WorldWideScience

Sample records for donor-acceptor polymer heterojunctions

  1. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  2. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  3. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  4. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    Science.gov (United States)

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  5. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Joël Teuscher

    2017-11-01

    Full Text Available Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation, which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  6. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  7. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Kemerink, M.; Yang, X.N.; Janssen, R.A.J.

    2005-01-01

    Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3‘,7‘-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast

  8. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  9. Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers

    NARCIS (Netherlands)

    Mullekom, van H.A.M.; Vekemans, J.A.J.M.; Havinga, E.E.; Meijer, E.W.

    2001-01-01

    This paper reviews the tools to manipulate and minimize the band gap of conjugated (co)polymers. The effects of minimization of the bond length alternation and of the incorporation of donor-K-acceptor units are discussed in particular. A systematic study of a series of alternating donor-acceptor

  10. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Science.gov (United States)

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  11. Efficiency-limiting processes in OPV bulk heterojunctions of GeNIDTBT and IDT-based acceptors

    KAUST Repository

    Al-Saggaf, Sarah M.

    2018-05-16

    The successful realization of highly efficient bulk heterojunction OPV devices requires the development of organic donor and acceptor materials with tailored properties. Recently, non-fullerene acceptors (NFAs) have emerged as an alternative to the ubiquitously used fullerene derivatives. NFAs showed a rapid increase in efficiencies, now exceeding a PCE of 13%. In my thesis research, I used two small molecule IDT-based acceptors, namely O-IDTBR and O-IDTBCN, in combination with a wide bandgap donor polymer, GeNIDT-BT, as active material in BHJ solar cells and investigated their photophysical characteristics. The polymer combined with O-IDTBR as acceptor achieved a power conversion efficiency of only 2%, which is significantly lower than that obtained for the system of GeNIDT-BT: O-IDTBCN (5.3%). Using nano- to microsecond transient absorption spectroscopy, I investigated both systems and demonstrated that GeNIDT-BT:O-IDTBR exhibits more geminate recombination of interfacial charge-transfer states, leading to lower short circuit currents. Using time-delayed collection field experiments, I studied the field dependence of charge generation and its impact on the device fill factor. Overall, my results provide a qualitative understanding of the efficiency-limiting processes in both systems and their impact on device performance.

  12. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    International Nuclear Information System (INIS)

    Arora, Vinita; Bakhshi, A.K.

    2010-01-01

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF 2 bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF 2 ) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended π conjugation.

  13. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  14. Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-09-01

    Full Text Available A synthetic method that taps into the facile Lewis base (LB→Lewis acid (LA adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene (P3HT macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.

  15. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji

    2018-01-22

    Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.

  16. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    Science.gov (United States)

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  17. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  18. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  19. Correlation between LUMO offset of donor/acceptor molecules to an open circuit voltage in bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mola, Genene Tessema, E-mail: mola@ukzn.ac.za [School of. Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa); Abera, Newayemedhin [Addis Ababa University, Department of Physics, P.O. BOX 1176, Addis Ababa (Ethiopia)

    2014-07-15

    The correlation between the open circuit voltage and the LUMO offset of the donor and acceptor polymers in the bulkheterojunction solar cell was studied for three different thiophene derivatives. The HOMO levels of all the polymers in this investigation were chosen to be similar which results in close values of ΔE{sub DA}=E{sub HOMO}{sup D}−E{sub LUMO}{sup A}. However, the measured V{sub oc} was found to be increasing with decreasing value of the LUMO offset that exists between the donor polymer and fullerene.

  20. Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Aldrich, Thomas J.; Manley, Eric F.; Fauvell, Thomas J.; Hartnett, Patrick E.; Wasielewski, Michael R.; Chen, Lin X.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Chang, Robert P. H.; Marks, Tobin J.

    2017-05-10

    Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two highperformance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4Hthieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4''dodecyl-2,2':5',2''- terthiophene-5,5''-diyl] (PTPD3T or D1) and amorphous poly{4,8- bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene- 2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1-A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templated by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater Mn), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ~5%, but here both A2 and PBDTT-FTTE (medium Mn) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.

  1. Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

    Czech Academy of Sciences Publication Activity Database

    Schwarz, D.; Kochergin, Y. S.; Acharjya, A.; Ichangi, Arun; Opanasenko, Maksym; Čejka, Jiří; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Tarábek, Ján; Bojdys, Michael J.

    2017-01-01

    Roč. 23, č. 53 (2017), s. 13023-13027 ISSN 0947-6539 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Physical chemistry (UFCH-W) Impact factor: 5.317, year: 2016

  2. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  4. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  5. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...... an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  6. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    Science.gov (United States)

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.; Gili, Enrico; Shahid, Munazza; Rivnay, Jonathan; Salleo, Alberto; Heeney, Martin; Sirringhaus, Henning

    2012-01-01

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers

    DEFF Research Database (Denmark)

    Yue, Wei; Larsen-Olsen, Thue Trofod; Hu, Xiaolian

    2013-01-01

    A series of donor-acceptor low band gap polymers composed of alternating dithienopyrrole or its derivative as donors and phthalimide or thieno[3,4-c]pyrrole-4,6-dione as acceptors (P1-P4) are synthesized by Stille coupling polymerization. All polymers show strong absorption in the visible region......, for P2 and P4 possessing thieno[3,4-c]pyrrole-4,6-dione as an acceptor, their film absorption covers the region of 500-800 nm and 500-750 nm respectively, which makes them attractive as low band gap polymer solar cell (PSC) materials. With the incorporation of thiophene bridges, P3 and P4 have 0...

  10. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    Science.gov (United States)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  11. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  12. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  13. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Science.gov (United States)

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  14. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  15. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha; Khan, Jafar Iqbal; Firdaus, Yuliar; Wang, Kai; Andrienko, Denis; Beaujuge, Pierre; Laquai, Fré dé ric

    2018-01-01

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  16. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  17. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sisto, Thomas J. [Columbia University; Peurifoy, Samuel [Columbia University; Zhang, Boyuan [Columbia University; Nuckolls, Colin [Columbia University

    2018-04-13

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstrate that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. Detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.

  18. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  19. Acceptor thickness effect of exciplex and electroplex emission at heterojunction interface in organic light-emitting diodes

    Science.gov (United States)

    Zhang, Wei; Yu, Junsheng; Yuan, Kai; Jiang, Yadong; Zhang, Qing; Cao, Kangli

    2010-10-01

    Organic light-emitting diodes (OLEDs) consisted of a novel fluorene derivative of 5,6-bis(9,9-dihexyl-9H-fluoren-2-yl)- 2,3-diisocyano-2,3-dihydropyrazine (BDHFLCNPy) and a hole transporting material of N,N'-Di-[(1-naphthalenyl)- N,N'-diphenyl](1,1'-biphenyl)-4,4'-diamine (NPB) were fabricated, and electroluminescence (EL) spectrum of devices were investigated. It was found that light emission around 650 nm observed in devices came from exciplex generated at heterojunction interface by NPB molecules worked as electron donor and BDHFLCNPy molecules worked as electron acceptor. Moreover, a shoulder peak around 500 nm ascribed to BDHFLCNPy exciton was observed. To systemically study the effect of heterojunction structure in exciplex formation, OLEDs with different thickness of acceptor were fabricated. The results illustrated that a shoulder peak around 600 nm occurred in EL when acceptor thickness increases, and BDHFLCNPy exciton emitting strength is relatively altered. The emission band around 600 nm is due to electroplex. The L-V-J properties of OLEDs show that device with the thinnest acceptor layer has the highest luminance and current density. On the contrary, OLEDs with thicker acceptor layer have higher luminance efficiency. The different recombination mechanism of exciton, exciplex and electroplex in heterojunction were studied. Furthermore, the acceptor thickness effect of exciplex and electroplex generating mechanism and energy transferring mechanism between them was also discussed.

  20. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  1. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  2. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  3. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    Science.gov (United States)

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  4. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  5. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  6. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  7. Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2-b:4,5-b′]dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai

    2016-08-22

    Well-defined small molecule (SM) donors can be used as alternatives to π-conjugated polymers in bulk-heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self-assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π-extended backbone of benzo[1,2-b:4,5-b\\']dithiophene-6,7-difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin-films, and (iii) charge transport in BHJ solar cells. In these systems (SM1-3), it is found that 6,7-difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2-b:4,5-b\\']dithiophene (BDT) unit yield a lower-bandgap analogue (SM1) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H-1H DQ-SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end-group SM3 possess distinct self-assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2-b:4,5-b′]dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai; Liang, Ru-Ze; Wolf, Jannic Sebastian; Saleem, Qasim; Babics, Maxime; Wucher, Philipp; Abdelsamie, Maged; Amassian, Aram; Hansen, Michael Ryan; Beaujuge, Pierre

    2016-01-01

    Well-defined small molecule (SM) donors can be used as alternatives to π-conjugated polymers in bulk-heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self-assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π-extended backbone of benzo[1,2-b:4,5-b']dithiophene-6,7-difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin-films, and (iii) charge transport in BHJ solar cells. In these systems (SM1-3), it is found that 6,7-difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2-b:4,5-b']dithiophene (BDT) unit yield a lower-bandgap analogue (SM1) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H-1H DQ-SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end-group SM3 possess distinct self-assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An isoindigo containing donor-acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yue, Wei; Andersen, Thomas Rieks

    2015-01-01

    In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices; the lat......In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices...

  10. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    International Nuclear Information System (INIS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-01-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  11. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  12. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Sweetnam, Sean; Burke, Timothy M.; McGehee, Michael D.; Laquai, Fré dé ric

    2015-01-01

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  13. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  14. Realization of large area flexible fullerene - conjugated polymer photocells: a route to plastic solar cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donoracceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and

  15. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh

    2015-10-22

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  16. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh; Risko, Chad; Anthony, John E; Amassian, Aram; Bredas, Jean-Luc

    2015-01-01

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  17. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    Science.gov (United States)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  18. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  19. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei; Rose, Bradley Daniel; Liu, Yao; Nahid, Masrur M.; Gann, Eliot; Ly, Jack; Zhao, Wei; Rosa, Stephen J.; Russell, Thomas P.; Facchetti, Antonio; McNei, Christopher R.; Bredas, Jean-Luc; Briseno, Alejandro L.

    2016-01-01

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  20. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  1. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  2. Low Band Gap Donor–Acceptor Type Polymers Containing 2,3-Bis(4-(decyloxyphenylpyrido[4,3-b]pyrazine as Acceptor and Different Thiophene Derivatives as Donors

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-10-01

    Full Text Available Four donor–acceptor type conducting polymers, namely poly(2,3-bis(4-decyloxyphenyl-5,8-bis(4-thiophen-2-ylpyrido[4,3-b]pyrazine (P1, poly(2,3-bis(4-decyloxyphenyl-5,8-bis(4-butylthiophen-2-ylpyrido[4,3-b]pyrazine (P2, poly(2,3-bis(4-(decyloxyphenyl-5,8-bis(4-hexyloxythiophen-2-ylpyrido[4,3-b]pyrazine (P3 and poly(2,3-bis(4-(decyloxyphenyl-5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-ylpyrido[4,3-b]pyrazine (P4, containing thiophene or its derivative as the donor and pyrido[4,3-b]pyrazine as the acceptor were prepared and characterized by cyclic voltammetry, scanning electron microscopy, and UV-Vis spectroscopy to detect the influence of the donor units’ strength on the electrochromic performances. The results demonstrated that all of the polymers could be reversibly reduced and oxidized by p-type doping and n-type doping, and showed near-infrared activities and different color changes in p-type doping process. Especially, P3 and P4 showed lower optical band gap than P1 and P2 due to the strong electron-donating hexyloxythiophen group of P3 and ethylenedioxythiophene group of P4. Besides, P3 and P4 displayed the saturated green color at the neutral state and the desirable transparency at the oxidized state. All the polymers displayed desirable optical contrasts, satisfactory coloration efficiency, excellent stability and short switching time, which made the polymers fascinating candidates in the electrochromic device applications.

  3. Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation.

    Science.gov (United States)

    Janasz, Lukasz; Luczak, Adam; Marszalek, Tomasz; Dupont, Bertrand G R; Jung, Jaroslaw; Ulanski, Jacek; Pisula, Wojciech

    2017-06-21

    Ambipolar organic field-effect transistors (OFETs) based on heterojunction active films still suffer from an imbalance in the transport of electrons and holes. This problem is related to an uncontrolled phase separation between the donor and acceptor organic semiconductors in the thin films. In this work, we have developed a concept to improve the phase separation in heterojunction transistors to enhance their ambipolar performance. This concept is based on preaggregation of the donor polymer, in this case poly(3-hexylthiophene) (P3HT), before solution mixing with the small-molecular-weight acceptor, phenyl-C61-butyric acid methyl ester (PCBM). The resulting heterojunction transistor morphology consists of self-assembled P3HT fibers embedded in a PCBM matrix, ensuring balanced mobilities reaching 0.01 cm 2 /V s for both holes and electrons. These are the highest mobility values reported so far for ambipolar OFETs based on P3HT/PCBM blends. Preaggregation of the conjugated polymer before fabricating binary blends can be regarded as a general concept for a wider range of semiconducting systems applicable in organic electronic devices.

  4. Thermal characterization of semiconducting polymer bulk heterojunctions

    Science.gov (United States)

    Remy, Roddel A.

    Polymer semiconductors are intriguing due to their potential use in flexible electronics. Poly (3-hexylthiophene) (P3HT)--a very common polymer in this field--is semicrystalline and it is known that crystalline P3HT has a higher hole mobility than amorphous P3HT. Quantifying each fraction in the bulk and thin film states is therefore crucial to understanding its performance in transistor and other applications. In polymer solar cells, it acts as an electron donor and is typically mixed with the nanoparticle-like molecule, phenyl-C61-butyric acid methyl ester (PCBM)--an electron acceptor--in a thin film morphology termed a bulk heterojunction (BHJ). The structural hierarchy within the bulk heterojunction is complicated and its characterization, with a focus on P3HT morphology, is the topic of this dissertation. Calorimetry can play an important role in the elucidation of P3HT morphology with quantitative analysis of the crystalline and amorphous fractions present in the material. This was demonstrated by employing differential scanning calorimetry (DSC) to obtain the enthalpy of fusion of 100% crystalline P3HT (42.9 J/g) using oligomeric P3HT measurements. The more sensitive temperature modulated DSC (TMDSC) was then used to examine the glass transition of P3HT and the crystalline, mobile amorphous and rigid amorphous phases were quantified. The presence of these phases can play a large role in understanding the charge transfer process in polymer semiconductors. BHJ thin films of 50 wt.% PCBM were then analyzed and a polymer crystallinity of 30% was found after thermal annealing from initially non-crystalline polymer material. With assistance from previously acquired small angle neutron scattering data, a thorough analysis of the entire BHJ morphology was accomplished. A surprisingly large rigid amorphous polymer phase is present in the BHJ which could be located at the P3HT/PCBM interface, affecting charge transfer. Finally, interlayer diffusion of PCBM was

  5. A stability study of polymer solar cells using conjugated polymers with different donor or acceptor side chain patterns

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria; Kesters, Jurgen; Defour, Maxime

    2016-01-01

    -phenylethyl group. It is shown that the exchange of the hexyl chain on the DTBT moiety has a negative impact on the stability of the polymer as well as on the performance of the resulting PSCs. On the other hand, partial exchange of the 2-hexyldecyl side chain of the BDT unit by a 2-hydroxyethyl group results......)benzo[c][1,2,5]thiadiazole (DTBT), specifically selected because of its suitability for roll-coating in the ambient environment, is investigated in terms of operational stability via partial exchange (5 or 10%) of the alkyl side chain on either the donor or the acceptor monomer with a 2-hydroxyethyl or 2...

  6. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    International Nuclear Information System (INIS)

    Sharma, G. D.

    2011-01-01

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm 2 has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  7. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    Science.gov (United States)

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  8. A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells

    KAUST Repository

    Xia, Debin

    2015-04-20

    A novel electron acceptor, namely 2,2′-(12H,12′H-10,10′-spirobi[indeno[2,1-b]fluorene]-12,12′-diylidene)dimalononitrile (4CN-spiro), exhibiting a three-dimensional molecular structure was synthesized and its thermal, photophysical, electrochemical, crystal, and photovoltaic properties were investigated. The novel acceptor exhibits excellent thermal stability with a decomposition temperature of 460 °C, an absorption extending to 600 nm, and a LUMO level of −3.63 eV. Solution processed bulk-heterojunction (BHJ) organic solar cells were fabricated using 4CN-spiro as an acceptor and polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) as a donor polymer. The effect of the donor-to-acceptor ratio and processing conditions on the device performance was investigated. A device processed from tetrachloroethane with a donor to acceptor weight ratio of 1 : 1 yielded a power conversion efficiency (PCE) of 0.80%.

  9. The Effect of Donor and Nonfullerene Acceptor Inhomogeneous Distribution within the Photoactive Layer on the Performance of Polymer Solar Cells with Different Device Structures

    Directory of Open Access Journals (Sweden)

    Yaping Wang

    2017-11-01

    Full Text Available Due to the inhomogeneous distribution of donor and acceptor materials within the photoactive layer of bulk heterojunction organic solar cells (OSCs, proper selection of a conventional or an inverted device structure is crucial for effective exciton dissociation and charge transportation. Herein, we investigate the donor and acceptor distribution within the non-fullerene photoactive layer based on PBDTTT-ET:IEICO by time-of-flight secondary-ion mass spectroscopy (TOF-SIMS and scanning Kelvin probe microscopy (SKPM, indicating that more IEICO enriches on the surface of the photoactive layer while PBDTTT-ET distributes homogeneously within the photoactive layer. To further understand the effect of the inhomogeneous component distribution on the photovoltaic performance, both conventional and inverted OSCs were fabricated. As a result, the conventional device shows a power conversion efficiency (PCE of 8.83% which is 41% higher than that of inverted one (6.26%. Eventually, we employed nickel oxide (NiOx instead of PEDOT:PSS as anode buffer layer to further enhance the stability and PCE of OSCs with conventional structure, and a promising PCE of 9.12% is achieved.

  10. Synthesis of conjugated polymers with complex architecture for photovoltaic applications

    DEFF Research Database (Denmark)

    Kiriy, Anton; Krebs, Frederik C

    2017-01-01

    A common approach to bulk heterojunction solar cells involves a “trialand- error” approach in finding optimal kinetically unstable morphologies. An alternative approach assumes the utilization of complex polymer architectures, such as donor–acceptor block copolymers. Because of a covalent preorga...... preorganization of the donor and acceptor components, these materials may form desirable morphologies at thermodynamic equilibrium. This chapter reviews synthetic approaches to such architectures and shows the first photovoltaic results....

  11. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    Science.gov (United States)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  12. Correlation of heterojunction luminescence quenching and photocurrent in polymer-blend photovoltaic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rabade, Astrid; Morteani, Arne C.; Friend, Richard H. [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-10-19

    Charge generation in organic solar cells proceeds via photogeneration of excitons in the bulk that form geminate electron-hole pairs at the heterojunction formed between electron donor and acceptors. It is shown that an externally applied electric field increases the number of free charges formed from the geminate pair, and quenches the luminescence from the relaxed exciplex with one-to-one correspondence. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    Science.gov (United States)

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis

  14. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.; Risko, Chad; Aziz, Saadullah Gary; Da Silva Filho, Demé trio A Da Silva; Bredas, Jean-Luc

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  15. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongping; Swaraj, Sufal; Wang, Cheng; Ade, Harald [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Hwang, Inchan; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom); Groves, Chris [School of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2010-12-21

    Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9-dioctylfluorene-co-bis(N,N'-(4,butylphenyl))bis(N,N'-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron-hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X-ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three-fold increase in the number of excitons dissociated. Under short-circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Maffei, Luna Pratali; Cruciani, Federico; Mü ller, Michael A.; Liu, Shengjian; Lopatin, Sergei; Wehbe, Nimer; Ngongang Ndjawa, Guy Olivier; Amassian, Aram; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  17. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  18. Synthesis, characterization of bay-substituted perylene diimide based D-A-D type small molecules and their applications as a non-fullerene electron acceptor in polymer solar cells

    Directory of Open Access Journals (Sweden)

    Ramasamy Ganesamoorthy

    2018-03-01

    Full Text Available We report a series of bay substituted perylene diimide based donor-acceptor-donor (D-A-D type small molecule acceptor derivatives such as S-I, S-II, S-III and S-IV for small molecule based organic solar cell (SM-OSC applications. The electron rich thiophene derivatives such as thiophene, 2-hexylthiophene, 2,2′-bithiophene, and 5-hexyl-2,2′-bithiophene were used as a donor (D, and perylene diimide was used as an acceptor (A. The synthesized small molecules were confirmed by FT-IR, NMR, and HR-MS. The small molecules showed wide and strong absorption in the UV-vis region up to 750 nm, which reduced the optical band gap to <2 eV. The calculated highest occupied molecular orbital (HOMO and the lowest unoccupied molecular orbital (LUMO were comparable with those of the PC61BM. Scanning electron microscope (SEM studies confirmed the aggregation of the small molecules, S-I to S-IV. Small molecules showed thermal stability up to 300 °C. In bulk heterojunction organic solar cells (BHJ-OSCs, the S-I based device showed a maximum power conversion efficiency (PCE of 0.12% with P3HT polymer donor. The PCE was declined with respect to the number of thiophene units and the flexible alkyl chain in the bay position. Keywords: Perylene diimide, Donor–acceptor, Small molecule, Non-fullerene, Suzuki coupling

  19. Materials and Devices Research of PPV-ZnO Nanowires for Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhang Xiao-Zhou

    2012-01-01

    Full Text Available Bulk heterojunction photovoltaic devices, which use the conjugated polymer poly(2-methoxyl-5-(2′-ethylhexyloxy-1,4-phenylenevinylene (MEH-PPV as the electron donor and crystalline ZnO nanowires as the electron acceptor, have been studied in this work. The ZnO nanowires were prepared through a chemical vapor deposition mechanism. The dissolved MEH-PPV polymer was spin-coated onto the nanowires. The scanning electron microscope images showed that the ZnO nanowires were covered with a single layer of the polymer, and these materials were used to design a heterojunction solar cell. This solar cell displayed improved performance compared with the devices that were made from only the MEH-PPV polymer. This observed improvement is correlated with the improved electron transport that is perpendicular to the plane of the film. A solar power conversion efficiency of 1.37% was achieved under an AM1.5 illumination.

  20. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  2. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya

    2016-11-21

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  3. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya; Ashraf, Raja; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Rö hr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  4. Effect of different donors and a polymer environment on ...

    Indian Academy of Sciences (India)

    Effect of donors and a polymer environment of C450:C540 binary dye mixture, in MPMMA and MMA+EtOH, were recorded with a donor–acceptor concentration of (0.05 : 0.05) mM. Also, the variation in the fluorescence intensity of C450:C540 binary dye mixture for different acceptor concentrations but fixed.

  5. π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells

    KAUST Repository

    Wang, Kai

    2016-02-25

    Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.

  6. π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells

    KAUST Repository

    Wang, Kai; Firdaus, Yuliar; Babics, Maxime; Cruciani, Federico; Saleem, Qasim; El Labban, Abdulrahman; Alamoudi, Maha; Marszalek, Tomasz; Pisula, Wojciech; Laquai, Fré dé ric; Beaujuge, Pierre

    2016-01-01

    Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.

  7. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah

    2015-01-21

    A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.

  8. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  9. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    Science.gov (United States)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar

  10. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    Science.gov (United States)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  11. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions

    Science.gov (United States)

    Huang, Ya-Shih; Westenhoff, Sebastian; Avilov, Igor; Sreearunothai, Paiboon; Hodgkiss, Justin M.; Deleener, Caroline; Friend, Richard H.; Beljonne, David

    2008-06-01

    Heterojunctions between organic semiconductors are central to the operation of light-emitting and photovoltaic diodes, providing respectively for electron-hole capture and separation. However, relatively little is known about the character of electronic excitations stable at the heterojunction. We have developed molecular models to study such interfacial excited electronic excitations that form at the heterojunction between model polymer donor and polymer acceptor systems: poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with F8BT. We find that for stable ground-state geometries the excited state has a strong charge-transfer character. Furthermore, when partly covalent, modelled radiative lifetimes (~10-7s) and off-chain axis polarization (30∘) match observed `exciplex' emission. Additionally for the PFB:F8BT blend, geometries with fully ionic character are also found, thus accounting for the low electroluminescence efficiency of this system.

