WorldWideScience

Sample records for donor peripheral stem

  1. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... Print this page My Cart Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  2. Motivations, experiences, and perspectives of bone marrow and peripheral blood stem cell donors: thematic synthesis of qualitative studies.

    Science.gov (United States)

    Garcia, Maria C; Chapman, Jeremy R; Shaw, Peter J; Gottlieb, David J; Ralph, Angelique; Craig, Jonathan C; Tong, Allison

    2013-07-01

    Hematopoietic stem cell (HSC) transplantation using bone marrow and peripheral blood stem cells is a lifesaving treatment for patients with leukemia or other blood disorders. However, donors face the risk of physical and psychosocial complications. We aimed to synthesize qualitative studies on the experiences and perspectives of HSC donors. We searched MEDLINE, Embase, PsycINFO, CINAHL, Google Scholar, and reference lists of relevant articles to November 13, 2012. Thematic synthesis was used to analyze the findings. Thirty studies involving 1552 donors were included. The decision to donate included themes of saving life, family loyalty, building a positive identity, religious conviction, fear of invasive procedures, and social pressure and obligation. Five themes about the donation experience were identified: mental preparedness (pervasive pain, intense disappointment over recipient death, exceeding expectations, and valuing positive recipient gains), burden of responsibility (striving to be a quality donor, unresolved guilt, and exacerbated grief), feeling neglected (medical dismissiveness and family inattention), strengthened relationships (stronger family ties, establishing blood bonds), and personal sense of achievement (satisfaction and pride, personal development, hero status, and social recognition). Although HSC donation was appreciated as an opportunity to save life, some donors felt anxious and unduly compelled to donate. HSC donors became emotionally invested and felt responsible for their recipient's outcomes and were profoundly grieved and disappointed if the transplantation was unsuccessful. To maximize donor satisfaction and mitigate the psychosocial risks for HSC donors, strategies to address the emotional challenges of anxiety, sense of coercion, guilt, and grief in donors are warranted. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    Science.gov (United States)

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acute toxicities of unrelated bone marrow versus peripheral blood stem cell donation: results of a prospective trial from the National Marrow Donor Program.

    Science.gov (United States)

    Pulsipher, Michael A; Chitphakdithai, Pintip; Logan, Brent R; Shaw, Bronwen E; Wingard, John R; Lazarus, Hillard M; Waller, Edmund K; Seftel, Matthew; Stroncek, David F; Lopez, Angela M; Maharaj, Dipnarine; Hematti, Peiman; O'Donnell, Paul V; Loren, Alison W; Leitman, Susan F; Anderlini, Paolo; Goldstein, Steven C; Levine, John E; Navarro, Willis H; Miller, John P; Confer, Dennis L

    2013-01-03

    Although peripheral blood stem cells (PBSCs) have replaced bone marrow (BM) as the most common unrelated donor progenitor cell product collected, a direct comparison of concurrent PBSC versus BM donation experiences has not been performed. We report a prospective study of 2726 BM and 6768 PBSC donors who underwent collection from 2004 to 2009. Pain and toxicities were assessed at baseline, during G-CSF administration, on the day of collection, within 48 hours of donation, and weekly until full recovery. Peak levels of pain and toxicities did not differ between the 2 donation processes for most donors. Among obese donors, PBSC donors were at increased risk of grade 2 to 4 pain as well as grade 2 to 4 toxicities during the pericollection period. In contrast, BM donors were more likely to experience grade 2 to 4 toxicities at 1 week and pain at 1 week and 1 month after the procedure. BM donors experienced slower recovery, with 3% still not fully recovered at 24 weeks, whereas 100% of PBSC donors had recovered. Other factors associated with toxicity included obesity, increasing age, and female sex. In summary, this study provides extensive detail regarding individualized risk patterns of PBSC versus BM donation toxicity, suggesting donor profiles that can be targeted with interventions to minimize toxicity.

  5. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?

    Science.gov (United States)

    Cashen, A F; Lazarus, H M; Devine, S M

    2007-05-01

    Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.

  6. Donor Selection for Allogenic Hemopoietic Stem Cell Transplantation: Clinical and Ethical Considerations

    Directory of Open Access Journals (Sweden)

    Irene Riezzo

    2017-01-01

    Full Text Available Allogenic hematopoietic progenitor cell transplantation (allo-HSCT is an established treatment for many diseases. Stem cells may be obtained from different sources: mobilized peripheral blood stem cells, bone marrow, and umbilical cord blood. The progress in transplantation procedures, the establishment of experienced transplant centres, and the creation of unrelated adult donor registries and cord blood banks gave those without an human leucocyte antigen- (HLA- identical sibling donor the opportunity to find a donor and cord blood units worldwide. HSCT imposes operative cautions so that the entire donation/transplantation procedure is safe for both donors and recipients; it carries with it significant clinical, moral, and ethical concerns, mostly when donors are minors. The following points have been stressed: the donation should be excluded when excessive risks for the donor are reasonable, donors must receive an accurate information regarding eventual adverse events and health burden for the donors themselves, a valid consent is required, and the recipient’s risks must be outweighed by the expected benefits. The issue of conflict of interest, when the same physician has the responsibility for both donor selection and recipient care, is highlighted as well as the need of an adequate insurance protection for all the parties involved.

  7. The Stem Cell Club: a model for unrelated stem cell donor recruitment.

    Science.gov (United States)

    Fingrut, Warren; Parmar, Simran; Cuperfain, Ari; Rikhraj, Kiran; Charman, Erin; Ptak, Emilie; Kahlon, Manjot; Graham, Alice; Luong, Susan; Wang, Yongjun George; Yu, Janice; Arora, Neha; Suppiah, Roopa; Li, Edward W; Lee, Anna; Welsh, Christopher; Benzaquen, Menachem; Thatcher, Alicia; Baharmand, Iman; Ladd, Aedan; Petraszko, Tanya; Allan, David; Messner, Hans

    2017-12-01

    Patients with blood, immune, or metabolic diseases may require a stem cell transplant as part of their treatment. However, 70% of patients do not have a suitable human leukocyte antigen match in their family, and need an unrelated donor. Individuals can register as potential donors at stem cell drives, where they provide consent and a tissue sample for human leukocyte antigen typing. The ideal donors are young, male, and from a diversity of ethnic backgrounds. However, in Canada, non-Caucasian males ages 17 to 35 years represent only 8.8% of listed donors. The Stem Cell Club is a non-profit organization founded in 2011 in Canada that aims to augment recruitment of the most needed donors. The initiative published a recruitment toolkit online (www.stemcellclub.ca). Currently, there are 12 chapters at universities across Canada. To date, the Stem Cell Club has recruited 6585 potential registrants, representing 1.63% of donors on Canada's donor-database. Of the recruited registrants, 58.3% were male; 60.3% of males self-reported as non-Caucasian, and 78.5% were ages 17 to 25 years. From 2015 to 2016, the initiative recruited 13.7% of all ethnically diverse males ages 17 to 35 years listed in Canada's donor database. Data from this initiative demonstrate sustainability and performance on key indicators of stem cell drive quality. The Stem Cell Club has developed a capacity to recruit 2600 donors annually, with the majority being males with a high degree of ethnic diversity. The initiative enhances the quality of Canada's unrelated donor-database, improving the chances that patients in need of an unrelated donor will find a match for transplant. The Stem Cell Club is a model relevant to recruitment organizations around the world. © 2017 AABB.

  8. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation.

    Science.gov (United States)

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.

  9. Recovery of Unrelated Donors of Peripheral Blood Stem Cells versus Bone Marrow: A Prespecified Analysis from the Phase III BMT CTN Protocol 0201

    Science.gov (United States)

    Burns, Linda J.; Logan, Brent R.; Chitphakdithai, Pintip; Miller, John P.; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E.; Wingard, John R.; Anasetti, Claudio; Confer, Dennis L.

    2016-01-01

    We report a comparison of time to recovery, side effects, and change in blood counts from baseline to post-donation of unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) phase III randomized, multicenter trial (0201) in which donor/recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) from international centers (145 German and 9 Canadian). PBSC donors recovered in less time with a median time to recovery of 1 week compared to 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months post-donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time post donation compared to BM donors (HR 2.08 [95% CI 1.73–2.50], pdonor and donation in more recent years. Donors of BM were more likely to report grade 2–4 skeletal pain, body symptoms and fatigue at 1 week post donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 post-collection of BM donors) could be analyzed, no variable was significantly associated with grade 2–4 skeletal pain, including product donated (BM vs PBSC, OR 1.13 [95% CI 0.74–1.74], p=0.556). Blood counts were impacted by product donated, with mean change from baseline to post-donation being greater for white blood cells, neutrophils, mononuclear cells and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. PMID:27013014

  10. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  11. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen

    DEFF Research Database (Denmark)

    Rodrigues, Celso Arrais; Rocha, Vanderson; Dreger, Peter

    2014-01-01

    We have reported encouraging results of unrelated cord blood transplantation for patients with lymphoid malignancies. Whether those outcomes are comparable to matched unrelated donor transplants remains to be defined. We studied 645 adult patients with mature lymphoid malignancies who received...... an allogeneic unrelated donor transplant using umbilical cord blood (n=104) or mobilized peripheral blood stem cells (n=541) after a reduced-intensity conditioning regimen. Unrelated cord blood recipients had more refractory disease. Median follow-up time was 30 months. Neutrophil engraftment (81% vs. 97......%, respectively; Pblood than after matched unrelated donor, whereas no differences were observed in grade II-IV acute graft-versus-host disease (29% vs. 32%), non-relapse mortality (29% vs. 28...

  12. Being a haematopoietic stem cell donor for a sick sibling: Adult donors' experiences prior to donation.

    Science.gov (United States)

    Kisch, Annika; Bolmsjö, Ingrid; Lenhoff, Stig; Bengtsson, Mariette

    2015-10-01

    There is a lack of knowledge about sibling stem cell donors' experiences pre-donation and the waiting period before the donation might have been long. The donors and their corresponding sibling recipients were simultaneously included in two different interview studies. The results from the recipient study have been presented in a separate paper. The aim was to explore the experiences of being a stem cell donor for a sibling, prior to donation. Ten adult sibling donors were interviewed prior to stem cell donation. The interviews were digitally recorded, transcribed verbatim and subjected to qualitative content analysis. The main theme Being a cog in a big wheel describes the complex process of being a sibling donor prior to donation, covering a mixture of emotions and thoughts. The four subthemes Being available, Being anxious, Being concerned and Being obliged cover the various experiences. The sibling donors' experiences are influenced by the quality of the relationship with the sick sibling. Sibling stem cell donors go through a complex process once they have accidentally got involved in. They have been asked to become a donor; it was not a voluntary choice. In caring for sibling stem cell donors the nurses should be aware of the complexity of the process they experience and take into consideration their personal situation and needs. Providing optimal care for both sibling donors and their corresponding recipients is a challenge, and further improvement and exploration are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Relapsed Diffuse Large B-Cell Lymphoma Treated by Reduced-Intensity Allogeneic Stem Cell Transplantation with Donor Lymphocyte Infusion

    International Nuclear Information System (INIS)

    Chudhry, Q.N.; Ahmed, P.; Ullah, K.; Satti, T.M.; Raza, S.; Mehmood, S.K.; Akram, M.; Ahmed, S.

    2010-01-01

    A 42 years old male with relapsed diffuse large B-cell lymphoma was given second-line chemotherapy followed by reduced intensity allogeneic stem cell transplantation from HLA matched brother. Twelve weeks post transplant, his disease relapsed evidenced by the appearance of lymphoma cells in the peripheral blood and declining donor chimerism. Donor lymphocyte infusion was given that induced complete lymphoma remission. The patient is well 3 years post transplant with his disease in complete remission. (author)

  14. Recovery of Unrelated Donors of Peripheral Blood Stem Cells versus Recovery of Unrelated Donors of Bone Marrow: A Prespecified Analysis from the Phase III Blood and Marrow Transplant Clinical Trials Network Protocol 0201.

    Science.gov (United States)

    Burns, Linda J; Logan, Brent R; Chitphakdithai, Pintip; Miller, John P; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E; Wingard, John R; Anasetti, Claudio; Confer, Dennis L

    2016-06-01

    We report a comparison of time to recovery, side effects, and change in blood counts from baseline to after donation from unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network phase III randomized, multicenter trial (0201) in which donor-recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) were from international centers (145 German and 9 Canadian). PBSC donors recovered in less time, with a median time to recovery of 1 week compared with 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months after donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time after donation compared with BM donors (hazard ratio, 2.08; 95% confidence interval [CI], 1.73 to 2.50; P donor and donation in more recent years. Donors of BM were more likely to report grades 2 to 4 skeletal pain, body symptoms, and fatigue at 1 week after donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 after collection of BM donors) could be analyzed, no variable was significantly associated with grades 2 to 4 skeletal pain, including product donated (BM versus PBSC; odds ratio, 1.13; 95% CI, .74 to 1.74; P = .556). Blood counts were affected by product donated, with greater mean change from baseline to after donation for white blood cells, neutrophils, mononuclear cells, and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. Copyright © 2016 The American Society for Blood and

  15. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    Science.gov (United States)

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-05-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  16. Factors affecting autologous peripheral blood hematopoietic stem cell collections by large-volume leukapheresis: a single center experience

    Directory of Open Access Journals (Sweden)

    Araci Massami Sakashita

    2011-06-01

    Full Text Available Objective: To evaluate factors affecting peripheral bloodhematopoietic stem cell yield in patients undergoing large-volumeleukapheresis for autologous peripheral blood stem cell collection.Methods: Data from 304 consecutive autologous peripheral bloodstem cell donors mobilized with hematopoietic growth factor (usually G-CSF, associated or not with chemotherapy, at Hospital Israelita Albert Einstein between February 1999 and June 2010 were retrospectively analyzed. The objective was to obtain at least 2 x 106CD34+ cells/kg of body weight. Pre-mobilization factors analyzedincluded patient’s age, gender and diagnosis. Post mobilizationparameters evaluated were pre-apheresis peripheral white bloodcell count, immature circulating cell count, mononuclear cell count,peripheral blood CD34+ cell count, platelet count, and hemoglobinlevel. The effect of pre and post-mobilization factors on hematopoietic stem cell collection yield was investigated using logistic regression analysis (univariate and multivariate approaches. Results: Premobilization factors correlating to poor CD34+ cell yield in univariate analysis were acute myeloid leukemia (p = 0.017 and other hematological diseases (p = 0.023. Significant post-mobilization factors included peripheral blood immature circulating cells (p = 0.001, granulocytes (p = 0.002, hemoglobin level (p = 0.016, and CD34+ cell concentration (p < 0.001 in the first harvesting day. However, according to multivariate analysis, peripheral blood CD34+ cell content (p < 0.001 was the only independent factor that significantly correlated to poor hematopoietic stem cell yield. Conclusion: In this study, peripheral blood CD34+ cell concentration was the only factor significantly correlated to yield in patients submitted to for autologous collection.

  17. Predictors for successful PBSC collection on the fourth day of G-CSF-induced mobilization in allogeneic stem cell donors.

    Science.gov (United States)

    van Oostrum, Anja; Zwaginga, Jaap Jan; Croockewit, Sandra; Overdevest, Jacqueline; Fechter, Mirjam; Ruiterkamp, Bart; Brand, Anneke; Netelenbos, Tanja

    2017-12-01

    Peripheral blood stem cells (PBSCs) used for allogeneic transplantation are collected by apheresis after pre-treatment of donors with G-CSF. Using modern apheresis devices stem cells can be collected more efficiently. It was studied whether collection on the 4th instead of the 5th day after initiation of G-CSF treatment might be feasible. Stem cell yields that could have been collected on day 4 were calculated in two cohorts treated with 10 µg/kg G-CSF once daily (n = 106, cohort I) or 5 µg/kg twice daily schedule (n = 85, cohort II). Harvests were predicted using the median collection efficiency (CE) of the apheresis machine and regarded successful when > 5.0 x10 6 CD34 +/ kg recipient body weight. Successful harvests at day 4 could have been obtained in only 22.6% and 41.2% of donors in cohort I and II respectively, while the expected successful collections on day 5 were 55.7% and 76.5%. Individual donor factors that correlated with a successful harvest on day 4 were weight, BMI, age, ratio donor/recipient weight and total G-CSF dose in cohort I, whereas ratio donor/recipient weight was the only significant predictor in cohort II. Donor weight, BMI and total G-CSF dose correlated positively with CD34 + values in the blood on day 4 in all donors. However, donor characteristics were not able to be used as strong predictors in daily practice. In conclusion, PBSC collection on day 4 will not result in a successful harvest in most stem cell donors, however using a twice daily G-CSF scheme increases the yield. © 2017 Wiley Periodicals, Inc.

  18. [Absolute numbers of peripheral blood CD34+ hematopoietic stem cells prior to a leukapheresis procedure as a parameter predicting the efficiency of stem cell collection].

    Science.gov (United States)

    Galtseva, I V; Davydova, Yu O; Gaponova, T V; Kapranov, N M; Kuzmina, L A; Troitskaya, V V; Gribanova, E O; Kravchenko, S K; Mangasarova, Ya K; Zvonkov, E E; Parovichnikova, E N; Mendeleeva, L P; Savchenko, V G

    To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.

  19. Does the preference of peripheral versus central venous access in peripheral blood stem cell collection/yield change stem cell kinetics in autologous stem cell transplantation?

    Science.gov (United States)

    Dogu, Mehmet Hilmi; Kaya, Ali Hakan; Berber, Ilhami; Sari, İsmail; Tekgündüz, Emre; Erkurt, Mehmet Ali; Iskender, Dicle; Kayıkçı, Ömur; Kuku, Irfan; Kaya, Emin; Keskin, Ali; Altuntaş, Fevzi

    2016-02-01

    Central venous access is often used during apheresis procedure in stem cell collection. The aim of the present study was to evaluate whether central or peripheral venous access has an effect on stem cell yield and the kinetics of the procedure and the product in patients undergoing ASCT after high dose therapy. A total of 327 patients were retrospectively reviewed. The use of peripheral venous access for stem cell yield was significantly more frequent in males compared to females (p = 0.005). Total volume of the product was significantly lower in central venous access group (p = 0.046). As being a less invasive procedure, peripheral venous access can be used for stem cell yield in eligible selected patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of survival outcome between donor types or stem cell sources for childhood acute myeloid leukemia after allogenic hematopoietic stem cell transplantation: A multicenter retrospective study of Study Alliance of Yeungnam Pediatric Hematology-oncology.

    Science.gov (United States)

    Shim, Ye Jee; Lee, Jae Min; Kim, Heung Sik; Jung, Nani; Lim, Young Tak; Yang, Eu Jeen; Hah, Jeong Ok; Lee, Young-Ho; Chueh, Hee Won; Lim, Jae Young; Park, Eun Sil; Park, Jeong A; Park, Ji Kyoung; Park, Sang Kyu

    2018-06-19

    We compared transplant outcomes between donor types and stem cell sources for childhood acute myeloid leukemia (AML). The medical records of children with AML in the Yeungnam region of Korea from January 2000 to June 2017 were reviewed. In all, 76 children with AML (male-to-female ratio = 46:30) received allogenic hematopoietic stem cell transplantation (allo-HSCT). In total, 29 patients received HSCT from either a matched-related donor or a mismatched-related donor, 32 patients received an unrelated donor, and 15 patients received umbilical cord blood. In term of stem cell sources, bone marrow was used in 15 patients and peripheral blood in 46 patients. For all HSCT cases, the 5-year overall survival (OS) was 73.1% (95% CI: 62.7-83.5) and the 5-year event-free survival (EFS) was 66.1% (95% CI: 54.5-77.7). There was no statistical difference in 5-year OS according to the donor types or stem cell sources (P = .869 and P = .911). There was no statistical difference in 5-year EFS between donor types or stem cell sources (P = .526 and P = .478). For all HSCT cases, the 5-year relapse rate was 16.1% (95% CI: 7.3-24.9) and the 5-year non-relapse mortality (NRM) was 13.3% (95% CI: 5.1-21.5). There was no statistical difference in the 5-year relapse rate according to the donor types or stem cell sources (P = .971 and P = .965). There was no statistical difference in the 5-year NRM between donor types or stem cell sources (P = .461 and P = .470). © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    Science.gov (United States)

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  2. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  3. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Labopin, Myriam; Shimoni, Avichai

    2012-01-01

    Reduced-intensity conditioning (RIC)-alloSCT is increasingly used for acute myelogenous leukemia. Limited data are available for the comparison of peripheral blood stem cells with bone marrow for RIC-alloSCT. We used the European Group for Blood and Marrow Transplantation (EBMT) ALWP data...... to compare the outcome of mobilized peripheral blood stem cells (PBSC) (n = 1430) vs. bone marrow (BM) (n = 107) for acute myelogenous leukemia (AML) patients with complete remission that underwent RIC-alloSCT from compatible sibling donors. The leukemia features, the disease status, and the time from...

  4. Computer Algorithms in the Search for Unrelated Stem Cell Donors

    Directory of Open Access Journals (Sweden)

    David Steiner

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a “donor search process” by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU. Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  5. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning.

    Science.gov (United States)

    Raj, Kavita; Pagliuca, Antonio; Bradstock, Kenneth; Noriega, Victor; Potter, Victoria; Streetly, Matthew; McLornan, Donal; Kazmi, Majid; Marsh, Judith; Kwan, John; Huang, Gillian; Getzendaner, Lisa; Lee, Stephanie; Guthrie, Katherine A; Mufti, Ghulam J; O'Donnell, Paul

    2014-06-01

    In a multicenter collaboration, we carried out T cell-replete, peripheral blood stem cell (PBSC) transplantations from related, HLA-haploidentical donors with reduced-intensity conditioning (RIC) and post-transplantation cyclophosphamide (Cy) as graft-versus-host disease (GVHD) prophylaxis in 55 patients with high-risk hematologic disorders. Patients received 2 doses of Cy 50 mg/kg i.v. on days 3 and 4 after infusion of PBSC (mean, 6.4 × 10(6)/kg CD34(+) cells; mean, 2.0 × 10(8)/kg CD3(+) cells). The median times to neutrophil (500/μL) and platelet (>20,000/μL) recovery were 17 and 21 days respectively. All but 2 of the patients achieved full engraftment. The 1-year cumulative incidences of grade II and grade III acute GVHD were 53% and 8%, respectively. There were no cases of grade IV GVHD. The 2-year cumulative incidence of chronic GHVD was 18%. With a median follow-up of 509 days, overall survival and event-free survival at 2 years were 48% and 51%, respectively. The 2-year cumulative incidences of nonrelapse mortality and relapse were 23% and 28%, respectively. Our results suggest that PBSC can be substituted safely and effectively for bone marrow as the graft source for haploidentical transplantation after RIC. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  7. Outcomes of peripheral blood stem cell transplantation patients from HLA-mismatched unrelated donor with antithymocyte globulin (ATG)-Thymoglobulin versus ATG-Fresenius: a single-center study.

