in a neutral aqueous Na2SO4 solution upon visible light.

  1. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  2. Room temperature transparent conducting magnetic oxide (TCMO) properties in heavy ion doped oxide semiconductor

    Science.gov (United States)

    Lee, Juwon; Nagarajan, Ganapathi Subramaniam; Shon, Yoon; Kwon, Younghae; Kang, Tae Won; Kim, Deuk Yong; Kim, Hyungsang; Im, Hyunsik; Park, Chang-Soo; Kim, Eun Kyu

    2017-08-01

    Bismuth doped ZnO (ZnBi0.03O0.97) thin films are grown using pulsed laser deposition. The existence of positively charged Bi, absence of metallic zinc and the Zn-O bond formation in Bi doped ZnO are confirmed using X-ray Photoelectron Spectroscopy (XPS). Temperature dependent resistivity and UV-visible absorption spectra show lowest resistivity with 8.44 × 10-4 Ω cm at 300 K and average transmittance of 93 % in the visible region respectively. The robust ferromagnetic signature is observed at 350 K (7.156 × 10-4 emu/g). This study suggests that Bi doped ZnO films should be a potential candidate for spin based optoelectronic applications.

  3. Room temperature transparent conducting magnetic oxide (TCMO properties in heavy ion doped oxide semiconductor

    Directory of Open Access Journals (Sweden)

    Juwon Lee

    2017-08-01

    Full Text Available Bismuth doped ZnO (ZnBi0.03O0.97 thin films are grown using pulsed laser deposition. The existence of positively charged Bi, absence of metallic zinc and the Zn-O bond formation in Bi doped ZnO are confirmed using X-ray Photoelectron Spectroscopy (XPS. Temperature dependent resistivity and UV-visible absorption spectra show lowest resistivity with 8.44 × 10-4 Ω cm at 300 K and average transmittance of 93 % in the visible region respectively. The robust ferromagnetic signature is observed at 350 K (7.156 × 10-4 emu/g. This study suggests that Bi doped ZnO films should be a potential candidate for spin based optoelectronic applications.

  4. Application of gallium nitride nanostructures and nitrogen doped carbon spheres as supports for the hydrogenation of cinnamaldehyde.

    Science.gov (United States)

    Kente, Thobeka; Dube, Sibongile M A; Coville, Neil J; Mhlanga, Sabelo D

    2013-07-01

    This paper reports on the synthesis and use of nanostructures of gallium nitride (GaN NSs) and nitrogen doped carbon spheres (NCSs) as support materials for the hydrogenation of cinnamaldehyde. This study provides the first investigation of GaN as a catalyst support in hydrogenation reactions. The GaN NSs were synthesized via chemical vapour deposition (CVD) in a double stage furnace (750 degrees C) while NCSs were made by CVD in a single stage furnace (950 degrees C) respectively. TEM analysis revealed that the GaN NSs were rod-like with average diameters of 200 nm, while the NCSs were solid with smoother surfaces, and with diameters of 450 nm. Pd nanoparticles (1 and 3% loadings) were uniformly dispersed on acid functionalized GaN NSs and NCS. The Pd nanoparticles had average diameters that were influenced by the type of support material used. The GaN NSs and NCSs were tested for the selective hydrogenation of cinnamaldehyde in isopropanol at 40 and 60 degrees C under atmospheric pressure. A comparative study of the activity of the nanostructured materials revealed that the order of catalyst activity was 3% Pd/GaN > 3% Pd/NCSs > 1% Pd/NCSs > 1% Pd/GaN. However, 100% selectivity to hydrocinnamaldehyde (HCALD) was obtained with 1% Pd/GaN at reasonable conversion rates.

  5. Growth and BZO-doping of the nanostructured YBCO thin films on buffered metal substrates

    DEFF Research Database (Denmark)

    Huhtinen, H.; Irjala, M.; Paturi, P.;

    2010-01-01

    The growth of the nanostructured YBa2Cu3O6+x (YBCO) films is investigated for the first time on biaxially textured NiW substrates used in coated conductor technology. The optimization process of superconducting layers is made in wide magnetic field and temperature range in order to understand...... the vortex pinning structure and mechanism in our films prepared from nanostructured material. Structural analysis shows that growth mechanism in YBCO films grown on NiW is completely different when compared to YBCO on STO. Films on NiW are much rougher, there is huge in-plane variation of YBCO crystals...

  6. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    Science.gov (United States)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  7. Orientation and morphology of self-assembled oligothiophene semiconductors and development of hybrid nanostructures for photovoltaic devices

    Science.gov (United States)

    Tevis, Ian David

    stability and improved photovoltaic devices were synthesized using titanium tetrafluoride hydrolysis. Straight perpendicular pores in titanium dioxide were produced by a pattern transfer method from porous anodic aluminum oxide. Films embossed on fluorine-doped tin oxide had pores 30 nm in diameter and 500 nm deep to give a stable structure for housing a p-type organic semiconductor with efficient exciton splitting and light adsorption. Hybrid films could be produced in one step by mineralizing cationic surfactants with titanium dioxide to produce interpenetrating domains of organic and anatase titanium dioxide perpendicular to a transparent conducting electrode.

  8. Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets.

    Science.gov (United States)

    Xiong, Xunhui; Wang, Guanhua; Lin, Yuwei; Wang, Ying; Ou, Xing; Zheng, Fenghua; Yang, Chenghao; Wang, Jeng-Han; Liu, Meilin

    2016-12-27

    Sodium ion batteries (SIBs) have been considered a promising alternative to lithium ion batteries for large-scale energy storage. However, their inferior electrochemical performances, especially cyclability, become the major challenge for further development of SIBs. Large volume change and sluggish diffusion kinetics are generally considered to be responsible for the fast capacity degradation. Here we report the strong chemical bonding of nanostructured Sb2S3 on sulfur-doped graphene sheets (Sb2S3/SGS) that enables a stable capacity retention of 83% for 900 cycles with high capacities and excellent rate performances. To the best of our knowledge, the cycling performance of the Sb2S3/SGS composite is superior to those reported for any other Sb-based materials for SIBs. Computational calculations demonstrate that sulfur-doped graphene (SGS) has a stronger affinity for Sb2S3 and the discharge products than pure graphene, resulting in a robust composite architecture for outstanding cycling stability. Our study shows a feasible and effective way to solve the long-term cycling stability issue for SIBs.

  9. The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/p-type silicon junctions

    Science.gov (United States)

    Çavaş, M.; Yakuphanoğlu, F.; Karataş, Ş.

    2017-01-01

    Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol-gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/p-Si junctions were investigated. The current-voltage (I-V) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/n-CdO/p-Si junctions depended on light intensity. The capacitance-voltage and conductance-voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/n-CdO/p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C-V and G/ω-V measurements and plotted as functions of voltage and frequency. The distribution profile of R S -V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

  10. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film

    Science.gov (United States)

    Rasoulnezhad, Hossein; Kavei, Ghassem; Ahmadi, Kamran; Rahimipour, Mohammad Reza

    2017-06-01

    The present work reports the successful synthesis of the nanostructured carbon-doped TiO2 thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO2 sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO2 thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO2 to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  11. Impact of doping on the density of states and the mobility in organic semiconductors

    Science.gov (United States)

    Zuo, Guangzheng; Abdalla, Hassan; Kemerink, Martijn

    2016-06-01

    We experimentally investigated conductivity and mobility of poly(3-hexylthiophene) (P3HT) doped with tetrafluorotetracyanoquinodimethane (F4TCNQ ) for various relative doping concentrations ranging from ultralow (10-5) to high (10-1) and various active layer thicknesses. Although the measured conductivity monotonously increases with increasing doping concentration, the mobilities decrease, in agreement with previously published work. Additionally, we developed a simple yet quantitative model to rationalize the results on basis of a modification of the density of states (DOS) by the Coulomb potentials of ionized dopants. The DOS was integrated in a three-dimensional (3D) hopping formalism in which parameters such as energetic disorder, intersite distance, energy level difference, and temperature were varied. We compared predictions of our model as well as those of a previously developed model to kinetic Monte Carlo (MC) modeling and found that only the former model accurately reproduces the mobility of MC modeling in a large part of the parameter space. Importantly, both our model and MC simulations are in good agreement with experiments; the crucial ingredient to both is the formation of a deep trap tail in the Gaussian DOS with increasing doping concentration.

  12. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.

    Science.gov (United States)

    Schimpf, Alina M; Thakkar, Niket; Gunthardt, Carolyn E; Masiello, David J; Gamelin, Daniel R

    2014-01-28

    Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

  13. High Thermoelectric Performance by Convergence of Bands in IV-VI Semiconductors, Heavily Doped PbTe, and Alloys/Nanocomposites

    Science.gov (United States)

    Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.