  12. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    Science.gov (United States)

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanographenes as electron-deficient cores of donor-acceptor systems.

    Science.gov (United States)

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  14. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  15. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt......The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine...

  16. Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide

    International Nuclear Information System (INIS)

    Kato, Takehito; Hagiwara, Naoki; Suzuki, Eiji; Nasu, Yuki; Izawa, Satoru; Tanaka, Kouichi; Kato, Ariyuki

    2016-01-01

    The number of publications concerned with typical bulk-heterojunction solar cells that use fullerene derivatives and inorganic materials as electron acceptors has grown very rapidly. In this work, we focus on Ti-alkoxides as electron acceptors in the photoactive layers of fullerene-free bulk-heterojunction solar cells. We show that it is possible to control the morphology by adjusting the molecular structure and size of the Ti-alkoxides. The short-circuit current density (J_s_c) increased to 191 μA/cm"2 from 25 μA/cm"2 with a maximum, when the phase-separation structure was continuously formed to within about 20 nm below the exciton diffusion length by using either titanium(IV) ethoxide or isopropoxide as an electron acceptor. Within a thickness of 30 nm, the photoactive layer is not influenced by the electron transfer ability; thus, we demonstrate that the charge-separation efficiency is equivalent to that of a fullerene system. - Highlights: • An organic–inorganic bulk-heterojunction photoactive layer was used. • Electron donor was a semiconducting polymer and electron acceptor was Ti-alkoxide. • Demonstration of morphology control by Ti-alkoxide molecules. • Determination of Jsc value by the phase-separation structure in an ultra-thin film. • Charge-separation efficiency of Ti-alkoxide system equivalent to fullerene system.

  17. Solution-Processed Organic Solar Cells from Dye Molecules: An Investigation of Diketopyrrolopyrrole:Vinazene Heterojunctions

    KAUST Repository

    Walker, Bright

    2012-01-25

    Although one of the most attractive aspects of organic solar cells is their low cost and ease of fabrication, the active materials incorporated into the vast majority of reported bulk heterojunction (BHJ) solar cells include a semiconducting polymer and a fullerene derivative, classes of materials which are both typically difficult and expensive to prepare. In this study, we demonstrate that effective BHJs can be fabricated from two easily synthesized dye molecules. Solar cells incorporating a diketopyrrolopyrrole (DPP)-based molecule as a donor and a dicyanoimidazole (Vinazene) acceptor function as an active layer in BHJ solar cells, producing relatively high open circuit voltages and power conversion efficiencies (PCEs) up to 1.1%. Atomic force microscope images of the films show that active layers are rough and apparently have large donor and acceptor domains on the surface, whereas photoluminescence of the blends is incompletely quenched, suggesting that higher PCEs might be obtained if the morphology could be improved to yield smaller domain sizes and a larger interfacial area between donor and acceptor phases. © 2011 American Chemical Society.

  18. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  19. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  20. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  1. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    Science.gov (United States)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  2. Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esters

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Thermocleavable low-band-gap polymers based on dithienylthienopyrazines were prepared and copolymerized with different donor units like dialkoxybenzene, fluorene, thiophene, and cyclopentadithiophene (CPDT) using both Stille and Suzuki cross-coupling reactions. In the solid state the band gaps...... are in the range of 1.17−1.37 eV. The polymers were explored as donor materials in bulk heterojunction solar cells together with PCBM as the acceptor material where they were shown to exhibit a photoresponse in the full absorption range up to 900 nm and power conversion efficiencies of up to 1.21% under 1 sun...

  3. Influence of the polymer architecture on morphology and device properties of polymer bulk heterojunction photovoltaic cells

    NARCIS (Netherlands)

    Koetse, M.M.; Sweelssen, J.; Franse, T.; Veenstra, S.C.; Kroon, J.M.; Yang, X.N.; Alexeev, A.A.; Loos, J.; Schubert, U.S.; Schoo, H.F.M.; Kafafi, Z.H.; Lane, P.A.

    2004-01-01

    Polymer bulk hetero junction solar cells were made from poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV) as donor and poly(cyanoetherphenylenevinylene) (PCNEPV) derivatives as acceptor material. In this paper we start out with discussing the synthesis of the materials.

  4. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    Science.gov (United States)

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when

  5. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Fatma Baycan, E-mail: fatmabaycan@hotmail.co [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Koyuncu, Sermet [Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey); Ozdemir, Eyup, E-mail: eozdemir@comu.edu.t [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey)

    2010-07-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E{sub g} was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  6. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  7. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  8. Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells.

    Science.gov (United States)

    Loiudice, Anna; Rizzo, Aurora; Biasiucci, Mariano; Gigli, Giuseppe

    2012-07-19

    We exploit the effect of molecular p-type doping of P3HT in diffused bilayer (DB) polymer solar cells. In this alternative device geometry, the p-doping is accomplished in solution by blending the F4-TCNQ with P3HT. The p-doping both increases the film conductivity and reduces the potential barrier at the interface with the electrode. This results in an excellent power conversion efficiency of 4.02%, which is an improvement of ∼48% over the p-doped standard bulk heterojunction (BHJ) device. Combined VOC-light intensity dependence measurements and Kelvin probe force microscopy reveal that the DB device configuration is particularly advantageous, if compared to the conventional BHJ, because it enables optimization of the donor and acceptor layers independently to minimize the effect of trapping and to fully exploit the improved transport properties.

  9. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  10. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  11. Electro-optical modeling of bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  12. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    Science.gov (United States)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  13. Photovoltaic properties of conjugated polymer/fullerene composites on large area flexible substrates

    Directory of Open Access Journals (Sweden)

    Desta Gebeyehu

    2000-06-01

    Full Text Available In this paper we present measurements of the photovoltaic response of bulk donor-acceptor heterojunction between the conjugated polymer, poly(3-octylthiophene, P3OT, (as a donor, D and fullerene (methanofullerene, (as acceptor, A, deposited between indium tin oxide and aluminum electrodes. The innovation involves the substrate, which is a polymer foil instead of glass. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation. We also present the efficiency and stability studies on large area (6 cm x 6 cm flexible plastic solar cells with monochromatic energy conversion efficiency (e of about 1.5% and carrier collection efficiency of nearly 20%. Further more, we have investigated the surface network morphology of these films layers by atomic force microscope (AFM. The development of solar cells based on composites of organic conjugated semi-conducting polymers with fullerene derivatives can provide a new method in the exploitation of solar energy.

  14. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  15. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  16. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    Science.gov (United States)

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  17. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  18. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  19. Planar conjugated polymers containing 9,10-disubstituted phenanthrene units for efficient polymer solar cells.

    Science.gov (United States)

    Li, Guangwu; Kang, Chong; Li, Cuihong; Lu, Zhen; Zhang, Jicheng; Gong, Xue; Zhao, Guangyao; Dong, Huanli; Hu, Wenping; Bo, Zhishan

    2014-06-01

    Four novel conjugated polymers (P1-4) with 9,10-disubstituted phenanthrene (PhA) as the donor unit and 5,6-bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low-lying HOMO energy levels (below -5.3 eV), and high hole mobilities (in the range of 3.6 × 10(-3) to 0.02 cm(2) V(-1) s(-1) ). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1-4:PC71 BM blends as the active layer and an alcohol-soluble fullerene derivative (FN-C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10-disubstituted PhA are potential donor materials for high-efficiency BHJ PSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Donor-π-bridge-acceptor type polymeric materials with pendant electron-withdrawing groups for electrochromic applications

    International Nuclear Information System (INIS)

    Du, Qing; Wei, Youxiu; Zheng, Jianming; Xu, Chunye

    2014-01-01

    Highlights: • Donor-π-bridge-acceptor copolymers with different electrophilic groups were synthesized. • Electrochromic devices composed of PBDTTPAs layers, as the working electrode, and vanadium pentoxide, as the counter electrode, were fabricated and evaluated. • The PBDTTPA-CHO film and device show multicolor electrochromic behavior which exhibited vivid yellow, green, and gray with better electrochromic performance than PBDTTPA-COOH. - Abstract: A novel donor-π-bridge-acceptor copolymer, PBDTTPA-CHO, containing 4-(Bis(4-bromophenyl)-amino)benzaldehyde (TPA-CHO) and 4,8-bis-(2-ethyl- hexyloxy)-oxybenzo-[1,2-b:3,4-b’]dithiophene (BDT), was successfully synthesized using Stille coupling polymerization, and the pendant aldehyde group was modified with cyanoacetic acid to synthesize another polymer, PBDTTPA-COOH. Each of these new polymers are soluble in organic solvents and can be cast onto rigid or flexible substrates. The polymers with different electrophilic groups exhibit different electrochromic behaviors, including different colors, driving voltages and transmittances. The polymer film of PBDTTPA-CHO manifests reversible electrochemical oxidation and reduction accompanied by multicolor changes from its yellow neutral state to a highly absorbent green semi-oxidized state and a gray fully oxidized state, its transmittance change at 601 nm is 43%. PBDTTPA-COOH switches between orange and light green. We fabricated and evaluated electrochromic devices using a PBDTTPA layer as the working electrode and vanadium pentoxide as the counter electrode. With the contribution of counter electrodes, devices of both polymers show similar color changes but higher transmittance than their films

  1. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  2. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhonglian; Fan, Benhu; Ouyang, Jianyong [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Xue, Feng [Department of Chemistry, National University of Singapore, Singapore 117573 (Singapore); Adachi, Chihaya [Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2010-12-15

    Polymers based on dithienyl-2,1,3-benzothiadiazole (TBT) have received strong attention as the donor materials of polymer photovoltaic cells (PVs), since they can have a low band gap. But soluble small organic molecules based on TBT have been rarely studied. This paper reports the synthesis of two small organic molecules based on TBT and their application as the donor materials of solution-processed bulk heterojunction organic photovoltaic cells (OPVs). These compounds were soluble in common organic solvents, such as chloroform, chlorobenzene and tetrahydrofuran. They have band gaps comparable to poly(3-hexylthiophene) (P3HT) and lower HOMO and LUMO (HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital) levels than P3HT. These molecules and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were used as the donors and acceptor to fabricate bulk heterojunction OPVs through solution processing. After optimization of the experimental conditions, power conversion efficiency (PCE) of 0.66% was achieved on the solution-processed OPVs under AM 1.5G, 100 mW cm{sup -2} illumination. (author)

  4. Electroluminescence from GaN-polymer heterojunction

    International Nuclear Information System (INIS)

    Chitara, Basant; Lal, Nidhi; Krupanidhi, S.B.; Rao, C.N.R.

    2011-01-01

    Inorganic and organic semiconductor devices are generally viewed as distinct and separate technologies. Herein we report a hybrid inorganic-organic light-emitting device employing the use of an air stable polymer, Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction, avoiding the use of p-type GaN, which is difficult to grow, being prone to the complex and expensive fabrication techniques that characterises it. I-V characteristics of the GaN-polymer heterojunction fabricated by us exhibits excellent rectification. The luminescence onset voltage is typically about 8-10 V. The device emits yellowish white electroluminescence with CIE coordinates (0.42, 0.44). - Highlights: → We use a polymer Poly (9,9-dioctylfluorene-alt-benzothiadiazole) as a p-type layer to create a heterojunction. → I-V characteristics of the device fabricated by us exhibits excellent rectification. → The p-type polymer also emits yellow light, which when combined in proper composition with GaN, give rise to white light. → Device can be readily fabricated by just spin coating the polymer over GaN reducing the cost of the device.

  5. Organic hybrid planar-nanocrystalline bulk heterojunctions

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  6. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    International Nuclear Information System (INIS)

    Srivastava, Shashi B.; Singh, Samarendra P.; Sonar, Prashant

    2015-01-01

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C 71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO 3 /Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10 −3 cm 2 V −1 s −1 , and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10 −5 cm 2 V −1 s −1 , and electron mobility of 8.7 × 10 −4 cm 2 V −1 s −1

  7. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  8. Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited.

    Science.gov (United States)

    Collado-Fregoso, Elisa; Hood, Samantha N; Shoaee, Safa; Schroeder, Bob C; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R

    2017-09-07

    In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC 70 BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC 70 BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.

  9. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  10. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare; Howard, Ian A.; Cabanetos, Clement; El Labban, Abdulrahman; Beaujuge, Pierre; Laquai, Fré dé ric

    2015-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl

  11. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A1 -D-A2 Low-Bandgap Conjugated Polymers.

    Science.gov (United States)

    Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-04-01

    Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A 1 -D-A 2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A 1 -D-A 2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm -2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectroscopic studies of charge transfer complexes of some amino aromatic donors with some acceptors

    International Nuclear Information System (INIS)

    Al-Ani, S.S.

    1989-01-01

    Charge transfer (C.T.) complexes are the products of the weak reversible interactions between electron donors and electron acceptors. Sixteen novel C.T. complexes were studied and discussed. These complexes were formed from aromatic electron donors with various electron acceptors in absolute ethyl alcohol at 20 0 C. Electronic absorption spectra of these complexes and their donors and acceptors were taken. New charge transfer absorption bands appeared for these complexes in the UV-VIS region. The donors used are tetramethyl diamino benzophenone, P-amino-N:N-dimethyl aniline, tetramethyl-diamino-diphenylmethane, P-amino-azobenzene and benzidine, while the acceptors are iodine, bromine, picric acid, 2,4-dinitrophenol, trifluoroacetic acid and trichloroacetic acid. The results showed a disappearance of some donors and acceptors absorption bands. The energy of C.T. bands were calculated from which the ionization potentials of donors were obtained. The results showed that energies of C.T. Bands for complexes of a given donor with a series of acceptors are very similar. Some C.T. complexes showed low value of energy and high values of electrical conductivity. These are ionic complexes rather than molecular ones. 4 tabs.; 2 figs.; 99 refs

  13. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells

    Science.gov (United States)

    Rand, Barry P.; Burk, Diana P.; Forrest, Stephen R.

    2007-03-01

    Organic semiconductor heterojunction (HJ) energy level offsets are modeled using a combination of Marcus theory for electron transfer, and generalized Shockley theory of the dark current density vs voltage (J-V) characteristics. This model is used to fit the J-V characteristics of several donor-acceptor combinations commonly used in thin film organic photovoltaic cells. In combination with measurements of the energetics of donor-acceptor junctions, the model predicts tradeoffs between the junction open-circuit voltage (VOC) and short-circuit current density (JSC) . The VOC is found to increase with light intensity and inversely with temperature for 14 donor-acceptor HJ materials pairs. In particular, we find that VOC reaches a maximum at low temperature (˜175K) for many of the heterojunctions studied. The maximum value of VOC is a function of the difference between the donor ionization potential and acceptor electron affinity, minus the binding energy of the dissociated, geminate electron-hole pair: a general relationship that has implications on the charge transfer mechanism at organic heterojunctions. The fundamental understanding provided by this model leads us to infer that the maximum power conversion efficiency of double heterostructure organic photovoltaic cells can be as high as 12%. When combined with mixed layers to increase photocurrent and stacked cells to increase VOC , efficiencies approaching 16% are within reach.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  15. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    Science.gov (United States)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  16. Shelf life and outdoor degradation studies of organic bulk heterojunction solar cells

    Science.gov (United States)

    Gergova, R.; Sendova-Vassileva, M.; Popkirov, G.; Gancheva, V.; Grancharov, G.

    2018-03-01

    We studied the degradation of different types of bulk heterojunction devices, in which the materials comprising the active layer and/or the materials used for the back electrode are varied. The devices are deposited on ITO covered glass and have the structure PEDOT:PSS/BHJ/Me, where PEDOT:PSS is the hole transport layer, BHJ (bulk heterojunction) is the active layer comprising a polymer donor (e.g. PTB7, PCDTBT) and a fullerene derivative acceptor (e.g. PC60BM, PC70BM) deposited by spin coating, Me is the metal back contact, which is either Ag or Al deposited by magnetron sputtering or thermal evaporation. The device performance was monitored after storage in the dark at ambient conditions by following the evolution of the J-V curve over time. Results of real conditions outdoor degradation studies are also presented. The stability of the different solar cell structures studied is compared.

  17. Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles

    International Nuclear Information System (INIS)

    Neubauer, Antje; Bendig, Juergen; Rettig, Wolfgang

    2009-01-01

    Derivatives of N-pyrrolobenzene with a para-donor and a para-acceptor substituent on the benzene ring are compared. It is shown that by a suitable increase of the donor strength of the pyrrolo group, CT fluorescence can be achieved even for donor-donor-substituted benzenes. The ICT emission for sterically hindered compounds is more forbidden than that of unhindered phenyl pyrroles. This suggests conformational effects which induce a narrower twist angle distribution around a perpendicular minimum in the excited state.

  18. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa; Hood, Samantha N.; Shoaee, Safa; Schroeder, Bob C.; McCulloch, Iain; Kassal, Ivan; Neher, Dieter; Durrant, James R.

    2017-01-01

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  1. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  2. Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications

    KAUST Repository

    Neophytou, Marios

    2018-03-05

    This work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2-b][1]benzothiophene isoindigo (TBTI)-containing low bandgap donor-acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron-rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high-resolution electron energy loss spectroscopy is used to investigate the phase-separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology.

  3. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  4. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  5. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien

    2014-04-08

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  6. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien; El Labban, Abdulrahman; Cabanetos, Clement; Hoke, Eric T.; Shukla, Pradeep Kumar; Risko, Chad; Bré das, Jean Luc; McGehee, Michael D.; Beaujuge, Pierre

    2014-01-01

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  7. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Effect of the Side Chains and Anode Material on Thermal Stability and Performance of Bulk-Heterojunction Solar Cells Using DPP(TBFu2 Derivatives as Donor Materials

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available An optimized fabrication of bulk-heterojunction solar cells (BHJ SCs based on previously reported diketopyrrolopyrrole donor, ethyl-hexylated DPP(TBFu2, as well as two new DPP(TBFu2 derivatives with ethyl-hexyl acetate and diethyl acetal solubilizing side-chains and PC60BM as an acceptor is demonstrated. Slow gradual annealing of the solar cell causing the effective donor-acceptor reorganization, and as a result higher power conversion efficiency (PCE, is described. By replacing a hole transporting layer PEDOT:PSS with MoO3 we obtained higher PCE values as well as higher thermal stability of the anode contact interface. DPP(TBFu2 derivative containing ethyl-hexyl acetate solubilizing side-chains possessed the best as-cast self-assembly and high crystallinity. However, the presence of ethyl-hexyl acetate and diethyl acetal electrophilic side-chains stabilizes HOMO energy of isolated DPP(TBFu2 donors with respect to the ethyl-hexylated one, according to cyclic voltammetry.

  9. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    Science.gov (United States)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  10. Conformational dynamics of semiflexibly bridged electron donor-acceptor systems comprising long aliphatic tails

    NARCIS (Netherlands)

    Bleisteiner, B.; Marian, T.; Schneider, S.; Brouwer, A.M.; Verhoeven, J.W.

    2001-01-01

    In continuation of our previous work on the conformational dynamics (harpooning mechanism) of semiflexibly bridged electron donor-acceptor systems we have studied a derivative with two long aliphatic chains tethered to the donor and acceptor moieties, respectively. The fitting of the time- and

  11. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  12. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  13. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2012-10-26

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer\\'s band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b \\' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  14. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  15. Conformation sensitive charge transport in conjugated polymers

    International Nuclear Information System (INIS)

    Mattias Andersson, L.; Hedström, Svante; Persson, Petter

    2013-01-01

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells

  16. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  17. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  18. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  19. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.; Holcombe, Thomas W.; Unruh, David A.; Sellinger, Alan; Fréchet, Jean M. J.

    2010-01-01

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  20. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.

    2010-03-09

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  1. Understanding the phase separation evolution in efficient P3HT:IC70BA-based bulk-heterojunction polymer solar cells

    International Nuclear Information System (INIS)

    Fan Xi; Guo Shishang; Fang Guojia; Li Songzhan

    2013-01-01

    The effects of solvent and thermal annealing on the morphology of the active layers and the photovoltaic performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) are investigated systematically, for PSCs based on a blend of poly(3-hexylthiophene) (P3HT) as a donor and indene-C 70 bisadduct (IC 70 BA) as an acceptor. IC 70 BA crystallites are found reasonably well dispersed in the P3HT matrix after spin-coating. However, the IC 70 BA crystallites coarsen in size after annealing, which are clearly evidenced by transmission electron microscopy. Simultaneously, space charge limited current measurements demonstrate that solvent and thermal annealing can improve the hole and electron mobility, which reduces charge-carrier recombination and improves charge-carrier transport in the P3HT and IC 70 BA blend layers. The corresponding current-voltage curves are measured in quantity and we propose a model to show the variation of the ordered structure of P3HT domains and IC 70 BA crystallite characteristics in the phase separation process, expressing a viewpoint on the high performance of BHJ PSCs.

  2. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    Science.gov (United States)

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  3. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    International Nuclear Information System (INIS)

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  4. .Pi.-conjugated donor and donor-acceptor metallo-polymers

    Czech Academy of Sciences Publication Activity Database

    Wild, A.; Schlütter, F.; Pavlov, G. M.; Friebe, Ch.; Festag, G.; Winter, A.; Hager, M. D.; Cimrová, Věra; Schubert, U.S.

    2010-01-01

    Roč. 31, 9-10 (2010), s. 868-874 ISSN 1022-1336 R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : analytical ultracentrifugation * conducting polymers * metallo-polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.371, year: 2010

  5. Synthesis of OMS Materials and Investigation of Their Acceptor-Donor Characteristics.

    Science.gov (United States)

    Grajek, H; Paciura-Zadrożna, J; Choma, J; Michalski, E; Witkiewicz, Z

    2012-10-01

    Three ordered mesoporous siliceous (OMS) materials known as MCM41s-unmodified MCM-41C16 ("C16"), and two MCM41s with different surface functionalities: MCM-41C16-SH ("C16-SH") and MCM-41C16-NH 2 ("C16-NH 2 ")-were synthesized and studied by inverse gas chromatography in order to determine their acceptor-donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads , of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle-Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A ) and donors (parameter: K D ). Considering the different compositions of the probes, each of which has different acceptor-donor properties, a new chromatographic test to supplement the Grob test is suggested.

  6. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  7. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  8. Additive-Morphology Interplay and Loss Channels in “All-Small-Molecule” Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM

    KAUST Repository

    Liang, Ru-Ze

    2017-12-16

    Achieving efficient bulk-heterojunction (BHJ) solar cells from blends of solution-processable small-molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well-defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All-SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution-processing additive 1,8-diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as-cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal-insulator-semiconductor carrier extraction” methods, and systematic recombination examinations by light-dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase-separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.

  9. Additive-Morphology Interplay and Loss Channels in “All-Small-Molecule” Bulk-heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM

    KAUST Repository

    Liang, Ru-Ze; Babics, Maxime; Seitkhan, Akmaral; Wang, Kai; Geraghty, Paul Bythell; Lopatin, Sergei; Cruciani, Federico; Firdaus, Yuliar; Caporuscio, Marco; Jones, David J.; Beaujuge, Pierre

    2017-01-01

    Achieving efficient bulk-heterojunction (BHJ) solar cells from blends of solution-processable small-molecule (SM) donors and acceptors is proved particularly challenging due to the complexity in obtaining a favorable donor–acceptor morphology. In this report, the BHJ device performance pattern of a set of analogous, well-defined SM donors—DR3TBDTT (DR3), SMPV1, and BTR—used in conjunction with the SM acceptor IDTTBM is examined. Examinations show that the nonfullerene “All-SM” BHJ solar cells made with DR3 and IDTTBM can achieve power conversion efficiencies (PCEs) of up to ≈4.5% (avg. 4.0%) when the solution-processing additive 1,8-diiodooctane (DIO, 0.8% v/v) is used in the blend solutions. The figures of merit of optimized DR3:IDTTBM solar cells contrast with those of “as-cast” BHJ devices from which only modest PCEs <1% can be achieved. Combining electron energy loss spectrum analyses in scanning transmission electron microscopy mode, carrier transport measurements via “metal-insulator-semiconductor carrier extraction” methods, and systematic recombination examinations by light-dependence and transient photocurrent analyses, it is shown that DIO plays a determining role—establishing a favorable lengthscale for the phase-separated SM donor–acceptor network and, in turn, improving the balance in hole/electron mobilities and the carrier collection efficiencies overall.

  10. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui

    2018-01-25

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  11. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui; Chen, Xiankai; Ashokan, Ajith; Zheng, Zilong; Ravva, Mahesh Kumar; Bré das, Jean-Luc

    2018-01-01

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  12. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers

    KAUST Repository

    Ayzner, Alexander L.; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F.; Bao, Zhenan

    2015-01-01

    © 2015 American Chemical Society. Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  13. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers

    KAUST Repository

    Ayzner, Alexander L.