    Science.gov (United States)

    Huang, Wenrong; Zhao, Xiaoli; Tian, Yamin; Cao, Tingting; Li, Yanfen; Liu, Zhanxiang; Jing, Yu; Wang, Shuhong; Gao, Chunji; Yu, Li

    2015-02-01

    Although antithymocyte globulin (ATG) had been widely used in hematopoietic stem cell transplantation from unrelated donor due to its ability to prevent acute and chronic graft-versus-host disease (GVHD), the comparative efficacy and safety of ATG-Thymoglobulin (ATG-T) and ATG-Fresenius (ATG-F) in patients undergoing HLA-mismatched allogeneic peripheral blood stem cell transplantation from unrelated donors (UR-PBSCT) has not been evaluated. Retrospective analysis of patients who underwent HLA-mismatched UR-PBSCT between January 2003 and December 2013 and received pre-transplant ATG-T at a total dose of 10 mg/kg or ATG-F at a total dose of 20 mg/kg was performed. Patients who received ATG-T (n = 23) or ATG-F (n = 28) had similar baseline demographic, disease, and transplant characteristics. There were no significant between-groups differences in the probability of acute GVHD (P = 0.721) and chronic GVHD (P = 0.439). ATG-F was associated with nonsignificant trends toward higher disease-free survival at 3-year follow-up compared with ATG-T (45.7 ± 11.1 vs 61.3 ± 9.7 %, respectively, P = 0.07). A significantly greater proportion of ATG-T patients experienced high fever than ATG-F patients (P < 0.01) during ATG infusion. There was no difference in the rate of infection between the two treatment groups. There were less adverse effects comparing ATG-F with ATG-T. ATG-T at a total dose of 10 mg/kg and ATG-F at a total dose of 20 mg/kg had a similar clinical outcome in the setting of HLA-mismatched UR-PBSCT.

  8. File list: Pol.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 RNA polymerase Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  9. File list: Pol.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 RNA polymerase Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  10. File list: Unc.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 Unclassified Blood Peripheral blo...od stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  11. File list: Pol.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 RNA polymerase Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  12. File list: Unc.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 Unclassified Blood Peripheral blo...od stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  13. File list: Unc.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 Unclassified Blood Peripheral blo...od stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  14. File list: Unc.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 Unclassified Blood Peripheral blo...od stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  15. File list: Pol.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 RNA polymerase Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  16. Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model.

    Science.gov (United States)

    Graham, Christopher D; Shieh, Hester F; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O

    2017-06-01

    Transamniotic stem cell therapy (TRASCET) with amniotic fluid-derived MSCs (afMSCs) has emerged experimentally as a practical treatment strategy for congenital anomalies. In this study, we sought to determine whether afMSCs migrate to the mother following TRASCET. Pregnant rat dams were divided into three groups. Two groups received volume-matched injections into all amniotic cavities of either a suspension of afMSCs labeled with a luciferase reporter gene or the luciferase protein alone. In a third group, a suspension of labeled cells was aliquoted onto the serosal surface of the uterus. Maternal samples from the laparotomy scar (fascia and skin separately), bone marrow, and peripheral blood were procured, along with placenta and umbilical cord. Specimens were screened for luminescence via microplate luminometry. Luminescence was detected in 60% (9/15) of the fascial scars from the group receiving intraamniotic injection of afMSCs, but in none of the other groups (Pcells in the placenta and their presence in maternal fascia (Wald test=10.2; P=0.001). Amniotic mesenchymal stem cells migrate to maternal sites of injury after intraamniotic injection. Maternal homing of donor cells must be considered in the setting of transamniotic stem cell therapy. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.

  17. File list: Oth.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 TFs and others Blood Peripheral b...lood stem cells SRX1036365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  18. File list: DNS.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  19. File list: DNS.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  20. File list: Oth.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 TFs and others Blood Peripheral b...lood stem cells SRX1036365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  1. File list: Oth.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 TFs and others Blood Peripheral b...lood stem cells SRX1036365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  2. File list: DNS.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838174,SRX838173 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  3. File list: Oth.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 TFs and others Blood Peripheral b...lood stem cells SRX1036365 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  4. File list: DNS.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  5. Allogeneic Peripheral Blood Stem Cell Harvest

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Allogeneic Peripheral Blood Stem Cell Harvest. Mobilization protocol. G-CSF 10 mcg/Kg / day for 5 days. Pheresis. Cobe Spectra; Haemonetics mcs+. Enumeration. CD34 counts; Cfu-GM assays.

  6. File list: His.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 Histone Blood Peripheral blood st...em cells SRX879221,SRX879209,SRX879208,SRX879210 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  7. File list: His.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 Histone Blood Peripheral blood st...em cells SRX879208,SRX879221,SRX879210,SRX879209 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  8. File list: His.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 Histone Blood Peripheral blood st...em cells SRX879208,SRX879221,SRX879210,SRX879209 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  9. File list: His.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 Histone Blood Peripheral blood st...em cells SRX879208,SRX879221,SRX879210,SRX879209 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  10. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.

    Science.gov (United States)

    Zhang, Rui; Rosen, Joseph M

    2018-05-01

    Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell (uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.

  11. Severe acute radiation syndrome. Treatment of a lethally 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells

    International Nuclear Information System (INIS)

    Guo Mei; Dong Zheng; Qiao Jianhui

    2014-01-01

    This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal 60 Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection. (author)

  12. File list: NoD.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 No description Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  13. File list: InP.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 Input control Blood Peripheral bl...ood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  14. File list: NoD.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 No description Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  15. File list: NoD.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 No description Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  16. File list: NoD.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 No description Blood Peripheral b...lood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  17. File list: InP.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 Input control Blood Peripheral bl...ood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  18. File list: InP.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 Input control Blood Peripheral bl...ood stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  19. Systematic donor blood qualification by flow cytometry would have been able to avoid CLL-type MBL transmission after unrelated hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ferrand, Christophe; Garnache-Ottou, Francine; Collonge-Rame, Marie Agnès; Larosa, Fabrice; Blanc, Michel; Behar, Catherine; Giannoli, Catherine; Garnier, Frédérico; Tiberghien, Pierre; Deconinck, Eric; Rohrlich, Pierre Simon

    2012-03-01

    The current screening for eligibility of unrelated volunteer marrow donors comprises a complete clinical check-up, a blood CBC and serum protein immunoelectrophoresis. This allows to eliminate acute leukemias, myeloproliferative and myelodysplastic disorders, myelomas and MGUS. To date, the risk of transmission of chronic lymphocytic leukemia (CLL) disease is only evaluated by the clinical evaluation and CBC. We report here the case of a CLL-type MBL disease occurring in a 12-year-old boy after unrelated BMT. Deep biological investigations, as Immunophenotyping, cytogenetic and molecular biology allow us to determine the donor origin of the CLL clone. In 2010, 14.2% donor (105/737) for unrelated hematopoietic stem cell transplantation were over 45y. It is currently estimated (USA) that 1 in 210 men and women will be diagnosed with CLL during their lifetime. Given the long asymptomatic phase of CLL, this raises the case for a detection strategy analog to that used for MGUS and myeloma through serum protein electrophoresis. This case-report, to our knowledge, of a CLL-type MBL unrelated donor-to-recipient transmission through BMT raises ethical and practical questions, such as the proper information about disease transmission risk. The cost-effectiveness of a systematic peripheral blood Immunophenotyping in donors elder than 40y at time of stem cell donation should be evaluated. © 2012 John Wiley & Sons A/S.

  20. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; a pilot study.

    Science.gov (United States)

    Lee, Hyunah; Park, Jae Berm; Lee, Sanghoon; Baek, Soyoung; Kim, HyunSoo; Kim, Sung Joo

    2013-04-11

    Mesenchymal stem cells (MSCs) are multi-potent non-hematopoietic progenitor cells possessing an immune-regulatory function, with suppression of proliferation of activated lymphocytes. In this study, adult living donor kidney transplantation (LDKT) recipients were given MSCs derived from the donor bone marrow to evaluate the safety and the feasibility of immunological changes related to the intra-osseous injection of MSC into the bone marrow. MSCs were derived from negative HLA cross-match donors. Donor bone marrow was harvested 5 weeks prior to KT. At the time of transplantation, 1 x 106 cell/kg of donor MSC was directly injected into the bone marrow of the recipient's right iliac bone. Patients' clinical outcomes, presence of mixed chimerism by short tandem repeat polymerase chain reaction, analysis of plasma FoxP3 mRNA and cytokine level, and mixed lymphocyte reaction (MLR) were performed. Seven patients enrolled in this study and received donor MSC injections simultaneously with LDKT. The median age of recipients was 36 years (32 ~ 48). The number of HLA mismatches was 3 or less in 5 and more than 3 in 2. No local complications or adverse events such as hypersensitivity occurred during or after the injection of donor MSC. There was no graft failure, but the biopsy-proven acute rejections were observed in 3 recipients during the follow-up period controlled well with steroid pulse therapy (SPT). The last serum creatinine was a median of 1.23 mg/dL (0.83 ~ 2.07). Mixed chimerism was not detected in the peripheral blood of the recipients at 1 and 8 week of post-transplantation. Donor-specific lymphocyte or T cell proliferation and Treg priming responses were observed in some patients. Plasma level of IL-10, a known mediator of MSC-induced immune suppression, increased in the patients with Treg induction. Donor MSC injection into the iliac bone at the time of KT was feasible and safe. A possible correlation was observed between the induction of inhibitory

  1. Donor of winter rye short stem (Secale cereale L. Gnom 1

    Directory of Open Access Journals (Sweden)

    В. В. Скорик

    2013-08-01

    Full Text Available The article proves that the genetic cluster analysis using of parents – offspring system at the period of 38 generations of directional intentional selection to short stem, the height of winter rye plants has been reduced less than 90 cm with simultaneously productivity integral components increasing. Directional selection on parent plants short stem has revealed pleiotropic effects to increasing averages of productivity yield capacity, spike length, flowers number, grains, and short stem and simultaneously its productivity reducing, plant and weight reducing of 100 direct descendants grains. Plant height donor of short stem Gnome 1 has been controlled prevailing by genetic factors and has been less influenced by environmental conditions. Selection by enlargement of elite plants grains has predetermined genetically increasing of the average height of families in the next generation without the concept selection requirements satisfaction. Therefore, the directed selections, by the structural analysis results, are annually held in two phases, first – to the expressed short stem and then among of them – to the high weight of 100 grains per plant and desirable productivity elements. A creative dominant short stem donor with stems up to 90 cm and a weight of 100 grains per plant more than 4.0 g has been made. A short stem spike shortness donor Dwarf 1possesses a significant reserve of common genetic mutation of quantitative characteristics, which can be used by direct and indirect selection. This population has been represented by its large amount, in order to enhance capabilities of directional selection plants short stem providing with the desired productivity components during the studying. Informative additive genetic cluster analysis is high. Plants productivity is considered to be extremely complicated selection characteristics, including many component constituents parts related genetically. One of these traits changing inevitably causes

  2. Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients.

    Science.gov (United States)

    Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S

    2016-03-01

    Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. © 2015 British Society for Immunology.

  3. Allogeneic peripheral blood stem cell transplantation in patients with haematological malignancies

    International Nuclear Information System (INIS)

    Shamsi, T.S.; Irfan, M.; Ansari, S.H.; Farzana, T.; Kahlid, M.Z.; Panwani, V.K.; Baig, M.I.; Shakoor, N.

    2004-01-01

    Objective: To report the initial data on allogeneic peripheral blood stem cell transplantation for haematogical malignancies in Pakistan. Patients and Methods: Patients with haematological malignancies were included who had received allogeneic PBSC transplantation of Filgrastim (rhG-CSF) mobilized peripheral blood stem cells from HLA-identical siblings (except one 5/6 antigen sibling) with Busulphan and Cyclophosphamide standard conditioning therapy in all patients. No patient received antibiotics for gut decontamination. Empirical antibiotics included Ceftriaxone and Amikacin for febrile neutropenia, oral Itraconazole for antifungal prophylaxis while oral acyclovir was used for antiviral prophylaxis. All donors and recipients were CMV IgG positive Cyclosporin A / Methotrexate were given for graft versus host disease (GvHD) prophylaxis. Stem cells were harvested using Haemonetics MCS+ cell separator. All patients received G-CSF starting from day +4 until their neutrophil count rose to normal. Results: There were 21 patients with age range of 8-38 years and male to female ratio of 2:1. Engraftment was achieved in all patients; median time to absolute neutrophil count of > 0.5 x 10/sup 9/I was 10 days (range 8 -12 days) and platelet count of > 20 x 10/sup 9/1 was 14 days (12-17 days). Acute graft versus host disease (aGvHD) was seen in 7 patients; one patient had grade IV skin and hepatic GvHD; another patient had grade III gut GvHD, grade II GvHD was seen in 3 patients while grade I skin aGvHD was seen in 2 patients. Median hospital stay was 34 days. Treatment related mortality was seen in 3 patients (18%). Chronic GvHD was seen in 5 patients. Four more patients died during the follow-up period. Malaria was seen in 2 while tuberculosis developed in one case. Relapse was seen in 2 patients. The estimated probability of survival at one hundred day, at one year and five years was 82, 47 and 40 percent respectively. Conclusion: Haematopoietic stem cell transplant

  4. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    Science.gov (United States)

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  5. The implication of follicular lymphoma patients receiving allogeneic stem cell transplantation from donors carrying t(14;18)-positive cells.

    Science.gov (United States)

    McGregor, D K; Keever-Taylor, C A; Bredeson, C; Schur, B; Vesole, D H; Logan, B; Chang, C-C

    2005-06-01

    We performed real-time quantitative polymerase chain reaction (RQ-PCR) in peripheral blood (PB) and/or bone marrow (BM) samples collected pre- and post transplant from 23 recipient-donor pairs receiving allogeneic stem cell transplantation (allo-SCT) for follicular lymphoma (FL). Of 23 donors, 11 had a PB and/or BM sample positive for t(14;18) (BCL2/IGH fusion) at low levels (donors with (n=11) and those without (n=12) detectable t(14:18) cells were similar in age, sex, and disease status pretransplant. No differences in the incidence of graft-versus-host-disease (GVHD), delayed engraftment, relapse rate, disease-free survival and overall survival were identified between the groups. Two recipients without detectable t(14;18) cells pre-transplant showed detectable t(14;18) cells at 2 and 11 years after receiving grafts from donors with t(14:18) cells. Neither patient developed FL 1.5 and 2 years after the emergence of t(14;18) cells. Although the sample size is relatively small, our findings suggest that individuals carrying t(14;18) cells may not be excluded as donors given the lack of an association of t(14;18) detected in donors with adverse clinical outcome. It may be necessary to screen for the donor's t(14;18) status before using t(14;18) for monitoring minimal residual disease by RQ-PCR to exclude the possibility of confounding donor's t(14;18) clone.

  6. Peripheral Blood stem cell transplantation in children with Beta-thalassemia major

    International Nuclear Information System (INIS)

    Farzana, T.; Shamsi, T.S.; Irfan, M.; Ansari, S.H.; Baig, M.I.; Shakoor, N.

    2003-01-01

    Objective: To share the preliminary data on stem cell transplantation in Pakistan. Results: Engraftment was achieved in all patients except one who required a second dose of bone marrow graft on day +21. Median time to achieve absolute neutrophil count of > 0.5 x 10/sup 9/ /l was 9.0 days (range 8 - 31 days) and platelet count of > 20 x 10/sup 9/ /l was 14 days (12 - 35 days). Acute GVHD was seen in 3 patients, one patient had grade IV gut GVHD; another patient had grade III gut GVHD while third patient had grade II skin GVHD. Median hospital stay was 29 days. Six patients were well and transfusion independent 3 to 36 months post transplant. One episode of primary graft failure required a second dose of bone marrow harvest. Another episode of graft rejection received two doses of donor lymphocytes infusion. There were 4 deaths due to grade IV gut GVHD because of uncontrolled systemic Candida infection and one due to hepatic veno-occlusive (VOD) disease. Conclusion: Allogeneic peripheral blood stem cell transplantation can be safely and economically carried out in Pakistan. Although there had been 4 deaths during 36 months follow-up, with increasing understanding and experience the outcome is expected to improve. (author)

  7. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Michael Lohmann

    Full Text Available The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS or other serum supplements such as human platelet lysate (HPL. In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1, but it was significantly higher with HPLs from younger donors (45 years. Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal. HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1 or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3 were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation.

  8. Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    Lohmann, Michael; Walenda, Gudrun; Hemeda, Hatim; Joussen, Sylvia; Drescher, Wolf; Jockenhoevel, Stefan; Hutschenreuter, Gabriele; Zenke, Martin; Wagner, Wolfgang

    2012-01-01

    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation. PMID:22662236

  9. [Information and consent forms for hematopoietic stem cell transplantation donors and recipients: Guidelines from the Franchophone society of bone marrow transplantation and cellular therapy (SFGM-TC)].

    Science.gov (United States)

    Bruno, Bénédicte; Thibert, Jean-Baptiste; Bancillon, Nelly; Desbos, Anna; Fawaz, Abir; Fournier, Isabelle; Genty, Carole; Issarni, Dominique; Leveille, Sandrine; Premel, Christelle; Polomeni, Alice; Renault, Myriam; Tarillon, Sylvie; Wallart, Anne; Yakoub-Agha, Ibrahim; Bordessoule, Dominique

    2016-11-01

    Within the context of the SFGM-TC's 6th workshop series on the harmonization of clinical practices, our workshop proposes a standardization of the informed consent process for hematopoietic stem cell donors and recipients leading up to an autologous or allogenic transplantation. All informed consent was for bone marrow or peripheral stem cell donors, and mononuclear/lymphocyte donors according to usual procedures. The informed consent for autologous and allogenic related or unrelated adults and pediatric transplantation patients have been included. A first step has been conducted for collecting in advance the informed consent forms used routinely in all francophone transplantation centers. In a second step, a comprehensive version has been re-written by a multidisciplinary team. For the purposes of understanding the risks and advantages, language has been carefully considered and streamlined. In the third step, texts were sent to stem cell transplantation experts, experts at the French biomedical agency (agence de la biomédecine [ABM]), law specialists, members of the ethical committee of the French society of hematology and several transplant recipients to be edited and proofread. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. Donor-specific Anti-HLA antibodies in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Morin-Zorman

    2016-08-01

    Full Text Available Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT is a curative treatment for a wide variety of hematological diseases. In 30% of the cases, a geno-identical donor is available. Any other situation displays some level of Human Leukocyte Antigen (HLA incompatibility between donor and recipient. Deleterious effects of anti-HLA immunization have long been recognized in solid organ transplant recipients. More recently, anti-HLA immunization was shown to increase the risk of Primary Graft Failure (PGF, a severe complication of AHSCT that occurs in 3 to 4% of matched unrelated donor transplantation and up to 15% in cord blood transplantation and T-cell depleted haplo-identical stem cell transplantation. Rates of PGF in patients with DSA were reported to be between 24 to 83% with the highest rates in haplo-identical and cord blood transplantation recipients. This led to the recommendation of anti-HLA antibody screening to detect Donor Specific Antibodies (DSA in recipients prior to AHSCT. In this review, we highlight the role of anti-HLA antibodies in AHSCT and the mechanisms that may lead to PGF in patients with DSA, and discuss current issues in the field.

  11. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  12. Harvesting, processing and inventory management of peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Mijovic Aleksandar

    2007-01-01

    Full Text Available By 2003, 97% autologous transplants and 65% of allogeneic transplants in Europe used mobilised peripheral blood stem cells (PBSC. Soon after their introduction in the early 1990′s, PBSC were associated with faster haemopoietic recovery, fewer transfusions and antibiotic usage, and a shorter hospital stay. Furthermore, ease and convenience of PBSC collection made them more appealing than BM harvests. Improved survival has hitherto been demonstrated in patients with high risk AML and CML. However, the advantages of PBSC come at a price of a higher incidence of extensive chronic GVHD. In order to be present in the blood, stem cells undergo the process of "mobilisation" from their bone marrow habitat. Mobilisation, and its reciprocal process - homing - are regulated by a complex network of molecules on the surface of stem cells and stromal cells, and enzymes and cytokines released from granulocytes and osteoclasts. Knowledge of these mechanisms is beginning to be exploited for clinical purposes. In current practice, stem cell are mobilised by use of chemotherapy in conjunction with haemopoietic growth factors (HGF, or with HGF alone. Granulocyte colony stimulating factor has emerged as the single most important mobilising agent, due to its efficacy and a relative paucity of serious side effects. Over a decade of use in healthy donors has resulted in vast experience of optimal dosing and administration, and safety matters. PBSC harvesting can be performed on a variety of cell separators. Apheresis procedures are nowadays routine, but it is important to be well versed in the possible complications in order to avoid harm to the patient or donor. To ensure efficient collection, harvesting must begin when sufficient stem cells have been mobilised. A rapid, reliable, standardized blood test is essential to decide when to begin harvesting; currently, blood CD34+ cell counting by flow cytometry fulfils these criteria. Blood CD34+ cell counts strongly

  13. Improved survival after transplantation of more donor plasmacytoid dendritic or naïve T cells from unrelated-donor marrow grafts: results from BMTCTN 0201.

    Science.gov (United States)

    Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio

    2014-08-01

    To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.

  14. Impact of HLA diversity on donor selection in organ and stem cell transplantation.

    Science.gov (United States)

    Tiercy, Jean-Marie; Claas, Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation, because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation, pre-transplant anti-HLA antibodies need to be taken into account for organ allocation. Although HLA-incompatible transplants can be performed thanks to immunosuppressive drugs, the de novo production of anti-HLA antibodies still represents a major cause of graft failure. The HLAMatchmaker computer algorithm determines the immunogenicity of HLA mismatches and allows to define HLA antigens that will not induce an antibody response. Because of the much higher stringency of HLA compatibility criteria in stem cell transplantation, the best donor is a HLA genotypically identical sibling. However, more than 50% of the transplants are now performed with hematopoietic stem cells from volunteer donors selected from the international registry. The development of European national registries covering populations with different HLA haplotype frequencies is essential for optimizing donor search algorithms and providing the best chance for European patients to find a fully compatible donor.

  15. Gene Transfer Properties and Structural Modeling of Human Stem Cell-derived AAV

    OpenAIRE

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-01-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34+ hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34+ human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34+ cells. Every AAV isolated from CD34+ cells...