  14. Doping Properties of Ferromagnetic Semiconductors Investigated by the Hyperfine Interaction of Implanted Radioisotopes

    CERN Multimedia

    2002-01-01

    One of the most promising prospective applications of semiconductors will be in the field of spinelectronics. Thereby polarized spins must be injected into semiconductor structures. Ferromagnetic semiconductors (FMS) have a potential for such applications because of the coexistence of semiconducting and ferromagnetic properties. A special group of such FMS are the chromium chalcogenides of type AB$_{2}$C$_{4}$ with B = Cr. They crystallise in the structure of normal spinel. In this Proposal the application of the perturbed angular correlation technique (= PAC) for the investigation of nuclear probes in these substances is described. The radioactive probes will be implanted at the ISOLDE separator. We will start these investigations with the substances CdCr$_{2}$Se$_{4}$, CdCr$_{2}$S$_{4}$, HgCr$_{2}$Se$_{4}$, CuCr$_{2}$Se$_{4}$ and CuCr$_{2}$S$_{4}$ which are ferromagnetic with Curie temperatures between 84.5 and 460 K. In addition to the popular $^{111}$In($^{111}$Cd), which we get from other facilities, we ...

  15. Fe doped TiO2-graphene nanostructures: synthesis, DFT modeling and photocatalysis

    Science.gov (United States)

    Farhangi, Nasrin; Ayissi, Serge; Charpentier, Paul A.

    2014-08-01

    In this work, Fe-doped TiO2 nanoparticles ranging from a 0.2 to 1 weight % were grown from the surface of graphene sheet templates containing -COOH functionalities using sol-gel chemistry in a green solvent, a mixture of water/ethanol. The assemblies were characterized by a variety of analytical techniques, with the coordination mechanism examined theoretically using the density functional theory (DFT). Scanning electron microscopy and transmission electron microscopy images showed excellent decoration of the Fe-doped TiO2 nanoparticles on the surface of the graphene sheets >5 nm in diameter. The surface area and optical properties of the Fe-doped photocatalysts were measured by BET, UV and PL spectrometry and compared to non-graphene and pure TiO2 analogs, showing a plateau at 0.6% Fe. Interactions between graphene and Fe-doped anatase TiO2 were also studied theoretically using the Vienna ab initio Simulation Package based on DFT. Our first-principles theoretical investigations validated the experimental findings, showing the strength in the physical and chemical adsorption between the graphene and Fe-doped TiO2. The resulting assemblies were tested for photodegradation under visible light using 17β-estradiol (E2) as a model compound, with all investigated catalysts showing significant enhancements in photocatalytic activity in the degradation of E2.

  16. Magneto-optical studies on doped and undoped ZnO nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Stephanie; Chen, Limei; Heimbrodt, Wolfram [Department of Physics and Material Science Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany); Geburt, Sebastian; Ronning, Carsten [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2011-07-01

    High quality ZnO nanowires doped with different content of Manganese and Cobalt as well as ZnO quantum wells embedded between ZnMgO barriers are investigated by magneto photoluminescence and magnetic circular dichroism (MCD) in a split-coil superconducting magnet system. The measurements have been performed in magnetic fields up to 7 Tesla in a temperature range 1.6-300 K. MCD and Zeeman-spectroscopy in the excitonic region have been used to determine the g-factors of the samples. Even in case of transition metal doped ZnO surprisingly small Zeeman-splitting has been found. The reason for the rather small values as well as the change of sign of the g-value will be discussed. The transition metal doped ZnO shows also an interesting difference concerning the optical 3d intra-ionic transitions. Whereas in the Co-doped samples the 3d transitions are observable in case of the Mn-doped samples the Mn-PL is rather vanishing. The physical reasons for the odd behaviour will be discussed.

  17. Investigation of the properties of carbon-base nanostructures doped YBa{sub 2}Cu{sub 3}O{sub 7−δ} high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, Sedigheh, E-mail: dadras@alzahra.ac.ir; Ghavamipour, Mahshid

    2016-03-01

    In this research, we have investigated the effects of three samples of carbon-base nanostructures (carbon nanoparticles, carbon nanotubes and silicon carbide nanoparticles) doping on the properties of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) high temperature superconductor. The pure and doped YBCO samples were synthesized by sol–gel method and characterized by resistivity versus temperature (ρ–T), current versus voltage (I–V), through X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis. The results confirmed that for all the samples, the orthorhombic phase of YBCO compound is formed. We found that the pinning energy and critical current density of samples increase by adding carbon nanostructures to YBCO compound. Also critical temperature is improved by adding carbon nanotubes to YBCO compound, while it does not change much for carbon and silicon carbide nanoparticles doped compounds. Furthermore, the samples were characterized by UV–vis spectroscopy in 300 K and the band gap of the samples was determined. We found that the carbon nanotubes doping decreases YBCO band gap in normal state from 1.90 eV to 1.68 eV, while carbon and SiC nanoparticles doping increases it to 2.20 and 3.37 eV respectively.

  18. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers

    DEFF Research Database (Denmark)

    Barakata, Nasser A.M.; Kanjwal, Muzafar Ahmed; Chronakis, Ioannis S.

    2013-01-01

    In this study, the influence of the temperature on the photodegradation process using Ag-doped TiO2 nanostructures was investigated. Two morphologies were used; nanoparticles and nanofibers. The nanofibers were synthesized by electrospinning of a sol–gel consisting of titanium isopropoxide, silver......-doped TiO2 nanofibers for all formulations. The nanoparticles were prepared from the same sol–gels, however, instead of spinning the gels were dried, grinded and sintered at 700 °C. Photodegradation under UV irradiation for the rhodamine B at 5, 15, 25, 45 and 55 °C were performed. For the nanoparticles...

  19. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers

    DEFF Research Database (Denmark)

    Barakata, Nasser A.M.; Kanjwal, Muzafar Ahmed; Chronakis, Ioannis S.

    2013-01-01

    In this study, the influence of the temperature on the photodegradation process using Ag-doped TiO2 nanostructures was investigated. Two morphologies were used; nanoparticles and nanofibers. The nanofibers were synthesized by electrospinning of a sol–gel consisting of titanium isopropoxide, silver......-doped TiO2 nanofibers for all formulations. The nanoparticles were prepared from the same sol–gels, however, instead of spinning the gels were dried, grinded and sintered at 700 °C. Photodegradation under UV irradiation for the rhodamine B at 5, 15, 25, 45 and 55 °C were performed. For the nanoparticles...

  20. First-principle Studies on Ferromagnetism of Fe-doped AlN Diluted Magnetic Semiconductors

    Directory of Open Access Journals (Sweden)

    Honglei WU

    2016-11-01

    Full Text Available We have studied the electronic structures and magnetic properties of Fe-doped AlN by first-principles calculations within density functional theory. The calculated results show that AlN crystals doped by double Fe atoms display ferromagnetic properties, and the total magnetic moment is 10.0 µB per 72-atom supercell (3 × 3 × 2. The calculated energy differences between the antiferromagnetic (AFM and ferromagnetic (FM phases are 207 meV, which means FM state is a stable state. It is also found that the 3d-states of Fe dopants and the 2p-states of N atoms bonding to Fe dopants are the main contributors to the density of states at the Fermi level.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.10750

  1. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V.; Ghidelli, M.; Gondoni, P. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Casari, C. S.; Li Bassi, A. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Center for Nano Science and Technology PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy)

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  2. Calculation of Electronic and Optical Properties of Doped Titanium Dioxide Nanostructure

    Directory of Open Access Journals (Sweden)

    Sh. Khaleghi

    2012-06-01

    Full Text Available By means of first principles calculations we show that both rutile and anatase phases of bulk TiO2 doped by S, Se or Pb can display substantial decreasing in the band gap (up to 50%, while doping by Zr does not sizably affect the band-gap value. Moreover, the absorption edge is shifted (up to 1 eV to the lower energy range in the case of TiO2 doped by S or Pb that opens a way to enhancing of absorption of sun’s radiation. We also discuss how our findings can improve efficiency of photovoltaic cells and photocatalytic cells for hydrogen generation.

  3. P-doped organic semiconductor: Potential replacement for PEDOT:PSS in organic photodetectors

    Science.gov (United States)

    Herrbach, J.; Revaux, A.; Vuillaume, D.; Kahn, A.

    2016-08-01

    In this work, we present an alternative to the use of PEDOT:PSS as hole transport and electron blocking layers in organic photodetectors processed by solution. As Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is known to be sensitive to humidity, oxygen, and UV, removing this layer is essential for lifetime improvements. As a first step to achieving this goal, we need to find an alternative layer that fulfills the same role in order to obtain a working diode with similar or better performance. As a replacement, a layer of poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b')dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene-)-2-6-diyl)] (PBDTTT-c) p-doped with the dopant tris-[1-(trifluoroethanoyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-COCF3)3) is used. This p-doped layer effectively lowers the hole injection barrier, and the low electron affinity of the polymer prevents the injection of electrons into the active layer. We show similar device performance under light and the improvements of detection performance with the doped layer in comparison with PEDOT:PSS, leading to a detectivity of 1.9 × 1013 cm (Hz)1/2 (W)-1, competitive with silicon diodes used in imaging applications. Moreover, contrary to PEDOT:PSS, no localization of the p-doped layer is needed, leading to a diode active area defined by the patterned electrodes.