    2015-12-30

    © 2015 American Chemical Society. Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  14. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  15. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola; Wadsworth, Andrew; Moser, Maximilian; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2018-01-01

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  16. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  17. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  18. Effects of electric and magnetic fields on fluorescence in electron donor and acceptor pairs of pyrene and N-methylphthalimide doped in a polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Tomokazu [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Mizoguchi, Miwako [Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Iimori, Toshifumi [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Nakabayashi, Takakazu [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Ohta, Nobuhiro [Research Institute for Electronic Science (RIES), Hokkaido University, N12, W6 Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan)], E-mail: nohta@es.hokudai.ac.jp

    2006-05-09

    External electric-field-induced change in fluorescence spectra as well as in fluorescence decay has been measured for electron donor and acceptor pairs of pyrene (PY) and N-methylphthalimide (NMPI) doped in a polymer film. Field-induced quenching and field-induced shortening of lifetime are observed for fluorescence emitted from the locally excited (LE) state of PY, indicating that intermolecular electron transfer from the excited state of PY to NMPI is enhanced by an electric field in a polymer film. A simulation has been made for the field effect on decay profile of the LE fluorescence of PY. Exciplex fluorescence is also quenched by an electric field because of the field-induced decrease in the initial population of the fluorescent exciplex. Both in LE fluorescence of PY and in exciplex fluorescence, electric-field-induced quenching becomes less efficient in the presence of a magnetic field. The mechanism of the synergy effect of electric and magnetic fields on fluorescence has been discussed.

  19. Effects of electric and magnetic fields on fluorescence in electron donor and acceptor pairs of pyrene and N-methylphthalimide doped in a polymer film

    International Nuclear Information System (INIS)

    Yoshizawa, Tomokazu; Mizoguchi, Miwako; Iimori, Toshifumi; Nakabayashi, Takakazu; Ohta, Nobuhiro

    2006-01-01

    External electric-field-induced change in fluorescence spectra as well as in fluorescence decay has been measured for electron donor and acceptor pairs of pyrene (PY) and N-methylphthalimide (NMPI) doped in a polymer film. Field-induced quenching and field-induced shortening of lifetime are observed for fluorescence emitted from the locally excited (LE) state of PY, indicating that intermolecular electron transfer from the excited state of PY to NMPI is enhanced by an electric field in a polymer film. A simulation has been made for the field effect on decay profile of the LE fluorescence of PY. Exciplex fluorescence is also quenched by an electric field because of the field-induced decrease in the initial population of the fluorescent exciplex. Both in LE fluorescence of PY and in exciplex fluorescence, electric-field-induced quenching becomes less efficient in the presence of a magnetic field. The mechanism of the synergy effect of electric and magnetic fields on fluorescence has been discussed

  20. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Investigation of donor-acceptor copolymer films and their blends with fullerene in the active layers of bulk heterojunction solar cells by Raman microspectroscopy

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Morávková, Zuzana; Pokorná, Veronika; Výprachtický, Drahomír

    2017-01-01

    Roč. 47, August (2017), s. 194-199 ISSN 1566-1199 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : conjugated polymers * low-band gap * bulk heterojunction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.399, year: 2016

  2. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  3. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Science.gov (United States)

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  4. New donor-acceptor-donor molecules based on quinoline acceptor unit with Schiff base bridge: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kotowicz, Sonia [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Siwy, Mariola [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland); Filapek, Michal; Malecki, Jan G. [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Smolarek, Karolina; Grzelak, Justyna; Mackowski, Sebastian [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun (Poland); Slodek, Aneta, E-mail: aneta.slodek@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Schab-Balcerzak, Ewa, E-mail: ewa.schab-balcerzak@us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze (Poland)

    2017-03-15

    Three solution-processable small organic molecules bearing quinoline as electron-accepting moiety were synthesized via condensation reaction of novel 6-amino-2-(2,2’-bithiophen-5-yl)-4-phenylquinoline with 2,2’-bithiophene-5-carboxaldehyde, 9-ethyl-9H-carbazole-3-carbaldehyde and 9-phenanthrenecarboxaldehyde. The presence of alternating electron-donating and accepting units results in a donor-acceptor-donor architecture of these molecular systems. Thermal, photophysical, and electrochemical properties of these small molecules were examined and the experimental results were supported by the density functional theory calculations. The obtained molecular systems exhibited high thermal stability with decomposition temperatures (5% weight loss) exceeding 330 °C in nitrogen atmosphere. It was found, based on DSC measurements, that investigated Schiff bases form amorphous material with glass transition temperatures between 88 and 190 °C. They also showed a UV–vis absorption in the range of 250–500 nm both in solution and in solid state as film and blend with PMMA and PVK. Photoluminescence measurements revealed moderately strong blue-light emission of the imines in solution as well as in PMMA blend with quantum yields in the range of 2–26%. In the case of imines dispersed in PVK matrix the emission of green light was mainly observed. In addition, when mixed with plasmonically active silver nanowires, the compounds exhibit relatively strong electroluminescence signal, associated with plasmonics enhancement, as evidenced by high-resolution photoluminescence imaging. The energy band gap estimated based on cyclic voltammetry was between 2.38 and 2.61 eV. - Highlights: • New Schiff bases possess donor-acceptor-imine-bridge-donor architecture were synthesized and examined. • Thorough characterization of optical and electrochemical properties of novel Schiff bases has been carried out. • Optical and electrochemical measurements were compared with DFT

  5. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  6. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  7. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  8. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held...

  9. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  10. Design rules for donors in bulk-heterojunction solar cells - towards 10 % energy-conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scharber, M.C.; Muehlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Brabec, C.J. [Konarka Austria, Altenbergerstrasse 69, A-4040 Linz (Austria); Heeger, A.J. [Department of Materials Science, Broida Hall 6125, University of California at Santa Barbara, Santa Barbara, CA 3106-5090 (United States)

    2006-03-17

    For bulk-heterojunction photovoltaic cells fabricated from conjugated polymers and a fullerene derivative, the relation between the open-circuit voltage (V{sub oc}) and the oxidation potential for different conjugated polymers is studied. A linear relation between V{sub oc} and the oxidation potential is found (see figure). Based on this relation, the energy-conversion efficiency of a bulk-heterojunction solar cell is derived as a function of the bandgap and the energy levels of the conjugated polymer. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  12. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics

    KAUST Repository

    Schroeder, Bob C.

    2015-08-13

    We report the synthesis of a novel pentacyclic donor moiety, dithienosilolothiophene, and its incorporation into low bandgap semiconducting polymers. The unique geometry of this new donor allowed attaching four solubilizing side chains on the same side of the fused ring system, thus ensuring sufficient solubility when incorporated into conjugated polymers while simultaneously reducing the steric hindrance between adjacent polymer chains. The optoelectronic properties of three new polymers comprising the novel pentacyclic donor were investigated and compared to structurally similar thieno[3,2-b]thienobis(silolothiophene) polymers. Organic solar cells were fabricated in order to evaluate the new materials’ potential as donor polymers in bulk heterojunction solar cells and gain further insight into how the single-sided side-chain arrangement affects the active layer blend morphology.

  13. Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics

    KAUST Repository

    Schroeder, Bob C.; Kirkus, Mindaugas; Nielsen, Christian B.; Ashraf, Raja Shahid; McCulloch, Iain

    2015-01-01

    We report the synthesis of a novel pentacyclic donor moiety, dithienosilolothiophene, and its incorporation into low bandgap semiconducting polymers. The unique geometry of this new donor allowed attaching four solubilizing side chains on the same side of the fused ring system, thus ensuring sufficient solubility when incorporated into conjugated polymers while simultaneously reducing the steric hindrance between adjacent polymer chains. The optoelectronic properties of three new polymers comprising the novel pentacyclic donor were investigated and compared to structurally similar thieno[3,2-b]thienobis(silolothiophene) polymers. Organic solar cells were fabricated in order to evaluate the new materials’ potential as donor polymers in bulk heterojunction solar cells and gain further insight into how the single-sided side-chain arrangement affects the active layer blend morphology.

  14. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Science.gov (United States)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  15. Interfacial exciplex formation in bilayers of conjugated polymers

    Science.gov (United States)

    Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.

    2013-10-01

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  16. Synthesis and Photovoltaic Properties of a Copolymer based on thieno [2, 3-f] benzofuran and thienopyrroledione

    Science.gov (United States)

    Gao, Yueyue; Yang, Yulin; Zhang, Yong

    2017-12-01

    A novel donor-acceptor type conjugated polymer PTBFTPD based on two-dimensional (2D) conjugated alkylthienyl substituted thieno[2,3-f]benzofuran (TBF) and thienopyrroledione (TPD) unit, was synthesized and applied as donor material for bulk heterojunction solar cells. The novol polymer possesses a narrow bandgap of 1.83 eV, a deep HOMO energy level (-5.64 eV) and a closer π-π stacking. After conventional devices were fabricated using PTBFTPD as donor blending with PC70BM as acceptor, a power conversion efficiency (PCE) of 4.33% with a high open circuit voltage (Voc) of 1.09 V was obtained. The result indicates the promising potential of thieno [2, 3-f] benzofuran unit for high efficient polymer solar cells with a high voltage.

  17. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  18. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    Science.gov (United States)

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  19. Donor-acceptor random copolyesters containing perylenebisimide (PBI) and oligo(p-phenylene vinylene) (OPV) by melt condensation polymerization: energy transfer studies.

    Science.gov (United States)

    Nisha, S Kumari; Asha, S K

    2013-10-31

    Novel copolyesters consisting of oligo(p-phenylene vinylene) (OPV) as donor (D) and perylenebisimide (PBI) as acceptor (A) were synthesized by melt polycondensation. Photoinduced energy transfer and photoinduced charge separation in these polyesters were studied in solution as well as in the solid state. Selective excitation of OPV moiety resulted in the energy transfer with >90% efficiency from OPV to PBI chromophore in the solution state. The direct excitation of PBI in the D-A copolyester resulted in reduced fluorescence emission of acceptor, indicating electron transfer between the D and A moieties. The effect of distance between donor and acceptor on the energy transfer efficiency from donor to acceptor was studied. Compared to a physical mixture of D and A polyesters alone, the energy transfer was 4 times more efficient in the D-A copolyester, highlighting the influence of covalently linking D and A in a single polymer chain. A strong fluorescence quenching (∼ 100%) of both chromophores in solid state indicated an efficient photoinduced charge transfer after photoexcitation of either D or A. Thus, OPV-PBI main chain copolyester is an excellent system for the study of energy- and electron-transfer processes in organic semiconductor. Reactive blend of D/A copolyester was also prepared by the transesterification reaction between D and A alone copolyesters. The energy transfer efficiency from D to A moiety upon selective excitation of D chromophore in the D/A copolyester blend was ∼4 times higher compared to a physical mixture of D and A alone copolyesters, which gave direct proof for the transesterification reaction in polyester/polyester reactive blending.

  20. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  1. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    Science.gov (United States)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  2. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  3. Fullerene derivatives as components for 'plastic' photovoltaic cells

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  4. Making highly conductive ZnO: creating donors and destroying acceptors

    Science.gov (United States)

    Look, D. C.; Leedy, K. D.

    2012-02-01

    We obtain room-temperature resistivities as low as ρ =1.4 x 10-4 Ω-cm in transparent Ga-doped ZnO grown on Al2O3 by pulsed laser deposition (PLD) at 200 °C in 10 mTorr of pure Ar and then annealed in a Zn enfivironment. Donor ND and acceptor NA concentrations are calculated from a recently developed scattering theory that is valid for any degenerate semiconductor material and requires only two input parameters, mobility μ and carrier concentration n measured at any temperature in the range 5 - 300 K. By comparison with SIMS and positron annihilation measurements, it has been shown that the donors in these samples are mostly GaZn, as expected, but that the acceptors are point defects, Zn vacancies VZn. PLD growth in Ar at 200 °C produces a high concentration of donors [GaZn] = 1.4 x 1021 cm-3, but VZn acceptors are produced at the same time, due to self-compensation. Fortunately, a large fraction of the VZn can be eliminated by annealing in a Zn environment. The theory gives ND and NA, and thus [GaZn] and [VZn], at each step of the growth and annealing process. For convenience, the theory is presented graphically, as plots of μ vs n at various values of compensation ratio K = NA/ND. From the value of K corresponding to the experimental values of μ and n, it is possible to calculate ND = n/(1 - K) and NA = nK/(1 - K).

  5. Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong-Jong [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); An, Tae Kyu [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Seul-Ong [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Cha, Hyojung [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Hyoung Nam [Department of Chemistry & Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Xiofeng, Tan [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Yun-Hi, E-mail: ykim@gnu.ac.kr [Department of Chemistry & Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2015-03-01

    Two p-type polymers, PONDPP and PTADPP were synthesized by Suzuki coupling reaction to investigate the effect of alkoxy aromatic donor units in diketopyrrolopyrrole (DPP)-based copolymers on OTFTs and OPVs. PONDPP containing dialkoxynaphthalene exhibits excellent field-effect performances, with a hole mobility of 0.324 cm{sup 2}/V while PTADPP containing dialkoxyanthracene exhibits mobility of 4.5 × 10{sup −3} cm{sup 2}/V at 200 °C annealing. Bulk heterojunction type polymer solar cells based on these polymers as the electron donor materials, with PC{sub 71}BM as the acceptor, showed maximum power conversion efficiency (PCE) of 0.9% for PONDPP and 1.1% for PTADPP under AM 1.5 illumination. From photophysical and structural studies, we found that naphthalene unit was introduced to the DPP unit to enhance more the molecular ordering compared to anthracene unit. - Highlights: • Two diketopyrrolopyrrole (DPP)-based copolymers, PONDPP and PTADPP were synthesized. • We investigated the effect of alkoxy aromatic donor units on OTFTs and OPVs. • PONDPP and PTADTT exhibit mobilities of 0.324 and 4.5 × 10{sup −3} cm{sup 2}/V. • OPVs showed power conversion efficiency of 0.9% for PONDPP and 1.1% for PTADPP.

  6. Recent advances in photoinduced donor/acceptor copolymerization

    International Nuclear Information System (INIS)

    Joensson, S.; Viswanathan, K.; Hoyle, C.E.; Clark, S.C.; Miller, C.; Morel, F.; Decker, C.

    1999-01-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor

  7. Amine donor and acceptor influence on the thermodynamics of ω-transaminase reactions

    DEFF Research Database (Denmark)

    Gundersen, Maria T.; Abu, Rohana; Schürmann, Martin

    2015-01-01

    In recent years biocatalytic transamination using ω-transaminase has become established as one of the most interesting routes to synthesize chiral amines with a high enantiomeric purity, especially in the pharmaceutical sector where the demand for such compounds is high. Nevertheless, one limitat...... of such reactions because it may be used to help select suitable donor/acceptor combinations. The results presented here give guidance, with respect to thermodynamics, in order to further extend the application of biocatalytic transamination....... limitation for successful implementation and scale-up is that the thermodynamics of such conversions are frequently found unfavourable. Herein we report experimental measurements of apparent equilibrium constants for several industrially relevant transamination reactions in a systematic manner to better...... understand the effect of amine acceptor and donor choice. For example, we have found that ortho-substitution of acetophenone like molecules, had a significant impact on the thermodynamic equilibrium. Likewise, the effect of cyclic amine acceptors was evaluated and compared to similar non-cyclic structures...

  8. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  9. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  10. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  11. Influence of substitution of the proton donor and proton acceptor abilities of molecules. 1. The development method of definition proton donor and proton acceptor abilities A-H containing molecules

    International Nuclear Information System (INIS)

    Nurulloev, M.; Narziev, B.N.; Islomov, Z.; Fayzieva, M.

    2005-01-01

    The influence of nature of the assistant is investigated in work, it is quantity and a site on proton donor and proton acceptor abilities. A-H containing organic connections and ways, of definition of these abilities are developed by the method, of IR spectroscopy. It is developed model and it offered a technique of definition of these abilities. It is shown that the proton donor and proton acceptor is abilities of molecules as constants, are one of individual physical and chemical characteristics A-H of containing organic connections. These sizes determine the abilities of molecules, to form the intermolecular hydrogen connections, disabilities of the H-complexes formed in condensed, environments concerning to the non replaced molecule

  12. Electron Transfer in Donor-Bridge-Acceptor Systems and Derived Materials

    NARCIS (Netherlands)

    Oosterbaan, W.D.

    2002-01-01

    Some aspects of photoinduced electron transfer (ET) in (electron donor)-bridge-(electron acceptor) compounds (D-B-A) and derived materials are investigated. Aim I is to determine how and to which extent non-conjugated double bonds in an otherwise saturated hydrocarbon bridge affect the rate of

  13. Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Vesterager Madsen, Morten; Carlé, Jon Eggert

    2012-01-01

    Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness...... within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure...... of its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron...

  14. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    Science.gov (United States)

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Plastic Electronics and Optoelectronics: New Science and Technology from Soluble Semiconducting Polymers and Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers

    Science.gov (United States)

    2011-11-03

    Seifter, A. J. Heeger, Adv. Mater., 23, 1679–1683 (2011). 8. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode...distribution is unlimited. 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Bulk heterojunction (BHJ) solar cells were invented at UC Santa Barbara after the...Bulk Heterojunction Solar Cells Fabricated from Soluble Semiconducting Polymers Grant number: AFOSR FA9550-08-1-0248 Dr. Charle Lee, Program

  16. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  17. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    Science.gov (United States)

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  18. An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

    Directory of Open Access Journals (Sweden)

    E.R. Bittner

    2016-03-01

    Full Text Available We present here a formally exact model for electronic transitions between an initial (donor and final (acceptor states linked by an intermediate (bridge state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping model will grossly underestimate overall transition rate.

  19. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  20. Photo-induced absorption spectroscopy on organic, photovoltaically active donor-acceptor heterojunctions; Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heterouebergaengen

    Energy Technology Data Exchange (ETDEWEB)

    Schueppel, Rico

    2007-07-01

    Starting from some general considerations about organic semiconductors first the foundations of molecular crystals, their spectroscopic properties, as well as the mechanisms, on which the exharge-carrier generation is based, are presented. The functionality of the organic solar cells is then explained. The applied experimental techniques are thereafter explained. Special regards gets the photo-induced and transient absorption. Thed the dicyanovinyl-oligothiophene studied in this thesis are presented, whereby the characteristics fitted to the heterojunction with the fullerene C{sub 60} are discussed. Then the photo-induced absorption in this system is presented. In these studies an indirect occupation of the triplet starte of the oligothiophene derivates at the heterojunction with C{sub 60} is observed. The application of the oligothiophene derivates in organic solar cells is thereafter described. Thereby especially the correlation between reached zero voltage and the fitting of the energy levels at the DCVnT:C{sub 60} junction is considered. Furthermore the data of the solar cells are discussed in view of the statements on the charge-carrier separation at the heterojunction with C{sub 60} obtained from the photo-induced absorption.

  1. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  2. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  3. Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andreasen, Jens Wenzel; Jørgensen, Mikkel

    2010-01-01

    Four new copolymers of 1,4-dialkoxybenzene, thiophene, bithiophene and benzothiadiazole have been prepared and investigated for optical properties and in photovoltaic devices. The structures were chosen to show the effect of successively introducing an acceptor moiety, longer alkoxy side chains...... and finally, substituting thiophene for bithiophene. The absorption spectra and IPCE showed that these are low band gap polymers that can harvest light in the visible spectrum (400 to 700 nm) and that photoelectrons are generated in the whole range. The photovoltaic devices produced short circuit current...

  4. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  5. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  6. Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers

    International Nuclear Information System (INIS)

    Ledwon, Przemyslaw; Brzeczek, Alina; Pluczyk, Sandra; Jarosz, Tomasz; Kuznik, Wojciech; Walczak, Krzysztof; Lapkowski, Mieczyslaw

    2014-01-01

    A new class of bipolar monomers with pyrrole or thiophene–pyrrole–thiophene as electron donor and 1,8-naphthalimide as electron acceptor unit is reported. Donor–acceptor conjugated polymers were generated electrochemically. The synthesis of monomers, optical, electrochemical and spectroelectrochemical properties supported by theoretical calculations are presented. 1,8-naphthalimide units were attached directly to pyrrole in compounds 1a and 2a or by different bridges in the case of 1b and 2b. Intra-molecular donor–acceptor interactions of the monomers and its polymers were investigated using cyclic voltammetry, in-situ UV–Vis-NIR, electron spin resonance (ESR) spectroelectrochemistry and fluorescence spectroscopy. Studied compounds present large discrepancy (up to 1.31 eV for 2a) between energy gap values determined through electrochemical and optical measurements. The Time-dependent density functional theory (TDDFT) calculations help to explain this discrepancy. This is caused by weak HOMO to LUMO transition, 2000 times weaker than HOMO −2 to LUMO or HOMO to LUMO +1 transition. Altering the structure of monomers yields different stability and properties of obtained polymers. The p- and n-doping processes are separated. Anions are localized mainly on 1,8-naphthalimide units. Cations are localized mainly on pyrrole or thiophene–pyrrole–thiophene moiety and their polymer chains. Attachment of the additional thiophene units decreases the oxidation potential of the monomer and reduces the influence of the steric hindrance between 1,8-naphthalimide moiety and polymer/oligomers chain. This new class of model compounds is promising for use as a material with enhanced charge separation for wide range of optoelectronic, electrochromic and photovoltaic applications

  7. Preparation of photovoltaic cells from sexithiophene-C-60 blends

    NARCIS (Netherlands)

    Veenstra, SC; Malliaras, GG; Brouwer, HJ; Esselink, FJ; Krasnikov, VV; vanHutten, PF; Wildeman, J; Jonkman, HT; Sawatzky, GA; Hadziioannou, G; Mohlmann, GR

    1996-01-01

    Large photovoltaic responses have been recently observed in devices based on conjugated polymer-C-60 blends. Their enhanced performance, which relies on the formation of a bicontinuous network of donor-acceptor heterojunctions, is very sensitive to the morphology of the blend. In this paper, we

  8. Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b : 3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Units

    NARCIS (Netherlands)

    Van Mierloo, Sarah; Hadipour, Afshin; Spijkman, Mark-Jan; Van den Brande, Niko; Ruttens, Bart; Kesters, Jurgen; D'Haen, Jan; Van Assche, Guy; de Leeuw, Dago M.; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk J.; Maes, Wouter; Haen, Jan D’

    2012-01-01

    A solution processable narrow bandgap polymer composed of alternating 2,5-dithienylthiazolo[5,4-d]thiazole and asymmetrically alkyl-substituted 4H-cyclopenta[2,1-b:3,4-b']dithiophene units (PCPDT-DTTzTz) was synthesized by Suzuki polycondensation and the donor acceptor copolymer was thoroughly

  9. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    Energy Technology Data Exchange (ETDEWEB)

    GUILFORD JONES; S ST

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  10. Understanding and Design of Polymer Device Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Antoine [Princeton Univ., NJ (United States)

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  11. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  12. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  13. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    Science.gov (United States)

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  15. Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor-Acceptor-Donor Luminogens Based on the Triarylamine Functionality.

    Science.gov (United States)

    Usuki, Tsukasa; Shimada, Masaki; Yamanoi, Yoshinori; Ohto, Tatsuhiko; Tada, Hirokazu; Kasai, Hidetaka; Nishibori, Eiji; Nishihara, Hiroshi

    2018-04-18

    Six novel donor-acceptor-donor organic dyes containing a Si-Si moiety based on triarylamine functionalities as donor units were prepared by Pd-catalyzed arylation of hydrosilanes. Their photophysical, electrochemical, and structural properties were studied in detail. Most of the compounds showed attractive photoluminescence (PL) and electrochemical properties both in solution and in the solid state because of intramolecular charge transfer (ICT), suggesting these compounds could be useful for electroluminescence (EL) applications. The aggregation-induced emission enhancement (AIEE) characteristics of 1 and 3 were examined in mixed water/THF solutions. The fluorescence intensity in THF/water was stronger in the solution with the highest ratio of water because of the suppression of molecular vibration and rotation in the aggregated state. Single-crystal X-ray diffraction of 4 showed that the reduction of intermolecular π-π interaction led to intense emission in the solid state and restricted intramolecular rotation of the donor and acceptor moieties, thereby indicating that the intense emission in the solid state is due to AIEE. An electroluminescence device employing 1 as an emitter exhibited an external quantum efficiency of up to 0.65% with green light emission. The emission comes solely from 1 because the EL spectrum is identical to that of the PL of 1. The observed luminescence was sufficiently bright for application in practical devices. Theoretical calculations and electrochemical measurements were carried out to aid in understanding the optical and electrochemical properties of these molecules.