  16. [Investigation of neural stem cell-derived donor contribution in the inner ear following blastocyst injection].

    Science.gov (United States)

    Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S

    2008-03-01

    Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.

  17. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    Science.gov (United States)

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    lactation, there should be a period of at least 3 days to allow for clearance of CSF from milk before resuming breast feeding. With regard to teratogenicity or leukaemogenity, in non-pregnant or non-lactating women reports show that CSF administration is associated with a risk for leukemia; however, this risk is not higher compared with the control population. CONCLUSIONS The information available to date indicates that administration of CSF in general, and G-CSF in particular, is safe and healthy pregnant women can serve as donors of either bone marrow or peripheral blood stem cells. However, the clinical experience is rather limited and therefore until more data become available, G-CSF should not be used during pregnancy and lactation when other therapeutic options, instead of stem cell transplantation, are available.

  18. Biosimilar G-CSF versus filgrastim and lenograstim in healthy unrelated volunteer hematopoietic stem cell donors.

    Science.gov (United States)

    Farhan, Roiya; Urbanowska, Elżbieta; Zborowska, Hanna; Król, Małgorzata; Król, Maria; Torosian, Tigran; Piotrowska, Iwona; Bogusz, Krzysztof; Skwierawska, Kamila; Wiktor-Jędrzejczak, Wiesław; Snarski, Emilian

    2017-10-01

    The World Marrow Donor Organization recommends original granulocyte-colony stimulating factor (G-CSF) for the mobilization of stem cells in healthy unrelated hematopoietic stem cell donors. We report the comparison of a biosimilar G-CSF (Zarzio) with two original G-CSFs (filgrastim and lenograstim) in mobilization in unrelated donors. We included data of 313 consecutive donors who were mobilized during the period from October 2014 to March 2016 at the Medical University of Warsaw. The primary endpoints of this study were the efficiency of CD34+ cell mobilization to the circulation and results of the first apheresis. The mean daily dose of G-CSF was 9.1 μg/kg for lenograstim, 9.8 μg/kg for biosimilar filgrastim, and 9.3 μg/kg for filgrastim (p blood before the first apheresis was 111 for lenograstim, 119 for biosimilar filgrastim, and 124 for filgrastim (p = 0.354); the mean difference was even less significant when comparing CD34+ number per dose of G-CSF per kilogram (p = 0.787). Target doses of CD34+ cells were reached with one apheresis in 87% donors mobilized with lenograstim and in 93% donors mobilized with original and biosimilar filgrastim (p = 0.005). The mobilized apheresis outcomes (mean number of CD34+ cells/kg of donor collected during the first apheresis) was similar with lenograstim, biosimilar filgrastim, and filgrastim: 6.2 × 10 6 , 7.6 × 10 6 , and 7.3 × 10 6 , respectively, p = 0.06. There was no mobilization failure in any of the donors. Biosimilar G-CSF is as effective in the mobilization of hematopoietic stem cells in unrelated donors as original G-CSFs. Small and clinically irrelevant differences seen in the study can be attributed to differences in G-CSF dose and collection-related factors. Active safety surveillance concurrent to clinical use and reporting to donor outcome registry (e.g., EBMT donor outcome registry or WMDA SEAR/SPEAR) might help to evaluate the possible short- and long-term complications of

  19. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; a pilot study

    OpenAIRE

    Lee, Hyunah; Park, Jae Berm; Lee, Sanghoon; Baek, Soyoung; Kim, HyunSoo; Kim, Sung Joo

    2013-01-01

    Background Mesenchymal stem cells (MSCs) are multi-potent non-hematopoietic progenitor cells possessing an immune-regulatory function, with suppression of proliferation of activated lymphocytes. In this study, adult living donor kidney transplantation (LDKT) recipients were given MSCs derived from the donor bone marrow to evaluate the safety and the feasibility of immunological changes related to the intra-osseous injection of MSC into the bone marrow. Methods MSCs were derived from negative ...

  20. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Bo Cai

    2016-11-01

    Full Text Available Abstract Background Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. Case presentation We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Conclusions Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Trial registration Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT02799550

  1. Comparison of Amicus and COBE Spectra for allogenic peripheral blood stem cell harvest: Study from tertiary care centre in India.

    Science.gov (United States)

    Setia, Rasika Dhawan; Arora, Satyam; Handoo, Anil; Dadu, Tina; Choudhary, Dharma; Sharma, Sajeev Kumar; Kharya, Gaurav; Khandelwal, Vipin; Sachdeva, Prerna; Doval, Divya; Bakliwal, Anamika; Kapoor, Meenu; Bajaj, Shalu; Bachchas, Virendra; Singh, Praveen

    2017-06-01

    Most common source of stem cell graft for both autologous and allogenic haematopoietic transplants are peripheral blood haematopoietic progenitor stem cells. Adequate collection of the CD34+ cells and safety of the allogenic donor during the leukapheresis are of prime importance to an apheresis physician. Our retrospective analysis is a comparison between of two platforms namely, COBE Spectra and Amicus, for CD34+ mononuclear cell collection. The study included the data of GSCF (Granulocyte-Colony-Stimulating Factor) mobilized allogenic PBSC collections at our centre from January 2015 to June 2016. The apheresis platforms used were COBE Spectra and Amicus. Blood cell counts were done using LH750 Beckman Coulter (Florida, Miami, USA). CD45+ & CD34+ cell counts were done using BD FACS Canto-II Flow-Cytometer by ISHAGE guidelines. A total of 170 PBSC (100 COBE Spectra & 70 Amicus) harvests were done on 143 donors, of which 116 completed the collection in a single session and 27 required a second session. Demographic details and pre harvest peripheral blood counts for both the groups did not show any statistical differences. Amicus processed higher blood volume with higher ACD exposure and procedure time compared to COBE Spectra. Higher platelets loss was with COBE Spectra harvests with higher product volumes collection. Collection efficiency (CE2), collection ratio, CD34+ cells dose was similar on both the platforms. RBC contamination, absolute lymphocyte and monocytes counts were significantly higher with Amicus harvest product compared with COBE Spectra. A total of 14 (8.2%; citrate toxicity) adverse reactions were reported out of 170 allogenic PBSC collections. Our study suggests that both Amicus and COBE Spectra platforms offer comparable results for allogenic PBSC collections. Amicus offers a concentrated PBSC product with lesser volume and platelets loss but higher RBC contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  3. Alternative Donor Graft Sources for Adults with Hematologic Malignancies: A Donor for All Patients in 2017!

    Science.gov (United States)

    Kindwall-Keller, Tamila L; Ballen, Karen K

    2017-09-01

    Hematopoietic stem cell transplant (HSCT) is potentially curative for a wide variety of malignant diseases, including acute and leukemias, lymphoma, and myelodysplasia. Choice of a stem cell donor is dependent on donor availability, donor compatibility and health, recipient disease type, and recipient condition. Current sources of stem cell donation for HSCT are matched sibling donors (MSDs), matched unrelated donors (MUDs), 1-antigen mismatched unrelated donors (MMUDs), haploidentical donors (haplo), and umbilical cord blood (UCB) units. Historically, preferred donors for HSCT have been human leukocyte antigen (HLA)-matched sibling donors; however, only about 30% of U.S. patients will have a MSD available. The majority of patients referred for HSCT will require an alternative donor graft: MUD, MMUD, UCB, or haplo. The likelihood of finding a MUD varies depending on the ethnicity of the recipient. White Caucasians of European descent have the greatest chance of finding a MUD. Chances of finding a MUD are significantly less for African-American or Hispanic recipients due to HLA polymorphisms. Therefore, MMUD, UCB, and haplo donor graft sources expand the donor pool for recipients who do not have a MSD or MUD available. Given the variety of different donor stem cell sources available today, nearly every patient who needs an allogeneic HSCT has a potential donor in 2017. All transplant-eligible patients with hematologic malignancies should be evaluated by a transplant center to determine if HSCT is a viable treatment option for their underlying disease process. The goal of this review is to increase the awareness of oncology practitioners to the availability of alternative donor stem cell transplants for patients with hematologic malignancies. Despite new agents, stem cell transplant remains the only curative therapy for many patients with acute and chronic leukemia, myelodysplasia, and lymphoma. Given the variety of different donor stem cell sources available today

  4. Peripheral blood CD34+ cell count as a predictor of adequacy of hematopoietic stem cell collection for autologous transplantation

    Directory of Open Access Journals (Sweden)

    Combariza, Juan F.

    2016-10-01

    Full Text Available Introduction: In order to carry out an autologous transplantation, hematopoietic stem cells should be mobilized to peripheral blood and later collected by apheresis. The CD34+ cell count is a tool to establish the optimal time to begin the apheresis procedure. Objective: To evaluate the association between peripheral blood CD34+ cell count and the successful collection of hematopoietic stem cells. Materials and methods: A predictive test evaluation study was carried out to establish the usefulness of peripheral blood CD34+ cell count as a predictor of successful stem cell collection in patients that will receive an autologous transplantation. Results: 77 patients were included (median age: 49 years; range: 5-66. The predominant baseline diagnosis was lymphoma (53.2 %. The percentage of patients with successful harvest of hematopoietic stem cells was proportional to the number of CD34+cells in peripheral blood at the end of the mobilization procedure. We propose that more than 15 CD34+cells/μL must be present in order to achieve an adequate collection of hematopoietic stem cells. Conclusion: Peripheral blood CD34+ cell count is a useful tool to predict the successful collection of hematopoietic stem cells.

  5. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    International Nuclear Information System (INIS)

    Wang, Ya-Fei; Li, Qian; Xu, Wen-Gui; Xiao, Jian-Yu; Pang, Qing-Song; Yang, Qing; Zhang, Yi-Zuo

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. After one month, bone marrow biopsy and aspiration confirmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. The patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia

  6. Unrelated Hematopoietic Stem Cell Donor Matching Probability and Search Algorithm

    Directory of Open Access Journals (Sweden)

    J.-M. Tiercy

    2012-01-01

    Full Text Available In transplantation of hematopoietic stem cells (HSCs from unrelated donors a high HLA compatibility level decreases the risk of acute graft-versus-host disease and mortality. The diversity of the HLA system at the allelic and haplotypic level and the heterogeneity of HLA typing data of the registered donors render the search process a complex task. This paper summarizes our experience with a search algorithm that includes at the start of the search a probability estimate (high/intermediate/low to identify a HLA-A, B, C, DRB1, DQB1-compatible donor (a 10/10 match. Based on 2002–2011 searches about 30% of patients have a high, 30% an intermediate, and 40% a low probability search. Search success rate and duration are presented and discussed in light of the experience of other centers. Overall a 9-10/10 matched HSC donor can now be identified for 60–80% of patients of European descent. For high probability searches donors can be selected on the basis of DPB1-matching with an estimated success rate of >40%. For low probability searches there is no consensus on which HLA incompatibilities are more permissive, although HLA-DQB1 mismatches are generally considered as acceptable. Models for the discrimination of more detrimental mismatches based on specific amino acid residues rather than specific HLA alleles are presented.

  7. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    International Nuclear Information System (INIS)

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-01-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments

  8. Pluripotent stem cells with normal or reduced self renewal survive lethal irradiation

    International Nuclear Information System (INIS)

    Brecher, G.; Neben, S.; Yee, M.; Bullis, J.; Cronkite, E.P.

    1988-01-01

    Transfusion with 10,000 or 20,000 marrow cells resulted in 30+ days survival of 15%-50% of mice exposed to an Ld90 or LD100 or radiation. The use of congenic mice with alloenzyme markers permitted the identification of host and donor cells in the peripheral blood of transfused animals. Donor cells were present initially in all hosts. Between 55% and 92% of the animals became 100% host type by 12-24 weeks after transfusion in three separate experiments. To explore whether the temporary repopulation by donor cells was due to short-lived stem cells, the marrows of several primary hosts were transfused into secondary, lethally irradiated hosts. Some of the retransplanted primary donor and host cells persisted only temporarily. It is suggested that some of the donor stem cells in both the primary and secondary hosts had an intrinsically shortened life span

  9. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  10. Apoptosis in peripheral blood lymphocytes of healthy donors and patients with laryngeal cancer after γ-irradiation in vitro

    International Nuclear Information System (INIS)

    Orlova, N.V.; Smirnova, S.G.; Zamulaeva, I.A.; Andreev, V.G.; Ryabchenko, N.I.; Saenko, A.S.

    2001-01-01

    Apoptosis in peripheral blood lymphocytes of healthy donors and cancer patients after γ-radiation with different doses is studied by the flow cytometry method. Wide intra- and interindividual variabilities of the lymphocyte radiosensitivity by different donors are observed. The radiosensitivity does not depend on the subpopulation composition of the lymphocyte pool. The persons with very low and high lymphocyte radiosensitivities are found significantly more often among the cancer patients than among the healthy donors. One can suggest that this method is useful to define risk groups with regard to radiogenic neoplasms and prognosis of radiotherapy efficiency [ru

  11. Analysis of the results of allogeneic hematopoietic stem cell transplantation depending on HLA matching of the unrelated donor / recipient pair

    Directory of Open Access Journals (Sweden)

    Ye. V. Kuzmich

    2015-01-01

    Full Text Available HLA matching of the donor / recipient pair is a major factor associated with the outcome of allogeneic stem cell transplantation. In the presentstudy we analyzed the risk of severe acute graft-versus-host disease, graft failure, 2.year overall survival of the patients after allogeneic stem cell transplantation depending on HLA matching of the unrelated donor / recipient pair.

  12. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  13. Experimental study on therapy of acute radiation sickness with transplantation of allogeneic peripheral blood hemopoietic stem cells

    International Nuclear Information System (INIS)

    Ma Enpu; Bi Jianjin; Zhan Aiqin

    1995-01-01

    In the study, 10 beagles were used. All the dogs were irradiated with 6.5 Gy of γ-rays from a 60 Co source (dose rate, 95.6-107.9 R/min) and divided into three groups. All the three dogs in the control group died, having survived 7.5 days on the average after irradiation. In the second group, four dogs were transplanted with allogeneic peripheral blood hemopoietic stem cells (PBHSC) without removing T lymphocytes. The results of sex chromosome tests after irradiation and transplantation showed that the cells were of donor type. All the four dogs died of severe graft versus-host disease (GVHD) and survived 41.6 days on the average after irradiation. In the third group, three dogs received transplantation of allogeneic PBHSC without T lymphocytes. Two of them died, and the third developed mild GVHD and survived over 4 years

  14. Generation of “Off-the-Shelf” Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jieming Zeng

    2017-12-01

    Full Text Available Summary: Current donor cell-dependent strategies can only produce limited “made-to-order” therapeutic natural killer (NK cells for limited patients. To provide unlimited “off-the-shelf” NK cells that serve many recipients, we designed and demonstrated a holistic manufacturing scheme to mass-produce NK cells from induced pluripotent stem cells (iPSCs. Starting with a highly accessible human cell source, peripheral blood cells (PBCs, we derived a good manufacturing practice-compatible iPSC source, PBC-derived iPSCs (PBC-iPSCs for this purpose. Through our original protocol that excludes CD34+ cell enrichment and spin embryoid body formation, high-purity functional and expandable NK cells were generated from PBC-iPSCs. Above all, most of these NK cells expressed no killer cell immunoglobulin-like receptors (KIRs, which renders them unrestricted by recipients' human leukocyte antigen genotypes. Hence, we have established a practical “from blood cell to stem cells and back with less (less KIRs” strategy to generate abundant “universal” NK cells from PBC-iPSCs for a wide range of patients. : To provide unlimited “off-the-shelf” NK cells that serve many recipients, Zeng and colleagues demonstrate a manufacturing scheme to mass-produce NK cells from peripheral blood cell-derived iPSCs (PBC-iPSCs. Through their original protocol, high-purity functional NK cells are generated from PBC-iPSCs. Most of these NK cells express no killer cell immunoglobulin-like receptors, which renders them unrestricted by recipients' HLA genotypes. Keywords: induced pluripotent stem cells, peripheral blood cells, natural killer cells, killer cell immunoglobulin-like receptors, cell therapy, immunotherapy, cancer, cytotoxicity

  15. [Human herpesvirus-6 pneumonitis following autologous peripheral blood stem cell transplantation].

    Science.gov (United States)

    Saitoh, Yuu; Gotoh, Moritaka; Yoshizawa, Seiichiro; Akahane, Daigo; Fujimoto, Hiroaki; Ito, Yoshikazu; Ohyashiki, Kazuma

    2018-01-01

    A-46-year-old man was diagnosed with peripheral T cell lymphoma, not otherwise specified. He achieved a complete remission after pirarubicin, cyclophosphamide, vincristine, and prednisolone (THP-COP) therapy and successful autologous peripheral blood stem-cell transplantation (AutoSCT). However, 6 months post AutoSCT, he complained of fever. Chest computed tomography of the patient displayed bilateral interstitial pneumonitis. Human herpesvirus-6 (HHV-6) DNA was detected in his bronchoalveolar lavage fluid. Therefore, the patient was confirmed for HHV-6 pneumonitis. The treatment with foscarnet was effective, and no relapse was noticed in the patient. Besides, we have experienced pneumonitis of unknown origin in some patients after autologous or allogeneic stem-cell transplantations. Moreover, most of the above patients were clinically diagnosed using serum or plasma markers. Therefore, examining respiratory symptoms after AutoSCT would enable a more accurate diagnosis as well as treatment of patients with HHV-6 pneumonitis.

  16. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  17. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone.

    Science.gov (United States)

    Rahhal, Dina N; Xu, Hong; Huang, Wei-Chao; Wu, Shengli; Wen, Yujie; Huang, Yiming; Ildstad, Suzanne T

    2009-09-27

    Mixed chimerism induces donor-specific tolerance to composite tissue allotransplants (CTAs). In the present studies, we used a nonmyeloablative conditioning approach to establish chimerism and promote CTA acceptance. Wistar Furth (RT1A(u)) rats were conditioned with 600 to 300 cGy total body irradiation (TBI, day-1), and 100 x 10(6) T-cell-depleted ACI (RT1A(abl)) bone marrow cells were transplanted on day 0, followed by a 11-day course of tacrolimus and one dose of antilymphocyte serum (day 10). Heterotopic osteomyocutaneous flap transplantation was performed 4 to 6 weeks after bone marrow transplantation. Mixed chimerism was initially achieved in almost all recipients, but long-term acceptance of CTA was only achieved in rats treated with 600 cGy TBI. When anti-alphabeta-T-cell receptor (TCR) monoclonal antibody (mAb) (day-3) was added into the regimens, donor chimerism was similar to recipients preconditioned without anti-alphabeta-TCR mAb. However, the long-term CTA survival was significantly improved in chimeras receiving more than or equal to 300 cGy TBI plus anti-alphabeta-TCR mAb. Higher levels of donor chimerism were associated with CTA acceptance. The majority of flap acceptors lost peripheral blood chimerism within 6 months. However, donor chimerism persisted in the transplanted bone at significantly higher levels compared with other hematopoietic compartments. The compartment donor chimerism may be responsible for the maintenance of tolerance to CTA. Long-term acceptors were tolerant to a donor skin graft challenge even in the absence of peripheral blood chimerism. Mixed chimerism established by nonmyeloablative conditioning induces long-term acceptance of CTA, which is associated with persistent chimerism preferentially in the transplanted donor bone.

  18. Donor characteristics and hematopoietic stem cell transplantation outcome: experience of a single center in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Alessandra Paz

    2018-04-01

    Full Text Available Background: Hematopoietic stem cell transplantation is a curative treatment for many patients with hematological disorders. Donor–recipient genetic disparity, especially involving the human leukocyte antigen system is a critical factor for transplant outcome. Objective: To evaluate retrospectively donor characteristics and correlations with the occurrence of acute and chronic graft-versus-host disease, disease-free survival and overall survival in a Brazilian population submitted to allogeneic hematopoietic stem cell transplantation between 1994 and 2012 in a single center. Results: Three hundred and forty-seven consecutive transplantations were included. Related transplants (81.2% were significantly more common than unrelated transplants (18.7%; donor and recipient median ages were 34 (range: 1–61 and 33 (range: 3–65 years respectively with donor HLAs being matched for 333 (95.9% patients. Donor gender, cytomegalovirus status and ABO incompatibility did not influence the five-year overall survival. In univariate analyses, overall survival was negatively influenced by the presence of acute graft-versus-host disease (33% vs. 47%, respectively; p-value = 0.04, unrelated transplant (41.5% vs. 50.9%, respectively; p-value = 0.045 and donors aged over 40 years (41% vs. 52%, respectively; p-value = 0.03. Older donors were associated with a higher rate of acute (52% vs. 65.8%; p-value = 0.03 and chronic graft-versus-host disease (60% vs. 43%, respectively; p-value = 0.015. In multivariate analyses, acute graft-versus-host disease [relative risk (RR: 1.8; 95% confidence interval (CI: 1.1–29; p-value = 0.008] and older donors (RR: 1.6; 95% CI 1.11–2.24; p-value = 0.013 were associated with higher transplant-related mortality. Conclusions: In transplant patients, to have a donor older than 40 years of age seems to significantly increase the incidence of acute and chronic graft-versus-host disease and transplant-related mortality

  19. Stem and stromal cell reconstitution of lethally irradiated mice following transplantation of hematopoietic tissue from donors of various ages

    International Nuclear Information System (INIS)

    Schmidt, C.M.; Doran, G.A.; Crouse, D.A.; Sharp, J.G.

    1987-01-01

    If the limited life span of hematopoietic tissues in vitro is due to a finite proliferative capacity of individual stem cells, one might expect tissues of young donors to possess a greater proliferative capacity and to contain a larger population of primitive stem cells than those of older donors. To test this hypothesis, we used 12- and 8-day spleen colony formation (CFU-s) to assay more and less primitive stem cell subpopulations of three murine hematopoietic tissues: fetal liver (FL) and weanling (WBM) and adult (ABM) bone marrow. Subsequently, the same assays and a stromal cell assay were performed on the bone marrow from groups of lethally irradiated mice reconstituted with these tissues. Comparison of the CFU-s content of the donor tissues revealed that FL contained a significantly greater proportion of primitive stem cells as evidenced by a (Day 12):(Day 8) CFU-s ratio of 3.0 +/- 1.0 as compared to 0.9 +/- 0.1 for WBM and ABM. In addition, at 21 weeks post-transplantation the CFU-s/femur values of the FL reconstituted group were significantly greater than those of the ABM and WBM reconstituted groups. These results suggest that fetal hematopoietic tissue contains a greater proportion of primitive stem cells and has a greater proliferative potential than hematopoietic tissue from older donors. No differences were seen in stromal cell reconstitution of the three experimental groups. In all cases, assayable fibroblast colony forming cells (CFU-f) remained at 20-40% of control values, even at 21 weeks postreconstitution

  20. [Mobilization of peripheral blood stem cells with plerixafor in poor mobilizer patients].