  4. Radiation efficiency of heavily doped bulk n-InP semiconductor

    OpenAIRE

    Semyonov, Oleg; Subashiev, Arsen; Chen, Zhichao; Luryi, Serge

    2010-01-01

    Recombination of minority carriers in heavily doped n-InP wafers has been investigated using spectral and time-resolved photoluminescence at different temperatures. Studies of the transmitted luminescence were enabled by the partial transparency of the samples due to the Moss-Burstein effect. Temporal evolution of the transmitted luminescence shows virtually no effect of surface recombination but is strongly influenced by photon recycling. Temperature dependence of the decay time suggests Aug...

  5. Electrical characterization of doped strontium titanate thin films for semiconductor memories

    Science.gov (United States)

    Han, Jeong Hee

    2002-08-01

    Doped strontium titanate (ST) thin films were investigated for high-density memory applications. ST has become a promising candidate to replace conventional silicon oxide due to its high inherent dielectric constant, superior leakage characteristics, and good chemical stability. However, oxygen vacancies and the problems that arise as a result are one of the main drawbacks against this material. Resistance degradation is a serious reliability issue in perovskite titanate films and may be a result of oxygen vacancies. In this dissertation, an attempt to reduce the resistance degradation was made by doping the ST films with both niobium and lanthanum. Niobium is a B-site donor in the perovskite, whereas lanthanum is an A-site donor. Both have an extra valence charge than the atom which it replaces in the crystal structure. With a higher valence charge, the number of oxygen vacancies is hoped to be reduced and result in better electrical performance. Experimental results showed that the degradation rate is reduced by doping with either niobium or lanthanum. A bi-layer study was also performed to optimize the dielectric with the strengths of both doped and undoped strontium titanate and to distinguish the source of the oxygen vacancies. A study on the conduction mechanisms and dielectric dispersion was also performed. An additional study was made on the effect of iridium as a possible gate electrode for a MOS capacitor. Hafnium oxide was used as the high-permittivity oxide. The results observed showed that the capacitance was higher for iridium electrodes than those for platinum electrodes. However, both electrodes showed unacceptable frequency dispersion which may be caused by crude patterning techniques. A hysteresis review was also done for hafnium and zirconium oxides. It was observed that the hysteresis measured in the high-permittivity oxides are dependent on the accumulation sweep voltage due to the trapping and de-trapping of charge at the dielectric

  6. Luminescence and physical properties of copper doped CdO derived nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Benhaliliba, M., E-mail: bmost_31@yahoo.fr [Physics Department, Sciences Faculty, Oran University of Sciences and Technology USTOMB, BP1505 Oran (Algeria); Benouis, C.E. [Physics Department, Sciences Faculty, Oran University of Sciences and Technology USTOMB, BP1505 Oran (Algeria); Tiburcio-Silver, A. [ITT-DIEE, Apdo, Postal 20, Metepec 3, 52176, Estado de Mexico (Mexico); Yakuphanoglu, F. [Firat University, Physics Department, Faculty of Sciences and Arts, 23119, Elazig (Turkey); Avila-Garcia, A.; Tavira, A. [Cinvestav-IPN, Departamento de Ingenieria Electrica-SEES, Apdo. postal 14-740, 07000 Mexico, D.F. (Mexico); Trujillo, R.R. [Centro de Investigacion en Dispositivos Semiconductores-BUAP 14 Sur y Av. San Claudio, C.U. Puebla, Pue. Mexico (Mexico); Mouffak, Z. [Department of Electrical and Computer Engineering California State University, Fresno, CA (United States)

    2012-10-15

    In this paper, we studied the photoluminescence (PL), the morphological, electrical and optical properties of pure and copper-doped cadmium oxide. CdO films were grown by a facile sol-gel spin coating process at 1200 rpm, and doped with copper at 2 and 3%. A (1 1 1)-oriented cubic structure with a lattice parameter of a=4.69 A was confirmed by X-ray diffraction. Copper was shown to improve the optical transmittance in the short wavelength range of the visible spectrum. The optical band gap of CdO ranged between 2.49 and 2.62 eV as a result of Cu content. At room temperature, resistance fell drastically with Cu doping levels. AFM analysis of samples exhibited nano-mounts and nanowires. Finally, PL results showed a strong blue-violet emission peak at 2.80 eV. Highlights: Black-Right-Pointing-Pointer Pure and copper doped CdO have been synthesized by a facile sol-gel route at fixed speed 1200 rpm. Black-Right-Pointing-Pointer Structural properties of pure and doped CdO were studied in details. Black-Right-Pointing-Pointer Transmittance in UV-vis and IR spectra were investigated. Optical band gaps were determined. Black-Right-Pointing-Pointer Atomic force microscope surface morphology has been analyzed and grain sizes and height were determined. Black-Right-Pointing-Pointer Room temperature resistance was measured. Pure and copper doped CdO photoluminescence has been achieved at ambient. Electrical measurement was complemented by Hall effect measurement in the aim to re-evaluate the resistivity and the carrier mobility.

  7. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S. [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701 (Korea, Republic of)

    2016-09-01

    Graphical abstract: Well-ordered nitrogen-doped mesoporous carbon materials were prepared by in-situ polymerization of polyacrylonitrile in SBA-15 template. The composite of sulfur and nitrogen-doped carbon was successfully used as a cathode material for lithium sulfur battery. - Highlights: • N-doped mesoporous carbons were prepared with PAN as carbon source. • Highly ordered pore system facilitates sulfur loading. • Ladder-type carbon matrix provides good structural stability for confining sulfur. • N-doping ensures an improved absorbability of soluble polysulfides. - Abstract: Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g{sup −1} and enhanced capacity retention of 862 mAh g{sup −1} at 0.1 C after 100 cycles.

  8. Linear and nonlinear optical discussions of nanostructured Zn-doped CdO thin films

    Science.gov (United States)

    Yahia, I. S.; Salem, G. F.; Iqbal, Javed; Yakuphanoglu, F.

    2017-04-01

    Here, we report the doping effect of zinc (Zn) on the physical properties of cadmium oxide (CdO) at various concentrations (1, 2, 3 and 4 wt% of Zn). The studied samples were prepared using sol-gel in addition with sol gel spin coating technique. The structural, optical and dispersive properties were compared with the already reported work in the literature. The structural properties were observed by using atomic force microscopy (AFM). The AFM images show that the grain size decreases with increasing the concentration of Zn. The highest value of average cluster size (78. 71 nm) was found at 1% and the lowest (60.23 nm) when the doping concentration of Zn was 4%. Similar trend was observed in the roughness of the doped thin film when the Zn concentration was increased. The optical properties were examined using Shimadzu UV-Vis-NIR spectrophotometer and we found that the optical band gap of the un-doped CdO and the Zn-doped CdO thin films increases from 2.54 to 2.62 eV as the Zn concentration is increased from 1% to 4%. Also, the optical dispersion parameters (Eo, Ed, n2∞, λ0 and So) were calculated and discussed. We observed that the refractive index dispersion of undoped CdO and the Zn-doped CdO thin films follow the single oscillator model. Finally, spectroscopic method has been exploited to analyze the 3rd order non-linear optical susceptibility χ (3) and nonlinear refractive index n (2).

  9. Combinatorial Discovery and Optimization of the Composition, Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, Bruce A. [Univ. of Wyoming, Laramie, WY (United States); Jianghua, He [Univ. of Wyoming, Laramie, WY (United States)

    2015-01-06

    The increasing need for carbon free energy has focused renewed attention on solar energy conversion. Although photovoltaic cells excel at directly converting of solar energy to electricity, they do not directly produce stored energy or fuels that account for more than 75% of current energy use. Direct photoelectrolysis of water has the advantage of converting solar energy directly to hydrogen, an ideal non-carbon and nonpolluting energy carrier, by replacing both a photovoltaic array and an electrolysis unit with one potentially inexpensive device. Unfortunately no materials are currently known to efficiently photoelectrolyze water that are, efficient, inexpensive and stable under illumination in electrolytes for many years. Nanostructured semiconducting metal oxides could potentially fulfill these requirements, making them the most promising materials for solar water photoelectrolysis, however no oxide semiconductor has yet been discovered with all the required properties. We have developed a simple, high-throughput combinatorial approach to prepare and screen many multi component metal oxides for water photoelectrolysis activity. The approach uses ink jet printing of overlapping patterns of soluble metal oxide precursors onto conductive glass substrates. Subsequent pyrolysis produces metal oxide phases that are screened for photoelectrolysis activity by measuring photocurrents produced by scanning a laser over the printed patterns in aqueous electrolytes. Several promising and unexpected compositions have been identified.