  16. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High Efficiency Conjugated Polymer Donor and Fullerene Derivative Acceptor Photovoltaic Materials for Polymer Solar Cells%聚合物太阳能电池高效共轭聚合物给体和富勒烯受体光伏材料

    Institute of Scientific and Technical Information of China (English)

    李永舫

    2011-01-01

    Polymer solar ceils (PSCs) are composed of a blend film (active layer) of a conjugated polymer donor and a fullerene derivative acceptor sandwiched between a transparent ITO positive electrode and a low workfunction metal negative electrode. PSCs have become the hot research field in recent years, due to their unique advantages of simple fabrication, low cost, light weight and capability to be fabricated into flexible devices. The present research focus is to improve their photovoltaic power conversion efficiency (PCE), and the key aspects for improving PCE are high efficiency photovoltaic materials. In this paper,I will mainly introduce the recent research progress of Institute of Chemistry, Chinese Academy of Sciences (ICCAS) on the new conjugated polymer donor and fullerene derivative photovoltaic materials, including the donor materials of two-dimensional conjugated polymers with conjugated side chains, conjugated polymers with electron-withdrawing substituents for lower HOMO energy levels, D-A copolymer with broad absorption and lower HOMO energy levels,and the acceptor materials of indene-C60 bisadduct (ICBA) and indene-CT0 bisadduct. The highest PCE of the PSCs based on the conjugated polymer donor materials reached 7.59%, which is one of the highest efficiencies reported in literatures so for. The PSCs based on P3HT as donor and our ICBA as acceptor showed PCE higher than 7~ ,which is the highest efficiency for the PSCs based on P3HT.%聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生物受体光伏材料。本文将重

  18. Merocyanines: polyene-polymethine transition in donor-acceptor-substituted stilbenes and polyenes

    International Nuclear Information System (INIS)

    Rettig, Wolfgang; Dekhtyar, Marina

    2003-01-01

    Three series of donor-acceptor-substituted conjugated compounds, namely, stilbenes, the open-chain polyenes of equivalent length, and the species of intermediate structure (polyenes terminated with only one phenyl ring) have been studied by the AM1 and HMO methods to elucidate and compare the structural prerequisites of the ideal polymethinic state ('cyanine limit'). The transition from polyenic to polymethinic properties has been traced in terms of bond-length (bond-order) alternation using the variation of terminal donor and acceptor substituents. Stilbenes manifest themselves as notably 'retarded' polyenes since a larger electronic asymmetry is necessary for them to reach the same degree of polymethinic character. The ground and the excited state have been shown to differ much more strongly for stilbenes than for polyenes with respect to the position of the bond equalization point on the scale of donor-acceptor difference. For the compounds containing one phenyl ring, the features revealed are intermediate between stilbenes and polyenes. The large S 0 -S 1 discrepancy in terms of bond alternation is a general property of aromatic ring-terminated chains (stilbenes) and is related to the influence of the aromatic character which can be quantified in this way. In this context, the most relevant definition for the cyanine limit (based on the bond invariance upon excitation) was selected from the existing definitions. The major trends revealed in the polyenic/polymethinic behaviour of the molecules can be interpreted on a topological basis within HMO or even simpler models with some additional influence due to the interelectronic repulsion which is taken into account in the AM1 treatment

  19. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    KAUST Repository

    Richter, Lee J.

    2014-09-29

    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  20. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    KAUST Repository

    Richter, Lee J.; DeLongchamp., Dean M.; Bokel, Felicia A.; Engmann, Sebastian; Chou, Kang Wei; Amassian, Aram; Schaible, Eric G.; Hexemer, Alexander

    2014-01-01

    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.

  1. Efficiency-limiting processes in OPV bulk heterojunctions of GeNIDTBT and IDT-based acceptors

    KAUST Repository

    Al-Saggaf, Sarah M.

    2018-01-01

    to the ubiquitously used fullerene derivatives. NFAs showed a rapid increase in efficiencies, now exceeding a PCE of 13%. In my thesis research, I used two small molecule IDT-based acceptors, namely O-IDTBR and O-IDTBCN, in combination with a wide bandgap donor

  2. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  3. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  4. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    Science.gov (United States)

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  6. Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4- b ]thiophene Polymer Donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan [Department; Chao, Pengjie [Department; Chen, Hui [Department; Mu, Zhao [Department; Chen, Wei [Materials; Institute; He, Feng [Department

    2017-08-09

    The chlorinated polymer, PBTCl, has been found to be an efficient donor in nonfullerene polymer solar cells (PSCs), which showed a blue-shifted absorbance compared to that of its fluorine analogue (PTB7-th) and resulted in more complementary light absorption with a nonfullerene acceptor, such as ITIC. Meanwhile, chlorine substitution lowered the HOMO level of PBTCl, which increased the open-circuit voltage of the corresponding polymer-based devices. The 2D GIWAXS analysis illustrated that the PBTCl/ITIC blend film exhibited a “face-on” orientation and scattering features of both PBTCl and ITIC, suggesting that the blend of PBTCl and ITIC was phase-separated and formed individual crystalline domains of the donor and acceptor, which promoted charge transfer in the bicontinuous film and eventually elevated the solar energy conversion efficiency. The PBTCl-based nonfullerene PSC exhibited a maximum PCE of 7.57% with a Voc of 0.91 V, which was an approximately 13% increasing in the PCE compared to that of the fluorine-analogue-based device.

  7. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi F. [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Soft Materials & Devices Lab, Department of Physics, Faculty of Science & Health, Koya University, Koya, Kurdistan Region (Iraq); Development Center for Research and Training, University of Human Development, Sulaimani, Kurdistan Region (Iraq); Yahya, Mohd Yazid, E-mail: yazidyahya@utm.my [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Sulaiman, Khaulah [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-02-15

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC{sub 61}BM). The results showed that short circuit current (I{sub Sc}), open circuit voltage (V{sub oc}), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  8. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    International Nuclear Information System (INIS)

    Muhammad, Fahmi F.; Yahya, Mohd Yazid; Sulaiman, Khaulah

    2017-01-01

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC 61 BM). The results showed that short circuit current (I Sc ), open circuit voltage (V oc ), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  9. Laterally Ordered Bulk Heterojunction of Conjugated Polymers : Nanoskiving a Jelly Roll

    NARCIS (Netherlands)

    Lipomi, Darren J.; Chiechi, Ryan C.; Reus, William F.; Whitesides, George M.

    2008-01-01

    This paper describes the fabrication of a nanostructured heterojunction of two conjugated polymers by a three-step process: i) spin-coating a multilayered film of the two polymers, ii) rolling the film into a cylinder (a ‘‘jelly roll’’) and iii) sectioning the film perpendicular to the axis of the

  10. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    Directory of Open Access Journals (Sweden)

    Benjamin Grévin

    2016-06-01

    Full Text Available Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM and Kelvin probe force microscopy (KPFM. With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level.

  11. Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors

    KAUST Repository

    Alqahtani, Obaid; Babics, Maxime; Gorenflot, Julien; Savikhin, Victoria; Ferron, Thomas; Balawi, Ahmed H.; Paulke, Andreas; Kan, Zhipeng; Pope, Michael; Clulow, Andrew J.; Wolf, Jannic Sebastian; Burn, Paul L.; Gentle, Ian R.; Neher, Dieter; Toney, Michael F.; Laquai, Fré dé ric; Beaujuge, Pierre; Collins, Brian A.

    2018-01-01

    The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.

  12. Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors

    KAUST Repository

    Alqahtani, Obaid

    2018-03-25

    The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.

  13. Fabrication of Organic Bulk Heterojunction Solar Cells on Flexible Substrates

    Science.gov (United States)

    Calderon, Gabriel; Merced-Sanabria, Milzaida; Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    2015-03-01

    The active layer for the organic solar cells fabricated is composed of P3HT:PCBM, poly(3-hexylthiophene) (P3HT) as electron donor and phenyl-C61-butyric acid methyl ester(PCBM) as electron acceptor. These polymers were used due to their promising characteristics for devices such as bulk heterojunction solar devices. We used polyethylene terephthalate (PET) substrates, a highly flexible plastic, with indium tin oxide (ITO) as the transparent conducting anode for the device, and UV lithography technique to pattern the ITO; this is to facilitate multiple devices on a single substrate. The fabrication process for pattern transfer incorporates developing and etching processes. We diluted the HCl and DI water to etch out the ITO. PEDOT:PSS and active layer of P3HT:PCBM were deposited on (3.0 sq-cm) patterned of ITO/PET by spin coating method. The cathode was thermally evaporated with Al. We characterized the device using a sourcemeter. We also simulated portions of the device using PET on graphene as the substrate.

  14. Squaraine Planar-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Bin Fan

    2009-01-01

    derivatives with extraordinarily high extinction coefficients are used as electron donors in bilayer heterojunctions with fullerene C60 as electron acceptor. Due to the very strong squaraine absorption band in the red spectral domain, antibatic behavior due to light filtering is observed in the photocurrent spectrum for film thicknesses of 35 nm to 40 nm. At reduced film thicknesses of 20 nm, this filtering effect at maximum absorption can be alleviated and power conversion efficiencies under simulated AM 1.5 full sun irradiation of 0.59% and 1.01% are obtained for the two squaraine derivatives, respectively. The photovoltaic properties of these cells are investigated with respect to electrode materials and chemical doping.

  15. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  16. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan

    2017-08-15

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  17. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan; Qian, Deping; Balawi, Ahmed Hesham; Wu, Yang; Ma, Wei; Laquai, Fré dé ric; Tang, Zheng; Zhang, Fengling; Li, Weiwei

    2017-01-01

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  18. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  19. Design, synthesis and photovoltaic properties of a series of new acceptor-pended conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    Zhihong; Wu; Yongxiang; Zhu; Wei; Li; Yunping; Huang; Junwu; Chen; Chunhui; Duan; Fei; Huang; Yong; Cao

    2016-01-01

    A series of novel acceptor-pended conjugated polymers featuring a newly developed carbazole-derived unit are designed and synthesized. The relationships between chemical structure and optoelectronic properties of the polymers are systematically investigated.The control of UV-Vis absorption spectra and energy levels in resulting polymers are achieved by introducing suitable pended acceptor units. The photovoltaic properties of the resulting polymers are evaluated by blending the polymers with(6,6)-phenyl-C71-butyric acid methyl ester. The resulting solar cells exhibit moderate performances with high open-circuit voltage. Charge transport properties and morphology were investigated to understand the performance of corresponding solar cells.

  20. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    Science.gov (United States)

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  1. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    Science.gov (United States)

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  2. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  3. Organic photovoltaics: Crosslinking for optimal morphology and stability

    KAUST Repository

    Rumer, Joseph W.; McCulloch, Iain

    2015-01-01

    Organic solar cells now exceed 10% efficiency igniting interest not only in the fundamental molecular design of the photoactive semiconducting materials, but also in overlapping fields such as green chemistry, large-scale processing and thin film stability. For these devices to be commercially useful, they must have lifetimes in excess of 10 years. One source of potential instability, is that the two bicontinuous phases of electron donor and acceptor materials in the photoactive thin film bulk heterojunction, change in dimensions over time. Photocrosslinking of the π-conjugated semiconducting donor polymers allows the thin film morphology to be ‘locked’ affording patterned and stable blends with suppressed fullerene acceptor crystallization. This article reviews the performance of crosslinkable polymers, fullerenes and additives used to-date, identifying the most promising.

  4. Organic photovoltaics: Crosslinking for optimal morphology and stability

    KAUST Repository

    Rumer, Joseph W.

    2015-04-25

    Organic solar cells now exceed 10% efficiency igniting interest not only in the fundamental molecular design of the photoactive semiconducting materials, but also in overlapping fields such as green chemistry, large-scale processing and thin film stability. For these devices to be commercially useful, they must have lifetimes in excess of 10 years. One source of potential instability, is that the two bicontinuous phases of electron donor and acceptor materials in the photoactive thin film bulk heterojunction, change in dimensions over time. Photocrosslinking of the π-conjugated semiconducting donor polymers allows the thin film morphology to be ‘locked’ affording patterned and stable blends with suppressed fullerene acceptor crystallization. This article reviews the performance of crosslinkable polymers, fullerenes and additives used to-date, identifying the most promising.

  5. Enhancing the photovoltaic performance of bulk heterojunction polymer solar cells by adding Rhodamine B laser dye as co-sensitizer.

    Science.gov (United States)

    Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz

    2018-04-01

    Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E.; Wu, Meng-Yin; Johns, Gary L.; Markovic, Nina; Arnold, Michael S.

    2015-01-01

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V oc ) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V oc , which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C 61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V oc , but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  7. PANI Branches onto Donor-Acceptor Copolymers: Synthesis, Characterization and Electroluminescent Properties of New 2D-Materials

    Directory of Open Access Journals (Sweden)

    Ignacio A. Jessop

    2018-05-01

    Full Text Available A new series of two-dimensional statistical conjugated polymers based on aniline and 9,9-dihexylfluorene as donor units and benzo- or naphtho-quinoxaline/thiadiazole derivatives as acceptor moieties, possessing PANI segments as side chains, were designed and synthesized. To investigate the effects of the perpendicular PANI branches on the properties of the main chain, the optical, electrochemical, morphological and electroluminescence properties were studied. The 2D materials tend to possess lower molecular weights and to absorb and to emit light red-shifted compared to the trunk 1D-polymers, in the yellow-red region of the visible spectrum. The 1D- and 2D-conjugated polymers present optical band gaps ranging from 2.15–2.55 eV, HOMO energy levels between −5.37 and −5.60 eV and LUMO energy levels between −3.02 and −3.29 eV. OLED devices based on these copolymers were fabricated. Although the performances were far from optimal due to the high turn-on voltages for which electroluminescence phenomena occur, a maximum luminescence of 55,100 cd/m2 together with a current density of 65 mA/cm2 at 18.5 V were recorded for a 2D-copolymer, PAFC6TBQ-PANI.

  8. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien

    2017-09-28

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices\\' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  9. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien; Paulke, Andreas; Piersimoni, Fortunato; Wolf, Jannic Sebastian; Kan, Zhipeng; Cruciani, Federico; El Labban, Abdulrahman; Neher, Dieter; Beaujuge, Pierre; Laquai, Fré dé ric

    2017-01-01

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  10. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics

    Science.gov (United States)

    Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich

    2012-07-01

    Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.

  11. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  12. Influence of substitution on the proton donor and proton acceptor abilities of molecules. III. Study of chlorine and ftorine substitution alcohol

    International Nuclear Information System (INIS)

    Nurulloev, M.; Narziev, B.N.; Islomov, Z.; Fayzieva, M.

    2006-01-01

    This work gives the study of influence of chlorine and ftorine atoms as substitutions to proton donor and proton acceptor ability of primary, secondary and tertiary alifatic alcohol. In accordance to developed method the proton donor ability of studied substances are determined. It is shown that the quantity of proton donor ability of reactionary center of the molecules depend on substitution nature and its proton acceptor quantity. Proposed that substitution influence of these molecule mainly transferred by inductive effect

  13. Structural, theoretical and experimental models of photosynthetic antennas, donors and acceptors

    International Nuclear Information System (INIS)

    Barkigia, K.M.; Chantranupong, L.; Fajer, J.; Kehres, L.A.; Smith, K.M.

    1989-01-01

    Theoretical calculations, based on recent x-ray studies of bacterial reaction centers, suggest that the light-absorption properties of the special pair phototraps in bacteria are controlled by the interplanar spacing between the bacteriochlorophyll subunits that constitute the special pairs. The calculations offer attractively simple explanations for the range of absorption spectra exhibited by photosynthetic bacteria. The wide range of (bacterio)chlorophyll skeletal conformations revealed by x-ray diffraction studies raise the intriguing possibility that different conformations, imposed by protein constraints, can modulate the light-absorption and redox properties of the chromophores in vivo. Electron-nuclear double resonance data obtained for the primary acceptors in green plants suggest specific substituent orientations and hydrogen bonding that may help optimize the orientations of the acceptors relative to the donors

  14. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    Science.gov (United States)

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien

    2014-05-13

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells with PCBM acceptors. Recent work has shown that the incorporation of ring substituents into the side chains of the BDT motifs in PBDTTPD can induce subtle variations in material properties, resulting in an increase of the BHJ device VOC to ∼1 V. In this contribution, we report on the synthesis of N-alkyloyl-substituted TPD motifs (TPD(CO)) and show that the electron-deficient motifs can further lower both the polymer LUMO and HOMO levels, yielding device VOC > 1 V (up to ca. 1.1 V) in BHJ solar cells with PCBM. Despite the high VOC achieved (i.e., low polymer HOMO), BHJ devices cast from TPD(CO)-based polymer donors can reach power conversion efficiencies (PCEs) of up to 6.7%, making these promising systems for use in the high-band-gap cell of tandem solar cells. © 2014 American Chemical Society.

  16. Synthesis and electrochemical properties of a new benzimidazole derivative as the acceptor unit in donor–acceptor–donor type polymers

    International Nuclear Information System (INIS)

    Ozelcaglayan, Ali Can; Sendur, Merve; Akbasoglu, Naime; Apaydin, Dogukan Hazar; Cirpan, Ali; Toppare, Levent

    2012-01-01

    A new benzimidazole unit, 4′-(tert-butyl)spiro[benzo[d]imidazole-2,1′-cyclohexane] was synthesized and coupled with different donor units like 3-hexylthiophene and 3,4-ethylenedioxythiophene (EDOT) via Stille coupling. The donor–acceptor–donor (D–A–D) type monomers, 4′-(tert-butyl)-4,7-bis(4-hexylthiophen-2-yl) spiro[benzo[d]imidazole-2,1′-cyclohexane] (BIHT) and 4′-(tert-butyl)-4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl) spiro[benzo[d]imidazole-2,1′-cyclohexane] (BIED) were electrochemically polymerized, their electrochemical and optical properties were investigated by cyclic voltammetry, UV–vis-NIR spectroscopy techniques. Effect of donor groups on the optical and electronic properties of polymer was studied.

  17. Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    International Nuclear Information System (INIS)

    Long Yunze; Yin Zhihua; Hui Wen; Chen Zhaojia; Wan Meixiang

    2008-01-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I – V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    Science.gov (United States)

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  19. Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine

    Science.gov (United States)

    Nakata, Yuya; Usui, Toshiki; Nishikawa, Yuki; Nekelson, Fabien; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-03-01

    Sandwich-cell-type bulk-heterojunction organic solar cells utilizing the liquid crystalline phthalocyanine, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2), have been fabricated and their photovoltaic properties have been studied. The short-circuit current (J SC) and power conversion efficiency (PCE) depended on the blend ratio of donor and acceptor molecules, and the maximum performance, such as J SC of 3.4 mA/cm2 and PCE of 0.67%, was demonstrated, when the blend ratio of the acceptor was 10 mol %. The photovoltaic properties were discussed by taking the relationship between the column axis direction of C6PcH2 and the carrier mobility in the active layer into consideration.

  20. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  1. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  2. Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix

    NARCIS (Netherlands)

    Brabec, C.J.; Johannson, H.; Padinger, F.; Neugebauer, H.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    In this work we present an investigation of the photoexcited states in conjugated polymer (donor) - fullerene (acceptor) interpenetrating networks embedded into conventional polymer hosts like polystyrene (PS), polyvinylcarbazole (PVK) or polyvinylbenzylchloride (PVBC) (guest - host approach), using

  3. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  4. Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Gevorgyan, Suren; Jørgensen, Mikkel

    2009-01-01

    The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3......MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 °C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical...... conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis...

  5. Time-resolved measurements of the external electric field effects on fluorescence in electron donor and acceptor pairs of N-ethylcarbazole and dimethyl terephthalate doped in a polymer film

    International Nuclear Information System (INIS)

    Iimori, Toshifumi; Yoshizawa, Tomokazu; Nakabayashi, Takakazu; Ohta, Nobuhiro

    2005-01-01

    Electric-field-induced change in fluorescence decay has been measured for electron donor and acceptor pairs of N-ethylcarbazole (ECZ) and dimethyl terephthalate (DMTP) doped in a polymer film. Field-induced change in lifetime of the fluorescence emitted from the locally excited state of ECZ clearly shows that the electron transfer from the excited state of ECZ to DMTP is enhanced by an external electric field ( F ). A comparison is made between the experimental results of the field effect on decay profile of the ECZ fluorescence and the simulated results. Time-resolved electrofluorescence spectra as well as the field-induced change in decay profile of exciplex fluorescence show that exciplex fluorescence is quenched by F at the early stage of time following photoexcitation, but enhanced by F at a later stage of time. Both the decrease in the initial population of the fluorescent exciplex and the lengthening of the exciplex fluorescence in lifetime are shown to be induced by F

  6. Time-resolved measurements of the external electric field effects on fluorescence in electron donor and acceptor pairs of N-ethylcarbazole and dimethyl terephthalate doped in a polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Toshifumi [Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Yoshizawa, Tomokazu [Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Nakabayashi, Takakazu [Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan); Ohta, Nobuhiro [Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 060-0812 (Japan); Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810 (Japan)], E-mail: nohta@es.hokudai.ac.jp

    2005-12-07

    Electric-field-induced change in fluorescence decay has been measured for electron donor and acceptor pairs of N-ethylcarbazole (ECZ) and dimethyl terephthalate (DMTP) doped in a polymer film. Field-induced change in lifetime of the fluorescence emitted from the locally excited state of ECZ clearly shows that the electron transfer from the excited state of ECZ to DMTP is enhanced by an external electric field ( F ). A comparison is made between the experimental results of the field effect on decay profile of the ECZ fluorescence and the simulated results. Time-resolved electrofluorescence spectra as well as the field-induced change in decay profile of exciplex fluorescence show that exciplex fluorescence is quenched by F at the early stage of time following photoexcitation, but enhanced by F at a later stage of time. Both the decrease in the initial population of the fluorescent exciplex and the lengthening of the exciplex fluorescence in lifetime are shown to be induced by F.

  7. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    Science.gov (United States)

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  8. Hybrid ZnO:polymer bulk heterojunction solar cells from a ZnO precursor

    NARCIS (Netherlands)

    Beek, W.J.E.; Slooff, L.H.; Wienk, M.M.; Kroon, J.M.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    We describe a simple and new method to create hybrid bulk heterojunction solar cells consisting of ZnO and conjugated polymers. A gel-forming ZnO precursor, blended with conjugated polymers, is converted into crystalline ZnO at temperatures as low as 110 °C. In-situ formation of ZnO in MDMO-PPV

  9. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    International Nuclear Information System (INIS)

    Mandal, Suman; Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid

    2016-01-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO 2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  10. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 13.942, year: 2016

  12. Ternary Organic Solar Cells with Coumarin7 as the Donor Exhibiting Greater Than 10% Power Conversion Efficiency and a High Fill Factor of 75.

    Science.gov (United States)

    Chen, Xin-Wei; Tao, Si-Lu; Fan, Cong; Chen, Dong-Cheng; Zhou, Ling; Lin, Hui; Zheng, Cai-Jun; Su, Shi-Jian

    2017-09-06

    Ternary bulk heterojunction (BHJ) is a brilliant photovoltaic technology for improving the performance of organic solar cells (OSCs), because the light absorption range can be significantly extended by using multiple donors or acceptor materials. In this paper, coumarin7 (C7), a small organic molecule typical led used in organic light-emitting diodes, was initially exploited as second electron-donor component in ternary bulk heterojunction OSCs along with conventional blend system spolythieno[3,4-b]-thiophene/benzodithiophene(PTB7) and [6,6]-phenyl-C71 -butyric acid methyl(PC 71 BM). A champion PCE value of 10.28% was realized in the ternary OSCs when incorporated with 10 wt % C7 doping ratio in the donors, corresponding to about 35% enhancement compared with the PTB7:PC 71 BM-based OSCs, a high fill factor (FF) of 75.03%, a short-circuit currentdensity (J sc ) of 18.72 mA cm -2 and an open-circuit voltage (V oc ) of 0.73 V. The enhanced performance of the ternary OSCs can be attributed to the simultaneous improvement of the FF and the J sc . In addition to extended light absorption, a perfect nanofiber filament active layer morphology is obtained due to the good compatibility between C7 and PTB7, which facilitates the balance of charge transportation and the suppression of charge recombination. This investigation suggests that coumarin derivatives, which have completely different structure with polymer donors, can also be used to fabricate ternary solar cells and have the potential applications to obtain amazing performance after further device engineering and optimization.