    Science.gov (United States)

    Sancho, Juan-Manuel; Duarte, Rafael; Medina, Laura; Querol, Sergi; Marín, Pedro; Sureda, Anna

    2016-09-02

    Poor mobilization of peripheral blood stem cells (CD34(+) cells) from bone marrow is a frequent reason for not reaching the autologous stem cell trasplantation (SCT) procedure in patients diagnosed with lymphoma or myeloma. Plerixafor, a reversible inhibitor of the binding of stromal cell-derived factor 1 to its cognate receptor CXCR4, has demonstrated a higher capacity for the mobilization of peripheral blood stem cells in combination with granulocyte colony stimulating factor (G-CSF) compared with G-CSF alone. For this reason, plerixafor is now indicated for poor mobilizer myeloma or lymphoma patients. Some studies have recently indicated that a pre-emptive strategy of plerixafor use during first mobilization, according to the number of CD34(+) mobilized cells in peripheral blood or to the harvested CD34(+) cells after first apheresis, could avoid mobilization failures and re-mobilizations, as well as the delay of autologous SCT. The aim of this consensus was to perform a review of published studies on pre-emptive strategy and to establish common recommendations for hospitals in Catalonia and Balearics on the use of pre-emptive plerixafor. For the Consensus, physicians from participant hospitals met to review previous studies as well as previous own data about plerixafor use. The GRADE system was used to qualify the available evidence and to establish recommendations on the use of pre-emptive plerixafor. After a review of the literature, the expert consensus recommended the administration of pre-emptive plerixafor for multiple myeloma or lymphoma patients with a CD34+ cell count lower than 10 cells/μL in peripheral blood (measured in the morning of day 4 of mobilization with G-CSF or after haematopietic recovery in the case of mobilization with chemotherapy plus G-CSF). Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Evaluation of the efficacy and safety of original filgrastim (Neupogen®), biosimilar filgrastim (Leucostim®) and Lenograstim (Granocyte®) in CD34(+) peripheral hematopoietic stem cell mobilization procedures for allogeneic hematopoietic stem cell transplant donors.

    Science.gov (United States)

    Sivgin, Serdar; Karakus, Esen; Keklik, Muzaffer; Zararsiz, Gokmen; Solmaz, Musa; Kaynar, Leylagul; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2016-06-01

    In this study, we aimed to compare the potency of different G-CSF agents including original filgrastim (Neupogen®), biosimilar filgrastim (Leucostim®) and Lenograstim (Granocyte®) on CD34(+) cell mobilization in patients that underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). The data of 243 donors for alloHSCT recipients diagnosed with mostly acute leukemia and myelodsyplastic syndromes (MDS) were analyzed, retrospectively. Data for stem cell mobilization have been recorded from patients' files. Donors who received Filgrastim (Neupogen®, Group I), biosimilar Filgrastim (Leucostim®, Group II) and Lenograstim (Granocyte®, Group III) were analyzed for total CD34(+) cell count at the end of mobilization procedures. A total of 243 donors and patients for alloHSCT were analyzed retrospectively. The diagnosis of the patients were; acute myeloid leukemia (AML) (110 patients, 45.2%), acute lymphoid leukemia (ALL) (61 patients, 25.1%), aplastic anemia (AA) (38 patients, 15.6%), lymphomas (14 patients, 5.7%) and others (20 patients, 8.4%). The median number of total collected PB CD34(+) cells (×10(6)/kg) was 7.12 (min-max: 5.38-7.90) in the Neupogen® group, 7.27 (min-max: 6.79-7.55) in the Leucostim® group and 7.15 (min-max: 5.34-7.58) in the Granocyte® group. There was no statistically significant difference among groups in terms of total collected PB CD34(+) cells (p = 0.919). The median doses of G-CSF agents (µg/kg/day) in PBSC collection in Neupogen® group was; 11.00 (10.00-12.00) in Leucostim® group10.35 (min-max: 10.00-11.10) and in Granocyte® group11.00 (min-max: 10.00-11.00). There was no statistical significance among groups (p = 0.215). Biosimilar filgrastim (Leucostim®) was found comparable to original Filgrastim (Neupogen®) and Lenograstim (Granocyte®) for PBSC mobilization in donors of the patients that underwent alloHSCT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transient hemolysis due to anti-D and anti-A1 produced by engrafted donor's lymphocytes after allogeneic unmanipulated haploidentical hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bailén, Rebeca; Kwon, Mi; Pérez-Corral, Ana María; Pascual, Cristina; Buño, Ismael; Balsalobre, Pascual; Serrano, David; Gayoso, Jorge; Díez-Martín, José Luis; Anguita, Javier

    2017-10-01

    Development of de novo alloantibodies against recipient's red blood cell (RBC) antigens by engrafted donor's lymphocytes is a known phenomenon in the setting of allogeneic hematopoietic stem cell transplantation (HSCT). This situation is usually clinically insignificant. We report a case of early clinically relevant hemolytic anemia in a blood group A 1 D+ patient, due to a limited production of anti-D and anti-A 1 produced by nonpreviously sensitized newly engrafted donor's immune system. A 31-year-old Caucasian woman, blood group A 1 , D+, with Hodgkin's lymphoma, received an unmanipulated haploidentical allogeneic peripheral blood HSCT after a nonmyeloablative conditioning regimen. Donor blood group was A 2 B, D-. The patient had an uneventful course until Day +34, when she developed clinically significant hemolytic anemia with a positive direct antiglobulin test. Anti-D and anti-A 1 produced by the donor-engrafted lymphocytes were detected both in serum and in eluate. The hemolysis produced an accelerated group change, turning the patient's ABO group into A 2 B 2 weeks after the detection of the alloantibodies. As the residual patient's RBCs progressively disappeared, anti-D and anti-A 1 production decreased and were not detected in serum by Day +41. This case illustrates that de novo alloantibody production against ABO and D antigens by the newly engrafted donor's lymphocytes can occasionally cause clinically significant anemia. To our knowledge, this is the first case reported of clinically significant hemolytic anemia due to a transient anti-D anti-A 1 alloimmunization after T-cell-repleted haploidentical HSCT. © 2017 AABB.

  3. T-cell depleted haploidentical three loci mismatched bone-marrow and peripheral blood stem cell transplantation in acute leukaemia patients

    International Nuclear Information System (INIS)

    Aristei, C.; Aversa, F.; Panizza, B.M.; Perrucci, E.; Barone, V.; Marafioti, L.; Raymondi, C.; Terenzi, A.; Martelli, M.F.; Latini, P.

    1996-01-01

    Objectives: Allogeneic bone-marrow transplantation (BMT) is an established treatment for many haematological malignancies. Unfortunately, most patients lack an HLA geno typically identical sibling and require an alternative donor, such as an HLA-haploidentical mismatched related donor, an HLA phenotypically matched or partially mismatched unrelated donor or an HLA-similar cord blood stem cell donor. However, these types of BMT increase the risk of graft-versus-host disease (GvHD), graft failure, delayed immuno reconstitution and fatal infection that observed after a sibling matched donor. Many centers are exploring the possibility of using donors other than matched sibling. Our approach has been to employ T-cell depleted mismatched haploidentical familial donor BMT to solve the problem of GvHD, a highly immuno- and myelo-suppressive conditioning regimen to reduce the incidence of graft failure and relapse, a graft inoculum plus G-CSF donor mobilized peripheral blood stem cells (PBSC) to overcome the host-versus-graft barrier. Patients and methods: Thirty-six patients (25 male, 11 female; median age 22 years, range 2-51) were treated with an allogeneic T-depleted haploidentical three loci mismatched bone-marrow and G-CSF mobilized PBSC transplantation from a familiar donor (18 siblings, 17 parents and 1 cousin) between March 1993 and June 1995. All had high-risk or advanced stage acute myeloid (12) or acute lymphoid (24) leukaemia; 18 were in haematological complete remission (CR) and 18 in chemo resistant relapse. Patients were conditioned with 8 Gy single dose TBI administered on day -5 at an instantaneous dose-rate of 13.4-31.7 cGy/min/midplane and average of 6.7-12.12 cGy/min/midplane. Shields were used to reduce the lung dose to 7 Gy in the first 23 cases and to 6 Gy in the last 13. 10 mg/Kg thiotepa were administered on day -4, 5 mg/Kg rabbit ATG from day -4 to day -1, 60 or 50 mg/Kg/cyclophosphamide on days -3 and -2. Bone-marrow and PBSC were infused on day

  4. Donor body mass index is an important factor that affects peripheral blood progenitor cell yield in healthy donors after mobilization with granulocyte-colony-stimulating factor.

    Science.gov (United States)

    Chen, Jian; Burns, Kevin M; Babic, Aleksandar; Carrum, George; Kennedy, Martha; Segura, Francisco J; Garcia, Salvador; Potts, Sandra; Leveque, Christopher

    2014-01-01

    The use of hematopoietic progenitor cell (HPC) transplantation has rapidly expanded in recent years. Currently, several sources of HPCs are available for transplantation including peripheral blood HPCs (PBPCs), cord blood cells, and marrow cells. Of these, PBPC collection has become the major source of HPCs. An important variable in PBPC collection is the response to PBPC mobilization, which varies significantly and sometime causes mobilization failure. A retrospective study of 69 healthy donors who underwent PBPC donation by leukapheresis was performed. All of these donors received 10 μg/kg/day or more granulocyte-colony-stimulating factor (G-CSF) for 5 days before PBPC harvest. Donor factors were evaluated and correlated with mobilization responses, as indicated by the precollection CD34 count (pre-CD34). Donors with a pre-CD34 of more than 100 × 10(6) /L had higher body mass index (BMI) compared with donors whose pre-CD34 was 38 × 10(6) to 99 × 10(6) /L or less than 38 × 10(6) /L (32.0 ± 1.04 kg/m(2) vs. 28.7 ± 0.93 kg/m(2) vs. 25.9 ± 1.27 kg/m(2) , respectively; p donors with high BMIs had higher pre-CD34 on a per-kilogram-of-body-weight basis compared with donors with low BMIs. BMI is an important factor that affects donor's response to mobilization and consequently the HPC yield. This effect may be due to a relatively high dose of G-CSF administered to donors with higher BMI or due to the presence of unknown intrinsic factors affecting mobilization that correlate with the amount of adipose tissue in each donor. © 2013 American Association of Blood Banks.

  5. Having a sibling as donor: patients' experiences immediately before allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kisch, Annika; Bolmsjö, Ingrid; Lenhoff, Stig; Bengtsson, Mariette

    2014-08-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) offers a potential cure for a variety of diseases but is also associated with significant risks. With HSCT the donor is either a relative, most often a sibling, or an unrelated registry donor. The aim was to explore patients' experiences, immediately before transplantation, regarding having a sibling as donor. Ten adult patients with sibling donors were interviewed before admission for HSCT. The interviews were digitally recorded, transcribed verbatim and subjected to qualitative content analysis. The main theme Being in no man's land is a metaphor for the patients' complex situation with its mixture of emotions and thoughts prior to transplantation. The three subthemes Trust in the sibling donor, Concern about others and Loss of control cover the various experiences. The patient's experiences are influenced by their personal situation and the quality of the relationship with the sibling donor. While patients feel secure in having a sibling donor, they are dependent for their survival on the cell donation and feel responsible for the donor's safety during donation. These emotions intensify the patients' sense of dependency and loss of control. In caring for HSCT patients the nurses should be aware of the complexity of the patients' situation and keep in mind that having a sibling donor might imply extra pressure, including a sense of responsibility. Caring for both patients and sibling donors optimally is a challenge, which needs further improvement and exploration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Meaning of Being a Living Kidney, Liver, or Stem Cell Donor-A Meta-Ethnography.

    Science.gov (United States)

    Kisch, Annika M; Forsberg, Anna; Fridh, Isabell; Almgren, Matilda; Lundmark, Martina; Lovén, Charlotte; Flodén, Anne; Nilsson, Madeleine; Karlsson, Veronika; Lennerling, Annette

    2018-05-01

    Studies on living donors from the donors' perspective show that the donation process involves both positive and negative feelings involving vulnerability. Qualitative studies of living kidney, liver, and allogeneic hematopoietic stem cell donors have not previously been merged in the same analysis. Therefore, our aim was to synthesize current knowledge of these donors' experiences to deepen understanding of the meaning of being a living donor for the purpose of saving or extending someone's life. The meta-ethnography steps presented by Noblit and Hare in 1988 were used. Forty-one qualitative studies from 1968 to 2016 that fulfilled the inclusion criteria were analyzed. The studies comprised experiences of over 670 donors. The time since donation varied from 2 days to 29 years. A majority of the studies, 25 of 41, were on living kidney donors. The synthesis revealed that the essential meaning of being a donor is doing what one feels one has to do, involving 6 themes; A sense of responsibility, loneliness and abandonment, suffering, pride and gratitude, a sense of togetherness, and a life changing event. The main issue is that one donates irrespective of what one donates. The relationship to the recipient determines the motives for donation. The deeper insight into the donors' experiences provides implications for their psychological care.

  7. Through the eyes of young sibling donors: the hematopoietic stem cell donation experience.

    Science.gov (United States)

    D'Auria, Jennifer P; Fitzgerald, Tania M; Presler, Cammie M; Kasow, Kimberly A

    2015-01-01

    This qualitative study used a grounded theory approach to explore how pediatric sibling donors of a successful hematopoietic stem cell transplantation conceptualized their donation experiences. Saving my sister's (or brother's) life describes the central phenomenon identified by this purposive sample of 8 sibling donors. Five themes captured their memories: being the perfect match, stepping up, worrying about the outcome, the waiting process, and sharing a special bond. Further research surrounding changes in relational issues will provide insight into inter-sibling support and the developmental course of the sibling relationship into adulthood when intensified by a health crisis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease.

    Science.gov (United States)

    Tobin, L M; Healy, M E; English, K; Mahon, B P

    2013-05-01

    Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum. © 2012 British Society for Immunology.

  9. Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell Mobilization in Healthy Donors after Administration of Granulocyte Colony-Stimulating Factor: A Longitudinal, Prospective, Observational, Single-Center, Cohort Study.

    Science.gov (United States)

    Martino, Massimo; Gori, Mercedes; Pitino, Annalisa; Gentile, Massimo; Dattola, Antonia; Pontari, Antonella; Vigna, Ernesto; Moscato, Tiziana; Recchia, Anna Grazia; Barilla', Santina; Tripepi, Giovanni; Morabito, Fortunato

    2017-07-01

    A longitudinal, prospective, observational, single-center, cohort study on healthy donors (HDs) was designed to identify predictors of CD34 + cells on day 5 with emphasis on the predictive value of the basal CD34 + cell count. As potential predictors of mobilization, age, sex, body weight, height, blood volume as well as white blood cell count, peripheral blood (PB) mononuclear cells, platelet count, hematocrit, and hemoglobin levels were considered. Two different evaluations of CD34 + cell counts were determined for each donor: baseline (before granulocyte colony-stimulating factor [G-CSF] administration) and in PB after G-CSF administration on the morning of the fifth day (day 5). A total of 128 consecutive HDs (66 males) with a median age of 43 years were enrolled. CD34 + levels on day 5 displayed a non-normal distribution, with a median value of 75.5 cells/µL. To account for the non-normal distribution of the dependent variable, a quantile regression analysis to predict CD34 + on day 5 using the baseline value of CD34 + as the key predictor was performed. On crude analysis, a baseline value of CD34 + ranging from .5 cells/µL to 1 cells/µL predicts a median value of 50 cells/µL on day 5; a value of 2 cells/µL predicts a median value of 70.7 cells/µL; a value of 3 cells/µL to 4 cells/µL predicts a median value of 91.3 cells/µL, and a value ≥ 5 predicts a median value of 112 cells/µL. In conclusion, the baseline PB CD34 + cell count correlates with the effectiveness of allogeneic PB stem cell mobilization and could be useful to plan the collection. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  10. Comparative Peripheral Blood T Cells Analysis Between Adult Deceased Donor Liver Transplantation (DDLT) and Living Donor Liver Transplantation (LDLT).

    Science.gov (United States)

    Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Gyu-Seong; Kang, Eun-Suk; Lee, Suk-Koo

    2017-08-08

    BACKGROUND T lymphocytes are an essential component of allograft rejection and tolerance. The aim of the present study was to analyze and compare the characteristics of T cell subsets in patients who underwent deceased donor liver transplantation (DDLT) versus living donor liver transplantation (LDLT). MATERIAL AND METHODS Between April 2013 and June 2014, 64 patients underwent adult liver transplantation. The distribution of peripheral blood T lymphocyte subsets before transplantation and at 4, 8, 12, and 24 weeks post-transplantation were monitored serially. RESULTS In the serial peripheral blood samples, the absolute CD3+ T cell counts in the LDLT group were higher than those in the DDLT group (p=0.037). The CD4+, CD8+, CD4/CD8, Vδ1, Vδ2, and γδ T cell counts did not change significantly over time in either group. The Vδ1/Vδ2 ratio was higher in patients with cytomegalovirus (CMV) infection than in patients without CMV infection (0.12 versus 0.26; p=0.033). The median absolute CD3+ and CD8+ T cell counts in patients with biopsy-proven acute rejection (BPAR) were 884 (range, 305-1,320) and 316 (range, 271-1,077), respectively, whereas they were 320 (range, 8-1,167) and 257 (range, 58-1,472) in patients without BPAR. The absolute CD3+ and CD8 T cell counts were higher in patients with BPAR than in patients without BPAR (p=0.007 and p=0.039, respectively). CONCLUSIONS With the exception of CD3+ T cells, T cell populations did not differ significantly between patients who received DDLT versus LDLT. In liver transplantation patients, CMV infection and BPAR were closely associated with T cell population changes.

  11. Long-term engraftment, graft-vs.-host disease, and immunologic reconstitution after experimental transplantation of allogeneic peripheral blood cells from G-CSF-treated donors.

    Science.gov (United States)

    Pan, L; Bressler, S; Cooke, K R; Krenger, W; Karandikar, M; Ferrara, J L

    1996-10-01

    Peripheral blood cells (PBPC) are an alternative source of bone marrow for allogeneic transplantation. Reports from recent clinical trials granulocyte colony-stimulating factor (G-CSF)-mobilized PBPC for allogeneic transplantation show incidence and severity of graft-vs.-host disease (GVHD) similar to those observed in conventional bone marrow transplantation (BMT), despite the presence of 10- to 20-fold more T cell in the PBPC inoculum. In the present study, we examined the effects of pretreatment of donors with G-CSF on GVHD, long-term engraftment, and lymphocyte reconstitution in a murine parent-->F1 model (B6.Ly-5a-->B6d2F1) using splenocytes as a source of peripheral progenitor cells. Recipients of splenocytes from G-CSF-treated donors experienced less mortality from acute GVHD and showed sustained weight gain by day 100 after transplantation. At that time, there was no histological evidence od GVHD in either liver or gut. Recipients of splenocytes from G-CSF-treated donors showed complete donor engraftment within 1 month, which was sustained until the end of the observation period. In contrast, recipients of T cell-depleted splenocytes showed slower donor engraftment and persistent donor/host chimerism. In addition, lymphocyte phenotype and function in mice receiving splenocytes from G-CSF-treated donors was significantly restored by day 100 after transplantation. Thus, the use of G-CSF-mobilized PBPC may provide significant advantages to conventional BMT by reducing GVHD without impairing long-term engraftment and immunologic reconstruction.

  12. Limbal Stem Cell-Sparing Corneoscleroplasty with Peripheral Intralamellar Tuck: A New Surgical Technique for Keratoglobus

    Directory of Open Access Journals (Sweden)

    Elias Jarade

    2017-04-01

    Full Text Available Purpose: To describe the technique of limbal stem cell-sparing corneoscleroplasty for the management of advanced keratoglobus. Methods: A patient with bilateral advanced keratoglobus, with best-corrected visual acuity of 20/400 in the right eye and 20/200 in the left eye, underwent limbal stem cell-sparing corneoscleroplasty of the right eye. Initially, a 360-degree limbal incision with 200-μm depth was created, followed by a sublimbal tunnel dissection into the sclera, in order to conserve stem cells. Next, a limbus-to-limbus lamellar keratectomy at 200-μm depth was performed. Meanwhile, a donor corneoscleral button with preserved endothelium of the central 8 mm was fashioned. Prior to suturing the donor corneoscleral graft using a modified suturing technique to cover its scleral component, a full-thickness trephination of 8-mm diameter was completed in the central host cornea. Results: Reepithelialization occurred within the first week. No episodes of rejection, intraocular pressure spikes, or epithelial breakdown were observed postoperatively. At the 6-month follow-up, the patient had 20/70 best-corrected vision and a smooth cornea with regular astigmatism on topography. Conclusion: Limbal stem cell-sparing corneoscleroplasty is a single-step technique for restoring the structural integrity of the cornea in advanced keratoglobus while preserving the host limbal stem cells.

  13. Phytohemagglutinin (PHA) stimulation of peripheral-blood lymphocytes and stem cell take

    Energy Technology Data Exchange (ETDEWEB)

    Astaldi, G [Blood Research Foundation Center, Tortona, Italy; Karanovic, D; Vettori, P P; Karanovic, J; Piletic, O

    1974-01-01

    The effect of PHA-stimulation of peripheral-blood lymphocytes on the spleen-colony formation in irradiated rats was examined. 25-day old Wistar rats underwent total-body irradiation (600 R), and they were used as recipients. On the other hand, 2 and /sup 1///sub 2/ month old untreated Wistar rats were used as donors of peripheral-blood lymphocytes, which were obtained by sedimentation with Dextraven from defibrinated blood. Four rat lots were used. The 1st one did not receive irradiation, and was kept as ''blank control.'' The 2nd one was just irradiated and kept as ''radiated control.'' The 3rd and the 4th rat lots of the series were irradiated, but the former lot was injected i.v. with 5 x 10/sup 7/ peripheral-blood untreated lymphocytes, whereas the fourth lot was injected i.v. with the same amount of lymphocytes, which were previously incubated in vitro for 24 hrs with PHA-M (Difco). The results showed that the PHA-incubation of transplanted peripheral-blood lymphocytes significantly increases the number and size of the macroscopic spleen colonies, in relationship to the colonies which occurs after transplantation of untreated lymphocytes. Histo-cytological observation clearly showed that the colonies formed after injection of mitogen-pretreated peripheral-blood lymphocytes were predominantly of erythroid type and, then, of non-differentiated cells. Only a few of them were of a mixed type, consisting of both undifferentiated cells and erythroid cells.