  10. Defects induced magnetization in B-doped ZnFeO dilute magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Murtaza, E-mail: murtaza.saleem@lums.edu.pk [Department of Physics, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A. Lahore 54792 (Pakistan); Sabieh Anwar, M., E-mail: sabieh@lums.edu.pk [Department of Physics, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A. Lahore 54792 (Pakistan); Mahmood, Asif, E-mail: ahayat@ksu.edu.sa [Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Atiq, Shahid, E-mail: shahidatiqpasrur@yahoo.com [Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590 (Pakistan); Ramay, Shahid M., E-mail: schaudhry@ksu.edu.sa [Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Siddiqi, Saadat A., E-mail: saadat.anwar@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore (Pakistan)

    2015-05-15

    Zn{sub 0.95−x}Fe{sub 0.05}B{sub x}O (x=0, 0.05) nano-particles have been synthesized using a modified chemically derived citrate gel method. X-ray diffraction analysis demonstrates the wurtzite type hexagonal structure belonging to P6{sub 3}mc space group without the presence of any secondary phase in both compositions. The Diffraction analysis shows that Fe{sup 2+} and B{sup 3+} ions have replaced some of the Zn{sup 2+} ions while some occupy un-detectable interstitial and inter-granular positions inside the structure. Scanning electron micrographs obtained using scanning electron microscopy show typical smaller size of particles in B-doped composition. Temperature dependent electrical resistivity analysis shows the semiconducting characteristics of the compositions and that doping of Fe and B up to 10 at% does not change the electrical behavior of the host material. Magnetic measurements display room temperature ferromagnetism in both compositions with enhanced magnetization in B-doped composition associated with defect induced magnetic mechanism belonging to intrinsically augmented interstitial and inter-granular effects.

  11. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Zhang Hua-Wei; Zhang Tao; Chen Bo-Yuan; Chen Zhi-Zhan; Song Li-Xin; Shi Er-Wei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they axe deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn2+ for Zn2+ without additional acceptor doping. The substitution of N for O (NO-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn2+ and Mn3+ via NO-. The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.

  12. On the thermal growth and properties of doped TiO{sub 2} and In{sub 2}O{sub 3} elongated nanostructures and nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Cremades, A. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Herrera, M. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada (Mexico); Bartolomé, J.; Vásquez, G.C. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Maestre, D., E-mail: davidmaestre@fis.ucm.es [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Piqueras, J. [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-11-15

    In this work, the driving forces behind the growth mechanisms of In{sub 2}O{sub 3} and TiO{sub 2} micro- and nano-structures grown by an evaporation–solidification method are discussed. Effective or limited doping incorporation and its influence on the growth and morphology of the low dimensional structures are also assessed. A dislocation driven growth mechanism is proposed for indium oxide, indium tin oxide (ITO) and zinc doped indium oxide (IZO) nanowires. This growth mechanism is extended to the growth of IZO nano-plates. On the other hand, different low dimensional TiO{sub 2} morphologies, mainly nanowires, needles, and bidimensional leaf-like nanostructures, have been obtained by an anisotropic induced growth. By introducing Cr in the precursor mixture, needles are formed showing stepped lateral faces related to oxygen defect stoichiometry areas as observed by EDS mapping.

  13. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); García-Ravelo, Jesús; Pacheco-García, Christian [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, 07738 México D.F. (Mexico); Juan Peña Gil, José [Universidad Autónoma Metropolitana - Azcapotzalco, CBI - Area de Física Atómica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 México D.F. (Mexico)

    2013-06-15

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed in closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.

  14. Plasmon Excitation in Nitrogen-doped Graphene Nanostructures%氮掺杂石墨烯纳米结构的等离激元激发

    Institute of Scientific and Technical Information of China (English)

    尹海峰; 陈广萍; 向功周; 张红

    2014-01-01

    基于含时密度泛函理论,研究了氮掺杂石墨烯纳米结构的等离激元特性。吡啶型氮掺杂不影响石墨烯纳米结构的等离激元激发特性,而取代型氮掺杂主要基于石墨烯纳米结构对称性的改变和体系中电子密度的增加来影响石墨烯纳米结构的等离激元共振。相对于纯六角石墨烯纳米结构,在低能共振区,取代型氮掺杂六角石墨烯纳米结构的等离激元共振能量发生了红移。相对于纯矩形石墨烯纳米结构,在低能共振区,取代型氮掺杂矩形石墨烯纳米结构沿扶手椅型边界方向激发时,其等离激元共振能量发生了蓝移;沿Z字型边界激发时,其主要的等离激元共振模式受掺杂氮的影响较小。%Plasmon characteristics in nitrogen-doped graphene nanostructures are studied by time-dependent density functional theory. The pyridinic-nitrogen doping does not affect plasmon characteristics of graphene nanostructures, while the substitutional-nitrogen doping affects plasmon resonances of graphene nanostructures due to two main compe-ting factors:The reduced symmetry of graphene nanostructures and the increase of the electron densities. After doped with substitutional-nitrogen, low-energy spectra of hexagonal graphene nanostructures are red-shifted. For rectangular graphene nanostructures, along the armchair-edge direction, the main low-energy spectra always show blue-shifts. However, along the zigzag-edge direction, the substitutional-nitrogen doping has little effect on the main lower-energy collective excitation.

  15. Effect of substitutional doping on temperature dependent electrical parameters of amorphous Se-Te semiconductors

    Science.gov (United States)

    Sharma, Neha; Sharda, Sunanda; Sharma, Dheeraj; Sharma, Vineet; Barman, P. B.; Katyal, S. C.; Sharma, Pankaj; Hazra, S. K.

    2013-09-01

    Steady state current-voltage characteristics of the amorphous (Se80Te20)98Y2 (Y = Ag, Bi, Ge, Cd) semiconductors at different temperatures are reported. The measurements were performed using direct-current voltage bias to understand the basic conductivity mechanism and to evaluate the impact of each substituent on electrical response. The space charge limited conduction mechanism, and the density of states near Fermi level have been calculated. The difference in electrical response due to different substitutions in the glassy matrix is analyzed.

  16. Ionization sensitization of doping in co-deposited organic semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Shinmura, Yusuke, E-mail: shinmura@ims.ac.jp; Yamashina, Yohei; Kaji, Toshihiko; Hiramoto, Masahiro [Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi (Japan); JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2014-11-03

    Sensitization of the dopant ionization in co-deposited films of organic semiconductors was found. The ionization rate of cesium carbonate (Cs{sub 2}CO{sub 3}), which acts as a donor dopant in single films of metal-free phthalocyanine (H{sub 2}Pc) and fullerene (C{sub 60}), was increased from 10% to 97% in a H{sub 2}Pc:C{sub 60} co-deposited film. A charge separation superlattice model that includes electron transfer from the conduction band of H{sub 2}Pc to that of C{sub 60}, which increases the rate of dopant ionization, is proposed.

  17. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method

    Science.gov (United States)

    Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R.

    2015-09-01

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  18. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    Science.gov (United States)

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO.

  19. Structure tailoring of fluorine-doped TiO{sub 2} nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T. [NCSR Demokritos, Institute of Materials Science, 153 10 Attiki (Greece); Vaimakis, T. [University of Ioannina, Department of Chemistry, 451 10 Ioannina (Greece); Trapalis, C. [NCSR Demokritos, Institute of Materials Science, 153 10 Attiki (Greece)], E-mail: trapalis@ims.demokritos.gr

    2008-08-25

    Fluorine-doped nanocrystalline TiO{sub 2} powders with controlled anatase-rutile phase content are synthesized by a sol-gel route using NH{sub 4}F and CF{sub 3}COOH as fluorine sources. The X-ray diffraction (XRD) study reveals that fluorine-doping through NH{sub 4}F leads to the formation of anatase crystalline phase, whereas F-doping through CF{sub 3}COOH favors the formation of rutile along with anatase phase. These results are connected to the influence of the fluorine precursor on the pH of the starting solutions. The presence of the fluorine in the powders is confirmed using X-ray photoelectron spectroscopy (XPS). The dopant in concentrations between 11 and 16 at.% is found mainly in the form of metal fluoride. The measured UV-vis diffuse reflectance spectra and the calculated band gap widths using Kubelka-Munk phenomenological theory are in good agreement with the crystallographic results. The calculations reveal no change in the band gap values due to fluorine doping. The enhanced absorbance in the vis region and the red shift of the absorption edge are attributed to the presence of fluorine and the anatase/rutile phase composition of the TiO{sub 2} powders.

  20. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations

    Science.gov (United States)

    Rad, Ali Shokuhi

    2016-03-01

    We have studied the electronic structure and property of pristine as well as Al-doped graphene sheets towards adsorption of some halomethane compounds (trichloromethane, dichloromethane, and difluoromethane) using density functional theory (DFhsT) calculations. The adsorption energies have been calculated for each adsorbed-adsorbent system. Based on our results, compared to pristine graphene, the Al-doped graphene causes significant adsorption energy, higher charge transferring, and smaller bond distances to halomethane compounds. Our calculated adsorption energies of trichloromethane, dichloromethane, and difluoromethane on Al-doped graphene were - 54.1, - 68.3, and - 123.2 kJ mol- 1, respectively, which are categorized in the chemisorption region while the adsorption of these molecules on pristine graphene release insignificant energies which correspond to very weak adsorption on it. Furthermore, we used charge transfer analysis to search the amount of electron allocation. Orbital analysis including the density of states (DOS) was done to find the possible orbital hybridization between adsorbates and two graphene sheets. These results imply the suitability of Al-doped graphene as a good adsorbent/sensor for halomethane compounds.