  13. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  14. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  15. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  16. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    Science.gov (United States)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  17. Interfacial effects in organic semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Stadler, P.

    2011-01-01

    The field of organic electronics has systematically gained interest in recent years, technologically and scientifically advances have been made leading to practical applications such as organic light emitting diodes, organic field-effect transistors and organic photo-voltaic cells. In this thesis a fundamental study on organic molecules is presented targeting on interfacial effects at organic heterojunctions. Generally in organic electronic devices interfaces are considered as key parameters for achieving high performance applications. Therefore in this work the emphasis is to investigate layer-by-layer heterojunctions of organic molecules. Defined heterojunctions at inorganic III-V semiconductors form superlattices and quantum-wells, which lead to interfacial effects summarized as quantum confinement and two-dimensional electron gases. Although organic molecules differ in many aspects from their inorganic counterparts, similar effects can be theoretically expected at organic heterojunctions as well. Organic molecules form van-der-Waals type crystals and domains which are macroscopically anisotropic and polycrystalline or amorphous. Organic molecules are intrinsic semiconductors and at interfaces dipoles are formed, which control the energy level alignment. In order to characterize such structures and compare them to inorganic superlattices and quantum-wells it is necessary to induce charge carriers. In this work this is established either by interfacial doping using high-performance dielectrics in a field-effect transistor structure or by photo-doping by exciting a donor-acceptor bilayer. In both cases C 60 was chosen as organic semiconductor exhibiting good acceptor properties and an electron mobility in the range of 0.5 cm 2 V -1 s -1 . The fabrication of well-defined few-molecular layers allows probing directly at the interface. Spectroscopic methods and transport measurements are applied for characterization: Photoemission spectroscopy, absorption and photo

  18. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 (India); Kundu, Asish K.; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Rioult, Maxime; Belkhou, Rachid [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette (France)

    2016-08-29

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  19. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Beiley, Zach M.; McGehee, Michael D.

    2012-01-01

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  20. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  1. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  2. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  3. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  4. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  5. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.

    Science.gov (United States)

    Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T

    2018-02-13

    Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  7. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is shown...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  8. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  9. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  10. CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers

    KAUST Repository

    Wadsworth, Andrew

    2017-11-08

    The field of organic photovoltaics has advanced a great deal over the last decade, with device efficiencies now exceeding 11%. A large part of this success can be attributed to the development of donor polymer materials, from their humble beginnings as homopolymers to the highly tuned push-pull copolymer and terpolymer materials that are now being reported on a regular basis. Through the careful use of chemical modification, it has been possible to design and synthesize a wide variety of donor polymers, allowing optimization of both the optoelectronic and structural properties of the materials. In doing so, more favourable active layer blends have been achieved and therefore significant improvements in device performance have been observed. Herein we discuss how the chemical design of donor polymers for organic photovoltaics has led to the emergence of high-performance materials.

  11. CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers

    KAUST Repository

    Wadsworth, Andrew; Baran, Derya; Gorman, Jeffrey; McCulloch, Iain

    2017-01-01

    The field of organic photovoltaics has advanced a great deal over the last decade, with device efficiencies now exceeding 11%. A large part of this success can be attributed to the development of donor polymer materials, from their humble beginnings as homopolymers to the highly tuned push-pull copolymer and terpolymer materials that are now being reported on a regular basis. Through the careful use of chemical modification, it has been possible to design and synthesize a wide variety of donor polymers, allowing optimization of both the optoelectronic and structural properties of the materials. In doing so, more favourable active layer blends have been achieved and therefore significant improvements in device performance have been observed. Herein we discuss how the chemical design of donor polymers for organic photovoltaics has led to the emergence of high-performance materials.

  12. Optical Characterization of the Hole Polaron in a Series of Diketopyrrolopyrrole Polymers Used for Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan L. Williams

    2014-12-01

    Full Text Available A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor and electron-deficient (acceptor conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed.

  13. Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells.

    Science.gov (United States)

    Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-20

    For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.

  14. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells.

    Science.gov (United States)

    Duan, Yu-Ai; Geng, Yun; Li, Hai-Bin; Jin, Jun-Ling; Wu, Yong; Su, Zhong-Min

    2013-07-15

    To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP  =  thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. Copyright © 2013 Wiley Periodicals, Inc.

  15. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  16. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  17. Nonradiative inter- and intramolecular energy transfer from the aromatic donor anisole to a synthesized photoswitchable acceptor system.

    Science.gov (United States)

    Bardhan, Munmun; Bhattacharya, Sudeshna; Misra, Tapas; Mukhopadhyay, Rupa; De, Asish; Chowdhury, Joydeep; Ganguly, Tapan

    2010-02-01

    We report steady state and time resolved fluorescence measurements on acetonitrile (ACN) solutions of the model compounds, energy donor anisole (A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide (B) and the multichromophore (M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10(8)s(-1) but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate ( approximately 10(11)s(-1)) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Naphthacenodithiophene Based Polymers-New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency

    KAUST Repository

    Knall, Astrid Caroline; Ashraf, Raja Shahid; Nikolka, Mark; Nielsen, Christian B.; Purushothaman, Balaji; Sadhanala, Aditya; Hurhangee, Michael; Broch, Katharina; Harkin, David J.; Nová k, Jiří ; Neophytou, Marios; Hayoz, Pascal; Sirringhaus, Henning; McCulloch, Iain

    2016-01-01

    Wide-bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6-dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3-benzothiadiazole (BT) via a palladium-catalyzed Suzuki coupling reaction, NDT-BT co-polymers with high molecular weights and narrow polydispersities are afforded. These novel wide-bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT-BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  19. Naphthacenodithiophene Based Polymers-New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency

    KAUST Repository

    Knall, Astrid Caroline

    2016-08-18

    Wide-bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6-dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3-benzothiadiazole (BT) via a palladium-catalyzed Suzuki coupling reaction, NDT-BT co-polymers with high molecular weights and narrow polydispersities are afforded. These novel wide-bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT-BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  20. Effect of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells

    Science.gov (United States)

    Park, Soohyeong; Nam, Sungho; Seo, Jooyeok; Jeong, Jaehoon; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2015-02-01

    Here, we report the influence of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells that are made with bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) (as an electron donor) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) (as an electron acceptor). Diiodooctane (DIO) and dibromooctane (DBO) were employed as additives in order to compare the effect of different halogen groups (bromine and iodine). Results showed that the power conversion efficiency of devices was slightly (˜15%) improved by using additives due to the increased open-circuit voltage and fill factor. The synchrotron radiation grazing-incidence X-ray diffraction (GIXD) measurements disclosed that the performance improvement was closely related to the relatively well-evolved nanostructures in the P3HT:F8BT films caused by the additives.

  1. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    Science.gov (United States)

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  2. Structural determinants in the bulk heterojunction.

    Science.gov (United States)

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  3. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  4. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  5. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  6. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    KAUST Repository

    Douglas, Jessica D.

    2012-05-22

    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.

  7. Interplay between efficiency and device architecture for small molecule organic solar cells.

    Science.gov (United States)

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  8. Design Principles in Polymer-Fullerene BHJ Solar Cells: PBDTTPD as a Case Study

    KAUST Repository

    Beaujuge, Pierre

    2015-06-29

    Among Organic Electronics, solution-processable π-conjugated polymers are proving particularly promising in bulk-heterojunction (BHJ) solar cells with fullerene acceptors such as PCBM.[1] In recent years, great headway has been made in the development of efficient polymer donors across the community, with published power conversion efficiencies (PCE) >8% in single cells and >10% in tandems. In most reports, these systems involve elaborate repeat unit and side chain patterns, and deviating from those patterns induces substantial drops in device PCE. While the range of polymer design parameters that impact BHJ solar cell performance remains a matter of some debate, our recent developments indicate that the combination of side-chain substituents appended to the main chain critically impacts polymer performance. For example, in poly(benzo[1,2-b:4,5-b’]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD), side-chain substituents of various size and branching impart distinct molecular packing distances (i.e., π–π stacking and lamellar spacing), varying degrees of nanostructural order in thin films, and preferential backbone orientation relative to the device substrate.[2-5] While these structural variations seem to correlate with BHJ solar cell performance, with power conversion efficiencies ranging from 4% to 8.5%,[2,3] we believe that other contributing parameters – such as the local conformations between the polymer and the fullerene, and the domain distribution/composition across the BHJ (i.e., pure/mixed phases) – should also be taken into account.[6,7] Other discrete modifications of PBDTTPD’s molecular structure affect polymer performance in BHJ solar cells with PCBM, and our recent developments emphasize how systematic structure-property relationship studies impact the design of efficient polymer donors for BHJ solar cell applications.[8-10] It is important to further our understanding of these effects as we look to continue improving BHJ solar

  9. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    Science.gov (United States)

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  10. Probing Temperature-Dependent Recombination Kinetics in Polymer:Fullerene Solar Cells by Electric Noise Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giovanni Landi

    2017-09-01

    Full Text Available The influence of solvent additives on the temperature behavior of both charge carrier transport and recombination kinetics in bulk heterojunction solar cells has been investigated by electric noise spectroscopy. The observed differences in charge carrier lifetime and mobility are attributed to a different film ordering and donor-acceptor phase segregation in the blend. The measured temperature dependence indicates that bimolecular recombination is the dominant loss mechanism in the active layer, affecting the device performance. Blend devices prepared with a high-boiling-point solvent additive show a decreased recombination rate at the donor-acceptor interface as compared to the ones prepared with the reference solvent. A clear correlation between the device performance and the morphological properties is discussed in terms of the temperature dependence of the mobility-lifetime product.

  11. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  12. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  13. Part I. Synthesis and characterization of donor-pi-acceptor compounds with pentadienyl-bridged indoline and tetrahydroquinoline donors and aldehyde and thiobarbituric acid acceptors Part II. Longitudinal study comparing online versus face-to-face course delivery in introductory chemistry

    Science.gov (United States)

    Greco, Patrick F.

    Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)n-A, often exhibit hyperpolarizability that results in laser frequency doubling (second harmonic generation) and spectroscopic solvatochromism. To study the effect of donor amine geometry upon properties associated with second-order NLO behavior in simple donor-pi-acceptor compounds, equilibrium geometries and hyperpolarizabilities (beta) for donor-acceptor polyenes with amine donors were calculated at several levels of computational theory. Two new molecules with donors that only differ by one methylene group were chosen for comparison. Thus, 5-(N-methylindolin-5-yl)-2, 4-pentadienal (1a) and 5-(N-methyl-2, 3, 4-trihydroquinolin-6-yl)-2, 4-pentadienal (2a) were synthesized in two steps from starting materials described in the literature. These aldehydes were converted into stronger acceptors in one step to give diethylthiobarbituric acid derivatives 1c and 2c, as well as tricyanofuran derivatives 1d and 2d. Positive UV solvatochromism was observed in all three derivatives. NMR solvatochromism was most pronounced in 1c, and 2c vs. 1a and 2a as measured by changes in chemical shifts. Additionally, coupling constants showed more conjugation in 1c and 2c, where 1a and 2a showed less conjugation. Finally, differential scanning calorimetry and thermal gravimetric analysis were used to compare decomposition and melting temperatures of these compounds to determine their stability. Aldehydes, 1a and 2a had distinct melting points, while the 1c, 2c, 1d, and 2d derivatives decomposed at temperatures above 150 °C. Part II. This longitudinal study focused on an introductory chemistry course taught using two different modes of delivery: online and face-to-face (FtF). The sections of the course using the different delivery modes

  14. Solvent Annealing Effects in Dithieno[3,2-b:2',3'-d]pyrrole–5,6-Difluorobenzo[c][1,2,5]thiadiazole Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai; Azouz, Mehdi; Babics, Maxime; Cruciani, Federico; Marszalek, Tomasz; Saleem, Qasim; Pisula, Wojciech; Beaujuge, Pierre

    2016-01-01

    Low-bandgap small molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g. PC61/71BM) are proving particularly promising in bulk-heterojunction (BHJ) solar cells. Compared to their π-conjugated polymer counterparts, SM donors are well defined (monodispersed) and more synthetically modular –with relatively wide ranges of bandgaps achievable in stepwise couplings of various donor and acceptor motifs. However, the optimization of SM-fullerene morphologies and BHJ device efficiencies relies more specifically on the use of processing additives, post-processing thermal or solvent vapor annealing (SVA) approaches, and achieving adequate interpenetrating networks and structural order in BHJ thin films can be challenging. In this report, we examine the correlated effects of molecular structure and post-processing SVA on the BHJ solar cell performance of a set of π-extended SM donors composed of dithieno[3,2-b:2',3'-d]pyrrole (DTP) and 5,6-difluorobenzo[c][1,2,5]thiadiazole ([2F]BT) units. In these systems (SM1-3), the introduction of additional alkyl substituents and unsubstituted thiophene rings on the peripheral unit groups critically impacts the effects of SVA steps on BHJ solar cell efficiency. We show that the more π-extended and alkyl-substituted analogue SM3 stands out –with BHJ device efficiencies of ca. 6% obtained from SVA with CS2– while SVA-treated SM3-based active layers also show the most favorable ordering and carrier mobility patterns. However, unlike numbers of SM donors reported in recent years, DTP–[2F]BT SM analogues are in general not prone to dramatic performance variations in BHJ thin films cast with processing additives. Our results indicate that the role of SVA steps is not independent of the molecular structure of the SM donors used in the BHJ solar cells.

  15. Solvent Annealing Effects in Dithieno[3,2-b:2',3'-d]pyrrole–5,6-Difluorobenzo[c][1,2,5]thiadiazole Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai

    2016-06-17

    Low-bandgap small molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g. PC61/71BM) are proving particularly promising in bulk-heterojunction (BHJ) solar cells. Compared to their π-conjugated polymer counterparts, SM donors are well defined (monodispersed) and more synthetically modular –with relatively wide ranges of bandgaps achievable in stepwise couplings of various donor and acceptor motifs. However, the optimization of SM-fullerene morphologies and BHJ device efficiencies relies more specifically on the use of processing additives, post-processing thermal or solvent vapor annealing (SVA) approaches, and achieving adequate interpenetrating networks and structural order in BHJ thin films can be challenging. In this report, we examine the correlated effects of molecular structure and post-processing SVA on the BHJ solar cell performance of a set of π-extended SM donors composed of dithieno[3,2-b:2\\',3\\'-d]pyrrole (DTP) and 5,6-difluorobenzo[c][1,2,5]thiadiazole ([2F]BT) units. In these systems (SM1-3), the introduction of additional alkyl substituents and unsubstituted thiophene rings on the peripheral unit groups critically impacts the effects of SVA steps on BHJ solar cell efficiency. We show that the more π-extended and alkyl-substituted analogue SM3 stands out –with BHJ device efficiencies of ca. 6% obtained from SVA with CS2– while SVA-treated SM3-based active layers also show the most favorable ordering and carrier mobility patterns. However, unlike numbers of SM donors reported in recent years, DTP–[2F]BT SM analogues are in general not prone to dramatic performance variations in BHJ thin films cast with processing additives. Our results indicate that the role of SVA steps is not independent of the molecular structure of the SM donors used in the BHJ solar cells.

  16. Does interchain stacking morphology contribute to the singlet-triplet interconversion dynamics in polymer heterojunctions?

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Eric R. [Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)], E-mail: bittner@uh.edu; Burghardt, Irene [Departement de Chimie, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Friend, Richard H. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2009-02-23

    Time-dependent density functional theory (TD-DFT) is used to examine the effect of stacking in a model semiconducting polymer hetrojunction system consisting of two co-facially stacked oligomers. We find that the excited electronic states are highly sensitive to the alignment of the monomer units of the two chains. In the system we examined, the exchange energy is nearly identical to both the and band off-set at the heterojunction and to the exciton binding energy. Our results indicate that the triplet excitonic states are nearly degenerate with the singlet exciplex states opening the possibility for the interconversion of singlet and triplet electronic states at the heterojunction interface via spin-orbit coupling localized on the heteroatoms. Using Russell-Saunders theory, we estimate this interconversion rate to be approximately 700-800 ps, roughly a 5-10-fold increase compared to isolated organic polymer chains.

  17. Reactions of Fischer carbene complexes with Electron-deficient olefins: Scope and limitations of this route to donor-acceptor-substituted cyclopropanes

    Energy Technology Data Exchange (ETDEWEB)

    Wienand, A.; Reissig, H.U. (Inst. fuer Organische Chemie der Technischen Hochschule Darmstadt (West Germany))

    1990-12-01

    The Fischer carbene complex ((CO){sub 5}Cr{double bond}C(OMe)Ph) (1) is able to transfer its carbene ligand to a variety of electron-deficient olefins and provides donor-acceptor-substituted cyclopropanes in good yields. Apt activating groups with respect to the alkene are ester, amide, nitrile, sulfone, and dialkyl phosphonate functions. Methyl vinyl ketone (19) affords products in low yield that may arise from an intermediate cyclopropane derivative. Phenyl vinyl sulfoxide (24) mainly acts as an oxidizing agent, transforming 1 into methyl benzoate. for olefin 24 and {alpha}-(N-methylanilino)acrylonitrile the authors found products that should be formed on an olefin metathesis pathway. The methyl-substituted carbene complex 48 also affords the expected donor-acceptor-substituted cyclopropanes; however, acyclic isomers are formed in higher amounts. The molybdenum and tungsten complexes 55 and 56, respectively, also furnish cyclopropane derivatives, but the yields are lower than with the chromium compound 1. Disubstituted olefins and complex 1 still give the cyclopropanes in moderate yields, while all trisubstituted and most of the difunctionalized alkenes do not react with this Fischer carbene complex. The cyclopropanes synthesized can be deprotonated and alkylated or transformed into ring-opened products. These model reactions demonstrate the synthetic potentials of donor-acceptor-substituted cyclopropanes prepared via Fischer carbene complexes.

  18. Benzo[1,2-b:4,5-b’]dithiophene-Pyrido[3,4-b]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells

    KAUST Repository

    Wolf, Jannic Sebastian; Babics, Maxime; Wang, Kai; Saleem, Qasim; Liang, Ru-Ze; Hansen, Michael Ryan; Beaujuge, Pierre

    2016-01-01

    We report on the synthesis, material properties and BHJ solar cell characteristics of a set of π-conjugated small-molecule (SM) donors composed of benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrido[3,4-b]pyrazine (PP) units – examining the perspectives of alkyl-substituted PP acceptor motifs in SM designs. In these systems (SM1-4), both the type of side chains derived from the PP motifs and the presence of ring-substituents on BDT critically impact (i) molecular packing, and (ii) thin-film morphologies and charge transport in BHJ solar cells. With the appropriate side-chain pattern, the ring-substituted analogue SM4 stands out: achieving efficiencies of ca. 6.5% with PC71BM, and fine-scale morphologies comparable to those obtained with some of the best-performing polymer donors in BHJ solar cells. 1H-1H DQ-SQ NMR analyses are used to examine the distinct self-assembly pattern of SM4, expected to factor into the development of the BHJ morphology.

  19. Benzo[1,2-b:4,5-b’]dithiophene-Pyrido[3,4-b]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells

    KAUST Repository

    Wolf, Jannic Sebastian

    2016-01-22

    We report on the synthesis, material properties and BHJ solar cell characteristics of a set of π-conjugated small-molecule (SM) donors composed of benzo[1,2-b:4,5-b′]dithiophene (BDT) and pyrido[3,4-b]pyrazine (PP) units – examining the perspectives of alkyl-substituted PP acceptor motifs in SM designs. In these systems (SM1-4), both the type of side chains derived from the PP motifs and the presence of ring-substituents on BDT critically impact (i) molecular packing, and (ii) thin-film morphologies and charge transport in BHJ solar cells. With the appropriate side-chain pattern, the ring-substituted analogue SM4 stands out: achieving efficiencies of ca. 6.5% with PC71BM, and fine-scale morphologies comparable to those obtained with some of the best-performing polymer donors in BHJ solar cells. 1H-1H DQ-SQ NMR analyses are used to examine the distinct self-assembly pattern of SM4, expected to factor into the development of the BHJ morphology.

  20. Hopping ladder and power relaxation due to donor-acceptor pairs

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Hopping between donor-acceptor pairs leads to peculiar temperature dependence of the conductivity and the photoconductivity under subband gap illumination in the form of non-linear activation energies ladder. The correlated and uncorrelated distributions of pairs are considered and the conditions for the ladder existence are determined. The relaxation of the carrier concentration fluctuations is studied and power type decay is found. The temperature dependence of the exponent is calculated in agreement with the non-exponential decay of the pulse excited luminescence observed by Dean et al. The temperature dependence of the luminescence intensity also shows variable activation energy as found here. The exponent value α=1.316 is also in agreement with the data for crystalline and amorphous materials. (author)

  1. Benzo[1,2-b:4,5-b′]Dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors with >8% BHJ Solar Cell Efficiency

    KAUST Repository

    Liang, Ru-Ze

    2017-07-14

    Solution-processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk-heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self-assembly patterns, optimum thin-film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant-group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant-group substitution in benzo[1,2-b:4,5-b′]dithiophene–6,7-difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors (SM1 and SM2), without altering their propensity to order and form favorable thin-film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open-circuit voltages (VOC) nearing 1 V can be achieved with the narrow-gap SM donor analog (SM2, Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap-free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.

  2. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria; Kesters, Jurgen; Defour, Maxime

    2016-01-01

    ]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio...... studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear......The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT) or thiazolo[5,4-d...

  3. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan; Kurosawa, Tadanori; Ma, Wei; Guo, Yikun; Fang, Lei; Vandewal, Koen; Diao, Ying; Wang, Chenggong; Yan, Qifan; Reinspach, Julia; Mei, Jianguo; Appleton, Anthony Lucas; Koleilat, Ghada I.; Gao, Yongli; Mannsfeld, Stefan C. B.; Salleo, Alberto; Ade, Harald; Zhao, Dahui; Bao, Zhenan

    2014-01-01

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

    KAUST Repository

    Zhou, Yan

    2014-03-24

    An average PCE of 4.2% for all-polymer solar cells from 20 devices with an average J SC of 8.8 mA cm-2 are obtained with a donor-acceptor pair despite a low LUMO-LUMO energy offset of less than 0.1 eV. Incorporation of polystyrene side chains into the donor polymer is found to assist in reducing the phase separation domain length scale, and results in more than 20% enhancement of PCE. We observe a direct correlation between the short circuit current (J SC) and the length scale of BHJ phase separation, which is obtained by resonance soft X-ray scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    Science.gov (United States)

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  6. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  7. Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption.

    Science.gov (United States)

    Jiang, Weigang; Yu, Runnan; Liu, Zhiyang; Peng, Ruixiang; Mi, Dongbo; Hong, Ling; Wei, Qiang; Hou, Jianhui; Kuang, Yongbo; Ge, Ziyi

    2018-01-01

    A novel small-molecule acceptor, (2,2'-((5E,5'E)-5,5'-((5,5'-(4,4,9,9-tetrakis(5-hexylthiophen-2-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-(2-ethylhexyl)thiophene-5,2-diyl))bis(methanylylidene)) bis(3-hexyl-4-oxothiazolidine-5,2-diylidene))dimalononitrile (ITCN), end-capped with electron-deficient 2-(3-hexyl-4-oxothiazolidin-2-ylidene)malononitrile groups, is designed, synthesized, and used as the third component in fullerene-free ternary polymer solar cells (PSCs). The cascaded energy-level structure enabled by the newly designed acceptor is beneficial to the carrier transport and separation. Meanwhile, the three materials show a complementary absorption in the visible region, resulting in efficient light harvesting. Hence, the PBDB-T:ITCN:IT-M ternary PSCs possess a high short-circuit current density (J sc ) under an optimal weight ratio of donors and acceptors. Moreover, the open-circuit voltage (V oc ) of the ternary PSCs is enhanced with an increase of the third acceptor ITCN content, which is attributed to the higher lowest unoccupied molecular orbital energy level of ITCN than that of IT-M, thus exhibits a higher V oc in PBDB-T:ITCN binary system. Ultimately, the ternary PSCs achieve a power conversion efficiency of 12.16%, which is higher than the PBDB-T:ITM-based PSCs (10.89%) and PBDB-T:ITCN-based ones (2.21%). This work provides an effective strategy to improve the photovoltaic performance of PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...

  9. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  10. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2007-01-01

    Full Text Available CdSe/ZnS core/shell quantum dots (QDs are used as efficient Förster Resonance Energy Transfer (FRET acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems.

  11. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase.