  14. Age Is Relative—Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality

    Directory of Open Access Journals (Sweden)

    Elisabeth Tamara Strässler

    2018-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor’s clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne’s muscular dystrophy and organ replacement in age-related diseases (e.g., end-stage heart or renal failure, especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual’s somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do i

  15. Long-term human immune system reconstitution in non-obese diabetic (NOD)-Rag (-)-γ chain (-) (NRG) mice is similar but not identical to the original stem cell donor.

    Science.gov (United States)

    Harris, D T; Badowski, M; Balamurugan, A; Yang, O O

    2013-12-01

    The murine immune system is not necessarily identical to it human counterpart, which has led to the construction of humanized mice. The current study analysed whether or not a human immune system contained within the non-obese diabetic (NOD)-Rag1(null) -γ chain(null) (NRG) mouse model was an accurate representation of the original stem cell donor and if multiple mice constructed from the same donor were similar to one another. To that end, lightly irradiated NRG mice were injected intrahepatically on day 1 of life with purified cord blood-derived CD34(+) stem and progenitor cells. Multiple mice were constructed from each cord blood donor. Mice were analysed quarterly for changes in the immune system, and followed for periods up to 12 months post-transplant. Mice from the same donor were compared directly with each other as well as with the original donor. Analyses were performed for immune reconstitution, including flow cytometry, T cell receptor (TCR) and B cell receptor (BCR) spectratyping. It was observed that NRG mice could be 'humanized' long-term using cord blood stem cells, and that animals constructed from the same cord blood donor were nearly identical to one another, but quite different from the original stem cell donor immune system. © 2013 British Society for Immunology.

  16. Crossing the Ts by case-story “Exploring moral distress in potential sibling stem cell donors"

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer

    Crossing the Ts by Exploring moral distress in potential sibling stem cell donors [1] Mette Kjer Kaltoft, Ph.d student, MPH, RN, Health Visitor University of Southern Denmark and Sydney School of Public Health Background: Catalysts aiming to reduce the burden of malignant disease by integrating...... off the benefits and harms specific to each stakeholder-context may increase live and posthumous donations without inflicting preventable harm. Reference: [1] Exploring moral distress in potential sibling stem cell donors, Nursing Ethics 20(2) 178-188, 2012 Begley A, Virtual University of Uganda......-type-test’) for enhanced decision quality and reduction of harm. Methods: A *case-story of siblings of a sick brother needing live donation is presented within an interactive model for prescriptive translation using a diagram and multi-criteria decision-analytic approach. Actual or projected results: You can see each...

  17. The impact of donor characteristics on the immune cell composition of mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests.

    Science.gov (United States)

    Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p donor weight with CD3+ T cells (p blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.

  18. Dengue Virus Transmission by Blood Stem Cell Donor after Travel to Sri Lanka; Germany, 2013

    Centers for Disease Control (CDC) Podcasts

    2014-09-22

    Dr. Mike Miller reads an abridged version of the article, Dengue Virus Transmission by Blood Stem Cell Donor after Travel to Sri Lanka; Germany, 2013.  Created: 9/22/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/8/2014.

  19. Phytohemagglutinin (PHA) stimulation of peripheral-blood lymphocytes and stem cell take

    Energy Technology Data Exchange (ETDEWEB)

    Astaldi, G. (Blood Research Foundation Center, Tortona, Italy); Karanovic, D.; Vettori, P.P.; Karanovic, J.; Piletic, O.

    1974-01-01

    The effect of PHA-stimulation of peripheral-blood lymphocytes on the spleen-colony formation in irradiated rats was examined. 25-day old Wistar rats underwent total-body irradiation (600 R), and they were used as recipients. On the other hand, 2 and /sup 1///sub 2/ month old untreated Wistar rats were used as donors of peripheral-blood lymphocytes, which were obtained by sedimentation with Dextraven from defibrinated blood. Four rat lots were used. The 1st one did not receive irradiation, and was kept as ''blank control.'' The 2nd one was just irradiated and kept as ''radiated control.'' The 3rd and the 4th rat lots of the series were irradiated, but the former lot was injected i.v. with 5 x 10/sup 7/ peripheral-blood untreated lymphocytes, whereas the fourth lot was injected i.v. with the same amount of lymphocytes, which were previously incubated in vitro for 24 hrs with PHA-M (Difco). The results showed that the PHA-incubation of transplanted peripheral-blood lymphocytes significantly increases the number and size of the macroscopic spleen colonies, in relationship to the colonies which occurs after transplantation of untreated lymphocytes. Histo-cytological observation clearly showed that the colonies formed after injection of mitogen-pretreated peripheral-blood lymphocytes were predominantly of erythroid type and, then, of non-differentiated cells. Only a few of them were of a mixed type, consisting of both undifferentiated cells and erythroid cells.

  20. Modeling coverage gaps in haplotype frequencies via Bayesian inference to improve stem cell donor selection.

    Science.gov (United States)

    Louzoun, Yoram; Alter, Idan; Gragert, Loren; Albrecht, Mark; Maiers, Martin

    2018-05-01

    Regardless of sampling depth, accurate genotype imputation is limited in regions of high polymorphism which often have a heavy-tailed haplotype frequency distribution. Many rare haplotypes are thus unobserved. Statistical methods to improve imputation by extending reference haplotype distributions using linkage disequilibrium patterns that relate allele and haplotype frequencies have not yet been explored. In the field of unrelated stem cell transplantation, imputation of highly polymorphic human leukocyte antigen (HLA) genes has an important application in identifying the best-matched stem cell donor when searching large registries totaling over 28,000,000 donors worldwide. Despite these large registry sizes, a significant proportion of searched patients present novel HLA haplotypes. Supporting this observation, HLA population genetic models have indicated that many extant HLA haplotypes remain unobserved. The absent haplotypes are a significant cause of error in haplotype matching. We have applied a Bayesian inference methodology for extending haplotype frequency distributions, using a model where new haplotypes are created by recombination of observed alleles. Applications of this joint probability model offer significant improvement in frequency distribution estimates over the best existing alternative methods, as we illustrate using five-locus HLA frequency data from the National Marrow Donor Program registry. Transplant matching algorithms and disease association studies involving phasing and imputation of rare variants may benefit from this statistical inference framework.

  1. Alternative donor transplantation--"mixing and matching": the role of combined cord blood and haplo-identical donor transplantation (haplo-cord SCT) as a treatment strategy for patients lacking standard donors?

    Science.gov (United States)

    Liu, Hongtao; van Besien, Koen

    2015-03-01

    In the past decade, haplo-cord stem cell transplantation (SCT) using myeloablative or reduced intensive conditioning regimens has been shown to result in reliable and fast engraftment of neutrophils and platelets comparable to HLA-matched donors and much faster than after cord stem cell transplant. Haplo-cord SCT also has a low incidence of early non-relapse mortality, low incidences of acute and chronic graft-vs-host disease (GVHD), and excellent graft-vs-leukemia (GVL) effects. Favorable long-term outcomes for high-risk patients with hematologic malignancies have been reported, including older patients. Haplo-cord SCT will likely overcome the limitations of cell dose during cord stem cell selection and might significantly expand the use of cord stem cell transplant in the adult population. The comparable survival outcomes of matched related donor (MRD), matched unrelated donor (MUD), and haplo-cord stem cell transplant strongly argue that haplo-cord SCT should be considered as effective alternative stem cell transplant for high-risk patients lacking standard donors. Further improvement in supportive care and incorporation of a better understanding of the human fetal immune development into the haplo-cord SCT are required to further improve this strategy.

  2. A Comparative Reference Study for the Validation of HLA-Matching Algorithms in the Search for Allogeneic Hematopoietic Stem Cell Donors and Cord Blood Units

    Science.gov (United States)

    2016-08-15

    donors and cord blood units W. Bochtler1, L. Gragert2, Z. I. Patel3, J. Robinson3,4, D. Steiner5, J. A. Hofmann6, J. Pingel6, A. Baouz7, A. Melis8, J...cord blood units for individual patients is of primary importance. This challenging search process is routinely performed in a donor registry or cord...term ‘ donor ’ to refer to donors of HSCs from bone marrow or peripheral blood and cord blood units and the term ‘ donor registry’ shall include cord blood

  3. Effectiveness of Visual Methods in Information Procedures for Stem Cell Recipients and Donors

    Directory of Open Access Journals (Sweden)

    Çağla Sarıtürk

    2017-12-01

    Full Text Available Objective: Obtaining informed consent from hematopoietic stem cell recipients and donors is a critical step in the transplantation process. Anxiety may affect their understanding of the provided information. However, use of audiovisual methods may facilitate understanding. In this prospective randomized study, we investigated the effectiveness of using an audiovisual method of providing information to patients and donors in combination with the standard model. Materials and Methods: A 10-min informational animation was prepared for this purpose. In total, 82 participants were randomly assigned to two groups: group 1 received the additional audiovisual information and group 2 received standard information. A 20-item questionnaire was administered to participants at the end of the informational session. Results: A reliability test and factor analysis showed that the questionnaire was reliable and valid. For all participants, the mean overall satisfaction score was 184.8±19.8 (maximum possible score of 200. However, for satisfaction with information about written informed consent, group 1 scored significantly higher than group 2 (p=0.039. Satisfaction level was not affected by age, education level, or differences between the physicians conducting the informative session. Conclusion: This study shows that using audiovisual tools may contribute to a better understanding of the informed consent procedure and potential risks of stem cell transplantation.

  4. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  5. Responses to recipient and donor B cells by genetically donor T cells from human haploidentical chimeras

    International Nuclear Information System (INIS)

    Schiff, S.; Sampson, H.; Buckley, R.

    1986-01-01

    Following administration of haploidentical stem cells to infants with severe combined immunodeficiency (SCID), mature T cells of donor karyotype appear later in the recipient without causing graft-versus-host disease. To investigate the effect of the host environment on the responsiveness of these genetically donor T cells, blood B and T lymphocytes from 6 SCID recipients, their parental donors and unrelated controls were purified by double SRBC rosetting. T cells were stimulated by irradiated B cells at a 1:1 ratio in 6 day cultures. Engrafted T cells of donor karyotype gave much smaller responses to irradiated genetically recipient B cells than did fresh donor T cells. Moreover, engrafted T cells of donor karyotype from two of the three SCIDs who are longest post-transplantation responded more vigorously (14,685 and 31,623 cpm) than fresh donor T cells (5141 and 22,709 cpm) to donor B cells. These data indicate that T lymphocytes which have matured from donor stem cells in the recipient microenvironment behave differently from those that have matured in the donor

  6. Reduced intensity conditioning, combined transplantation of haploidentical hematopoietic stem cells and mesenchymal stem cells in patients with severe aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li

    Full Text Available We examined if transplantation of combined haploidentical hematopoietic stem cells (HSC and mesenchymal stem cells (MSC affected graft failure and graft-versus-host disease (GVHD in patients with severe aplastic anemia (SAA. Patients with SAA-I (N = 17 received haploidentical HSCT plus MSC infusion. Stem cell grafts used a combination of granulocyte colony-stimulating factor (G-CSF-primed bone marrow and G-CSF-mobilized peripheral blood stem cells of haploidentical donors and the culture-expanded third-party donor-derived umbilical cord MSCs (UC-MSCs, respectively. Reduced intensity conditioning consisted of fludarabine (30 mg/m2·d+cyclosphamide (500 mg/m2·d+anti-human thymocyte IgG. Transplant recipients also received cyclosporin A, mycophenolatemofetil, and CD25 monoclonal antibody. A total of 16 patients achieved hematopoietic reconstitution. The median mononuclear cell and CD34 count was 9.3×10(8/kg and 4.5×10(6/kg. Median time to ANC was >0.5×10(9/L and PLT count >20×10(9/L were 12 and 14 days, respectively. Grade III-IV acute GVHD was seen in 23.5% of the cases, while moderate and severe chronic GVHD were seen in 14.2% of the cases. The 3-month and 6-month survival rates for all patients were 88.2% and 76.5%, respectively; mean survival time was 56.5 months. Combined transplantation of haploidentical HSCs and MSCs on SAA without an HLA-identical sibling donor was safe, effectively reduced the incidence of severe GVHD, and improved patient survival.

  7. Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis.

    Science.gov (United States)

    Cicione, Claudia; Díaz-Prado, Silvia; Muiños-López, Emma; Hermida-Gómez, Tamara; Blanco, Francisco J

    2010-01-01

    The use of autologous or allogenic stem cells has recently been suggested as an alternative therapeutic approach for treatment of cartilage defects. Bone marrow mesenchymal stem cells (BM-MSCs) are well-characterized multipotent cells that can differentiate into different cell types. Understanding the potential of these cells and the molecular mechanisms underlying their differentiation should lead to innovative protocols for clinical applications. The aim of this study was to evaluate the usefulness of surface antigen selection of BM-MSCs and to understand the mechanisms underlying their differentiation. MSCs were isolated from BM stroma and expanded. CD105+ subpopulation was isolated using a magnetic separator. We compared culture-expanded selected cells with non-selected cells. We analyzed the phenotypic profiles, the expression of the stem cell marker genes Nanog, Oct3/4, and Sox2 and the multi-lineage differentiation potential (adipogenic, osteogenic, and chondrogenic). The multi-lineage differentiation was confirmed using histochemistry, immunohistochemistry and/or real-time polymerase chain reaction (qPCR) techniques. The selected and non-selected cells displayed similar phenotypes and multi-lineage differentiation potentials. Analyzing each cell source individually, we could divide the six donors into two groups: one with a high percentage of CD29 (β1-integrin) expression (HL); one with a low percentage of CD29 (LL). These two groups had different chondrogenic capacities and different expression levels of the stem cell marker genes. This study showed that phenotypic profiles of donors were related to the chondrogenic potential of human BM-MSCs. The chondrogenic potential of donors was related to CD29 expression levels. The high expression of CD29 antigen seemed necessary for chondrogenic differentiation. Further investigation into the mechanisms responsible for these differences in BM-MSCs chondrogenesis is therefore warranted. Understanding the mechanisms

  8. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  9. [Information booklet for related hematopoietic stem cell donors: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    Science.gov (United States)

    Polomeni, Alice; Tardieu, Laure; Ainaoui, Malika; Andrianne, Christelle; Bancillon, Nelly; Chapel, Valerie; Chevallier, Nathalie; Evrard, Solène; Fournier, Isabelle; Gargallo, Guillaume; Godin, Sandrine; Issarni, Dominique; Le Bars, Laetitia; Renaud, Barbara; Yakoub-Agha, Ibrahim; Wallart, Anne; De Bentzmann, Natacha

    2017-12-01

    Providing information to living donors is first and foremost a legal obligation as well as an ethical one, not to mention necessary to health care provision. It's been shown that quality of information concerning the procedure's practical aspects, scheduling of clinical tests and examinations, withdrawing stem cells for the donation, post-donation symptoms, and support provided by healthcare teams, directly impacts the donor's quality of experience. Taking this into consideration our group decided it was essential to create an informational support for donors in the form of a booklet to be provided in different hematopoietic stem cell transplant centers across France. In September 2016 in Lille, France, the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) organized the 7th allergenic hematopoietic stem cell transplantation clinical practices harmonization workshops. As part of these workshops, our group worked collectively to develop a basis of indispensable information to be included in the booklet and presented using clear and accessible language. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome.

    Science.gov (United States)

    Patel, N C; Gallagher, J L; Torgerson, T R; Gilman, A L

    2015-07-01

    Autosomal dominant hyper-IgE syndrome (AD-HIES), caused by mutations in Signal Transducer and Activator of Transcription 3 (STAT3) is associated with defective STAT3 signaling and Th17 differentiation and recurrent bacterial and fungal infections. Most patients suffer significant morbidity and premature mortality. Hematopoietic stem cell transplantation (HSCT) has been reported in a small number of cases, with mixed outcomes. We report successful haploidentical donor HSCT in a patient with AD-HIES. Evaluation of lymphocyte subsets, STAT3 signaling, and Th17 cells was performed pre- and post-HSCT. A 14-year old female with AD-HIES developed recurrent methicillin-resistant Staphylococcus aureus (MRSA) abscesses. Immunologic analysis showed elevated IgE (4331 kU/L), absent Th17 cells, and markedly decreased STAT3 phosphorylation in cytokine stimulated peripheral blood mononuclear cells. She had breakthrough abscesses despite clindamycin and trimethoprim-sulfamethoxazole prophylaxis, and developed steroid refractory autoimmune hemolytic anemia. She underwent T-cell depleted haploidentical HSCT from her father following reduced intensity conditioning. She developed one MRSA hand abscess after transplant. Twenty-four months post transplant, she had complete donor chimerism (>95 % donor), normal absolute T cell numbers, and a normal percentage of Th17 cells. IgE was normal at 25 kU/L. She remains well 42 months after transplantation off all antibacterial prophylaxis. Haploidentical HSCT led to successful bone marrow engraftment, normalization of STAT3 signaling in hematopoietic cells, normalization of IgE, and restoration of immune function in this patient with AD-HIES.

  11. Current practices for screening, consent and care of related donors in France: Haematopoietic stem cell transplantation coordinator nurses' perceptions.

    Science.gov (United States)

    Polomeni, A; Bompoint, C; Gomez, A; Brissot, E; Ruggeri, A; Belhocine, R; Mohty, M

    2017-11-01

    Haematopoietic stem cell transplantation-coordinating nurses (HSCT-CNs) play an important role in informing related donors (RDs) and in organising human leucocyte antigen (HLA) tests, pre-donation workup and stem cells collection. Our pilot study aimed to explore French HSCT-CNs' perceptions of RD care issues. Twenty-nine French HSCT adult units were sent a questionnaire on the subject of donation procedures, HSCT-CNs' data and their professional experience of related donation issues. Twenty-two HSCT-CNs returned a completed questionnaire, and 90% of HSCT units were involved to some degree in both patient and donor care. Responses indicated that the provision of information to potential donors prior to HLA tests was insufficient, while donors were given a medical consultation only during the pre-donation workup. Questions were raised about the consent and voluntary status of RDs. None of the HSCT teams organised a post-donation consultation, while 57% provided follow-up by phone or via a questionnaire. Our results draw attention to the conflict of interest experienced by HSCT-CNs when caring simultaneously for patients and donors. The specific psychosocial difficulties associated with becoming an RD are also highlighted. French HSCT-CNs' perceptions of related donation reveal many ethical and clinical problems that have yet to be fully explored. Data on this topic remain scarce, and our pilot study may contribute to the current debate on the organisation of RD care. © 2016 John Wiley & Sons Ltd.

  12. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients

    Science.gov (United States)

    Gama, Bianca E.; Emmel, Vanessa E.; Oliveira-Silva, Michelle; Gutiyama, Luciana M.; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F.; Abdelhay, Eliana; Hassan, Rocio

    2017-01-01

    Background Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Methods With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. Results We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Conclusions Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation. PMID:29184906

  13. Parvovirus B19 in the Context of Hematopoietic Stem Cell Transplantation: Evaluating Cell Donors and Recipients.

    Science.gov (United States)

    Gama, Bianca E; Emmel, Vanessa E; Oliveira-Silva, Michelle; Gutiyama, Luciana M; Arcuri, Leonardo; Colares, Marta; de Cássia Tavares, Rita; Bouzas, Luis F; Abdelhay, Eliana; Hassan, Rocio

    2017-11-01

    Parvovirus B19 (B19V) is a common human pathogen, member of the family Parvoviridae. Typically, B19V has been found to infect erythroid progenitors and cause hematological disorders, such as anemia and aplastic crisis. However, the persistence of genomic deoxyribonucleic acid (DNA) has been demonstrated in tonsils, liver, skin, brain, synovial, and testicular tissues as well as bone marrow, for both symptomatic and asymptomatic subjects. Although the molecular and cellular mechanisms of persistence remain undefined, it raises questions about potential virus transmissibility and its effects in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. With this aim, we retrospectively screened allogeneic stem cell donors from 173 patients admitted for allo-HSCT from January 2008 to May 2013 using a seminested polymerase chain reaction approach. We found 8 positive donor samples, yielding a 4.6% of parvovirus prevalence (95% confidence interval, 2.36-8.85). Pre- and post-HSCT samples (n = 51) from the 8 recipients of the positive donors were also investigated, and 1 case exhibited B19V DNA in the post-HSCT follow-up (D + 60). Direct DNA sequencing was performed to determine the genotype of isolates and classification, performed by phylogenetic reconstruction, showed a predominance of genotype 1a, whereas the rare genotype 3b was detected in 2 additional patients. By molecular cloning, different B19V 1a substrains polymorphisms were evidenced in the single case in which donor and its recipient were B19V+. Our results suggest that HSCT allografts are not a main source for B19V transmission, pointing to potential events of reinfection or endogenous viral reactivation.

  14. The use of cytokine-stimulated healthy donors in allogeneic stem cell transplantation.

    Science.gov (United States)

    Cesaro, Simone; Marson, Piero; Gazzola, Maria Vittoria; De Silvestro, Giustina; Destro, Roberta; Pillon, Marta; Calore, Elisabetta; Messina, Chiara; Zanesco, Luigi

    2002-08-01

    Treatment of healthy donors with recombinant human granulocyte colony-stimulating factor (rhG-CSF) allows the mobilization and peripheralization into circulating blood of an adequate number of CD34+ cells that can then be collected by leukapheresis (PBSC). This procedure avoids the invasiveness of bone marrow harvest and the risks related to general anesthesia. The main adverse effects of rhG-CSF are: bone pain, 84%, headache, 54%, fatigue, 31%, and nausea, 13%, which are usually scored by the donors as moderate to severe, resolving within 2-3 days after discontinuation of the cytokine. Analgesics, mainly acetaminophen, are sufficient to control the pain. Less than 5% of the donors experience non-cardiac chest pain, a local reaction at the injection site, insomnia, dizziness or a low-grade fever. Discontinuation of the PBSC procedure because of adverse effects of rhG-CSF or leukapheresis is rarely necessary (0.5%) but this good tolerability can be hampered by the need, in 5-20% of cases, for an adequate venous access that requires insertion of a central or venous catheter. There are no absolute contraindications to the stimulation of healthy donors with rhG-CSF but the description of cases of non-traumatic splenic rupture, iritis, cardiac ischemia, and gouty arthritis suggests that further precautionary restrictions are advisable when deciding eligibility for PBSC collection. The main advantages for patients receiving an allogeneic PBSC transplant are the faster hematologic and immunologic recovery and the potential for a greater efficacy in advanced disease by lowering the transplant-related mortality. One of the major concerns regarding the use of rhG-CSF in unrelated healthy donors is the uncertainty about its possible role in triggering malignancy, in particular myelodysplastic syndrome and acute myeloid leukemia. There are no studies with an adequate sample size and follow-up that can answer this question but two recent retrospective studies reported that in

  15. Biological dosimetry of heavy ion induced chromosome lesions in human peripheral blood lymphocytes of different healthy donors

    International Nuclear Information System (INIS)

    Groesser, T.; Rydberg, B.; Ritter, S.; Hessel, P.; Kraft, G.