  1. p-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures

    Science.gov (United States)

    Li, Zhaohui; Ding, Dongyan; Ning, Congqin

    2013-01-01

    Doping with other elements is one of the efficient ways to modify the physical and chemical properties of TiO2 nanomaterials. In the present work, anatase TiO2 nanofilms doped with Al and V elements were fabricated through anodic oxidation of Ti6Al4V alloy and further annealing treatment. Hydrogen sensing behavior of the crystallized Ti-Al-V-O nanofilms at various working temperatures was investigated through exposure to 1,000 ppm H2. Different from n-type hydrogen sensing characteristics of undoped TiO2 nanotubes, the Al- and V-doped nanofilms presented a p-type hydrogen sensing behavior by showing increased resistance upon exposure to the hydrogen-containing atmosphere. The Ti-Al-V-O nanofilm annealed at 450°C was mainly composed of anatase phase, which was sensitive to hydrogen-containing atmosphere only at elevated temperatures. Annealing of the Ti-Al-V-O nanofilm at 550°C could increase the content of anatase phase in the oxide nanofilm and thus resulted in a good sensitivity and resistance recovery at both room temperature and elevated temperatures. The TiO2 nanofilms doped with Al and V elements shows great potential for use as a robust semiconducting hydrogen sensor.

  2. The structural and mechanical behaviours of Boron-doped ZnO nanostructures

    Science.gov (United States)

    Senol, Abdulkadir; Demirozu Senol, Sevim; Ozturk, Ozgur; Asikuzun, Elif; Tasci, Ahmet Tolga; Terzioglu, Cabir

    2015-03-01

    Undoped and Boron (B)-doped Zinc Oxide (ZnO) nanopowders were synthesized by Hydrothermal method. The structural and mechanical behaviours of B doped ZnO (Zn1-xBx O, x =0, 0.05, 0.07, 0.11) were systematically examined. The crystal structure, phases, sizes and microstructure of Zn1-xBx O powder samples characterized by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Microhardness values of all B doped ZnO powders were measured with different loads (0.245, 0.490, 0.980, 1.960 ve 2.940 N) using a digital Vickers microhardness tester. The experimental microhardness data were used to determine elastic modules, yield strength, and fracture toughness value of the samples. Additionally, the experimental results were analyzed using the various theoretical models namely, Kick's Law, Elastic/Plastic Deformation (EPD) models, Proportional Specimen Resistance (PSR), and Hays-Kendall (HK) approach. The Vickers microhardness measurements revealed that hardness of Zn1-xBx O powder samples increased with B doping. This research partially supported by Abant Izzet Baysal University Scientific Research Projects Coordination Department under the Grant No. BAP-2013.03.02.609.

  3. UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures

    Science.gov (United States)

    Pandiyarajan, Thangaraj; Mangalaraja, Ramalinga Viswanathan; Karthikeyan, Balasubramanian; Sathishkumar, Panneerselvam; Mansilla, Héctor D.; Contreras, David; Ruiz, José

    2015-05-01

    In this report, optical and photocatalytic degradation of Acid Blue 113 (AB 113) has been investigated in an aqueous heterogeneous media containing pure and Sm-doped ZnO nanostructures which were prepared by a simple wet chemical route. X-ray diffraction measurement confirmed that the prepared nanostructures were in hexagonal wurtzite structure and the dopant Sm ion was incorporated into the Zn lattice. Interesting morphological changes involving a nanosheet-star-spherical transition were observed upon Sm doping and annealing, which were identified through transmission electron microscope. Optical absorption measurements showed an exciton absorption band and a band gap narrowing with respect to the Sm concentrations. The photodegradation of Acid Blue 113 under UV-A radiation by using pure and Sm-doped ZnO nanostructures showed that samarium played an important role in the significant improvement of the photodegradation efficiency and the optimum amount of Sm ion was found to be 1 mmol %. Further, the possible degradation mechanism was proposed herein.

  4. Li(Zn,Co,Mn)As: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Science.gov (United States)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Zhao, Jianfa; Zhao, Guoqiang; Yu, Shuang; Wang, Xiancheng; Liu, Qingqing; Jin, Changqing

    2016-11-01

    We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMny)As with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,Mn)As. No ferromagnetic order occurs with single (Zn,Co) or (Zn, Mn) substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ˜40 K. The maximum saturation moment of the this system reached to 2.17 μB /Mn , which is comparable to that of Li (Zn,Mn)As. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in "111" LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,Mn)As, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  5. Li(Zn,Co,MnAs: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Directory of Open Access Journals (Sweden)

    Bijuan Chen

    2016-11-01

    Full Text Available We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMnyAs with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,MnAs. No ferromagnetic order occurs with single (Zn,Co or (Zn, Mn substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ∼40 K. The maximum saturation moment of the this system reached to 2.17μB/Mn, which is comparable to that of Li (Zn,MnAs. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in “111” LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,MnAs, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  6. Silicon photonic crystals doped with colloidally synthesized lead salt semiconductors nanocrystals.

    Science.gov (United States)

    Gutman, Nadav; Armon, Akiva; Shandalov, Michael; Osherov, Anna; Golan, Yuval; Sa'ar, Amir

    2009-06-01

    The fabrication of two-dimensional and three-dimensional silicon photonic crystals doped with lead salt nanocrystals is reported. The silicon based photonic crystals of macro-porous silicon are fabricated by electro-chemical etching via masked silicon wafers with the periodicity along the third dimension is achieved by modulating the anodization current and voltage. The chemical solution deposition technique has been utilized to deposit thin layers of lead salts (PbS and PbSe) nanocrystals into the pores. Infrared transmission measurements revealed a considerable red-shift of the photonic band gap in a good agreement with numerical calculations.

  7. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    Science.gov (United States)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and

  8. 2010 Defects in Semiconductors GRC

    Energy Technology Data Exchange (ETDEWEB)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  9. Synthesis and characterization of ball milled Fe-doped ZnO diluted magnetic semiconductor

    Institute of Scientific and Technical Information of China (English)

    R. Elilarassi; G. Chandrasekaran

    2012-01-01

    Fe-doped ZnO (Zn0.99Fe0.01O) powders are successfully prepared by ball milling with different milling time,and are investigated using X-ray diffraction (XRD),scanning electron microscope (SEM),ultraviolet-visible (UV-VIS) spectroscopy,vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) spectroscopy.The structural analysis using XRD reveals that the Fe-doped ZnO milled at different milling time can crystallize in a wurtzite structure,and in the XRD patterns,the secondary phase related to Fe cluster with the sensitivity of the XRD instrument can not be found.The SEM image of the sample milled for 24 h shows the presence of spherical nanoparticles.From the optical analysis,the optical band gap is found to decrease with increasing the milling time,which indicates the incorporation of Fe2+ ions into the ZnO lattice.The magnetization measurement using VSM reveals that the nanoparticles exhibit ferromagnetic behavior at room temperature,and the magnetization increases gradually with increasing the milling time.The conclusion is further confirmed by the electron paramagnetic resonance of the nanoparticles examined at room temperature,which shows an intense and broad ferromagnetic resonance signal related to Fe ions.

  10. Ab initio calculations of half-metallic ferromagnetism in Cr-doped MgSe and MgTe semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Sohaib, M.U. [Lahore Development Authority, 54590 Lahore (Pakistan); Ghulam Abbas, S.M. [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)

    2015-01-15

    The full-potential linear-augmented-plane-waves plus local-orbitals (FP-LAPW+lo) method has been employed for investigation of half-metallic ferromagnetism in Cr-doped ordered zinc-blende MgSe and MgTe semiconductors. Calculations of exchange and correlation (XC) effects have been carried out using generalized gradient approximation (GGA) and orbital independent modified Becke–Johnson potential coupled with local (spin) density approximation (mBJLDA). The thermodynamic stability of the compounds and their preferred magnetic orders have been analyzed in terms of the heat of formation and minimum total energy difference in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering, respectively. Calculated electronic properties reveal that the Cr-doping induces ferromagnetism in MgSe and MgTe which gives rise to a half-metallic (HM) gap at Fermi level (E{sub F}). Further, the electronic band structure is discussed in terms of s (p)–d exchange constants that are consistent with typical magneto-optical experiment and the behavior of charge spin densities is presented for understanding the bonding nature. Our results demonstrate that the higher effective potential for the spin-down case is responsible for p–d exchange splitting. Total magnetic moment (mainly due to Cr-d states) of these compounds is 4µ{sub B}. Importantly, the electronic properties and HM gap obtained using mBJLDA show remarkable improvement as compared to the results obtained using standard GGA functional. - Highlights: • Spin effect theoretical study on Cr-doped MgSe and MgTe is performed. • Half-metallic ferromagnetism in Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te is established. • Results of WC-GGA and mBJLDA are compared for performance. • HM gaps for Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te show nonlinear variation with x. • Important values of exchange splitting/constants and moments are reported.