    Science.gov (United States)

    Li, Hongfei; Yang, Zhenhua; Pan, Cheng; Jiang, Naisheng; Satija, Sushil K; Xu, Di; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam H

    2017-08-17

    We report that the addition of a non-photoactive tertiary polymer phase in the binary bulk heterojunction (BHJ) polymer solar cell leads to a self-assembled columnar nanostructure, enhancing the charge mobilities and photovoltaic efficiency with surprisingly increased optimal active blend thicknesses over 300 nm, 3-4 times larger than that of the binary counterpart. Using the prototypical poly(3-hexylthiophene) (P3HT):fullerene blend as a model BHJ system, we discover that the inert poly(methyl methacrylate) (PMMA) added in the binary BHJ blend self-assembles into vertical columns, which not only template the phase segregation of electron acceptor fullerenes but also induce the out-of-plane rotation of the edge-on-orientated crystalline P3HT phase. Using complementary interrogation methods including neutron reflectivity, X-ray scattering, atomic force microscopy, transmission electron microscopy, and molecular dynamics simulations, we show that the enhanced charge transport originates from the more randomized molecular stacking of the P3HT phase and the spontaneous segregation of fullerenes at the P3HT/PMMA interface, driven by the high surface tension between the two polymeric components. The results demonstrate a potential method for increasing the thicknesses of high-performance polymer BHJ solar cells with improved photovoltaic efficiency, alleviating the burden of stringently controlling the ultrathin blend thickness during the roll-to-roll-type large-area manufacturing environment.

  12. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  13. Low-bandgap polymer photovoltaic cells

    NARCIS (Netherlands)

    Duren, van J.K.J.; Dhanabalan, A.; Hal, van P.A.; Janssen, R.A.J.

    2001-01-01

    A-novel low-bandgap conjugated polymer (PTPTB, Eg = ~1.6 eV), consisting of alternating electron-rich N-dodecyl-2,5-bis(2'-thienyl)pyrrole (TPT) and electron-deficient 2,1,3-benzothiadiazole (B) units, as a donor material is studied together with a soluble fullerene derivative (PCBM) as acceptor to

  14. Overcoming the efficiency limitations of SnS2 nanoparticle-based bulk heterojunction solar cells

    Science.gov (United States)

    Tam Nguyen Truong, Nguyen; Kieu Trinh, Thanh; Thanh Hau Pham, Viet; Smith, Ryan P.; Park, Chinho

    2018-04-01

    This study examined the effects of heat treatment, the electron transport layer, and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) incorporation on the performance of hybrid bulk heterojunction (BHJ) solar cells composed of tin disulfide (SnS2) nanoparticles (NPs) and low band gap energy polymers poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b3,4-b‧]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PBT7). Inserting an electron transport layer (ETL) (i.e., ZnO) on the top of the photoactive layer improved the surface morphology of the photoactive layer, which led to an improvement in charge transport. Moreover, adding a suitable amount of PCBM to the SnS2/polymer active layer enhanced the device performance, such as short circuit current density (J sc) and power conversion efficiency (PCE). In particular, adding 0.5 mg of PCBM to the composite solution led to a 25% and 1.5% improvement in the J sc value and PCE, respectively. The enhanced performance was due mainly to the improvements in the surface morphology of the photoactive layer, charge carrier mobility within the donor-acceptor interface, and carrier collection efficiency at the cathode.

  15. ]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses

    KAUST Repository

    Fei, Zhuping

    2018-01-10

    A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high JSC of 19.6 mA cm-2 .

  16. ]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses

    KAUST Repository

    Fei, Zhuping; Eisner, Flurin D.; Jiao, Xuechen; Azzouzi, Mohammed; Rö hr, Jason A.; Han, Yang; Shahid, Munazza; Chesman, Anthony S. R.; Easton, Christopher D.; McNeill, Christopher R.; Anthopoulos, Thomas D.; Nelson, Jenny; Heeney, Martin

    2018-01-01

    A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high JSC of 19.6 mA cm-2 .

  17. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath

    2018-03-27

    A combination of steady-state and time-resolved spectroscopic measurements is used to investigate the photophysics of the all-polymer bulk heterojunction system TQ1:N2200. Upon thermal annealing a doubling of the external quantum efficiency and an improved fill factor (FF) is observed, resulting in an increase in the power conversion efficiency. Carrier extraction is similar for both blends, as demonstrated by time-resolved electric-field-induced second harmonic generation experiments in conjunction with transient photocurrent studies, spanning the ps-µs time range. Complementary transient absorption spectroscopy measurements reveal that the different quantum efficiencies originate from differences in charge carrier separation and recombination at the polymer-polymer interface: in as-spun samples ~35 % of the charges are bound in interfacial charge-transfer states and recombine geminately, while this pool is reduced to ~7 % in thermally-annealed sample, resulting in higher short-circuit currents. Time-delayed collection field experiments demonstrate a field-dependent charge generation process in as-spun samples, which reduces the FF. In contrast, field-dependence of charge generation is weak in annealed films. While both devices exhibit significant non-geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  18. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells.

    Science.gov (United States)

    Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan

    2017-10-04

    Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.

  19. Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays

    OpenAIRE

    Gooch, Adam; Murphy, Natasha S.; Thomson, Neil H.; Wilson, Andrew J.

    2013-01-01

    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have ...

  20. Comparison of acceptor properties for interaction of TCNE and DDQ ...

    African Journals Online (AJOL)

    ... with tetracyanoethylene and 2,3-dichloro-5,6-dicyanobezoquinone as acceptors result in charge-transfer adducts of composition 2:1 of acceptor to donor, [(acceptor)2(donor)]. Formation constants, K, as well as the thermodynamic parameters, ΔH°, ΔS°, and ΔG° were determined by UV-Vis titration method for the adducts.

  1. Resonant and non-resonant components of the rate of a population transfer in hybrid donor-acceptor systems

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 5, č. 6 (2013), s. 565-568 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : energy transfer * hybrid donor-acceptor system Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor

    KAUST Repository

    Cha, Hyojung

    2017-11-27

    Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T-2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T-2OD:FBR blends. This is assigned to the smaller LUMO-LUMO offset of the PffBT4T-2OD:FBR blends relative to PffBT4T-2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T-2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.

  3. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor

    KAUST Repository

    Cha, Hyojung; Wheeler, Scot; Holliday, Sarah; Dimitrov, Stoichko D.; Wadsworth, Andrew; Lee, Hyun Hwi; Baran, Derya; McCulloch, Iain; Durrant, James R.

    2017-01-01

    Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T-2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T-2OD:FBR blends. This is assigned to the smaller LUMO-LUMO offset of the PffBT4T-2OD:FBR blends relative to PffBT4T-2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T-2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.

  4. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting

    2006-01-01

    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  5. Computer simulation of heterogeneous polymer photovoltaic devices

    International Nuclear Information System (INIS)

    Kodali, Hari K; Ganapathysubramanian, Baskar

    2012-01-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13–26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures. (paper)

  6. Computer simulation of heterogeneous polymer photovoltaic devices

    Science.gov (United States)

    Kodali, Hari K.; Ganapathysubramanian, Baskar

    2012-04-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.

  7. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.; Corbin, N. S.; Vermeulen, D.; Goetz, K. P.; Jurchescu, O. D.; McNeil, L. E.; Bredas, Jean-Luc; Coropceanu, V.

    2015-01-01

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  8. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.

    2015-12-10

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  9. Experimental and computed dipole moments in donor-bridge-acceptor systems with p-phenylene and p-carboranediyl bridges

    Czech Academy of Sciences Publication Activity Database

    Drož, L.; Fox, M. A.; Hnyk, Drahomír; Low, P.J.; MacBride, J.A.H.; Všetečka, V.

    2009-01-01

    Roč. 74, č. 1 (2009), s. 131-146 ISSN 0010-0765 R&D Projects: GA MŠk LC523 Grant - others:EPSRC(GB) GR/S80943/01 Institutional research plan: CEZ:AV0Z40320502 Keywords : donor-bridge-acceptor systems * p-carboranylenes * dipole moments Subject RIV: CA - Inorganic Chemistry Impact factor: 0.856, year: 2009

  10. Steady state and time-resolved spectroscopic investigations on the photoreactions involved within the electronically excited electron acceptor 9-cyanoanthracene in presence of benzotriazole and benzimidazole donors

    International Nuclear Information System (INIS)

    Bhattacharya, Sudeshna; Bardhan, Munmun; Ganguly, Tapan

    2010-01-01

    The electrochemical, 'steady-state' and 'time-resolved' spectroscopic investigations were made on the well-known electron acceptor 9-cyanoanthracene (CNA) when interacted with the electron donors benzotriazole (BZT) and benzimidazole (BMI) molecules. Though electrochemical measurements indicate the thermodynamical possibility of occurrences of photoinduced electron transfer reactions within these reacting systems in the lowest excited singlet state (S 1 ) of the acceptor CNA but the steady-state and time-resolved measurements clearly demonstrate only the triplet-initiated charge separation reactions. It was reported earlier that in the cases of disubstituted indole molecules the occurrences of photoinduced electron transfer reactions were apparent both in the excited singlet and triplet states of the acceptor 9-cyanoanthracene, but the similarly structured present donor molecules benzotriazole (and benzimidazole) behave differently from indoles. The weak ground state complex formations within the presently studied reacting systems appear to be responsible for the observed static quenching phenomena as evidenced from the time-resolved fluorescence studies. Time-resolved spectroscopic investigations demonstrate the formation of the ground state of the reacting components (donor and acceptor) through recombination of triplet ion-pairs via formations of contact neutral radical produced by H-abstraction mechanism.

  11. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...

  12. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  13. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  14. Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4

    Science.gov (United States)

    Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo

    2015-04-01

    We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.

  15. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative

    KAUST Repository

    Kim, Inho

    2012-02-01

    We investigated the effects of annealing on device performances of bulk heterojunction organic solar cells based on copper phthalocyanine (CuPc) and N,N′-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C6). Blended films of CuPc and PTCDI-C6 with annealing at elevated temperature were characterized by measuring optical absorption, photoluminescence, and X-ray diffraction. Enhanced molecular ordering and increments in domain sizes of donor and acceptor for the blended films were observed, and their influences on device performances were discussed. Annealing led to substantial improvements in photocurrent owing to enhanced molecular ordering and formation of percolation pathways. © 2011 Elsevier B.V. All rights reserved.

  16. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  17. Pentacene–fullerene bulk-heterojunction solar cell: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Anup [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Sarkar, Sunandan [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Dept. of Physical Chemistry, Palacký University, Olomouc (Czech Republic); Pal, Sougata [Department of Chemistry, University of Gour Banga, Malda 732103 (India); Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2015-06-12

    We perform DFT/TDDFT calculations to study the optoelectronic properties of some pentacene-based organic molecules and their derivatives, which can serve as donor moiety when blended with fullerene acceptors in the bulk-heterojunction solar cell model. We are motivated by a recent experiment in which an unoptimized device was shown to have a good photovoltaic performance and we aim to further improve the efficiency of this device. We try to optimize the photovoltaic properties on the basis of a quantum-mechanical calculation of the frontier energy levels and of the absorption properties of individual molecules and of the molecule–fullerine composite. - Highlights: • Optoelectronic properties of pentacene–fullerene nanocomposites are presented. • Photovoltaic properties of the nanocomposites are predicted. • DFT/TDDFT results are in well agreement with available experimental results. • Calculated results give a direction for optimizing device performance.

  18. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Brandão, F. D., E-mail: fdbrand@fisica.ufmg.br; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K. [Departamento de Física, Universidade Federal de Minas Gerais, CP 702, 30.123-970 Belo Horizonte, MG (Brazil)

    2016-06-21

    MoS{sub 2} monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS{sub 2} shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS{sub 2} monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS{sub 2} with a corresponding donor concentration of about 10{sup 8–12} defects/cm{sup 2} for MoS{sub 2} monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 10{sup 15 }cm{sup −3}, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 10{sup 19 }cm{sup −3} and net acceptor concentration of 5 × 10{sup 18 }cm{sup −3} related to sulfur vacancies.

  19. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    International Nuclear Information System (INIS)

    Chehata, Nadia; Ltaief, Adnen; Ilahi, Bouraoui; Salem, Bassem; Bouazizi, Abdelaziz; Maaref, Hassen; Baron, Thierry

    2014-01-01

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J sc value is about 0.39 µA/cm 2 . - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32

  20. Cyclopentadithiophene–naphthalenediimide polymers; synthesis, characterisation, and n-type semiconducting properties in field-effect transistors and photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Han [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China); Kettle, Jeff [School of Electronics, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT Wales (United Kingdom); Horie, Masaki, E-mail: mhorie@mx.nthu.edu.tw [Department of Chemical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan (China)

    2014-04-01

    The synthesis, characterisation, and device performance of a series of cyclopentadithiophene (CPDT)-naphthalenediimide (NDI) donor-acceptor-donor (D-A-D) polymers is reported. The monomers with various alkyl chains are synthesised via direct arylation using palladium complex catalyst. The monomers are then polymerised by oxidative polymerisation using FeCl{sub 3} to provide high molecular weight polymers (M{sub n} = 21,800–76,000). The polymer films show deep-red absorption including near-infrared region up to 1100 nm to give optical bandgap of approximately 1.16 eV. The polymers exhibit only n-type semiconducting properties giving the highest electron mobility of 9 × 10{sup -3} cm{sup 2} V{sup −1} s{sup −1} in organic field-effect transistors (OFETs). Organic photovoltaic (OPV) devices are fabricated from solutions of the polymers as acceptors and poly(3-hexylthiophene) (P3HT) as a donor. - Highlights: • Cyclopentadithiophene–naphthalenediimide oligomers were prepared by direct arylation. • The oligomers were polymerised by oxidative reaction using iron(III)chloride. • The polymer films show deep-red absorption up to 1100 nm with a bandgap of 1.1 eV. • The polymers exhibit only n-type semiconducting properties in OFETs and OPVs.

  1. Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications

    KAUST Repository

    Neophytou, Marios; Bryant, Daniel; Lopatin, Sergei; Chen, Hu; Hallani, Rawad K.; Cater, Lewis; McCulloch, Iain; Yue, Wan

    2018-01-01

    This work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2-b][1]benzothiophene isoindigo (TBTI)-containing low bandgap donor-acceptor conjugated polymers with a series of comonomers

  2. Complexes due to donor-acceptor-type transitions in GaAs

    International Nuclear Information System (INIS)

    Reynolds, D.C.; Litton, C.W.; Almassy, R.J.; McCoy, G.L.; Nam, S.B.

    1980-01-01

    A sharp line transition at 1.51385 eV has been observed in the photoluminescence spectra of an epitaxially grown crystal of GaAs. A Si 3 N 4 cap was applied by plasma deposition and the crystal was then annealed at 850 0 C for 15 min. The sharp emission line was observed after annealing. This transition was analyzed in perturbing magnetic and strain fields and is shown to result from a donor-acceptor-type complex. Three additional sharp line transitions are reported and the behavior of all of these transitions is compared with the behavior of similar transitions reported in the literature. Models for the complexes involved are re-examined and components of the complexes are suggested. All of the sharp line transitions were introduced in the growing process with the exception of the 1.51385-eV line which was introduced in the capping and annealing process

  3. Excitation and recombination of donor-acceptor pairs in ZnTe

    International Nuclear Information System (INIS)

    Nakashima, S.; Yasuda, S.

    1979-01-01

    The photoluminescence spectra and its excitation spectra of the donor-acceptor pairs are observed in ZnTe crystals doped with Li and As in the region below the bandgap energy. The relaxation of electrons and holes into the first excited state of d-a pairs is studied for the three excitation processes: (1) bound-to-bound transitions, (2) bound-to-free transitions, and (3) free-to-free transitions. It is concluded that most of the electrons and holes at the excited states of each impurity level are relaxed rapidly into their ground states before the occurrence of the recombination involving the excited states. For the excitation process (2), conduction electrons are preferentially trapped by positively charged pairs. The redistribution of bound holes by hopping is suggested to explain the broad d-a emission band observed for the bound-to-free excitation for very distant pairs. (author)

  4. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    Science.gov (United States)

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  5. The synthesis of new donor–acceptor polymers containing the 2,3-di(2-furyl) quinoxaline moiety: Fast-switching, low-band-gap, p- and n-dopable, neutral green-colored materials

    International Nuclear Information System (INIS)

    Xu, Zhen; Wang, Min; Fan, Weiyu; Zhao, Jinsheng; Wang, Huaisheng

    2015-01-01

    Highlights: • Three D-A type polymers based on 2,3-di(2-furyl) quinoxaline were synthesized and characterized. • The structure of substitution influences electrochromic properties of the polymers • All three polymers are both p- and n-type dopable and show excellent electrochromic properties. - Abstract: Three donor–acceptor type π-conjugated polymers were synthesized electrochemically:poly[2,3-di(2-furyl)-5,8-bis (2-(3,4-ethylenedioxythiophene)) quinoxaline] (PFETQ), poly[2,3-di(2-furyl)-5,8-bis(2-thienyl) quinoxaline] (PFTQ) and poly[2,3-di(2-furyl)-5,8-bis(2-(3-methoxythiophene)) quinoxaline] (PFMTQ). All of the synthesized polymers, contained the 2,3-di(2-furyl) quinoxaline moiety in the backbone as the acceptor unit and different thiophene derivatives as the donor units. The electroactivity of the monomers and the electrochemical properties of their polymers were investigated by cyclic voltammetry. The presence of the strong electron-donating ethylenedioxy and methoxy groups on the aromatic structure increased the electron density. Thus, the oxidation potential of FETQ and FMTQ shifted to a lower value than that of FTQ. The optical properties of the polymers were investigated by UV–vis–NIR spectroscopy. Both PFETQ and PFMTQ reveal two distinct absorption bands in the red and blue regions of the visible spectrum, while PFTQ has only one dominant wavelength at 596 nm in the visible region. The colorimetry analysis revealed that while PFTQ has a light blue color, PFETQ and PFMTQ are green in the neutral state. The optical band gaps, defined as the onset of the π–π* transition, were found to be 1.15 eV for PFETQ, 1.2 eV for PFMTQ and 1.34 eV for PFTQ. Moreover, all three polymers showed both n-doping and fast switching times

  6. THz emission of donor and acceptor doped GaAs/AlGaAs quantum well structures with inserted thin AlAs monolayer

    Science.gov (United States)

    van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet

    2018-04-01

    In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.

  7. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  8. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells.

    Science.gov (United States)

    Heckler, Ilona M; Kesters, Jurgen; Defour, Maxime; Madsen, Morten V; Penxten, Huguette; D'Haen, Jan; Van Mele, Bruno; Maes, Wouter; Bundgaard, Eva

    2016-03-09

    The stability of polymer solar cells (PSCs) can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyl)dialkoxybenzene donor and benzo[ c ][1,2,5]thiadiazole (BT) or thiazolo[5,4- d ]thiazole (TzTz) acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10%) of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable) TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs' lifetime.

  9. The Influence of Conjugated Polymer Side Chain Manipulation on the Efficiency and Stability of Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ilona M. Heckler

    2016-03-01

    Full Text Available The stability of polymer solar cells (PSCs can be influenced by the introduction of particular moieties on the conjugated polymer side chains. In this study, two series of donor-acceptor copolymers, based on bis(thienyldialkoxybenzene donor and benzo[c][1,2,5]thiadiazole (BT or thiazolo[5,4-d]thiazole (TzTz acceptor units, were selected toward effective device scalability by roll-coating. The influence of the partial exchange (5% or 10% of the solubilizing 2-hexyldecyloxy by alternative 2-phenylethoxy groups on efficiency and stability was investigated. With an increasing 2-phenylethoxy ratio, a decrease in solar cell efficiency was observed for the BT-based series, whereas the efficiencies for the devices based on the TzTz polymers remained approximately the same. The photochemical degradation rate for PSCs based on the TzTz polymers decreased with an increasing 2-phenylethoxy ratio. Lifetime studies under constant sun irradiance showed a diminishing initial degradation rate for the BT-based devices upon including the alternative side chains, whereas the (more stable TzTz-based devices degraded at a faster rate from the start of the experiment upon partly exchanging the side chains. No clear trends in the degradation behavior, linked to the copolymer structural changes, could be established at this point, evidencing the complex interplay of events determining PSCs’ lifetime.

  10. Bulk Heterojunction Solar Cell Devices Prepared with Composites of Conjugated Polymer and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Nguyen Tam Nguyen Truong

    2017-01-01

    Full Text Available ZnO nanorods (Nrods with ~20–50 nm lengths were synthesized using an aqueous solution of zinc acetate and glacial acetic acid. Bulk heterojunction solar cells were fabricated with the structure of indium tin oxide (ITO/polyethylenedioxythiophene doped with polystyrene-sulfonic acid (PEDOT:PSS/ZnO-Nrods + polymer/electron transport layer (ETL/Al. Current density-voltage characterization of the resulting cells showed that, by adding an ETL and using polymers with a low band gap energy, the photoactive layer surface morphology and the device performance can be dramatically improved.

  11. The role of acceptor-rich domain in optoelectronic properties of photovoltaic diodes based on polymer blends

    Science.gov (United States)

    Dou, Fei; Silva, Carlos; Zhang, Xinping

    2013-09-01

    We investigate how the acceptor-rich domain influences the microstructure and photoluminescence properties, and consequently the external quantum efficiency of photovoltaic diodes based on blend films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-diphenyl)-N,N'di(p-butyl-oxy-pheyl)-1,4-diaminobenzene)] (PFB) and poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1'-3}-thiadiazole)] (F8BT). We find that the interfacial area depends strongly on the size and density of acceptor- or F8BT-rich domains in the phase-separation scheme. There exists an optimized density and size distribution of the F8BT-rich domains, which favors spatial charge dissociation. Meanwhile, the balance of charge percolation between the donor(PFB)- and acceptor(F8BT)-rich domains also plays important roles in charge extraction and collection.

  12. Synthesis and spectroscopic characterization of a fluorescent pyrrole derivative containing electron acceptor and donor groups

    Science.gov (United States)

    Almeida, A. K. A.; Monteiro, M. P.; Dias, J. M. M.; Omena, L.; da Silva, A. J. C.; Tonholo, J.; Mortimer, R. J.; Navarro, M.; Jacinto, C.; Ribeiro, A. S.; de Oliveira, I. N.

    2014-07-01

    The synthesis and fluorescence characterization of a new pyrrole derivative (PyPDG) containing the electron donor-acceptor dansyl substituent is reported. The effects of temperature and solvent polarity on the steady-state fluorescence of this compound are investigated. Our results show that PyPDG exhibits desirable fluorescent properties which makes it a promising candidate to be used as the photoactive material in optical thermometry and thermography applications. Further, the electrochemical and emission properties of polymeric films obtained from the oxidation polymerization of PyPDG are also analyzed.

  13. Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers

    DEFF Research Database (Denmark)

    Wang, Suhao; Sun, Hengda; Ail, Ujwala

    2016-01-01

    Ladder-type "torsion-free" conducting polymers (e.g., polybenzimidazobenzophenanthroline (BBL)) can outperform "structurally distorted" donor-acceptor polymers (e.g., P(NDI2OD-T2)), in terms of conductivity and thermoelectric power factor. The polaron delocalization length is larger in BBL than...... in P(NDI2OD-T2), resulting in a higher measured polaron mobility. Structure-function relationships are drawn, setting material-design guidelines for the next generation of conducting thermoelectric polymers....

  14. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  15. Controlling Film Morphology in Conjugated Polymer

    Science.gov (United States)

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces, and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated, and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough of be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of

  16. Two-photon patterning of a polymer containing Y-shaped azochromophores

    International Nuclear Information System (INIS)

    Ambrosio, A.; Orabona, E.; Maddalena, P.; Camposeo, A.; Polo, M.; Neves, A. A. R.; Pisignano, D.; Carella, A.; Borbone, F.; Roviello, A.

    2009-01-01

    We report on the patterning of the free surface of azo-based polymer films by means of mass migration driven by one- or two-photon absorption. A symmetric donor-acceptor-donor structured Y-shaped azochromophore is specifically synthesized to enhance two-photon absorption in the polymer. The exposure of the polymer film to a focused laser beam results in light-driven mass migration for both one- and two-photon absorptions. Features with subdiffraction resolution (250 nm) are realized and the patterning dynamics is investigated as a function of the light dose. Furthermore, functional photonic structures, such as diffraction gratings with periods ranging between 0.5 and 2.0 μm, have been realized

  17. Self-Assembled Core-Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor-Acceptor Light-Harvesting Systems.

    Science.gov (United States)

    Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos

    2017-12-27

    The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.