    2003-01-01

    Full text: In the presented work the effect of sparsely ionizing X-rays or densely ionizing carbon ions on human peripheral blood lymphocytes (PBL) from healthy donors regarding the fluctuations in radiosensitivity within the same donor and between different donors was examined. This is not only of special interest for physicians and radiation biologists but also plays an important role in space flights because such fluctuations in the radiation response would reduce the accuracy of the biological dosimetry. In this context, biological changes in the aberration rate of metaphase cells as well as in cell proliferation and the mitotic index were measured. Since chromosome analyses are presently the most powerful biological method to quantify radiation exposure, the study focused on the measurements of chromosome aberrations in first-metaphase cells. The investigations showed that the aberration yield after 400 MeV/u carbon ion exposure (LET = 11 keV/micrometer) was higher than after X-irradiation. The aberration yield in first mitotic cells as well as the proportion of damaged cells was stable over the examined period up to 72h after exposure to X-rays or carbon ions. Furthermore, the results of the presented work revealed pronounced fluctuations in the measured parameters in the same donor as well as between different donors. If the dose effect curves of such parameters were used as calibration curves for radiation dose assessment these fluctuations will decrease their potential of use for dose estimation. This demonstrates that a general calibration curve for dose assessment might not be sufficiently precise and individual calibration curves might improve the accuracy of the biological dosimetry

  16. Stem cells of umbilical blood cord – therapeutic use

    Directory of Open Access Journals (Sweden)

    Beata Bielec

    2015-07-01

    Full Text Available For many years, the transplantation of hematopoietic stem cells has been used to treat some diseases of the hematopoietic system. For a very long time, only bone marrow was used as a source of hematopoietic stem cells for this method of treatment. However, to comply with allogeneic bone marrow transplantation, an antigenically compatible donor is necessary. Transplantations from unrelated donors are associated with increased risk of a graft-versus-host reaction, transplant rejection and, consequently, increased mortality. Many years ago, it was found that umbilical cord blood as well as bone marrow and peripheral blood contains hematopoietic stem cells and mesenchymal cells able to differentiate into different cell types and that the umbilical cord blood can be a source of stem cells for transplantation. Following this discovery, numerous attempts were made for its potential use in the treatment of hematologic diseases, metabolic diseases as well as regenerative medicine. Umbilical cord blood stem cells exhibit intermediate characteristics between embryonic and adult stem cells. They are distinguished from the latter by telomere length, telomerase activity, and lower risk of accumulation of DNA mutations or chromosomal aberrations. The only transplantation limitation appears to be the amount of cord blood collected, which on average is sufficient for transplantation in a 40-50 kg child. Collection of cord blood is a simple, short-lasting treatment, not causing any danger for a newborn or the mother. Umbilical cord blood is obtained during labor, and then frozen and stored at cord blood banks all over the world.

  17. DHAP plus filgrastim as an effective peripheral stem cell mobilization regimen for autologous stem-cell transplantation in patients with relapsed/refractory lymphoma: A single center experience.

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Bag, Harika Gozukara; Nizam, Ilknur; Koroglu, Mustafa; Ozgul, Mustafa

    2016-02-01

    This study aimed to evaluate the efficiency of DHAP regimen plus filgrastim for mobilization of stem cells in patients with recurrent and/or refractory lymphoma. Thirty-four patients who took DHAP as salvage therapy prior to autologous stem cell transplantation were included. After chemotherapies, 2 cycles of DHAP plus filgrastim were administered to the patients. Stem cells from 32 patients (94%) were collected on median 11th day (8-12), and the median collected CD34(+) cell dose was 9.7 × 10(6)/kg (range 3.8-41.6). DHAP plus filgrastim was found to be an effective chemotherapy regimen in mobilizing CD34(+) stem cells into the peripheral. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  19. Second allogeneic stem cell transplant for aplastic anaemia: a retrospective study by the Severe Aplastic Anaemia Working Party of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Cesaro, Simone; Peffault de Latour, Regis; Tridello, Gloria; Pillon, Marta; Carlson, Kristina; Fagioli, Franca; Jouet, Jean-Pierre; Koh, Mickey B C; Panizzolo, Irene Sara; Kyrcz-Krzemien, Slawomira; Maertens, Johan; Rambaldi, Alessandro; Strahm, Brigitte; Blaise, Didier; Maschan, Alexei; Marsh, Judith; Dufour, Carlo

    2015-11-01

    We analysed the outcome of a second allogeneic haematopoietic stem cell transplant (alloHSCT) in 162 patients reported to the European Society for Blood and Marrow Transplantation between 1998 and 2009. Donor origin was a sibling in 110 and an unrelated donor in 52 transplants, respectively. The stem cell source was bone marrow in 31% and peripheral blood in 69% of transplants. The same donor as for the first alloHSCT was used in 81% of transplants whereas a change in the choice of stem cell source was reported in 56% of patients, mainly from bone marrow to peripheral blood. Neutrophil and platelet engraftment occurred in 85% and 72% of patients, after a median time of 15 and 17 days, respectively. Grade II-IV acute graft-versus-host disease (GVHD) and chronic GVHD occurred in 21% and 37% of patients, respectively. Graft failure (GF) occurred in 42 patients (26%). After a median follow-up of 3·5 years, the 5-year overall survival (OS) was 60·7%. In multivariate analysis, the only factor significantly associated with a better outcome was a Karnofsky/Lansky score ≥80 (higher OS). We conclude that a second alloHSCT is feasible rescue option for GF in SAA, with a successful outcome in 60% of cases. © 2015 John Wiley & Sons Ltd.

  20. Hematopoietic Stem Cell Transplantation Using Preimplantation Genetic Diagnosis and Human Leukocyte Antigen Typing for Human Leukocyte Antigen-Matched Sibling Donor: A Turkish Multicenter Study.

    Science.gov (United States)

    Kurekci, Emin; Küpesiz, Alphan; Anak, Sema; Öztürk, Gülyüz; Gürsel, Orhan; Aksoylar, Serap; Ileri, Talia; Kuşkonmaz, Barış; Eker, İbrahim; Cetin, Mualla; Tezcan Karasu, Gülsün; Kaya, Zühre; Fışgın, Tunç; Ertem, Mehmet; Kansoy, Savaş; Yeşilipek, Mehmet Akif

    2017-05-01

    Preimplantation genetic diagnosis involves the diagnosis of a genetic disorder in embryos obtained through in vitro fertilization, selection of healthy embryos, and transfer of the embryos to the mother's uterus. Preimplantation genetic diagnosis has been used not only to avoid the risk of having an affected child, but it also offers, using HLA matching, preselection of potential HLA-genoidentical healthy donor progeny for an affected sibling who requires bone marrow transplantation. Here, we share the hematopoietic stem cell transplantation results of 52 patients with different benign and malign hematological or metabolic diseases or immunodeficiencies whose donors were siblings born with this technique in Turkey since 2008. The median age of the patients' at the time of the transplantation was 8 years (range, 3 to 16 years) and the median age of the donors was 2 years (range, .5 to 6 years). The most common indication for HSCT was thalassemia major (42 of all patients, 80%). The stem cell source in all of the transplantations was bone marrow. In 37 of the transplantations, umbilical cord blood of the same donor was also used. In 50 of the 52 patients, full engraftment was achieved with a mean of 4.6 × 10 6 CD 34 + cells per kg of recipient weight. Ninety-six percent of the patients have been cured through hematopoietic stem cell transplantation without any complication. Primary engraftment failure was seen in only 2 patients with thalassemia major. All of the donors and the patients are alive with good health status. Preimplantation genetic diagnosis with HLA matching offers a life-saving chance for patients who need transplantation but lack an HLA genoidentical donor. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Potential organ donor audit in Ireland.

    LENUS (Irish Health Repository)

    Hegarty, M

    2010-11-01

    As increasing demand for organs is a challenge for transplant services worldwide it is essential to audit the process of organ donation. To address this, a national audit of potential organ donors was undertaken across hospitals with Intensive Care Units (N = 36). Questionnaires were returned on all patients (n = 2073) who died in these units from 1\\/9\\/07-31\\/8\\/08; 200 (10%) of these patients were considered for Brain Stem Testing (BST), 158 patients (79%) were diagnosed Brain Stem Dead (BSD) and 138 patients (87%) became potential donors. Consent for donation was given by 92 (69%) next of kin and 90 potential donors (65%) became organ donors. There was no evidence of a large number of potential organ donors being missed. Recommendations included completion of BSTs on all appropriate patients, development of support on BST, referral of all BSD patients to the Organ Procurement Service; enhanced co-ordination within hospitals and sustained information\\/education campaigns.

  2. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  3. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood.

    Science.gov (United States)

    Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin

    2018-06-15

    Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.

  4. Hematopoietic stem cell transplantation in Niemann-Pick disease type B monitored by chitotriosidase activity.

    Science.gov (United States)

    Quarello, Paola; Spada, Marco; Porta, Francesco; Vassallo, Elena; Timeus, Fabio; Fagioli, Franca

    2018-02-01

    Here, we report a patient with Niemann-Pick disease type B, with early severe onset of disease and pulmonary involvement, treated with hematopoietic stem cell transplant (HSCT) from a bone marrow matched unrelated donor. We confirm that HSCT is feasible and potentially beneficial for patients with severe phenotype. Noteworthy, we discussed the potential usefulness of the activity of peripheral chitotriosidase for the longitudinal evaluation of HSCT success and effectiveness. © 2017 Wiley Periodicals, Inc.

  5. Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation.

    Science.gov (United States)

    Köse, Sevil; Aerts-Kaya, Fatima; Köprü, Çağla Zübeyde; Nemutlu, Emirhan; Kuşkonmaz, Barış; Karaosmanoğlu, Beren; Taşkıran, Ekim Zihni; Altun, Belgin; Uçkan Çetinkaya, Duygu; Korkusuz, Petek

    2018-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a well-known hematopoietic stem cell (HSC)-mobilizing agent used in both allogeneic and autologous transplantation. However, a proportion of patients or healthy donors fail to mobilize a sufficient number of cells. New mobilization agents are therefore needed. Endocannabinoids (eCBs) are endogenous lipid mediators generated in the brain and peripheral tissues and activate the cannabinoid receptors CB1 and CB2. We suggest that eCBs may act as mobilizers of HSCs from the bone marrow (BM) under stress conditions as beta-adrenergic receptors (Adrβ). This study demonstrates that BM mesenchymal stem cells (MSCs) secrete anandamide (AEA) and 2-arachidonylglycerol (2-AG) and the peripheral blood (PB) and BM microenvironment contain AEA and 2-AG. 2-AG levels are significantly higher in PB of the G-CSF-treated group compared with BM plasma. BM mononuclear cells (MNCs) and CD34 + HSCs express CB1, CB2, and Adrβ subtypes. CD34 + HSCs had higher CB1 and CB2 receptor expression in G-CSF-untreated and G-CSF-treated groups compared with MSCs. MNCs but not MSCs expressed CB1 and CB2 receptors based on qRT-PCR and flow cytometry. AEA- and 2-AG-stimulated HSC migration was blocked by eCB receptor antagonists in an in vitro migration assay. In conclusion, components of the eCB system and their interaction with Adrβ subtypes were demonstrated on HSCs and MSCs of G-CSF-treated and G-CSF-untreated healthy donors in vitro, revealing that eCBs might be potential candidates to enhance or facilitate G-CSF-mediated HSC migration under stress conditions in a clinical setting. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  6. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system.

    Science.gov (United States)

    Uhm, Kyung-Ok; Jo, Eun Hee; Go, Gue Youn; Kim, So-Jung; Choi, Hye Young; Im, Young Sam; Ha, Hye-Yeong; Jung, Ji-Won; Koo, Soo Kyung

    2017-05-01

    Urinary cells can be an ideal source for generating hiPSCs and progenitors, as they are easily accessible, non-invasive, and universally available. We generated human induced pluripotent stem cells (hiPSCs) from the urinary cells of a healthy donor using a Sendai virus-based gene delivery method. The generated hiPSC line, KSCBi001-A, has a normal karyotype (46,XY). The pluripotency and capacity of multilineage differentiation were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from National Stem Cell Bank, Korea National Institute of Health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  8. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Evolution of human cytomegalovirus-seronegative donor/-seropositive recipient high-risk combination frequency in allogeneic hematopoietic stem cell transplantations at Institute of Hematology and Blood Transfusion during 1995-2014.

    Science.gov (United States)

    Nemeckova, S; Sroller, V; Stastna-Markova, M

    2016-04-01

    Human cytomegalovirus (HCMV) establishes lifelong latent infection that can result in severe life-threatening disease in immunosuppressed patients after hematopoietic stem cell transplantation (HSCT). An HCMV-seropositive transplant recipient who receives a graft from a seronegative donor (R+/D-) is at high risk of recurrent HCMV reactivation. To assess the incidence of R+/D- combination, we retrospectively evaluated HCMV-seronegative donors for 746 allogeneic HSCT treatments carried out at our center during 1995-2014. In our cohort, 20% HCMV-seronegative HSCT recipients, 21% HCMV-seronegative related graft donors, and 52% HCMV-seronegative unrelated graft donors were included. Analyses of the HCMV serostatus of hematopoietic stem cell donors during 2 consecutive calendar periods (1995-2005 and 2006-2014) showed a significant increase in the proportion of seronegative donors (odds ratio [OR] = 1.947). In addition, the number of HSCT treatments using an unrelated donor increased (OR = 2.376). Finally, the use of grafts from countries with a very low HCMV prevalence increased. This increase in HCMV seronegativity in unrelated donors and the increased proportion of unrelated donors were responsible for the increased occurrence of the high-risk combination R+/D- (OR = 1.680). If the reduction in the rate of HCMV-seropositive graft donors continues, an increased frequency of HCMV reactivation events in our transplant recipients can be expected, because of the increasing occurrence of the high-risk R+/D- combination. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling.

    Science.gov (United States)

    Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen

    2015-11-01

    Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids, and their endogenous inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells. We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (a) limiting-dilution cobblestone area-forming cell assay revealed that TOFA significantly increased cobblestone colonies in Fanca-/- or Fancd2-/- cocultures compared to untreated cocultures. (b) Competitive repopulating assay using output cells collected from cocultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca-/- or Fancd2-/- cocultures. Furthermore, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. © 2015 AlphaMed Press.

  11. Cord blood is the optimal graft source for the treatment of pediatric patients with lysosomal storage diseases : Clinical outcomes and future directions

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Kurtzberg, Joanne

    Initially used as an alternative hematopoietic stem cell source for patients without a human leukocyte antigen-matched bone marrow or peripheral blood stem cell donor, unrelated cord blood (UCB) is now the preferred donor source when hematopoietic stem cell transplantation (HSCT) is used to treat

  12. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  13. Addition of plerixafor for CD34+ cell mobilization in six healthy stem cell donors ensured satisfactory grafts for transplantation

    DEFF Research Database (Denmark)

    Hauge, Anne Werner; Haastrup, Eva Kannik; Sengeløv, Henrik

    2014-01-01

    In allogeneic hematopoietic stem cell (HSC) transplantation, collection of a sufficient number of HSCs at a fixed time point is crucial. For HSC mobilization into the peripheral blood, the standard regimen, that is, granulocyte-colony-stimulating factor (G-CSF), may be inadequate. Use of plerixaf...

  14. Gnom 3 as a Donor for Ultra Short- Stem Trait of Winter Rye

    Directory of Open Access Journals (Sweden)

    В. В. Скорик

    2011-05-01

    Full Text Available The article reflects the progress of genetic decrease of Rye F 3k- 10029/ Saratovske (Саратовське 4 height by means of the shortest stem plants selection during the period from 1974 to 2010. 37 years selection of the shortest- stern genotypes decreased the plants height from 119.33 cm to 22.57cm. Targeted selection into minus direction decreased the plants height in 5,29 times on the background of the dominant HI expression. In average, the height of plants in the course of 27 breeding cycles were decreasing by 2.69 cm, but that was not going gradually. A new donor Gnom 3 had been created for ultra short-stem trait of the Winter Rye, with the marking of alleles HI-3HI-3. Relative influence on the minus selection efficiency has been established by height of plants for the selection differential (38% and coefficient of inheritance in narrow sense (14,56%. Realized efficiency of selection in decrease of winter rye height in 72,08% of cases corresponded to predicted hit ration of the breeding. Analyzes of genetic and statistical parameters and correlation clusters of 11 utilitarian average characteristics of ultra short- stem rye Gnom 3 for the period of 1974 to 2010 has been performed.

  15. Egg donation for stem cell research: ideas of surplus and deficit in Australian IVF patients' and reproductive donors' accounts.

    Science.gov (United States)

    Waldby, Catherine; Carroll, Katherine

    2012-05-01

    We report on a study undertaken with an Australian in vitro fertilisation (IVF) clinic to understand IVF patients' and reproductive donors' perceptions of oocyte (egg) donation for stem cell research. Such perspectives are particularly valuable because IVF patients form a major recruitment group for oocyte donation for research, and because patients and donors have direct experience of the medical procedures involved. Similar studies of oocyte donation have been carried out elsewhere in the world, but to date very little social science research has been published that reports on donation for research, as distinct from donation for reproduction. Our respondents expressed a distinct unwillingness to donate viable oocytes for stem cell research. In our analysis we consider a number of factors that explain this unwillingness. These include the labour of oocyte production, the inscrutability of oocytes (the lack of a test to identify degrees of fertility) and the extent to which the oocytes' fertility sets the parameters for all downstream reproductive possibilities. We draw on the science studies literature on affordances to make sense of the social intractability of oocytes, and compare them with the respondents' much greater willingness to donate frozen embryos for human embryonic stem cells research. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  16. Endurance Exercise Mobilizes Developmentally Early Stem Cells into Peripheral Blood and Increases Their Number in Bone Marrow: Implications for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-01-01

    Full Text Available Endurance exercise has been reported to increase the number of circulating hematopoietic stem/progenitor cells (HSPCs in peripheral blood (PB as well as in bone marrow (BM. We therefore became interested in whether endurance exercise has the same effect on very small embryonic-like stem cells (VSELs, which have been described as a population of developmentally early stem cells residing in BM. Mice were run daily for 1 hour on a treadmill for periods of 5 days or 5 weeks. Human volunteers had trained in long-distance running for one year, six times per week. FACS-based analyses and RT-PCR of murine and human VSELs and HSPCs from collected bone marrow and peripheral blood were performed. We observed that endurance exercise increased the number of VSELs circulating in PB and residing in BM. In parallel, we observed an increase in the number of HSPCs. These observations were subsequently confirmed in young athletes, who showed an increase in circulating VSELs and HSPCs after intensive running exercise. We provide for the first time evidence that endurance exercise may have beneficial effects on the expansion of developmentally early stem cells. We hypothesize that these circulating stem cells are involved in repairing minor exercise-related tissue and organ injuries.

  17. Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates

    Science.gov (United States)

    Berman, Dora M.; Willman, Melissa A.; Han, Dongmei; Kleiner, Gary; Kenyon, Norman M.; Cabrera, Over; Karl, Julie A.; Wiseman, Roger W.; O'Connor, David H.; Bartholomew, Amelia M.; Kenyon, Norma S.

    2010-01-01

    OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy. PMID:20622174

  18. ALLOGENEIC STEM CELL TRANSPLANTATION FOR ADULT PATIENTS WITH ACUTE LEUKEMIA – 14 YEARS EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Jože Pretnar

    2004-12-01

    Full Text Available Background. This study was designed to evaluate the impact of various prognostic factors on long-term survival and event free survival after allogeneic hematopoietic stem cell transplantation for patients with acute leukemia.Methods and patients. Between years 1989 and 2002 44 patients with acute leukemia (30 with AML and 14 with ALL were transplanted. Survival curves using the Kaplan-Meier method were calculated for patients transplanted with two different sources of stem cells – bone marrow and peripheral blood and separately for patients with female donor.Results. Estimated 10 years survival for AML is 43% and 64% for ALL patients which is not statistically different. There are no significant differences in outcome regarding source of stem cells and in donors’ gender.Conclusions. To conclude, our results show that neither source of stem cells nor donor’s gender has impact on the long-term survival after hematopoietic stem cell transplantation. As published previously patients transplanted beyond the first remission have significantly worse outcome.

  19. Scotblood 2007: Tackling local and global issues in transfusion medicine - donor recruitment, effective use of blood, stem cell plasticity, and vCJD.

    Science.gov (United States)

    Bessos, Hagop; Fraser, Robin; Seghatchian, Jerard

    2008-02-01

    This commentary briefly highlights some of the local and the global contemporary issues affecting transfusion medicine worldwide. The main areas of focus addressed this year were: donor recruitment, stem cell plasticity, the effective use of blood, and vCJD.

  20. Lichen striatus occurring after allogenic peripheral blood stem cell transplantation in an adult with aplastic anemia.

    Science.gov (United States)

    Mun, Je-Ho; Park, Hyun-Je; Kim, Hoon-Soo; Kim, Su-Han; Ko, Hyun-Chang; Kim, Byung-Soo; Kim, Moon-Bum

    2012-02-01

    Lichens striatus (LS) is an acquired, self-limiting inflammatory dermatosis that follows the lines of Blaschko. The etiology of the eruption is unknown, but several theories have been proposed with focus on environmental factors, viral infection, cutaneous injury, hypersensitivity, and genetic predisposition. We describe a 19-year-old woman who developed a unilateral linear eruption 17 months after allogenic peripheral blood stem cell transplantation. Histopathology revealed features, which were consistent with LS. To the best of our knowledge, our patient is the first case describing the appearance of LS occurring after allogenic stem cell transplantation. We speculate that this condition represents an unusual form of localized, chronic graft-versus-host disease.