  11. Quantum dot-doped porous silicon metal-semiconductor metal photodetector.

    Science.gov (United States)

    Chou, Chia-Man; Cho, Hsing-Tzu; Hsiao, Vincent K S; Yong, Ken-Tye; Law, Wing-Cheung

    2012-06-06

    In this paper, we report on the enhancement of spectral photoresponsivity of porous silicon metal-semiconductor metal (PS-MSM) photodetector embedded with colloidal quantum dots (QDs) inside the pore layer. The detection efficiency of QDs/PS hybrid-MSM photodetector was enhanced by five times larger than that of the undoped PS-MSM photodetector. The bandgap alignment between PS (approximately 1.77 eV) and QDs (approximately 1.91 eV) facilitates the photoinduced electron transfer from QDs to PS whereby enhancing the photoresponsivity. We also showed that the photoresponsitivity of QD/PS hybrid-MSM photodetector depends on the number of layer coatings of QDs and the pore sizes of PS.

  12. Synthesis and Characterization of Aluminum Doped Zinc Oxide Nanostructures via Hydrothermal Route

    Directory of Open Access Journals (Sweden)

    A. Alkahlout

    2014-01-01

    Full Text Available Stable crystalline aluminum doped zinc oxide (AZO nanopowders were synthesized using hydrothermal treatment processing. Three different aluminum precursors have been used. The Al-precursors were found to affect the morphology of the obtained nanopowders. AZO nanoparticles based on zinc acetate and aluminum nitrate have been prepared with different Al/Zn molar ratios. XRD investigations revealed that all the obtained powders have single phase zincite structure with purity of about 99%. The effect of aluminum doping ratio in AZO nanoparticles (based on Al-nitrate precursor on structure, phase composition, and particle size has been investigated. The incorporation of Al in ZnO was confirmed by UV-Vis spectroscopy revealing a blue shift due to Burstein-Moss effect.

  13. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light

    Directory of Open Access Journals (Sweden)

    Radwa A. Elsalamony

    2017-02-01

    Full Text Available Ru doped titania was prepared by the impregnation method and examined for the photocatalytic degradation of 2-chlorophenol at ambient conditions. Ru/TiO2 photocatalysts with metal loadings of 0.2, 0.4, 0.6 and 0.8 wt% were prepared and characterized using TEM, XRD, FTIR, SBET and EDX analyses. The degradation of 2-chlorophenol (2-CP in the aqueous phase was investigated under irradiation at 254 nm, employing either photodegradation in the presence of titania, Ru doped titania or photolysis, to compare the efficiency of these photoinduced advanced oxidation techniques. Photocatalysis under visible irradiation was also investigated. The removal efficiency arrived at 50% using 0.2% Ru/TiO2 catalyst.

  14. Modeling of nondestructive method for doped semiconductor layer diagnostics and experimental realization in a colloidal quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Boriskin, A. G.; Dneprovskii, V. S.

    2017-06-01

    The goal of the work is modeling and development of nondestructive method for the doped semiconductor layer diagnostics and measurement of the impurity levels depth relatively to the conduction band. To carry out diagnostics for materials with a high linear absorption there is required a method allows to measure material characteristics on the surface layer. To solve this problem was chosen reflected degenerate four-wave mixing technique. Nonlinear response increases dramatically in the case of the resonant excitation of electron-hole transition. Reflected degenerate four-wave mixing has been discovered in the case of one-photon resonant excitation of the excitons (electron - hole) transition for the atomic-like model structure (highly absorbing colloidal solution of CdSe/ZnS quantum dots (QDs)) by powerful beams of mode-locked laser with picosecond pulse duration. Formation of the beams in forward direction can be explained both self-diffraction of the input beams at the induced one-dimensional photonic crystal (induced diffraction grating) and by forward degenerate four-wave mixing. Backward direction beams formation can be explained only by reflected degenerate four-wave mixing.

  15. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1‑xMnxTe

    Science.gov (United States)

    Kriener, M.; Nakajima, T.; Kaneko, Y.; Kikkawa, A.; Yu, X. Z.; Endo, N.; Kato, K.; Takata, M.; Arima, T.; Tokura, Y.; Taguchi, Y.

    2016-05-01

    Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) – is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various magnets. Here we find that heat-treatment allows the control over two competing magnetic phases in the Mn-doped polar semiconductor GeTe. The onset temperatures Tc of ferromagnetism vary at low Mn concentrations by a factor of five to six with a maximum Tc ≈ 180 K, depending on the selected phase. Analyses in terms of synchrotron x-ray diffraction and energy dispersive x-ray spectroscopy indicate a possible segregation of the Mn ions, which is responsible for the high-Tc phase. More importantly, we demonstrate that the two states can be switched back and forth repeatedly from either phase by changing the heat-treatment of a sample, thereby confirming magnetic phase-change-memory functionality.

  16. Elaboration and characterization of a KCl single crystal doped with nanocrystals of a Sb2O3 semiconductor

    Institute of Scientific and Technical Information of China (English)

    L.Bouhdjer; S.Addala; A.Chala; O.Halimi; B.Boudine; M.Sebais

    2013-01-01

    Undoped and doped KCl single crystals have been successfully elaborated via the Czochralski (Cz)method.The effects of dopant Sb2O3 nanocrystals on structural and optical properties were investigated by a number of techniques,including X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive X-ray (EDAX) analysis,UV-visible and photoluminescence (PL) spectrophotometers.An XRD pattern of KCl:Sb2O3 reveals that the Sb2O3 nanocrystals are in the well-crystalline orthorhombic phase.The broadening of diffraction peaks indicated the presence of a Sb2O3 semiconductor in the nanometer size regime.The shift of absorption and PL peaks is observed near 334 nm and 360 nm respectively due to the quantum confinement effect in Sb2O3 nanocrystals.Particle sizes calculated from XRD studies agree fairly well with those estimated from optical studies.An SEM image of the surface KCl:Sb2O3 single crystal shows large quasi-spherical of Sb2O3 crystallites scattered on the surface.The elemental analysis from EDAX demonstrates that the KCl:Sb2O3 single crystal is slightly rich in oxygen and a source of excessive quantities of oxygen is discussed.

  17. Experimental performance of semiconductor optical amplifiers and praseodymium-doped fiber amplifiers in 1310-nm dense wavelength division multiplexing system

    Science.gov (United States)

    Chorchos, Lukasz; Turkiewicz, Jaroslaw P.

    2017-04-01

    One of the key optical transmission components is optical amplifiers. Studies on the amplification properties of the 1310-nm optical amplifiers are presented. The evaluated optical amplifiers are semiconductor optical amplifier (SOA) and praseodymium-doped fiber amplifier (PDFA). The study is aimed at the dynamic operation in single- and multiwavelength domains with high rate signals. The maximum obtained gain was 25.0 dB for SOA and 20.9 dB for PDFA. For the SOAs, the minimum achieved value of the receiver sensitivity was -11.5 dBm for a single channel and -11.5 dBm for a dense wavelength division multiplexing case while for PDFA those values were -11.0 dBm and -10.9, respectively. The main advantage of the PDFA in comparison to the measured SOAs is its higher saturation power. The SOAs proved to be viable candidates for high-speed amplification in the 1310-nm wavelength domain.

  18. Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Prodan, Gabriel C.; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Dinca, Paul; Zaharia, Agripina

    2016-09-01

    Ionized nitrogen doped Si-C multi-layer thin films used to increase the oxidation resistance of carbon have been obtained by Thermionic Vacuum Arc (TVA) method. The 100 nm thickness carbon thin films were deposed on silicon or glass substrates and then seven N doped Si-C successively layers on carbon were deposed. To characterize the microstructure, tribological and electrical properties of as prepared N-SiC multi-layer films, Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDXS), electrical and tribological techniques were achieved. Samples containing multi-layer N doped Si-C coating on carbon were investigated up to 1000°C. Oxidation protection is based on the reaction between SiC and elemental oxygen, resulting SiO2 and CO2, and also on the reaction involving N, O and Si-C, resulting silicon oxynitride (SiNxOy) with a continuously vary composition, and because nitrogen can acts as a trapping barrier for oxygen. The tribological properties of structures were studied using a tribometer with ball-on-disk configuration from CSM device with sapphire ball. The measurements show that the friction coefficient on the N-SiC is smaller than friction coefficient on uncoated carbon layer. Electrical conductivity at different temperatures was measured in constant current mode. The results confirm the fact that conductivity is greater when nitrogen content is greater. To justify the temperature dependence of conductivity we assume a thermally activated electrical transport mechanism.

  19. Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-11-01

    Full Text Available This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.

  20. Analytical challenges of determining composition and structure in small volumes with applications to semiconductor technology, nanostructures and solid state science

    Science.gov (United States)

    Ma, Zhiyong; Kuhn, Markus; Johnson, David C.