  18. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution

    Directory of Open Access Journals (Sweden)

    Sunita Kedia

    Full Text Available The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B and oxazine-170 (O-170 dispersed with ZnO nano-particles serving as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and we found lasing threshold to significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye which served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications could be controlled and made equivalent for both donor and acceptor in dye mixture solution by appropriate choice of concentrations of dyes and scatterers. Keywords: Random lasing, Energy transfer, Rhodamine-B, Oxazine-170, Zinc oxide

  19. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All-Polymer Solar Cells

    KAUST Repository

    Karuthedath, Safakath; Melianas, Armantas; Kan, Zhipeng; Pranculis, Vytenis; Wohlfahrt, Markus; Khan, Jafar Iqbal; Gorenflot, Julien; Xia, Yuxin; Inganä s, Olle; Gulbinas, Vidmantas; Kemerink, Martijn; Laquai, Fré dé ric

    2018-01-01

    -geminate recombination competing with charge extraction, causing low FFs, our results demonstrate that the donor/acceptor interface in all-polymer solar cells can be favourably altered to enhance charge separation, without compromising charge transport and extraction.

  20. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules

    Science.gov (United States)

    Nishikitani, Y.; Takeuchi, H.; Nishide, H.; Uchida, S.; Yazaki, S.; Nishimura, S.

    2015-12-01

    The authors present white polymer light-emitting electrochemical cells (PLECs) fabricated with polymer blend films of poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. The PLECs have bulk heterojunction structures composed of van der Waals interfaces between the PFD segments and the amine molecules. White-light electroluminescence (EL) can be achieved via light-mixing of the blue exciton emission from PFD and long-wavelength exciplex emission from excited complexes consisting of PFD segments (acceptors (As)) and the amine molecules (donors (Ds)). Precise control of the distances between the PFD and the amine molecules, affected through proper choice of the concentrations of PFD, amine molecules, and polymeric solid electrolytes, is critical to realizing white emission. White PLECs can be fabricated with PFD and amine molecules whose highest occupied molecular orbital (HOMO) levels range from -5.3 eV to -5.0 eV. Meanwhile, PLECs fabricated with amine molecules whose HOMO levels are lower than -5.6 eV cannot produce exciplex emission. The distances between the PFD and amine molecules of the exciplexes appear to be larger than 0.4 nm. These experimental data are explained by perturbation theory using the charge-transfer state ( A - D + ), the locally excited state ( A * D ), which is assumed to be the locally excited acceptor state in which there is no interaction with the donor molecule; and the energy gap between the HOMO levels of the PFD and the amine molecules. Color-stable white PLECs were fabricated using 4,4',4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine, which has a HOMO level of -5.2 eV, as the amine molecule, and the color stability of the device is a function of the fact that PFD forms exciplexes with these molecules.

  1. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Mikryukova, E.V.; Morozov, A.N.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Peculiarities of dislocation and microdefect formation in InP monocrystals doped with donor (S,Ge) and acceptor (Zn) impurities are investigated by the metallography. Dependence of dislocation density on the concentration of alloying impurity is established. Microdefects leading to the appearance of 5 different types of etch figures are shown to be observed in doped InP monocrystals. The mechanism of microdefect formation is suggested

  2. Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells.

    Science.gov (United States)

    Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang

    2018-06-27

    High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for

  3. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example.

    Directory of Open Access Journals (Sweden)

    Gerard N M van der Krogt

    Full Text Available We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors.

  4. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Rectifying effect of heterojunctions between metals and doped conducting polymer nanostructure pellets

    Science.gov (United States)

    Long, Yun-Ze; Yin, Zhi-Hua; Hui, Wen; Chen, Zhao-Jia; Wan, Mei-Xiang

    2008-07-01

    This paper reports that the Schottky junctions between low work function metals (e.g. Al and In) and doped semiconducting polymer pellets (e.g. polyaniline (PANI) microsphere pellet and polypyrrole (PPy) nanotube pellet) have been prepared and studied. Since Ag is a high work function metal which can make an ohmic contact with polymer, silver paste was used to fabricate the electrodes. The Al/PANI/Ag heterojunction shows an obvious rectifying effect as shown in I - V characteristic curves (rectifying ratio γ = 5 at ±6 V bias at room temperature). As compared to the Al/PANI/Ag, the heterojunction between In and PANI (In/PANI/Ag) exhibits a lower rectifying ratio γ = 1.6 at ±2 V bias at room temperature. In addition, rectifying effect was also observed in the heterojunctions Al/PPy/Ag (γ = 3.2 at ±1.6 V bias) and In/PPy/Ag (γ = 1.2 at ±3.0 V bias). The results were discussed in terms of thermoionic emission theory.

  5. Quantum-chemical ab initio and B3LYP study of donor-acceptor complexes of gallium halides with pyridine

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    1999-01-01

    By the ab initio and density functional methods the structural characteristics and vibrational spectra of gallium iodide donor-acceptor complexes with pyridine have been calculated. The standard thermodynamic characteristics of GaI 3 Py complex dissociation in gaseous phase have been calculated, as well. Short I-H intramolecular distances suggest that hydrogen iodide elimination with Ga-N chemical bond retention is the first stage of the complex pyrolysis [ru

  6. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.

    2010-06-08

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.

  7. Polymer solar cells. Morphology-property-correlation; Polymere Solarzellen. Morphologie-Eigenschafts-Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Tobias

    2008-09-22

    The aim of the presented dissertation is to clarify open questions concerning the development and control of the morphology in the active layer of polymer bulk heterojunction solar cells. The new findings hereby derived shall modify the existing models of the active layer morphology as found in today's literature. The experimental investigations were performed by X-ray diffraction, spectroscopic ellipsometry, and photoluminescence spectroscopy. In addition to those methods, light microscopy and differential scanning calorimetry were applied to investigate three chosen material systems: P3HT/PCBM-C{sub 60}, P3HT/MDHE-C{sub 60}, and P3HT/(MDHE){sub 2}-C{sub 60}. On the basis of experimental results a morphological model is developed, which is discussed in the context of existing literature. The solar cells were electrically characterised by current-voltage and external quantum efficiency measurements. The structural model is set into relation with photovoltaic parameters of the polymer solar cell, such as short circuit photocurrent, open circuit voltage, fill factor, and power conversion efficiency. This contributes to the explanation and analysis of the electrical properties of the organic solar cell as a device. In summary, this work yields morphology-property-relations that are able to explain the interaction between physical properties, such as light absorption, charge carrier generation, and transport, with the morphology present within the active layer. Finally, the three investigated systems are compared and evaluated with respect to their applicability in polymer solar cells. Further on, the morphology-propertyrelations are used to develop a strategy to estimate the suitability of new twocomponent polymer-fullerene donor-acceptor systems for polymer solar cells. Based on these findings it becomes possible to evaluate the optimization potential for new materials. In conclusion, this helps to develop polymer solar cells with increased power conversion

  8. On the Interface Dipole at the Pentacene−Fullerene Heterojunction: A Theoretical Study

    KAUST Repository

    Linares, Mathieu

    2010-02-25

    The electronic structure at organic/organic interfaces plays a key role, among others, in defining the quantum efficiency of organics-based photovoltaic cells. Here, we perform quantum-chemical and microelectrostatic calculations on molecular aggregates of various sizes and shapes to characterize the interfacial dipole moment at pentacene/C60 heterojunctions. The results show that the interfacial dipole mostly originates in polarization effects due to the asymmetry in the multipolar expansion of the electronic density distribution between the interacting molecules, rather than in a charge transfer from donor to acceptor. The local dipole is found to fluctuate in sign and magnitude over the interface and appears as a sensitive probe of the relative arrangements of the pentacene and C60 molecules (and of the resulting local electrical fields sensed by the molecular units). © 2010 American Chemical Society.

  9. On the Interface Dipole at the Pentacene−Fullerene Heterojunction: A Theoretical Study

    KAUST Repository

    Linares, Mathieu; Beljonne, David; Cornil, Jérôme; Lancaster, Kelly; Brédas, Jean-Luc; Verlaak, Stijn; Mityashin, Alexander; Heremans, Paul; Fuchs, Andreas; Lennartz, Christian; Idé, Julien; Méreau, Raphaël; Aurel, Philippe; Ducasse, Laurent; Castet, Frédéric

    2010-01-01

    The electronic structure at organic/organic interfaces plays a key role, among others, in defining the quantum efficiency of organics-based photovoltaic cells. Here, we perform quantum-chemical and microelectrostatic calculations on molecular aggregates of various sizes and shapes to characterize the interfacial dipole moment at pentacene/C60 heterojunctions. The results show that the interfacial dipole mostly originates in polarization effects due to the asymmetry in the multipolar expansion of the electronic density distribution between the interacting molecules, rather than in a charge transfer from donor to acceptor. The local dipole is found to fluctuate in sign and magnitude over the interface and appears as a sensitive probe of the relative arrangements of the pentacene and C60 molecules (and of the resulting local electrical fields sensed by the molecular units). © 2010 American Chemical Society.

  10. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Zuo, Xiaobing [X-ray Science Division; Argonne National Laboratory; Argonne; USA; Xie, Shenkun [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Yuan, Jianyu [Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou; P. R. China; Zhou, Huiqiong [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190; China; Zhang, Yuan [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China

    2017-01-01

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  11. Polymers for organic photovoltaics based on 1,5-bis(2-hexyldecyloxy)-naphthalene, thiophene, and benzothiadiazole

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-01

    Two new conjugated polymers consisting of the donors 1,5-bis(2-hexyldecyloxy)naphthalene, thiophene, or bithiophene and the acceptor benzothiadiazole has been synthesized and their optical and photovoltaic properties have been characterized. The two polymers were compared with earlier synthesized...... and characterized polymers containing benzene instead of naphthalene. The two polymers absorb light in the visible spectrum (400 to 700 nm). The naphthalene containing polymers had blueshifted absorption spectra compared to the benzene containing polymers and also higher band gaps. In photovoltaic devices...

  12. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    The main topic of my thesis was the optical spectroscopy of accepters for organic bulk-heterojunction polymer-fullerene solar cells in the visible till near-infrared regime. Pure fullerene samples as well as blends of fullerenes with polymers were studied. Additionally measurements regarding the morphology, spin states and solar cell performance were done. The aims were to determine the ability of new molecules as acceptors for organic solar cells, to find and understand the photoinduced absorption signatures of optical excited anions on fullerene bulks of different sizes and finally to learn about the charge carrier generation process in polymer:Lu{sub 3}N rate at C{sub 80} blends and thus understand the origin of the comparable low current density in this devices, about 25 % less than for P3HT:PC{sub 61}BM solar cells. In our publications due to these topics we presented that the novel C{sub 70}-C{sub 70} dimer fullerenes are fine acceptors for polymer:fullerene solar cells, showing a better absorption coefficient around 500 nm than C{sub 60} based acceptors and high singlet-exciton quenching rates. Anion signatures for fullerene molecules of different sizes were clearly found for C{sub 60{sup -}} at 1.18 eV and for C{sub 70{sup -}} at 0.92 eV. Less clear are my findings regarding the signatures for C{sub 80{sup -}} and C{sub 84{sup -}}. Due to the low signal-to-noise ratio in these measurements and some unique properties of the available materials I was only able to indicate a range from 0.7 eV down to 0.4 eV for the optically detected anion signatures of these fullerenes. Still all fullerenes showed a red shift to lower energies for the anion signatures getting stronger the more carbon atoms the fullerenes were made of. The most detailed research in this thesis was done about the Lu{sub 3}N rate at C{sub 80} molecules application as electron acceptor in P3HT:Lu{sub 3}N rate at C{sub 80} solar cells. The use of this acceptor in combination with P3HT lead to a

  13. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient liposomal system promotes extended anesthesia time.

    Directory of Open Access Journals (Sweden)

    Camila Morais Gonçalves da Silva

    Full Text Available Ropivacaine is a local anesthetic with similar potency but lower systemic toxicity than bupivacaine, the most commonly used spinal anesthetic. The present study concerns the development of a combined drug delivery system for ropivacaine, comprised of two types of liposomes: donor multivesicular vesicles containing 250 mM (NH42SO4 plus the anesthetic, and acceptor large unilamellar vesicles with internal pH of 5.5. Both kinds of liposomes were composed of hydrogenated soy-phosphatidylcholine:cholesterol (2:1 mol% and were prepared at pH 7.4. Dynamic light scattering, transmission electron microscopy and electron paramagnetic resonance techniques were used to characterize the average particle size, polydispersity, zeta potential, morphology and fluidity of the liposomes. In vitro dialysis experiments showed that the combined liposomal system provided significantly longer (72 h release of ropivacaine, compared to conventional liposomes (~45 h, or plain ropivacaine (~4 h (p <0.05. The pre-formulations tested were significantly less toxic to 3T3 cells, with toxicity increasing in the order: combined system < ropivacaine in donor or acceptor liposomes < ropivacaine in conventional liposomes < plain ropivacaine. The combined formulation, containing 2% ropivacaine, increased the anesthesia duration up to 9 h after subcutaneous infiltration in mice. In conclusion, a promising drug delivery system for ropivacaine was described, which can be loaded with large amounts of the anesthetic (2%, with reduced in vitro cytotoxicity and extended anesthesia time.

  14. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    Science.gov (United States)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  15. Morphology and efficiency : the case of Polymer/ZnO solar cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    2013-01-01

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  16. Morphology and Efficiency : The Case of Polymer/ZnO Solar Cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  17. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    Science.gov (United States)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  18. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester; Vandewal, Koen; Fei, Zhuping; Watkins, Scott E.; Scholes, Fiona H.; Bannock, James H; de Mello, John; Richter, Lee J.; DeLongchamp, Dean M.; Amassian, Aram; Heeney, Martin; Salleo, Alberto; Stingelin, Natalie

    2015-01-01

    . Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us

  20. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier; Graham, Kenneth; Mollinger, Sonya; Wu, Di M.; Hanifi, David; Prasanna, Rohit; Rose, Bradley Daniel; Dey, Sukumar; Yu, Liyang; Bredas, Jean-Luc; McGehee, Michael D.; Salleo, Alberto; Amassian, Aram

    2017-01-01

    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  1. Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bands

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier

    2017-01-16

    In organic solar cells (OSCs), the energy of the charge-transfer (CT) complexes at the donor-acceptor interface, E , determines the maximum open-circuit voltage (V ). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi-crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V enormously. Yet, the question of how structural heterogeneities alter CT states and the V is seldom addressed systematically. In this work, we combine experimental measurements of vacuum-deposited rubrene/C bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E and V . We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low-lying CT states contribute strongly to V losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E configurations and maximizes V .

  2. Photoinduced charge separation at polymer-fullerene interfaces of BHJ solar cells (Conference Presentation)

    Science.gov (United States)

    Poluektov, Oleg G.; Niklas, Jens; Mardis, Kristy

    2016-09-01

    While photovoltaic cells are highly promising man-made devices for direct solar energy utilization, a number of fundamental questions about how the organic bulk heterojunction cell enables efficient long-lived and long-range charge separation remain unanswered. These questions were address by employing an advanced suite of EPR spectroscopy in combination with DFT calculations to study mechanism of charge separation at the polymer-fullerene interfaces of photo-active BHJ. Observed charge delocalization in BHJ upon photoinduced ET is analogous to that in organic donor-acceptor material. This is an efficient mechanism of charge stabilization in photosynthetic assemblies. Time-resolved EPR spectra show a strong polarization pattern for all polymer-fullerene blends under study, which is caused by non-Boltzmann population of the electron spin energy levels in the radical pairs. The first observation of this phenomenon was reported in natural and artificial photosynthetic assemblies, and comparison with these systems allows us to better understand charge separation processes in OPVs. The spectral analysis presented here, in combination with DFT calculations, shows that CS processes in OPV materials are similar to that in organic photosynthetic systems. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 at Argonne National Laboratory.

  3. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit Voltage Approaching 1 Volt

    Directory of Open Access Journals (Sweden)

    Caterina Stenta

    2018-03-01

    Full Text Available Two new perylenediimides (PDIs have been developed for use as electron acceptors in solution-processed bulk heterojunction solar cells. The compounds were designed to exhibit maximal solubility in organic solvents, and reduced aggregation in the solid state. In order to achieve this, diphenylphenoxy groups were used to functionalize a monomeric PDI core, and two PDI dimers were bridged with either one or two thiophene units. In photovoltaic devices prepared using PDI dimers and a monomer in conjunction with PTB7, it was found that the formation of crystalline domains in either the acceptor or donor was completely suppressed. Atomic force microscopy, X-ray diffraction, charge carrier mobility measurements and recombination kinetics studies all suggest that the lack of crystallinity in the active layer induces a significant drop in electron mobility. Significant surface recombination losses associated with a lack of segregation in the material were also identified as a significant loss mechanism. Finally, the monomeric PDI was found to have sub-optimum LUMO energy matching the cathode contact, thus limiting charge carrier extraction. Despite these setbacks, all PDIs produced high open circuit voltages, reaching almost 1 V in one particular case.

  5. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers

    KAUST Repository

    Jagadamma, Lethy Krishnan; Abdelsamie, Maged; El Labban, Abdulrahman; Aresu, Emanuele; Ngongang Ndjawa, Guy Olivier; Anjum, Dalaver H.; Cha, Dong Kyu; Beaujuge, Pierre; Amassian, Aram

    2014-01-01

    In this report, we demonstrate that solution-processed amorphous zinc oxide (a-ZnO) interlayers prepared at low temperatures (∼100 °C) can yield inverted bulk-heterojunction (BHJ) solar cells that are as efficient as nanoparticle-based ZnO requiring comparably more complex synthesis or polycrystalline ZnO films prepared at substantially higher temperatures (150-400 °C). Low-temperature, facile solution-processing approaches are required in the fabrication of BHJ solar cells on flexible plastic substrates, such as PET. Here, we achieve efficient inverted solar cells with a-ZnO buffer layers by carefully examining the correlations between the thin film morphology and the figures of merit of optimized BHJ devices with various polymer donors and PCBM as the fullerene acceptor. We find that the most effective a-ZnO morphology consists of a compact, thin layer with continuous substrate coverage. In parallel, we emphasize the detrimental effect of forming rippled surface morphologies of a-ZnO, an observation which contrasts with results obtained in polycrystalline ZnO thin films, where rippled morphologies have been reported to improve efficiency. After optimizing the a-ZnO morphology at low processing temperature for inverted P3HT:PCBM devices, achieving a power conversion efficiency (PCE) of ca. 4.1%, we demonstrate inverted solar cells with low bandgap polymer donors on glass/flexible PET substrates: PTB7:PC71BM (PCE: 6.5% (glass)/5.6% (PET)) and PBDTTPD:PC71BM (PCE: 6.7% (glass)/5.9% (PET)). Finally, we show that a-ZnO based inverted P3HT:PCBM BHJ solar cells maintain ca. 90-95% of their initial PCE even after a full year without encapsulation in a nitrogen dry box, thus demonstrating excellent shelf stability. The insight we have gained into the importance of surface morphology in amorphous zinc oxide buffer layers should help in the development of other low-temperature solution-processed metal oxide interlayers for efficient flexible solar cells. This journal is

  6. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Deep donor-acceptor pair recombination in bulk GaP studied by ODMR and DLTS techniques

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.; Godlewski, M.; Monemar, B.

    1989-01-01

    Deep level transient spectroscopy (DLTS) and optically detected magnetic resonance (ODMR) are applied to study deep defect levels with photoluminescence bands observed in the near infrared region in S- and Te-doped bulk GaP crystals grown by the liquid encapsulated Czochralski method. The ODMR data suggest that the emission bands with maxima observed at 8000-8200 A (∼ 1.5 eV), common to both materials, and at 7750 A (1.6 eV), present only in GaP:Te, are due to donor-acceptor pair recombinations. The latter band, reported here for the first time, is tentatively associated with deep states observed by DLTS. (author) 19 refs., 5 figs

  8. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    Science.gov (United States)

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  10. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand

    2009-06-23

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results with regioregular H/Br and Br/aryl-terminated P3HT. Phase segregation was carried by mixing relatively polar pyridine treated CdSe QD with nonpolar P3HT. The experiment revealed that a high loading of CdSe is necessary for an efficient charge transport and different loading ratios of CdSe has been investigated to correlate the photovoltaic response as a function of ration between donor H/thiol-P3ht polymer and acceptor Cdse QD. The results show that H/Br-P3HT, H/thiol- and Br/allyl-terminated P3HT exhibits better performance and Cdse quantum dots were used to obtain results.

  11. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system

    Science.gov (United States)

    Taniguchi, Kouji; Narushima, Keisuke; Yamagishi, Kayo; Shito, Nanami; Kosaka, Wataru; Miyasaka, Hitoshi

    2017-06-01

    Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal-organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.

  12. The interplay of nanostructure and efficiency of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Yin

    2008-12-04

    The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: the polymer-polymer solar cells, and the polymer-small molecule solar cell which has polymer as electron donor incorporating with organic small molecule as electron acceptor. For the polymer-polymer devices, I compared the photocurrent characteristics of bilayer and blend devices as well as the blend devices with different nano-morphology, which is fine tuned by applying solvents with different boiling points. The main conclusion based on the complementary measurements is that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel small molecule electron acceptor vinazene. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 % and an open circuit voltage of 1V without thermal treatment of the devices were achieved. In the past, fill factors of solar cells exceeding 50 % have only been observed when using fullerene-derivatives as the electron-acceptor. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells. (orig.)

  13. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    Science.gov (United States)

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  14. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  15. Nuclear Hyperfine Structure in the DonorAcceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    Science.gov (United States)

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  16. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    Science.gov (United States)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  17. Improved performance of molecular bulk-heterojunction photovoltaic cells through predictable selection of solvent additives

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Kenneth R.; Wieruszewski, Patrick M.; Stalder, Romain; Mei, Jianguo [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); Hartel, Michael J.; So, Franky [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Reynolds, John R. [The George and Josephine Butler, Polymer Research Laboratory, Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL 32611-7200 (United States); School of Chemistry and Biochemistry, School of Materials Science and Engineering and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2012-11-21

    Solvent additives provide an effective means to alter the morphology and thereby improve the performance of organic bulk-heterojunction photovoltaics, although guidelines for selecting an appropriate solvent additive remain relatively unclear. Here, a family of solvent additives spanning a wide range of Hansen solubility parameters is applied to a molecular bulk-heterojunction system consisting of an isoindigo and thiophene containing oligomer as the electron donor and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM) as the electron acceptor. Hansen solubility parameters are calculated using the group contribution method and compared with the measured solubilities for use as a screening method in solvent additive selection. The additives are shown to alter the morphologies in a semipredictable manner, with the poorer solvents generally resulting in decreased domain sizes, increased hole mobilities, and improved photovoltaic performance. The additives with larger hydrogen bonding parameters, namely triethylene glycol (TEG) and N-methyl-2-pyrrolidone (NMP), are demonstrated to increase the open circuit voltage by 0.2 V. Combining a solvent additive observed to increase short circuit current, poly(dimethylsiloxane), with TEG results in an increase in power conversion efficiency from 1.4 to 3.3%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    Science.gov (United States)

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rate dependence of electron transfer on donor-acceptor separation and on free enthalpy change. The Ru(bpy)32+/viologen2+ system

    International Nuclear Information System (INIS)

    Rau, H.; Frank, R.; Greiner, G.