  1. Biodistribution of Liver-Derived Mesenchymal Stem Cells After Peripheral Injection in a Hemophilia A Patient.

    Science.gov (United States)

    Sokal, Etienne M; Lombard, Catherine Anne; Roelants, Véronique; Najimi, Mustapha; Varma, Sharat; Sargiacomo, Camillo; Ravau, Joachim; Mazza, Giuseppe; Jamar, François; Versavau, Julia; Jacobs, Vanessa; Jacquemin, Marc; Eeckhoudt, Stéphane; Lambert, Catherine; Stéphenne, Xavier; Smets, Françoise; Hermans, Cédric

    2017-08-01

    With the exception of liver transplantation, there is no cure for hemophilia, which is currently managed by preemptive replacement therapy. Liver-derived stem cells are in clinical development for inborn and acquired liver diseases and could represent a curative treatment for hemophilia A. The liver is a major factor VIII (FVIII) synthesis site, and mesenchymal stem cells have been shown to control joint bleeding in animal models of hemophilia. Adult-derived human liver stem cells (ADHLSCs) have mesenchymal characteristics and have been shown able to engraft in and repopulate both animal and human livers. Thus, the objectives were to evaluate the potency of ADHLSCs to control bleeding in a hemophilia A patient and assess the biodistribution of the cells after intravenous injection. A patient suffering from hemophilia A was injected with repeated doses of ADHLSCs via a peripheral vein (35 million In-oxine-labeled cells, followed by 125 million cells the next day, and 3 infusions of 250 million cells every 2 weeks thereafter; total infusion period, 50 days). After cell therapy, we found a temporary (15 weeks) decrease in the patient's FVIII requirements and severe bleeding complications, despite a lack of increase in circulating FVIII. The cells were safely administered to the patient via a peripheral vein. Biodistribution analysis revealed an initial temporary entrapment of the cells in the lungs, followed by homing to the liver and to a joint afflicted with hemarthrosis. These results suggest the potential use of ADHLSCs in the treatment of hemophilia A.

  2. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  3. Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for Individual NAT Screening of Blood, Hematopoietic Stem Cell, Tissue and Organ Donors.

    Science.gov (United States)

    Heim, Albert

    2016-05-01

    The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors.

  4. Dualism of mixed chimerism between hematopoiesis and stroma in chronic idiopathic myelofibrosis after allogeneic stem cell transplantation.

    Science.gov (United States)

    Thiele, J; Varus, E; Siebolts, U; Kvasnicka, H M; Wickenhauser, C; Metz, K A; Beelen, D W; Ditschkowski, M; Zander, A; Kröger, N

    2007-04-01

    Scant knowledge exists concerning lineage-restricted mixed chimerism (mCh) after allogeneic peripheral blood stem cell transplantation (PSCT) in patients with chronic idiopathic myelofibrosis (CIMF). Following a sex-mismatched PSCT, a combined immunopheno- and genotyping by fluorescence in-situ hybridization (FISH) was performed on sequential bone marrow (BM) biopsies at standardized intervals. Results were compared with PCR analysis of corresponding peripheral blood samples in five patients. According to FISH, pretransplant specimens revealed a gender congruence of more than 99%, while in the first three months the total BM exhibited a persistent fraction of host cells (30% to 40%) with a tendency to decline after about one year. It is noteworthy that the majority of endothelial cells maintained a recipient origin, whereas CD34+ progenitors and especially CD61+ megakaryocytes exhibited only very few host-derived cells. In keeping with the prevalence of donor cells in the hematopoietic compartment, PCR analysis of peripheral blood cells displayed a non-significant degree of mCh. In conclusion, according to FISH and PCR analysis, successful PSCT in CIMF results in an almost complete chimeric (donor-derived) state of the hematopoietic cell population. The non-transplantable stromal compartment includes the vascular endothelium with a predominance of recipient cells. The minimal mCh of this population implies probably a donor-derived origin (endothelial progenitor cells).

  5. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen: Similar outcomes with umbilical cord blood and unrelated donor peripheral blood

    NARCIS (Netherlands)

    C.A. Rodrigues (Celso Arrais); V. Rocha (Vanderson); P. Dreger (Peter); C.G. Brunstein (Claudio); H. Sengeloev (Henrik); J. Finke (Jürgen); M. Mohty (Mohamad); B. Rio (Bernard); E. Petersen (Eefke); F. Guilhot (François); D. Niederwieser (Dietger); J.J. Cornelissen (Jan); P. Jindra (Pavel); A. Nagler (Arnon); N. Fegueux (Nathalie); H. Schoemans (Hélène); A. Ruggeri (Annelisa); S.P. Robinson (Stephen); E. Gluckman (Eliane); C. Canals (Carmen); A. Sureda (Anna)

    2014-01-01

    textabstractWe have reported encouraging results of unrelated cord blood transplantation for patients with lymphoid malignancies. Whether those outcomes are comparable to matched unrelated donor transplants remains to be defined. We studied 645 adult patients with mature lymphoid malignancies who

  6. Successful Large-volume Leukapheresis for Hematopoietic Stem Cell Collection in a Very-low-weight Brain Tumor Infant with Coagulopathy

    Directory of Open Access Journals (Sweden)

    Yu-Mei Liao

    2013-06-01

    Full Text Available Peripheral apheresis has become a safe procedure to collect hematopoietic stem cells, even in pediatric patients and donors. However, the apheresis procedure for small and sick children is more complicated due to difficult venous access, relatively large extracorporeal volume, toxicity of citrate, and unstable hemostasis. We report a small and sick child with refractory medulloblastoma, impaired liver function, and coagulopathy after several major cycles of cisplatin-based chemotherapy. She successfully received large-volume leukapheresis for hematopoietic stem cell collection, although the patient experienced severe coagulopathy during the procedures. Health care providers should be alert to this potential risk.

  7. The Japan Marrow Donor Program, 25 years of experience in achieving 20,000 bone marrow transplantations: organization structure, activity, and financial basis.

    Science.gov (United States)

    Saito, Hidehiko; Ito, Masaharu; Kato, Shunichi; Kodera, Yoshihisa; Okamoto, Shinichiro; Taniguchi, Shuichi; Takanashi, Minoko; Kanamori, Heiwa; Masaoka, Toru; Takaku, Fumimaro

    2018-01-24

    The Japan Marrow Donor Program (JMDP), established in 1991, has continued to grow in its capacity to facilitate unrelated bone marrow (BMT) and peripheral blood stem cell transplantation (PBSCT) for the past 25 years in Japan. The current donor pool is 463,465 (as of 31 December 2016) and 20,237 transplants were performed with the help of the Japanese Red Cross, government, and supporters. As JMDP introduced PBSCT in 2010, the vast majority of transplants are BMT. All donors are fully typed for HLA-A, B, C, and DR. The peak age of registered donors is around 40 years. The 8/8 HLA-matched donors are found in our registry for 96% of the patients and 54% of the patients receive a transplant. The median time between the initiation of donor search and the transplantation is approximately 122 days. The median interval between the initiation of donor search and identification of the first potential donor is 40 days. The most common diseases for which unrelated BMT/PBSCT is indicated are acute myelogenous leukemia (AML), acute lymphocytic leukemia (ALL), myelodysplastic syndrome (MDS), and malignant lymphoma. In recent years we have seen a marked increase in elderly patients who received BMT.

  8. Peripheral Red Blood Cell Split Chimerism as a Consequence of Intramedullary Selective Apoptosis of Recipient Red Blood Cells in a Case of Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Marco Marziali

    2014-08-01

    Full Text Available Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80%  circulating donor red blood cells (RBC. The analysis of apoptosis at the Bone Marrow  level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.

  9. Therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis

    International Nuclear Information System (INIS)

    Chang Pengyu; Cui Shuang; Luo Jinghua; Qu Chao; Jiang Xin; Qu Yaqin; Dong Lihua

    2014-01-01

    Objective: To evaluate the therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis. Methods: A total of 52 male Sprague-Dawley rats were used in the present study. Herein, 46 rats were randomly selected and irradiated with a dose of 15 Gy at their abdomens. Two hours post-irradiation, 23 rats were randomly selected and infused intraperitoneally with adipose-derived mesenchymal stem cells in passage 6 from young-female donor. The other 23 rats were intraperitoneally infused with PBS. The rest 6 rats were set as normal control. During the first 10 days post-irradiation, peripheral blood-samples from irradiated rats were harvested for testing the levels of IL-10 in serum using ELISA assay. Additionally, after isolating the thymic cells and peripheral blood mononuclear cells, the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in thymus and peripheral blood were tested by flow-cytometry. Finally, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were analyzed by H&E staining and Masson Trichrome staining, respectively. Based on the MPO-immunohistochemistry staining, the type of infiltrated cells was identified. The Kaplan-Meier method was used for analyzing the survival rate of irradiated rats. Results: During a period of 30 days post-irradiation, the irradiated rats receiving adipose-derived mesenchymal stem cells survived longer than those receiving PBS (t = 4.53, P < 0.05). Compared to the irradiated rats with PBS-treatment, adipose-derived mesenchymal stem cells could elevate the level of IL-10 in serum (7 d: t = 13.93, P < 0.05) and increase the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in both peripheral blood (3.5 d: t = 7.72, 7 d: t = 11.11, 10 d: t = 6.99, P < 0.05) and thymus (7 d: t = 16.17, 10 d: t = 12.12, P < 0.05). Moreover, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were mitigated by adipose

  10. Impact of Donor Epstein-Barr Virus Serostatus on the Incidence of Graft-Versus-Host Disease in Patients With Acute Leukemia After Hematopoietic Stem-Cell Transplantation: A Study From the Acute Leukemia and Infectious Diseases Working Parties of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Styczynski, Jan; Tridello, Gloria; Gil, Lidia; Ljungman, Per; Hoek, Jennifer; Iacobelli, Simona; Ward, Katherine N; Cordonnier, Catherine; Einsele, Hermann; Socie, Gerard; Milpied, Noel; Veelken, Hendrik; Chevallier, Patrice; Yakoub-Agha, Ibrahim; Maertens, Johan; Blaise, Didier; Cornelissen, Jan; Michallet, Mauricette; Daguindau, Etienne; Petersen, Eefke; Passweg, Jakob; Greinix, Hildegard; Duarte, Rafael F; Kröger, Nicolaus; Dreger, Peter; Mohty, Mohamad; Nagler, Arnon; Cesaro, Simone

    2016-07-01

    We investigated the effect of Epstein-Barr virus (EBV) serostatus on the overall outcome of allogeneic hematopoietic stem-cell transplantation (allo-HSCT). The study included 11,364 patients who underwent allogeneic peripheral-blood or bone marrow transplantation for acute leukemia between 1997 and 2012. We analyzed the impact of donor and recipient EBV serologic status on overall survival, relapse-free survival, relapse incidence, nonrelapse mortality, and incidence of graft-versus-host disease (GVHD) after allo-HSCT. Patients receiving grafts from EBV-seropositive donors had the same overall survival as patients who received grafts from EBV-seronegative donors (hazard ratio [HR], 1.05; 95% CI, 0.97 to 1.12; P = .23). Seropositive donors also had no influence on relapse-free survival (HR, 1.04; 95% CI, 0.97 to 1.11; P = 0.31), relapse incidence (HR, 1.03; 95% CI, 0.94 to 1.12; P = .58), and nonrelapse mortality (HR, 1.05; 95% CI, 0.94 to 1.17; P = .37). However, in univariate analysis, recipients receiving grafts from seropositive donors had a higher risk of chronic GVHD than those with seronegative donors (40.8% v 31.0%, respectively; P donors, the HR for chronic GVHD was 1.30 (95% CI, 1.06 to 1.59; P = .039). In seropositive patients with seropositive donors, the HR was 1.24 (95% CI, 1.07 to 1.45; P = .016) for acute GVHD and 1.43 (95% CI, 1.23 to 1.67; P donors did not have an increased risk of GVHD. Our data suggest that donor EBV status significantly influences development of acute and chronic GVHD after allo-HSCT. © 2016 by American Society of Clinical Oncology.

  11. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    Science.gov (United States)

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  12. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments.

    Directory of Open Access Journals (Sweden)

    Peter Ashcroft

    2017-10-01

    Full Text Available Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells.

  13. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study

    NARCIS (Netherlands)

    Lokhorst, Henk M.; van der Holt, Bronno; Cornelissen, Jan J.; Kersten, Marie-José; van Oers, Marinus; Raymakers, Reinier; Minnema, Monique C.; Zweegman, Sonja; Janssen, Jeroen J.; Zijlmans, Mark; Bos, Gerard; Schaap, Nicolaas; Wittebol, Shulamiet; de Weerdt, Okke; Ammerlaan, Rianne; Sonneveld, Pieter

    2012-01-01

    To prospectively evaluate allogeneic stem cell transplantation (allo-SCT) for myeloma as part of first-line therapy, a donor versus no-donor analysis was performed of patients treated in the HOVON-50 study, a study that was originally designed to examine thalidomide combined with intensive therapy.

  14. Alternative allogeneic donor sources for transplantation for childhood diseases: unrelated cord blood and haploidentical family donors.

    Science.gov (United States)

    Cairo, Mitchell S; Rocha, Vanderson; Gluckman, Eliane; Hale, Gregory; Wagner, John

    2008-01-01

    Allogeneic stem cell transplantation has been demonstrated to be curative in a wide variety of pediatric malignant and nonmalignant diseases, and can be traced back over 50 years ago to the original report of Thomas et al. HLA matched sibling donors have been the gold standard for pediatric recipients requiring allogeneic donors for both nonmalignant and malignant conditions. However, only 25% of potential pediatric recipients possesses an HLA-matched sibling donor, and the frequency is even less in those with genetic nonmalignant conditions because of genetically affected other siblings within the family. Therefore, 75% to 90% of potential pediatric recipients require alternative allogeneic donor cells for treatment of their underlying conditions. Potential alternative allogeneic donor sources include unrelated cord blood donors, unrelated adult donors, and haploidentical family donors. In this article we review the experience of both unrelated cord blood donor and haploidentical family donor transplants in selected pediatric malignant and nonmalignant conditions.

  15. Post-Transplant Cyclophosphamide and Tacrolimus-Mycophenolate Mofetil Combination Prevents Graft-versus-Host Disease in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors.

    Science.gov (United States)

    Carnevale-Schianca, Fabrizio; Caravelli, Daniela; Gallo, Susanna; Coha, Valentina; D'Ambrosio, Lorenzo; Vassallo, Elena; Fizzotti, Marco; Nesi, Francesca; Gioeni, Luisa; Berger, Massimo; Polo, Alessandra; Gammaitoni, Loretta; Becco, Paolo; Giraudo, Lidia; Mangioni, Monica; Sangiolo, Dario; Grignani, Giovanni; Rota-Scalabrini, Delia; Sottile, Antonino; Fagioli, Franca; Aglietta, Massimo

    2017-03-01

    Allogeneic hematopoietic cell transplant (HCT) remains the only curative therapy for many hematologic malignancies but it is limited by high nonrelapse mortality (NRM), primarily from unpredictable control of graft-versus-host disease (GVHD). Recently, post-transplant cyclophosphamide demonstrated improved GVHD control in allogeneic bone marrow HCT. Here we explore cyclophosphamide in allogeneic peripheral blood stem cell transplantation (alloPBSCT). Patients with high-risk hematologic malignancies received alloPBSCT from HLA-matched unrelated/related donors. GVHD prophylaxis included combination post-HCT cyclophosphamide 50 mg/kg (days +3 and +4) and tacrolimus/mofetil mycophenolate (T/MMF) (day +5 forward). The primary objective was the cumulative incidence of acute and chronic GVHD. Between March 2011 and May 2015, 35 consecutive patients received the proposed regimen. MMF was stopped in all patients at day +28; the median discontinuation of tacrolimus was day +113. Acute and chronic GVHD cumulative incidences were 17% and 7%, respectively, with no grade IV GVHD events, only 2 patients requiring chronic GVHD immunosuppression control, and no deaths from GVHD. Two-year NRM, overall survival, event-free survival, and chronic GVHD event-free survival rates were 3%, 77%, 54%, and 49%, respectively. The graft-versus-tumor effect was maintained as 5 of 15 patients (33%) who received HCT with evidence of disease experienced further disease response. A post-transplant cyclophosphamide + T/MMF combination strategy effectively prevented acute and chronic GVHD after alloPBSCT from HLA-matched donors and achieved an unprecedented low NRM without losing efficacy in disease control or impaired development of the graft-versus-tumor effect. This trial is registered at clinicaltrials.gov as NCT02300571. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Sumatriptan increases the proliferation of peripheral blood mononuclear cells from HIV-infected individuals and healthy blood donors in vitro

    DEFF Research Database (Denmark)

    Afzelius, P; Nielsen, Jens Ole

    2000-01-01

    responsible for regulation of the intracellular levels of cAMP. In a preliminary study sumatriptan increased the proliferative responses of PBMC to a polyclonal activator in vitro in 9 of 10 HIV-seropositive individuals (p=0.007), and in 7 of 9 healthy blood donors (p=0.05). This was probably due...... of the intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to cause impaired proliferative capacity of peripheral blood mononuclear cells (PBMC) from HIV-infected individuals in vitro. Sumatriptan, a 5HT1d receptor agonist, inhibits the activity of adenylyl cyclases, the enzymes...

  17. Identification of a murine CD45-F4/80lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment.

    Science.gov (United States)

    Overholt, Kathleen M; Otsuru, Satoru; Olson, Timothy S; Guess, Adam J; Velazquez, Victoria M; Desbourdes, Laura; Dominici, Massimo; Horwitz, Edwin M

    2017-12-26

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments within the marrow designated as stem cell niches, which function to support HSCs at homeostasis and promote HSC engraftment after radioablation. We previously identified marrow space remodeling after hematopoietic ablation, including osteoblast thickening, osteoblast proliferation, and megakaryocyte migration to the endosteum, which is critical for effective engraftment of donor HSCs. To further evaluate the impact of hematopoietic cells on marrow remodeling, we used a transgenic mouse model (CD45Cre/iDTR) to selectively deplete hematopoietic cells in situ. Depletion of hematopoietic cells immediately before radioablation and hematopoietic stem cell transplantation abrogated donor HSC engraftment and was associated with strikingly flattened endosteal osteoblasts with preserved osteoblast proliferation and megakaryocyte migration. Depletion of monocytes, macrophages, or megakaryocytes (the predominant hematopoietic cell populations that survive short-term after irradiation) did not lead to an alteration of osteoblast morphology, suggesting that a hematopoietic-derived cell outside these lineages regulates osteoblast morphologic adaptation after irradiation. Using 2 lineage-tracing strategies, we identified a novel CD45 - F4/80 lo HSC-derived cell that resides among osteoblasts along the endosteal marrow surface and, at least transiently, survives radioablation. This newly identified marrow cell may be an important regulator of HSC engraftment, possibly by influencing the shape and function of endosteal osteoblasts.

  18. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  19. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    International Nuclear Information System (INIS)

    Seifinejad, Ali; Taei, Adeleh; Totonchi, Mehdi; Vazirinasab, Hamed; Hassani, Seideh Nafiseh; Aghdami, Nasser; Shahbazi, Ebrahim; Yazdi, Reza Salman; Salekdeh, Ghasem Hosseini; Baharvand, Hossein

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, α-globulin, and γ-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  20. Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for Individual NAT Screening of Blood, Hematopoietic Stem Cell, Tissue and Organ Donors

    Science.gov (United States)

    Heim, Albert

    2016-01-01

    Summary Background The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. Methods ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Results Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. Conclusion The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors. PMID:27403089

  1. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    Science.gov (United States)

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  2. Impact of age and diagnosis on viability during centrifugation and cryopreservation of peripheral blood stem cell products.

    Science.gov (United States)

    Civriz Bozdag, S; Bay, M; Ayyıldız, E; Topcuoglu, P; Ilhan, O

    2012-08-01

    The viability of the hematopoietic stem cells infused to the patient is important for transplant outcome. We evaluated 31 peripheral blood stem cell product collected from 15 patients. We aimed to check the viabilities of the cells from patients with different age and diagnosis, in different stages of the cryopreservation procedure. We showed a markedly decreased viability rate after centrifugation and addition of DMSO. Percentages of viabilities were similar between young and old patients in each step. Type of hematological malignancy did not make a significant influence on the viability. High speed centrifugation has a negative impact on the viability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Lichen Striatus Occurring after Allogenic Peripheral Blood Stem Cell Transplantation in an Adult with Aplastic Anemia

    OpenAIRE

    Mun, Je-Ho; Park, Hyun-Je; Kim, Hoon-Soo; Kim, Su-Han; Ko, Hyun-Chang; Kim, Byung-Soo; Kim, Moon-Bum

    2012-01-01

    Lichens striatus (LS) is an acquired, self-limiting inflammatory dermatosis that follows the lines of Blaschko. The etiology of the eruption is unknown, but several theories have been proposed with focus on environmental factors, viral infection, cutaneous injury, hypersensitivity, and genetic predisposition. We describe a 19-year-old woman who developed a unilateral linear eruption 17 months after allogenic peripheral blood stem cell transplantation. Histopathology revealed features, which w...

  4. [A comparative study of unrelated donor and matched-sibling donor allogeneic hematopoietic stem cell transplantation in children and adolescents with acquired severe aplastic anemia].

    Science.gov (United States)

    Zhou, J; Fu, Y W; Liang, L J; Wang, Q; Han, L J; Zu, Y L; Zhang, Yanli; Zhu, X H; Yu, F K; Fang, B J; Wei, X D; Song, Y P

    2016-12-01

    Objective: To evaluate the efficacy of unrelated donor allogeneic hematopoietic stem cell transplantation(URD allo-HSCT) for children and adolescents with severe aplastic anemia (SAA). Methods: Clinical data of 34 SAA children and adolescents undergoing allo-HSCT were retrospectively analyzed from October 2001 to October 2015. According to the source of donor, the patients were divided into matched sibling donor allo-HSCT group (MSD group) and unrelated donor group (URD group). The clinical outcome of SAA children and adolescents receiving URD allo-HSCT was assessed, and patients in MSD allo-HSCT group were enrolled as control at the same period. Results: The rate of hematopoietic reconstitution, the time of neutrophil and platelet engraftment, incidence of chimerism and graft rejection between two groups were not statistically different.The incidence of acute graft-versus-host disease (GVHD) in URD group was significantly higher than that in MSD group [42.9%(6/14) vs 10.5%(2/19), P =0.047]. The incidence of grade Ⅱ-Ⅳ acute GVHD and chronic GVHD in URD were higher than those in MSD group [21.4%(3/14) vs 5.3%(1/19), P =0.288; 35.7%(5/14) vs 5.3%(1/19), P =0.062, respectively], yet without significant difference between two groups. Other transplant-related complications including pulmonary complications, hemorrhagic cystitis, incidence of EBV and CMV reactivation and venous occlusive disease were comparable with two regimens. Estimated 5-years overall survival (OS) rate and disease free survival (DFS) rate were not statistically significant between URD group and MSD group [(84.4±6.6)% vs (89.4±7.1)%, (82.5±5.4)% vs (82.1±4.3)%; P =0.766, P =0.884, respectively]. Conclusions: By multivariate analysis, the outcome of URD allo-HSCT in SAA children and adolescent is similar to MSD allo-HSCT. It could be an alternative option as the first-line treatment for SAA children and adolescents without HLA matched sibling donors.