    2017-03-01

    Determining the structure and composition of small volumes is vital to the ability to understand and control nanoscale properties and critical for advancing both fundamental science and applications, such as semiconductor device manufacturing. While metrology of nanoscale materials (nanoparticles, nanocomposites) and nanoscale semiconductor structures is challenging, both basic research and cutting edge technology benefit from new and enhanced analytical techniques. This focus issue contains articles describing approaches to overcome the challenges in obtaining statistically significant atomic-scale quantification of structure and composition in a variety of materials and devices using electron microscopy and atom probe tomography.

  1. Efficient dual mode multicolor luminescence in a lanthanide doped hybrid nanostructure: a multifunctional material.

    Science.gov (United States)

    Singh, S K; Singh, A K; Rai, S B

    2011-07-08

    The present work deals with inorganic-organic hybrid nanostructures capable of producing intense visible emission via upconversion (UC), downconversion (DC), and energy transfer (ET) processes which show the potential of the material as a luminescent solar collector (LSC), particularly to improve the efficiency of silicon solar cells. To achieve this, Gd2O3:Yb3+/Er3+ phosphor (average particle size∼35 nm) and a Eu(DBM)3Phen organic complex have been synthesized separately and then the hybrid structure has been developed using a simple mixing procedure. Intense UC emission (in the red, green, and blue regions) due to Er3+ is observed on near infrared (976 nm) excitation which shows color tunability with input pump power. In contrast, intense red emission of Eu3+ is observed on ultaviolet (UV) (355 nm) excitation. The feasibility of energy transfer from Er3+ ions to Eu3+ ions has also been noted. These excellent optical properties are retained even if the particles of the hybrid nanostructure are dispersed in liquid medium, which also makes it suitable for security ink purposes.

  2. Simulated-sunlight-activated photocatalysis of Methylene Blue using cerium-doped SiO2/TiO2 nanostructured fibers

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Hongbing Yu; Zhenning Lv; Sihui Zhan; Jiangyao Yang; Xinhong Peng; Yixuan Ren; Xiaoyan Wu

    2012-01-01

    Cerium-doped SiO2/TiO2 nanostructured fibers were fabricated by electrospinning technology.The prepared fibers were characterized by thermogravimetric analysis (TGA),scanning electron microscopy (SEM),X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).Using the fibers as catalysts,photocatalytic degradation of Methylene Blue (MB) aqueous solution was carried out under simulated sunlight.The 0.2% Ce doping proved to be the optimal concentration for the doping of TiO2/SiO2,compared to other Ce-doped molar concentrations.The 0.2% Ce-doped SiO2/TiO2 fibers exhibited higher photocatalytic activity than industrial Degussa P25 and the samples doped with only Ce or SiO2.The reasons for improving the photocatalytic activity were also discussed.Several operational parameters were studied,which showed that the photocatalytic efficiency of MB was influenced by parameters such as the initial dye concentration,the initial pH,inorganic anions,and so on.In addition,the influences of an electron acceptor and a radical scavenger suggested that OH was the dominant photooxidant during the photocatalytic process.The reuse evaluation of the fibers indicated that their photocatalytic activity had good stability.

  3. Nano crystals of Ni doped Zn O semiconductor by Sol-Gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Carrero, A.; Sagredo, V. [Universidad de Los Andes, Departamento de Fisica, Laboratorio de Magnetismo, 5101 Merida (Venezuela, Bolivarian Republic of); Larionova, J., E-mail: aneelyc@gmail.com [Universite Montpellier II, 2 Place Eugene Bataillon, 34090 Montpellier (France)

    2016-11-01

    Nanoparticles of the system Zn{sub 0.95}O were prepared by sol-gel self - combustion method and a study of their structural, optical and magnetic properties were conducted. X-ray diffraction study shows a hexagonal wurtzite structure for the nano compound. The formation of the wurtzite structure in Ni doped Zn O was further confirmed by Fourier transform infra-red spectrometry. Transmission electron microscopy revealed an average size of 31 nm for the particles. Optical absorption spectra shows that the band energy of Zn{sub 0.95}Ni{sub 0.}9{sub 5}O powders is about 2.54 eV at room temperature. A study of the magnetic properties of the nano powders of Zn O: Ni, reveals paramagnetic behavior, with interaction ferromagnetic between particles. (Author)

  4. As doping of Si-Ge-Sn epitaxial semiconductor materials on a commercial CVD reactor

    Science.gov (United States)

    Bhargava, Nupur; Margetis, Joe; Tolle, John

    2017-09-01

    In this work we present the As doping, via AsH3, of Ge1-x Sn x and SiyGe1-y-x Sn x alloys grown in a commercial RPCVD reactor. The composition, thickness, and resistivity of the layers were measured for varying AsH3 flows and AsH3 growth kinetics was discussed. We find that the addition of As to the lattice induces compressive strain in the layer despite a smaller covalent radius relative to Ge and Sn. N-type dopant incorporation and activation is compared for AsH3 and PH3-based processes, and we find that As incorporates more efficiently than P. As concentrations > 2 × 1020 cm-3 were achieved for both Ge1-x Sn x and SiyGe1-y-x Sn x with resistivity as low as 0.6 mΩ cm.

  5. GaInP semiconductor compounds doped with the Sb isovalent impurity

    Energy Technology Data Exchange (ETDEWEB)

    Skachkov, A. F., E-mail: afskachkov@mail.ru [OAO Saturn (Russian Federation)

    2015-05-15

    GaInP{sub 1−x}Sb{sub x} layers containing different Sb fractions are produced by metal-organic vaporphase epitaxy on GaAs and Ge substrates. The charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers are measured at room temperature and 77 K. The room-temperature charge-carrier mobilities in the GaInP{sub 1−x}Sb{sub x} layers additionally doped with donor and acceptor impurities are measured. The photoluminescence peaks of GaInP{sub 1−x}Sb{sub x} are detected. The influence of the Sb impurity on the band gap and charge-carrier mobility in GaInP is determined.

  6. Origin of Room-Temperature Ferromagnetism for Cobalt-Doped ZnO Diluted Magnetic Semiconductor

    Institute of Scientific and Technical Information of China (English)

    PENG Long; ZHANG Huai-Wu; WEN Qi-Ye; SONG Yuan-Qiang; SU Hua; John Q. Xiao

    2008-01-01

    @@ The pure single phase of Zn0.95Co0.05O bulks is successfully prepared by solid-state reaction method. The effects of annealing atmosphere on room-temperature ferromagnetic behaviour for the Zn0.95 Co0.05O bulks are investigated. The results show that the air-annealed samples has similar weak ferromagnetic behaviour with the as-sintered samples, but the obvious ferromagnetic behaviour is observed for the samples annealed in vacuum or Ar/H2 gas, indicating that the strong ferromagnetism is associated with high oxygen vacancies density. High saturation magnetization Ms = 0.73 μB /Co and coercivity Hc = 233.8 Oe are obtained for the Ar/H2 annealed samples with pure single phase structure. The enhanced room-temperature ferromagnetic behaviour is also found in the samples with high carrier concentration controlled by doping interstitials Zn (Zni).

  7. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    Science.gov (United States)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  8. Nitrogen-doped hollow carbon spheres wrapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol.

    Science.gov (United States)

    Yi, Yinhui; Zhu, Gangbing; Sun, Heng; Sun, Jianfan; Wu, Xiangyang

    2016-12-15

    Owing to awfully harmful to the environment and human health, the qualitative and quantitative determination of parachlorophenol (PCP) is of great significance. In this paper, by using silica@polydopamine as template, nitrogen-doped hollow carbon spheres wrapped with reduced graphene oxide (NHCNS@RG) nanostructure was prepared successfully via a self-assembly approach due to the electrostatic interaction, and the obtained NHCNS@RG could exhibit the unique properties of NHCNS and RG: the NHCNS could impede the aggregation tendency of RG and possess high electrocatalytic activity; the RG enlarges the contacting area and offers many area-normalized edge-plane structures and active sites. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction and electrochemical method were used to characterize the morphology and structure of NHCNS@RG. Then, the NHCNS@RG hybrids were applied for the electrochemical sensing of PCP, under the optimized conditions, the detection limit of PCP obtained in this work is 0.01μM and the linear range is 0.03-38.00μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  10. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics

    Science.gov (United States)

    Chen, Daqin; Wang, Yuansheng; Bao, Feng; Yu, Yunlong

    2007-06-01

    Transparent SiO2-Al2O3-NaF-YF3 glass ceramics co-doped with Er3+ and Tm3+ were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy experiments revealed that β-YF3 nanocrystals incorporated with Er3+ and Tm3+ were precipitated homogeneously among the oxide glass matrix. An integrated broad near-infrared emission band in the wavelength region of 1300-1700 nm, consisting of Tm3+ emissions around 1472 nm (H34→F34) and 1626 nm (F34→H36), and Er3+ emission around 1543 nm (I413/2→I415/2), was obtained under 792 nm laser excitation. The full width at half maximum of this integrated band increased with the increasing of [Tm]/[Er] ratio, and it reached as large as 175 nm for the 0.1 mol% Er3+ and 0.8 mol% Tm3+ co-doped sample. The energy transfers between Er3+ and Tm3+ were proposed to play an important role in tailoring the emission bandwidth of the sample.