    1986-01-01

    By attachment of hydrocarbon chains of different lengths to the bipyridyl ligands in Ru(bpy) 3 2+ we have adjusted the donor-acceptor separation in the electron-transfer system Ru[(C/sub n/H/sub 2n+1/) 2 bpyl 3 2+ /methylviolgen. Two electron-transfer reactions with different ΔG are investigated in fluid solution: the quenching of the excited complexes by methylviologen (MV 2+ ) which is exergonic with -0.4 eV and the thermal back electron transfer which is exergonic with -1.7 eV. We observe an exponential decrease of the quenching rate on distance. The back electron transfer is independent of donor-acceptor separation; electron transfer is found to take place at distances of 1.5 nm and more. The results are discussed in terms of a hypothesis on the interdependence of transfer distance and free enthalpy change and compared with current theories. In the framework of the simple classical Marcus model, the Marcus equation relating transfer rate and free enthalpy change is transposed into the Rehm-Weller equation by simple mathematical manipulations and the implications of this are discussed

  20. Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions

    KAUST Repository

    Pavlopoulou, Eleni

    2014-09-09

    © 2014 American Chemical Society. In this work, we investigated the effects of solvent(s)-polymer(s) interactions on the morphology of all-polymer bulk-heterojunction (BHJ) active layers cast from cosolutions. We demonstrate that altering the interactions between the solvent and both the donor and acceptor polymers in the cosolution prior to film-casting induces different solid-state morphological characteristics that subsequently leads to differences in the device performance of organic photovoltaics (OPV). Poly(3-hexylthiophene), P3HT, was codissolved poly[[N,N\\'-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5 ′-(2,2 ′-bithiophene)], P(NDI2OD-T2), or otherwise known as ActivInk N2200, in dichlorobenzene, chlorobenzene, and xylene. According to the qualitative interaction map we propose, all three solvents exhibit favorable interactions with P3HT. The extent of incompatibility these solvents exhibit with P(NDI2OD-T2), however, varies, with xylene as the worst solvent for P(NDI2OD-T2) among those examined. Polymer-polymer interactions in xylene are, thus, more favorable compared to P(NDI2OD-T2)-xylene interactions. Grazing-incidence wide-angle X-ray scattering measurements on the cast films suggest that this preferential affinity between the two polymers disrupts crystallization in the blends; P(NDI2OD-T2) crystallinity decreases and, concurrently, results in shorter P3HT coherence lengths. Significant mixing of the two polymers is also evidenced. OPVs comprising P3HT and P(NDI2OD-T2) active layers cast from xylene exhibit the best device characteristics compared to OPVs whose active layers are cast from di- or mono-chlorobenzene. We attribute the improved OPV performance for the xylene-cast active layer to the presence of a more intermixed network of nanocrystalline domains of the two polymers, which originates from the affinity of P3HT and P(NDI2OD-T2) in the parent cosolution.

  1. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    Science.gov (United States)

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  2. Selective and non-extractive spectrophotometric determination of cefdinir in formulations based on donor-acceptor complex formation

    Directory of Open Access Journals (Sweden)

    Babita K. Singh

    2010-01-01

    Full Text Available Cefdinir has broad spectrum of activity and high prescription rates, hence its counterfeiting seems imminent. We have proposed a simple, fast, selective and non-extractive spectrophotometric method for the content assay of cefdinir in formulations. The method is based on complexation of cefdinir and Fe under reducing condition in a buffered medium (pH 11 to form a magenta colored donor-acceptor complex (λ max = 550 nm; apparent molar absorptivity = 3720 L mol-1 cm-1. No other cephalosporins, penicillins and common excipients interfere under the test conditions. The Beer's law is followed in the concentration range 8-160 µg mL-1.

  3. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    Science.gov (United States)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  4. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry.

    Science.gov (United States)

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R

    2015-07-17

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.

  5. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  6. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    Science.gov (United States)

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  7. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin

    2015-07-14

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS-containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. In situ measurement shows that polystyrene (PS) and diiodooctane (DIO) additives promote donor crystallite formation synergistically, on different time scales, and through different mechanisms. PS-rich films retain solvent, promoting phase separation early in the casting process. Meanwhile, the low vapor pressure of DIO extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase after casting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-01-01

    -13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared

  9. A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole

    Science.gov (United States)

    Joshi, Ankita; Ramachandran, C. N.

    2017-07-01

    A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.

  10. Isolation by crystallization of translational isomers of a bistable donor-acceptor [2]catenane

    Science.gov (United States)

    Wang, Cheng; Olson, Mark A.; Fang, Lei; Benítez, Diego; Tkatchouk, Ekaterina; Basu, Subhadeep; Basuray, Ashish N.; Zhang, Deqing; Zhu, Daoben; Goddard, William A.; Stoddart, J. Fraser

    2010-01-01

    The template-directed synthesis of a bistable donor-acceptor [2]catenane wherein both translational isomers—one in which a tetrathiafulvalene unit in a mechanically interlocked crown ether occupies the cavity of a cyclobis(paraquat-p-phenylene) ring and the other in which a 1,5-dioxynaphthalene unit in the crown ether resides inside the cavity of the tetracationic cyclophane—exist in equilibrium in solution, has led to the isolation and separation by hand picking of single crystals colored red and green, respectively. These two crystalline co-conformations have been characterized separately at both the molecular and supramolecular levels, and also by dynamic NMR spectroscopy in solution where there is compelling evidence that the mechanically interlocked molecules are present as a complex mixture of translational, configurational, and conformational isomers wherein the isomerization is best described as being a highly dynamic and adaptable phenomenon. PMID:20663950

  11. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  12. Lewis acid catalyzed [3 + 2] annulation of ketenimines with donor-acceptor cyclopropanes: an approach to 2-alkylidenepyrrolidine derivatives.

    Science.gov (United States)

    Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel

    2016-11-02

    The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.

  13. Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Zakhidov, Anvar; Hu, Walter

    2014-11-12

    In this work, we demonstrate the feasibility of using nanoimprint lithography (NIL) to make efficient low bandgap polymer solar cells with well-ordered heterojunction. High quality low bandgap conjugated polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) nanogratings are fabricated using this technique for the first time. The geometry effect of PCPDTBT nanostructures on the solar cell performance is investigated by making PCPDTBT/C70 solar cells with different feature sizes of PCPDTBT nanogratings. It is found that the power conversion efficiency (PCE) increases with increasing nanograting height, PCPDTBT/C70 junction area, and decreasing nanograting width. We also find that NIL makes PCPDTBT chains interact more strongly and form an improved structural ordering. Solar cells made on the highest aspect ratio PCPDTBT nanostructures are among the best reported devices using the same material with a PCE of 5.5%.

  14. The effect of solvent on the morphology of an inkjet printed active layer of bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Fauzia, Vivi; Umar, Akrajas Ali; Salleh, Muhamad Mat; Yahaya, Muhammad

    2011-01-01

    Bulk heterojunction organic solar cells were fabricated by sandwiching the active layer between indium tin oxide (ITO) and Al electrodes. The active layer used was a blend of poly(3-octylthiophene-2,5-diyl) (P3OT) as the electron donor and (6,6)-phenyl C 71 butyric acid methyl ester (PC 71 BM) as the electron acceptor. The active layer thin films were deposited by an inkjet printing technique. Prior to deposition of the thin films, the active materials were blended in three different solvents. The printed films were annealed at three different temperatures. It was found that the selection of the appropriate solvent and annealing treatment significantly influences the printing process, the morphology of the printed film and subsequently the performance of the solar cell devices

  15. Charge transfer complex studies between some non-steroidal anti-inflammatory drugs and π-electron acceptors

    Science.gov (United States)

    Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa

    2006-12-01

    Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.

  16. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.

    Science.gov (United States)

    Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi

    2011-12-01

    The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.

  17. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  18. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    Science.gov (United States)

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  19. An efficient p-n heterojunction photocatalyst constructed from a coordination polymer nanoplate and a partically reduced graphene oxide for visible-light hydrogen production.

    Science.gov (United States)

    Xu, Xinxin; Lu, Tingting; Liu, Xiaoxia; Wang, Xiuli

    2015-10-05

    A new p-n heterojunction photocatalyst has been synthesized successfully through chemical-bond-mediated combination of coordination polymer nanoplates (CPNPs) and partially reduced graphene oxide (PRGO) with a simple colloidal blending process. Photocatalytic H2 production by the p-n heterojunction photocatalyst PRGO/CPNP was investigated under visible-light irradiation, which illustrates that PRGO/CPNP exhibits a much higher photocatalytic H2 production rate than neat the CPNPs. The improvement of this photocatalytic property can be attributed to the inner electrical field formed in the p-n heterojunction, which impedes recombination of photogenerated electrons and holes. In PRGO/CPNP, the existence of the p-n heterojunction has been confirmed by electrochemical methods clearly. For PRGO/CPNP, the reductive degree of the PRGO has a great influence on the H2 production rate and an ideal condition to get a PRGO/CPNP photocatalyst with higher performance has been obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. COMPARISON OF ACCEPTOR PROPERTIES FOR INTERACTION ...

    African Journals Online (AJOL)

    Preferred Customer

    determined by UV-Vis titration method for the adducts. Surprisingly, the ... Interaction of. TCNE and DDQ as π-acceptors with hydrocarbon donors such as cycloalkanes, alkenes, ... obtained from a Shimadzu GC-MS model QP5050 instrument.

  1. Influence of relaxation processes in polymers on energy transfer by triplet levels

    International Nuclear Information System (INIS)

    Ibraev, N.Kh.; Zhunusbekov, A.M.

    1996-01-01

    Temperature influence on triplet-triplet (T-T) energy transfer between molecules of eosin and 3,4-benzopyrene is studied. Polyvenylbuteryl films have been used in capacity of polymer matrix. Calculation has being carried out on spectral-kinetic unit. It is revealed, that 3,4-benzopyrene triplets have been formed in polymer matrix after end of T-T energy transfer. These triplets join in a reaction of mixed triplet-triplet annihilation with non-blow out triplets of eosin and its sensitize slowed fluorescence (SF) of donor. This explains non-exponent character of eosin's dumping kinetics. Non-linear dependence of SF output ration to eosin phosphorescence output under presence of 3,4-benzopyrene molecules in film indicates on process of mixed annihilation. Fractal character of SF donor and acceptor has been evidenced about microscopical distribution of phosphor in polymer. 13 refs., 5 figs

  2. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  3. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  4. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    Science.gov (United States)

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  6. Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions

    International Nuclear Information System (INIS)

    Lin Hongzhen; Weng Yufeng; Huang Hongmin; He Qingguo; Zheng Min; Bai Fenglian

    2004-01-01

    Photoinduced charge transfer between a conjugated polymer and C 60 and the related processes were investigated in dilute solutions. The substantial fluorescence quenching is correlated with the efficient exciton diffusion within the polymer chains, according to which a sphere-of-action mechanism is proposed. An emissive exciplex was found formed between the conjugated polymer and fullerene in a nonpolar solvent, indicating the occurrence of a photoinduced partial charge transfer process. The low-energy sites in the polymer are believed to play a crucial role in the partial charge transfer. The asymmetry of the exciplex provides a method for evaluating the tendency of photoinduced charge separation between the donor and the acceptor. This method allows screening candidates for photovoltaic applications

  7. Fluorene-based narrow-band-gap copolymers for red light- emitting diodes and bulk heterojunction photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Mingliang SUN; Li WANG; Yangjun XIA; Bin DU; Ransheng LIU; Yong CAO

    2008-01-01

    A series of narrow band-gap conjugated copo-lymers (PFO-DDQ) derived from 9,9-dioctylfluorene (DOF) and 2,3-dimethyl-5,8-dithien-2-yl-quinoxalines (DDQ) is prepaid by the palladium-catalyzed Suzuki coupling reaction with the molar feed ratio of DDQ at around 1%,5%,15%,30% and 50%,respectively.The obtained polymers are readily soluble in common organic solvents.The solutions and the thin solid films of the copolymers absorb light from 300-590 nm with two absorbance.peaks at around 380 and 490 nm.The intens-ity of 490 nm peak increases with the increasing DDQ content in the polymers.Efficient energy transfer due to exciton trapping on narrow-band-gap DDQ sites has been observed.The PL emission consists exclusively of DDQ unit emission at around 591 643 nm depending on the DDQ content in solid film.The EL emission peaks are red-shifted from 580 nm for PFO-DDQ1 to 635 nm for PFO-DDQ50.The highest external quantum efficiency achieved with the device configuration ITO/PEDOT/ PVK/PFO-DDQt5/Ba/A1 is 1.33% with a luminous effi-ciency 1.54 cd/A.Bulk heterojunction photovoltaic cells fabricated from composite films of PFO-DDQ30 copoly-mer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as electron donor and electron acceptor,respect-ively in device configuration:ITO/PEDOT:PSS/PFO-DDQ30:PCBM/PFPNBr/Al shows power conversion effi-ciencies of 1.18% with open-circuit voltage (Voc) of 0.90 V and short-circuit current density (Jsc) of 2.66 mA/cm2 under an AM1.5 solar simulator (100 mW/cm2).The photocurrent response wavelengths of the PVCs based on PFO-DDQ30/PCBM blends covers 300-700 nm.This indicates that these kinds of low band-gap polymers are promising candidates for polymeric solar cells and red light-emitting diodes.

  8. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Science.gov (United States)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  10. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Straightforward Entry toward Highly Substituted 2,3-Dihydrobenz[ b]oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds.

    Science.gov (United States)

    Courant, Thibaut; Pasco, Morgane; Lecourt, Thomas

    2018-05-04

    Ylide-type reactivity of diazo compounds is exploited in a new way to prepare benzo[ b]oxepines thanks to the formation of three chemical bonds and two contiguous and highly substituted stereocenters in a single pot. This cationic reaction cascade first involves addition of a donor-acceptor-substituted diazo compound to a benzopyrylium. Selective 1,2 migration of the endocyclic C-C bond then results in a ring-expansion and generates a second oxocarbenium that is trapped by a nucleophile added sequentially.

  12. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  13. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.

    Science.gov (United States)

    Jacob, Maik H; Dsouza, Roy N; Ghosh, Indrajit; Norouzy, Amir; Schwarzlose, Thomas; Nau, Werner M

    2013-01-10

    The structural and dynamic properties of a flexible peptidic chain codetermine its biological activity. These properties are imprinted in intrachain site-to-site distances as well as in diffusion coefficients of mutual site-to-site motion. Both distance distribution and diffusion determine the extent of Förster resonance energy transfer (FRET) between two chain sites labeled with a FRET donor and acceptor. Both could be obtained from time-resolved FRET measurements if their individual contributions to the FRET efficiency could be systematically varied. Because the FRET diffusion enhancement (FDE) depends on the donor-fluorescence lifetime, it has been proposed that the FDE can be reduced by shortening the donor lifetime through an external quencher. Benefiting from the high diffusion sensitivity of short-distance FRET, we tested this concept experimentally on a (Gly-Ser)(6) segment labeled with the donor/acceptor pair naphthylalanine/2,3-diazabicyclo[2.2.2]oct-2-ene (NAla/Dbo). Surprisingly, the very effective quencher potassium iodide (KI) had no effect at all on the average donor-acceptor distance, although the donor lifetime was shortened from ca. 36 ns in the absence of KI to ca. 3 ns in the presence of 30 mM KI. We show that the proposed approach had to fail because it is not the experimentally observed but the radiative donor lifetime that controls the FDE. Because of that, any FRET ensemble measurement can easily underestimate diffusion and might be misleading even if it employs the Haas-Steinberg diffusion equation (HSE). An extension of traditional FRET analysis allowed us to evaluate HSE simulations and to corroborate as well as generalize the experimental results. We demonstrate that diffusion-enhanced FRET depends on the radiative donor lifetime as it depends on the diffusion coefficient, a useful symmetry that can directly be applied to distinguish dynamic and structural effects of viscous cosolvents on the polymer chain. We demonstrate that the

  14. Influence of donor-donor transport on excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K K; Joshi, H C; Pant, T C [Kumaun University, Nainital (India). Department of Physics

    1989-01-01

    Energy migration and transfer from acriflavine to rhodamine B and malachite green in poly (methylmethacrylate) have been investigated using the decay function analysis. It is found that the influence of energy migration in energy transfer can be described quite convincingly by making use of the theories of Loring, Andersen and Fayer (LAF) and Huber. At high acceptor concentration direct donor-acceptor transfer occurs through Forster mechanism. (author). 17 refs., 5 figs.

  15. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    Science.gov (United States)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  16. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  17. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  18. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.

    Science.gov (United States)

    Timoshkin, Alexey Y; Schaefer, Henry F

    2003-08-20

    Formation of the donor-acceptor complexes of group 13 metal derivatives with nitriles and isonitriles X(3)M-D (M = Al,Ga,In; X = H,Cl,CH(3); D = RCN, RNC; R = H,CH(3)) and their subsequent reactions have been theoretically studied at the B3LYP/pVDZ level of theory. Although complexation with MX(3) stabilizes the isocyanide due to the stronger M-C donor-acceptor bond, this stabilization (20 kJ mol(-1) at most) is not sufficient to make the isocyanide form more favorable. Relationships between the dissociation enthalpy DeltaH degrees (298)(diss), charge-transfer q(CT), donor-acceptor bond energy E(DA), and the shift of the vibrational stretching mode of the CN group upon coordination Deltaomega(CN) have been examined. For a given metal center, there is a good correlation between the energy of the donor-acceptor bond and the degree of a charge transfer. Prediction of the DeltaH degrees (298)(diss) on the basis of the shift of CN stretching mode is possible within limited series of cyanide complexes (for the fixed M,R); in contrast, complexes of the isocyanides exhibit very poor Deltaomega(CN) - DeltaH degrees (298)(diss) correlation. Subsequent X ligand transfer and RX elimination reactions yielding monomeric (including donor-acceptor stabilized) and variety of oligomeric cage and ring compounds with [MN]n, [MC]n, [MNC]n cores have been considered and corresponding to thermodynamic characteristics have been obtained for the first time. Monomeric aluminum isocyanides X(2)AlNC are more stable compared to Al-C bonded isomers; for gallium and indium situation is reversed, in qualitative agreement with Pearson's HSAB concept. Substitution of X by CN in MX(3) increases the dissociation enthalpy of the MX(2)CN-NH(3) complex compared to that for MX(3)-NH(3), irrespective of the substituent X. Mechanisms of the initial reaction of the X transfer have been studied for the case X = R = H. The process of hydrogen transfer from the metal to the carbon atom in H(3)M-CNH is

  19. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    Science.gov (United States)

    Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I.

    2011-06-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  20. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    International Nuclear Information System (INIS)

    Willander, M; Nur, O; Zaman, S; Zainelabdin, A; Bano, N; Hussain, I

    2011-01-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 0 C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  1. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  2. Electro-optical and charge injection investigations of the donor-π-acceptor triphenylamine, oligocene–thiophene–pyrimidine and cyanoacetic acid based multifunctional dyes

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2015-10-01

    Full Text Available The corner stone of present study is to tune the electro-optical and charge transport properties of donor-bridge-acceptor (D-π-A triphenylamine (TPA derivatives. In the present investigation, an electron deficient moiety (pyrimidine, electron-rich moiety (thiophene and oligocene (benzene, naphthalene, anthracene, tetracene and pentacene have been incorporated as π-spacer between the donor TPA unit and cyanoacetic acid acceptor and anchoring group. The elongation of bridge usually affects the energy levels, i.e., higher the highest occupied molecular orbital (HOMO while lower the lowest unoccupied molecular orbital (LUMO thus reduces the HOMO–LUMO energy gap. The lowered LUMO energy levels of cyano-{2-[6-(4-diphenylamino-phenyl-pyrimidin-4-yl]-tetraceno[2,3-b]thiophen-8-yl}-acetic acid (TPA-PTT4 and cyano-{2-[6-(4-diphenylamino-phenyl-pyrimidin-4-yl]-pentaceno[2,3-b]thiophen-9-yl}-acetic acid (TPA-PPT5 dyes revealed that electron injected from dye to semiconductor surface might be auxiliary stable resulting in impediment of quenching. The broken co-planarity between the π-spacer conceiving LUMO and the TPA moiety would help to impede the recombination process. Moreover, it is expected that TPA derivatives with the tetracenothiophene and pentacenothiophene moieties as π-bridge would show better photovoltaic performance due to lowered LUMO energy level, higher electronic coupling constant, light harvesting efficiency and electron injection values.

  3. Ambient Layer-by-Layer ZnO Assembly for Highly Efficient Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Eita, Mohamed Samir

    2015-02-04

    The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in fl exible devices. Here, a layer-by-layer (LbL) protocol is reported as a facile, room-temperature, solution-processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of H25 nm yields solar cell power-conversion effi ciencies (PCEs) of ≈6%, exceeding the effi ciency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60-300 ° C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL-deposited fi lms to solar cell performance. This protocol suggests a new fabrication method for solution-processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to fl exible devices printed on plastic substrates.

  4. The electronic structure and optical properties of donor-acceptor codoped TiO{sub 2} nanosheets from hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanyu; Zhou, Wei; Wu, Ping, E-mail: pingwu@tju.edu.cn

    2017-01-15

    Here we explore the effect of charge-compensated donor-acceptor pairs (2Nb + C), (2Ta + C), (Mo + 2N) and (W + 2N) codoping on the electronic and optical properties of TiO{sub 2} nanosheets. The results demonstrate that the (2Nb + C) and (2Ta + C) codoping create the delocalized midgap states in TiO{sub 2} nanosheets. The appearance of impurity states extends the absorption edge of nanosheets to the visible light region. The interaction of the host and the foreign chiefly occurs at the band edges of the N-related systems, which reduces the band-gap by 0.5 eV. Although this large band-gap still renders the visible light inefficient, the enhanced UV light absorption has been observed. Besides, the position of absorption edge is independent on the doping concentration, but the higher codoping concentration yields stronger light absorption. Moreover, the band edge alignment verifies that the C-related systems are desirable visible and UV-light-driven photocatalysts for overall water splitting. - Highlights: • A systematical study has been employed on 2D TiO{sub 2} nanosheets with the donor-acceptor codoping. • The (2Nb/2Ta + C) codoping in TiO{sub 2} nanosheets creates the delocalized midgap states. • The C-related systems are desirable visible and UV-light-driven photocatalysts. • The water splitting power of (Mo/W + 2N) codoped systems is improved with enhanced UV light response. • The high doping concentration means the stronger absorption ability of the solar energy.

  5. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells; Synthese, caracterisation et nanostructuration de derives du polythiophene pour des applications en cellules photovoltaiques organiques

    Energy Technology Data Exchange (ETDEWEB)

    Berson, S

    2007-10-15

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  6. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  7. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Di-substituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillary P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillary layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6 % on glass and 3.3 % on plastic were reached without annealing. (author)

  8. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  9. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.

    2011-06-28

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Beiley, Zach M.; Hoke, Eric T.; Noriega, Rodrigo; Dacuñ a, Javier; Burkhard, George F.; Bartelt, Jonathan A.; Salleo, Alberto; Toney, Michael F.; McGehee, Michael D.

    2011-01-01

    Bulk heterojunction solar cells (BHJs) based on poly[N-9″-hepta- decanyl-2,7-carbazole- alt -5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ∼70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fi ll factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We fi nd that hole-traps in the polymer, which we characterize using space-charge limited current measurements, play an important role in the performance of PCDTBT-based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the "fruit-fl y" P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short-range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π-π stacking. The decrease in structural order is matched by the movement of hole-traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBTbased BHJs. These fi ndings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Cao, B Q; Lorenz, M; Rahm, A; Wenckstern, H von; Czekalla, C; Lenzner, J; Benndorf, G; Grundmann, M

    2007-01-01

    Phosphorus-doped ZnO (ZnO:P) nanowires were successfully prepared by a novel high-pressure pulsed-laser deposition process using phosphorus pentoxide as the dopant source. Detailed cathodoluminescence studies of single ZnO:P nanowires revealed characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission (A 0 , X, 3.356 eV), free-to-neutral-acceptor emission (e, A 0 , 3.314 eV), and donor-to-acceptor pair emission (DAP, ∼3.24 and ∼3.04 eV). This means that stable acceptor levels with a binding energy of about 122 meV have been induced in the nanowires by phosphorus doping. Moreover, the induced acceptors are distributed homogeneously along the doped nanowires

  12. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  13. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  14. Synthesis and X-ray crystal structure of the first tetrathiafulvalene-based acceptor-donor-acceptor sandwich

    DEFF Research Database (Denmark)

    Simonsen, Klaus B.; Thorup, Niels; Cava, Michael P.

    1998-01-01

    The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state....

  15. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    Science.gov (United States)

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  16. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola; Salvador, Michael; Heumueller, Thomas; Richter, Moses; Classen, Andrej; Shrestha, Shreetu; Matt, Gebhard J.; Holliday, Sarah; Strohm, Sebastian; Egelhaaf, Hans-Joachim; Wadsworth, Andrew; Baran, Derya; McCulloch, Iain; Brabec, Christoph J.

    2017-01-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  18. Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates

    KAUST Repository

    Gasparini, Nicola

    2017-09-01

    Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3-hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non-Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10−4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time-of-flight measurements reveals a long-lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness-independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.

  19. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Morozov, A.N.; Mikryukova, E.V.; Bublik, V.T.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Effect of alloying with donor (S,Ge) and acceptor (Zn) impurities on the concentration of proper point defects in monocrystals InP grown up from equiatomic (relative to In and P) melts by the Czochralski method under flux layer is investigated. Changes in boundary positions of the InP homogeneity region caused by alloying are analysed on the basis of experimental results according to the precision measurement of the lattice parameter and crystal density, as well as measurements of the Hall concentration of charge carriers and their mobility. The concentrations of Frenkel nonequilibrium (V in -In i ) defects formed in the initial stage of indium solid solution decomposition in InP are estimated

  20. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.