  11. Self-doped polyaniline multifunctional optical probes in confined nanostructure for pH sensing

    Science.gov (United States)

    Hong, Yoochan; Hwang, Seungyeon; Yang, Jaemoon

    2017-07-01

    We have successfully fabricated nanocomposite, which is composed of polyaniline (PAni) and pyrene butyric acid (Pyba) via solvent shift method, and the outer layer was enclosed by Tween 80 as a surfactant. First of all, the various ratios between PAni and Pyba were applied for synthesis of polyaniline nanocomposite, and an identical condition for exhibition of proper absorbance and fluorescence properties was found out. The morphology of polyaniline nanocomposite was confirmed via scanning electron microscopic imaging and hydrodynamic size was also confirmed by dynamic light scattering method. We demonstrated that confined self-doped polyaniline nanocomposite as a pH sensing agent are preserved in the doped state even at a neutral pH value. Especially, PAni exhibited strong convertible property at absorbance spectra, on the other hand, Pyba showed changing property at fluorescence spectra at various pH values. In conclude, this polyaniline nanocomposite can accomplish as a fine nanoagent expressing absorbance and fluorescence properties according to surrounding pH values.

  12. Structural and dielectric properties of Mn doped copper oxide (CuO) nanostructure

    Science.gov (United States)

    Khan, Imran; Khan, Shakeel; Ahmed, Hilal; Nongjai, Razia

    2013-06-01

    Undoped and Mn doped CuO nanocrystalline powder samples were prepared through standard solid state reaction method. The crystal structures of the CuO nanoparticles were characterized by X-ray diffraction. Dielectric measurements were performed on samples as a function of frequency at room temperate to determine the dielectric behavior of the samples. XRD data exhibited the presence of monoclinic crystal structure similar to the parent compound in all samples, suggesting that doped Mn ions sit at the regular lattice sites. The average crystallite size, calculated using Scherrer formula from XRD data, is found within the range of 23-27 nm. The dielectric constant (ɛ'), imaginary part of dielectric constant (ɛ") and loss tangent (tanδ) were studied as a function of frequency and composition at room temperature. The dependence of dielectric constant (ɛ') on frequency suggests a conduction mechanism in terms of hopping. This behavior can be explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model.

  13. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    Science.gov (United States)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  14. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Science.gov (United States)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  15. Optical and Morphological Characterization of Sonochemically Assisted Europium Doped Copper (I) Oxide Nanostructures

    Science.gov (United States)

    Cosico, J. A. M.; Ruales, P. K.; Marquez, M. C.

    2017-06-01

    In the age where application of nanotechnology in our society has proven to be eminent, different routes of synthesizing nanoparticles have emerged. In this study nanoparticles of cuprous oxide (Cu2O) doped with different amounts of europium was prepared by using solution precursor route approach with the aid of ultrasonic sound. Copper sulphate and europium (III) nitrate pentahydrate was used as source for copper ions and europium ions respectively. X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR) were used to elucidate the cubic crystal structure and organic impurities present on Cu2Onanoparticles. UV-Vis spectroscopy was used to determine the absorption spectrum of the nanoparticles in the wavelength range of 400nm to 700nm. The bandgap of the undoped and doped Cu2O were found to fall between 2.1eV - 2.3eV. Scanning Electron Microscopy (SEM) coupled with energy dispersive x-ray was used to observe the dendritic and rodlike morphology and the presence of europium in the synthesized Cu2O nanoparticles. The observed effect on the absorbance of Cu2O upon adding Eu and a facile way of synthesizing Cu2O nanoparticles could bring a positive impact on the production of functional devices for optoelectronic and energy applications.

  16. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

    Science.gov (United States)

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-01

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  17. Quantum confinement, carrier dynamics and interfacial processes in nanostructured direct/indirect-gap semiconductor-glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Joseph H. Simmons

    2002-08-13

    The behavior of semiconductor clusters precipitated in an insulated matrix was investigated. Semiconductor compositions of CdTe, Si and Ge were studies and the insulating matrix was amorphous SiO2. As a function of size, quantum confinement effects were observed in all three composite systems. However significant differences were observed between the direct-gap column 2-6 semiconductors and the indirect-gap column 4 semiconductors. As observed by others, the direct-gap 2-6 semiconductors showed a distinct saturation in the energy-gap blue shift with decreasing size. Theoretical studies using a 20-band k dot p calculation of the electronic and valence bands for a 3-dimensionally confined CdTe semiconductor showed that mixing of the conduction band states leads to a flattening of the central valley. This increases the electron mass drastically and saturates the size dependent blue shift in the bandgap. In contrast, the blue shift in the Si and Ge nanocrystals showed no sign of saturation and increased drastically with decreasing size. In fact, Si and Ge crystals were formed with blue shift values that moved the bandgap to the near UV region. We examined the absorption curves to determine whether the bandgap was direct or indirect in the quantum dots. The results are that the absorption shows an indirect gap for all but the smallest Si crystals and an indirect gap for all Ge crystals. Raman studies showed negligible size dependence due to a lack of phonon confinement in the matrix embedded clusters. Exciton saturation and recovery times were found to be very short (of the order of 400fs) and are the fastest reported for any quantum dot system. Work to examine the type of confinement obtained in a matrix that consists of a transparent conductor is under way. Studies of the photoinduced absorption change in GeSe glasses showed a significant effect of photodarkening, regardless of composition. The photodarkening effect appears to be composed of permanent and transient

  18. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO).

    Science.gov (United States)

    Gordon, Thomas R; Paik, Taejong; Klein, Dahlia R; Naik, Gururaj V; Caglayan, Humeyra; Boltasseva, Alexandra; Murray, Christopher B

    2013-06-12

    The influence of particle shape on plasmonic response and local electric field strength is well-documented in metallic nanoparticles. Morphologies such as rods, plates, and octahedra are readily synthesized and exhibit drastically different extinction spectra than spherical particles. Despite this fact, the influence of composition and shape on the optical properties of plasmonic semiconductor nanocrystals, in which free electrons result from heavy doping, has not been well-studied. Here, we report the first observation of plasmonic resonance in indium-doped cadmium oxide (ICO) nanocrystals, which exhibit the highest quality factors reported for semiconductor nanocrystals. Furthermore, we are able to independently control the shape and free electron concentration in ICO nanocrystals, allowing for the influence of shape on the optical response of a plasmonic semiconductor to be conclusively demonstrated. The highly uniform particles may be self-assembled into ordered single component and binary nanocrystal superlattices, and in thin films, exhibit negative permittivity in the near infrared (NIR) region, validating their use as a new class of tunable low-loss plasmonic building blocks for 3-D optical metamaterials.

  19. Comparative Study of the Photocatalytic Activity of Semiconductor Nanostructures and Their Hybrid Metal Nanocomposites on the Photodegradation of Malathion

    Directory of Open Access Journals (Sweden)

    Dina Mamdouh Fouad

    2012-01-01

    Full Text Available This work is devoted to synthesize different semiconductor nanoparticles and their metal-hybrid nanocomposites such as TiO2, Au/TiO2, ZnO, and Au/ZnO. The morphology and crystal structure of the prepared nanomaterials are characterized by the TEM and XRD, respectively. These materials are used as catalysts for the photodegradation of Malathion which is one of the most commonly used pesticides in the developing countries. The degradation of 10 ppm Malathion under ultraviolet (UV and visible light in the presence of the different synthesized nanocomposites was analyzed with high-performance liquid chromatography (HPLC and UV-Visible Spectra. A comprehensive study is carried out for the catalytic efficiency of the prepared nanoparticles. Different factors influencing the catalytic photodegradation are investigated, as different light source, surface coverage, and nature of the organic contaminants. The results indicate that hybrid nanocomposite of the semiconductor-metal hybrid serves as a better catalytic system compared with semiconductor nanoparticles themselves.

  20. Structural and electrical properties of N doped SiC nanostructures obtained by TVA method

    Science.gov (United States)

    Ciupina, Victor; Lungu, Cristian P.; Vladoiu, Rodica; Prodan, Gabriel C.; Antohe, Stefan; Porosnicu, Corneliu; Stanescu, Iuliana; Jepu, Ionut; Iftimie, Sorina; Belc, Marius; Mandes, Aurelia; Dinca, Virginia; Vasile, Eugeniu; Zarovski, Valeriu; Nicolescu, Virginia; Caraiane, Aureliana

    2015-08-01

    Ionized nitrogen doped Si-C thin films at 200°C substrate temperature were obtained by Thermionic Vacuum Arc (TVA) method. To increase the energy of N, C and Si ions, -400V, -600V and -1000V negative bias voltages was applied on the substrate. The 400nm, 600nm and 1000nm N-SiC coatings on glass was deposed. To characterize the structure of as-prepared N-SiC coatings, Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), X-Ray and Photoelectron Spectroscopy (XPS) techniques was performed. Electrical conductivity was measured comparing the potential drop on the structure with the potential drop on a series standard resistance in a constant current mode. To justify the dependence of measured electrical conductivity by the temperature, we assume a thermally activated electrical transport mechanism.