  5. Mobilization of peripheral blood stem cells in CLL patients after front-line fludarabine treatment.

    Science.gov (United States)

    Lysak, D; Koza, V; Steinerova, K; Jindra, P; Vozobulova, V; Schutzova, M

    2005-07-01

    Autologous peripheral blood stem cell transplantation is performed in an increasing number of chronic lymphocytic leukaemia (CLL) patients who are in the first remission following fludarabine treatment. There are contradictory data about the adverse impact of fludarabine on stem cell harvest. We analysed retrospectively mobilization results in 56 poor-risk CLL patients (median age: 56 years) who underwent first-line treatment with fludarabine and cyclophosphamide. The mobilization, consisting of cyclophosphamide 3 g/m(2) and granulocyte colony-stimulating factor (G-CSF) 10 microg/kg per day, was performed with a median of 77 days following the last fludarabine course. The target yield was >or=2.0x10(6) CD34+ cells/kg. The procedure was successful in 23 (41%) patients. A median of 3.3x10(6) CD34+ cells/kg was collected per patient. The successful mobilization was associated with a longer interval from the last chemotherapy (>2 months). The mobilization result was not influenced by the number of fludarabine cycles. No correlation was found in other parameters such as disease stage at diagnosis, disease status at stimulation or age. The poorly mobilized patients had significantly lower prestimulation blood counts (platelets, WBC and haemoglobin). Our data show that fludarabine does not generally prevent the stem cell mobilization; nevertheless, mechanisms related to the impact of fludarabine on stem cell harvest must be further investigated.

  6. Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells

    DEFF Research Database (Denmark)

    Svalgaard, Jesper Dyrendom; Haastrup, Eva Kannik; Reckzeh, Kristian

    2016-01-01

    -related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC...

  7. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    Science.gov (United States)

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. PBSCT is associated with poorer survival and increased chronic GvHD than BMT in Japanese paediatric patients with acute leukaemia and an HLA-matched sibling donor.

    Science.gov (United States)

    Shinzato, Aki; Tabuchi, Ken; Atsuta, Yoshiko; Inoue, Masami; Inagaki, Jiro; Yabe, Hiromasa; Koh, Katsuyoshi; Kato, Koji; Ohta, Hideaki; Kigasawa, Hisato; Kitoh, Toshiyuki; Ogawa, Atsushi; Takahashi, Yoshiyuki; Sasahara, Yoji; Kato, Shun-Ichi; Adachi, Souichi

    2013-09-01

    Peripheral blood stem cells (PBSC) may be used as an alternative to bone marrow (BM) for allogeneic transplantation. Since peripheral blood stem cell bank from unrelated volunteer donor has been started in Japan, use of PBSC allografts may be increased. Therefore we surveyed the outcomes of Japanese leukemia children after PBSC and BM transplantation. This retrospective study compared the outcomes of 661 children (0-18 years) with acute lymphoblastic leukaemia (ALL) or acute myeloid leukaemia (AML) who received their first allogeneic peripheral blood stem cell transplantation (PBSCT; n = 90) or bone marrow transplantation (BMT; n = 571) from HLA-matched siblings between January 1996 and December 2007. Neutrophil recovery was faster after PBSCT than after BMT (ALL: P vs. 9.9%, P = 0.0066; AML: 41.6% vs. 11.1%, P vs. 57.1%, P = 0.0257). The 5-year overall survival (OS) was lower after PBSCT than after BMT for ALL (42.4% vs. 63.7%, P = 0.0032) and AML (49.8% vs. 71.8%, P = 0.0163). Multivariate analysis revealed the use of PBSC was a significant risk factor for DFS and OS. PBSCT and BMT did not differ in relapse rate, acute GvHD for ALL and AML, or in DFS for AML. PBSC allografts in Japanese children engraft faster but are associated with poorer survival and increased chronic GvHD. Copyright © 2013 Wiley Periodicals, Inc.

  9. A comparison between allogeneic stem cell transplantation from unmanipulated haploidentical and unrelated donors in acute leukemia

    Directory of Open Access Journals (Sweden)

    Simona Piemontese

    2017-01-01

    Full Text Available Abstract Background In the absence of a HLA-matched related or matched unrelated donor, allogeneic stem cell transplantation (allo-SCT from mismatched unrelated donors or haploidentical donors are potential alternatives for patients with acute leukemia with an indication to allo-SCT. The objective of this study was to compare the outcome of allo-SCT from T cell-replete haploidentical (Haplo versus matched (MUD 10/10 or mismatched unrelated donor at a single HLA-locus (MMUD 9/10 for patients with acute leukemia in remission. Methods Two hundred sixty-five adult patients with de novo acute leukemia in first or second remission that received a Haplo-SCT between January 2007 and December 2013 were compared with 2490 patients receiving a MUD 10/10 and 813 receiving a MMUD 9/10. Propensity score weighted analysis was conducted in order to control for disease risk imbalances between the groups. Results The weighted 3-year non-relapse mortality and relapse incidence were 29 and 30% for Haplo, 21 and 29% for MUD 10/10, and 29 and 25% for MMUD 9/10, respectively. The weighted 3-year leukemia-free survival (LFS and overall survival (OS were 41 and 46% for Haplo, 50 and 56% for MUD 10/10, and 46 and 48% for MMUD 9/10, respectively. Using weighted Cox model, both LFS and OS were significantly higher in transplants from MUD 10/10 compared from those in Haplo but not different between transplants from MMUD 9/10 and Haplo. The type of donor was not significantly associated with neither acute nor chronic graft-versus-host disease. Conclusions Patients with acute leukemia in remission have better outcomes if transplanted from a MUD 10/10. We did not find any significant difference in outcome between transplants from MMUD 9/10 and Haplo, suggesting that both can be equally used in the absence of a 10/10 MUD. Key point 1 Better outcomes using fully (10/10 matched unrelated donor for allo-SCT in acute leukemia in remission. Key point 2 Similar outcomes after allo

  10. Donor cytomegalovirus status influences the outcome of allogeneic stem cell transplant: a study by the European group for blood and marrow transplantation.

    Science.gov (United States)

    Ljungman, Per; Brand, Ronald; Hoek, Jennifer; de la Camara, Rafael; Cordonnier, Catherine; Einsele, Hermann; Styczynski, Jan; Ward, Katherine N; Cesaro, Simone

    2014-08-15

    The use of a cytomegalovirus (CMV)-seronegative donor for a CMV-seronegative allogeneic hematopoietic stem cell transplant (HSCT) recipient is generally accepted. However, the importance of donor serostatus in CMV-seropositive patients is controversial. A total of 49 542 HSCT patients, 29 349 seropositive and 20 193 seronegative, were identified from the European Group for Blood and Marrow Transplantation database. Cox multivariate models were fitted to estimate the effect of donor CMV serological status on outcome. Seronegative patients receiving seropositive unrelated-donor grafts had decreased overall survival (hazard ratio [HR], 1.13; 95% confidence interval [CI], 1.06-1.21; P donors, whereas no difference was seen in patients receiving HLA-matched sibling grafts. Seropositive patients receiving grafts from seropositive unrelated donors had improved overall survival (HR, 0.92; 95% CI, .86-.98; P donors, if they had received myeloablative conditioning. This effect was absent when they received reduced-intensity conditioning. No effect was seen in patients grafted from HLA-identical sibling donors. The same association was found if the study was limited to patients receiving transplants from the year 2000 onward. We confirm the negative impact on overall survival if a CMV-seropositive unrelated donor is selected for a CMV-seronegative patient. For a CMV-seropositive patient, our data support selecting a CMV-seropositive donor if the patient receives a myeloablative conditioning regimen. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Tacrolimus and mycophenolate mofetil after nonmyeloablative matched-sibling donor allogeneic stem-cell transplantations conditioned with fludarabine and low-dose total body irradiation.

    Science.gov (United States)

    Nieto, Yago; Patton, Nigel; Hawkins, Timothy; Spearing, Ruth; Bearman, Scott I; Jones, Roy B; Shpall, Elizabeth J; Rabinovitch, Rachel; Zeng, Chan; Barón, Anna; McSweeney, Peter A

    2006-02-01

    We evaluated tacrolimus/mycophenolate mofetil (MMF) for graft-versus-host disease (GVHD) prophylaxis after a nonmyeloablative stem cell transplantation (NST) from a matched sibling donor (MSD). Thirty-two patients (median age, 57 years) with advanced hematologic malignancies, who were poor candidates for a conventional myeloablative transplantation, received fludarabine (30 mg/m(2), day -4 to day -2), total-body irradiation (TBI) (200 cGy, day 0), infusion of donor peripheral blood progenitor cells (day 0), oral tacrolimus 0.06 mg/kg twice daily (from day 3), and oral MMF at 15 mg/kg twice daily (days 0-+27). Tacrolimus was tapered from day +100 to day +180 in those patients with indolent malignancies (n = 25), and from day +35 to day +56 in those with aggressive tumors (n = 7). Regimen toxicities and myelosuppression were mild, allowing 75% of patients to have entirely outpatient transplantations. One patient (3%) experienced a nonfatal graft rejection. Rates of grades II-IV and III-IV acute GVHD were 15.6% and 3%, respectively. Acute GVHD was diagnosed at median day +78 (range, days +31-+84). Extensive chronic GVHD was observed in 10 of 24 evaluable patients (41.6%) at a median onset of day +198 (range, days +128-+277), either spontaneously (n = 5) or elicited after tumor progression (n = 5). Five patients experienced transplantation-related mortality (TRM) (15.6%) from either acute GVHD-related multiorgan failure (MOF) (n = 3) or infectious complications (n = 2). At median follow-up of 19 months (range, 2-41 months), the overall survival, progression-free survival, and disease-free survival rates are 62.5%, 50%, and 40%, respectively. In conclusion, the use of tacrolimus/MMF after MSD NST is associated with encouraging rates of GVHD control.

  12. Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor.

    Science.gov (United States)

    Devito, Liani; Petrova, Anastasia; Miere, Cristian; Codognotto, Stefano; Blakely, Nicola; Lovatt, Archie; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2014-10-01

    Standardization guidelines for human pluripotent stem cells are still very broadly defined, despite ongoing clinical trials in the U.S., U.K., and Japan. The requirements for validation of human embryonic (hESCs) and induced pluripotent stem cells (iPSCs) in general follow the regulations for other clinically compliant biologics already in place but without addressing key differences between cell types or final products. In order to realize the full potential of stem cell therapy, validation criteria, methodology, and, most importantly, strategy, should address the shortfalls and efficiency of current approaches; without this, hESC- and, especially, iPSC-based therapy will not be able to compete with other technologies in a cost-efficient way. We addressed the protocols for testing cell lines for human viral pathogens and propose a novel strategy that would significantly reduce costs. It is highly unlikely that the multiple cell lines derived in parallel from a tissue sample taken from one donor would have different profiles of endogenous viral pathogens; we therefore argue that samples from the Master Cell Banks of sibling lines could be safely pooled for validation. We illustrate this approach with tiered validation of two sibling clinical-grade hESC lines, KCL033 and KCL034 (stage 1, sterility; stage 2, specific human pathogens; and stage 3, nonspecific human pathogens). The results of all tests were negative. This cost-effective strategy could also be applied for validation of Master Cell Banks of multiple clinical-grade iPSC lines derived from a single donor. ©AlphaMed Press.

  13. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  14. PREDICTIVE VALUE OF CD34+ CELLS IN BLOOD OF PATIENT/DONOR BEFORE HEMATOPOIETIC STEM CELLS COLLECTION BY LEUKAPHERESIS

    Directory of Open Access Journals (Sweden)

    Dragoslav Domanovič

    2004-12-01

    Full Text Available Background. In the study we tried to define a predictive value of the circulating CD34+ cells in patients/ donors blood for estimation of the hematopoietic stem cells (HSC collection efficacy determine the optimal time to initiate the collection by leukapheresis procedure.Methods. We retrospectively analyzed 75 collections of HSC using the Amicus cell separator in 39 patients and 15 donors. Circulating CD34+cell counts in patients/donors were compared to the achieved CD34+ cell yields to determine its predictive value for the collection of a targeted yield of > 2 × 106 CD34+ cells/kg body weight of patient.Results. The results of cell counts confirmed that mobilization regimens were successful and HSC collections efficient. High correlation coefficient (r = 0.82 between the number of circulating CD34+ cells before collection and CD34+ cell yield/kg of patient’s body weight was statistically significant (p < 0.05. With ROC analysis we determined the cut-off value 42 × 106/l CD34+ cell counts in the blood of patients/donors before collection that had a positive predictive value 87% and a negative predictive value 91.6%.Conclusions. Analysis showed that the number of circulating CD34+ cells before the procedure express a very high predictive value and can be used for determining the optimal time to initiate collection of HSC by leukapheresis.

  15. What is the role of biosimilar G-CSF agents in hematopoietic stem cell mobilization at present?

    Science.gov (United States)

    Korkmaz, Serdal; Altuntas, Fevzi

    2017-12-01

    Mobilization of hematopoietic stem cells, which has largely replaced bone marrow harvesting as a source of hematopoietic stem cells, using recombinant agents such as filgrastim or lenograstim has become a standard procedure in both patients and healthy donors prior to peripheral blood stem cell collection for autologous and allogeneic stem cell transplantation. Published literature data suggest that mobilization with recombinant granulocyte-colony stimulating factor (G-CSF) is safe and mobilization outcomes are satisfactory. In recent years, besides G-CSF originators, biosimilar G-CSF agents have been approved by the regulatory agencies for the same indications. Current data showed that by using the biosimilar G-CSF, similar results regarding safety and efficacy of hematopoietic stem cell mobilization may be achieved compared to the originator G-CSF. Although the issues such as the similarity to a licenced biological medicine, differences in manufacturing processes, the potential to cause immunogenicity, extrapolation and interchangeability of these biosimilar products are still being discussed by the scientific area, however, more experience with these agents now exists in approved endications and there seems to be no reason to expect significant differences between biosimilar G-CSF and originator G-CSF regarding their efficacy and safety in both patients and healthy donors. Also, the significant cost savings of biosimilars in real life setting may enhance the use of these agents in the future. Nonetheless, the collection of long-term follow-up data is mandatory for both patients and healthy donors, and multicentre randomized clinical trials that directly compare biosimilar G-CSF with the originator G-CSF are needed in order to allow the transplant community to make informed decisions regarding the choice of G-CSF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Acquisition and Cure of Autoimmune Disease Following Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Hsin-An Hou

    2007-09-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT can either cause or eliminate autoimmune disease. Here, we report two cases. One was a 33-year-old woman with myelodysplastic syndrome (refractory anemia who received bone marrow transplantation from her human leukocyte antigen (HLA-identical sister who had a history of Graves' disease. Antithyroid antibodies, including antimicrosomal antibody and antithy-roglobulin antibody, appeared 4 months after transplantation. Clinical hyperthyroidism appeared 7 months after transplantation, and a hypothyroid state was noted 2 months later. The other case was a 50-year-old woman with Sjögren's syndrome and hypothyroidism who was diagnosed with peripheral T cell non-Hodgkin's lymphoma. She received allogeneic peripheral blood stem cell transplantation (PBSCT from her histocompatible sister owing to only partial response to traditional chemotherapy. Cure of lymphoma and remission of Sjögren's syndrome was noted 4 years after PBSCT. These two illustrative cases, one of acquisition of hyperthyroidism and the other of remission of Sjögren's syndrome after transplantation, highlights that HSCT can induce adoptive autoimmune disease or cure coincidental autoimmune disease. Donor selection and attentive monitoring is required in such circumstances.

  17. Caregiver burden among primary caregivers of patients undergoing peripheral blood stem cell transplantation: a cross sectional study.

    Science.gov (United States)

    Akgul, Nur; Ozdemir, Leyla

    2014-08-01

    This study aimed to identify caregiver burden and influencing factors on the burden in primary caregivers of peripheral blood stem cell transplantation patients within 2-12 months following transplant, indicating early recovery period after discharge. This descriptive cross sectional study was carried out at hematopoietic stem cell transplantation outpatient units of three university hospitals in Turkey. A total of 55 patient and caregiver dyads were recruited and interviewed. The data were collected using questionnaires developed by the researchers and caregiver burden was measured with the Zarit Burden Interview. The mean score of Zarit Burden Interview was 28.41 (SD = 13.90). Patients' symptoms including nausea and self depreciation feeling were related to greater caregiver burden. Self-depreciation was referred to feeling undervalued. The mean score of the tool was significantly higher in caregivers who have not been educated beyond primary school and also caregivers who had lower income. Caregivers who supported their patients to fulfill physical needs and who did not receive help for meeting patients' psychological needs had statistically more elevated levels of burden. Moreover, the extent of care giving activities undertaken was positively correlated with caregiver burden scores. While positive impact of the care giving process on family relations decreased caregiver burden; negative effect increased the burden. This study suggests that caregiver burden of primary caregivers caring for peripheral blood stem cell transplantation patients varies by education, income status, and the extent of care giving activities undertaken. Changes in family ties and relations due to care giving effected caregiver burden. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  19. Generating pluripotent stem cells: Differential epigenetic changes during cellular reprogramming

    OpenAIRE

    Tobin, Stacey C.; Kim, Kitai

    2012-01-01

    Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)—derived by ectopic expression of four reprogramming factors in donor somatic cells—are supe...

  20. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Seifinejad, Ali; Taei, Adeleh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Totonchi, Mehdi; Vazirinasab, Hamed [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Hassani, Seideh Nafiseh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Shahbazi, Ebrahim [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Yazdi, Reza Salman [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Salekdeh, Ghasem Hosseini, E-mail: Salekdeh@royaninstitute.org [Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of)

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, {alpha}-globulin, and {gamma}-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  1. Donor age and C1orf132/MIR29B2C determine age-related methylation signature of blood after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Spólnicka, Magdalena; Piekarska, Renata Zbieć; Jaskuła, Emilia; Basak, Grzegorz W; Jacewicz, Renata; Pięta, Agnieszka; Makowska, Żanetta; Jedrzejczyk, Maciej; Wierzbowska, Agnieszka; Pluta, Agnieszka; Robak, Tadeusz; Berent, Jarosław; Branicki, Wojciech; Jędrzejczak, Wiesław; Lange, Andrzej; Płoski, Rafał

    2016-01-01

    Our recent study demonstrated that DNA methylation status in a set of CpGs located in ELOVL2, C1orf132, TRIM59, KLF14, and FHL2 can accurately predict calendar age in blood. In the present work, we used these markers to evaluate the effect of allogeneic hematopoietic stem cell transplantation (HSCT) on the age-related methylation signature of human blood. DNA methylation in 32 CpGs was investigated in 16 donor-recipient pairs using pyrosequencing. DNA was isolated from the whole blood collected from recipients 27-360 days (mean 126) after HSCT and from the donors shortly before the HSCT. It was found that in the recipients, the predicted age did not correlate with their calendar age but was correlated with the calendar age (r = 0.94, p = 4 × 10(-8)) and predicted age (r = 0.97, p = 5 × 10(-10)) of a respective donor. Despite this strong correlation, the predicted age of a recipient was consistently lower than the predicted age of a donor by 3.7 years (p = 7.8 × 10(-4)). This shift was caused by hypermethylation of the C1orf132 CpGs, for C1orf132 CpG_1. Intriguingly, the recipient-donor methylation difference correlated with calendar age of the donor (r = 0.76, p = 6 × 10(-4)). This finding could not trivially be explained by shifts of the major cellular factions of blood. We confirm the single previous report that after HSCT, the age of the donor is the major determinant of age-specific methylation signature in recipient's blood. A novel finding is the unique methylation dynamics of C1orf132 which encodes MIR29B2C implicated in the self-renewing of hematopoietic stem cells. This observation suggests that C1orf132 could influence graft function after HSCT.

  2. 75 FR 39537 - Agency Information Collection Activities; Submission for Office of Management and Budget Review...

    Science.gov (United States)

    2010-07-09

    ... submitted 76 adverse reaction reports involving a communicable disease (Sec. 1271.350(a)(1)). FDA estimates... (which include conventional tissue donors, eye tissue donors, peripheral and cord blood stem cell donors... Listing; Form FDA 3356; Eligibility Determination for Donors; and Current Good Tissue Practice AGENCY...

  3. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    Science.gov (United States)

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  4. Comparison of matched sibling donors versus unrelated donors in allogeneic stem cell transplantation for primary refractory acute myeloid leukemia: a study on behalf of the Acute Leukemia Working Party of the EBMT

    Directory of Open Access Journals (Sweden)

    Eolia Brissot

    2017-06-01

    Full Text Available Abstract Background Primary refractory acute myeloid leukemia (PRF-AML is associated with a dismal prognosis. Allogeneic stem cell transplantation (HSCT in active disease is an alternative therapeutic strategy. The increased availability of unrelated donors together with the significant reduction in transplant-related mortality in recent years have opened the possibility for transplantation to a larger number of patients with PRF-AML. Moreover, transplant from unrelated donors may be associated with stronger graft-mediated anti-leukemic effect in comparison to transplantations from HLA-matched sibling donor, which may be of importance in the setting of PRF-AML. Methods The current study aimed to address the issue of HSCT for PRF-AML and to compare the outcomes of HSCT from matched sibling donors (n = 660 versus unrelated donors (n = 381, for patients with PRF-AML between 2000 and 2013. The Kaplan-Meier estimator, the cumulative incidence function, and Cox proportional hazards regression models were used where appropriate. Results HSCT provide patients with PRF-AML a 2-year leukemia-free survival and overall survival of about 25 and 30%, respectively. In multivariate analysis, two predictive factors, cytogenetics and time from diagnosis to transplant, were associated with lower leukemia-free survival, whereas Karnofsky performance status at transplant ≥90% was associated with better leukemia-free survival (LFS. Concerning relapse incidence, cytogenetics and time from diagnosis to transplant were associated with increased relapse. Reduced intensity conditioning regimen was the only factor associated with lower non-relapse mortality. Conclusions HSCT was able to rescue about one quarter of the patients with PRF-AML. The donor type did not have any impact on PRF patients’ outcomes. In contrast, time to transplant was a major prognostic factor for LFS. For patients with PRF-AML who do not have a matched sibling donor, HSCT from an

  5. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  6. High-activity samarium-153-EDTMP therapy followed by autologous peripheral blood stem cell support in unresectable osteosarcoma

    International Nuclear Information System (INIS)

    Franzius, Ch.; Eckardt, J.; Sciuk, J.; Schober, O.; Bielack, S.; Flege, S.; Juergens, H.

    2001-01-01

    Purpose: Despite highly efficacious chemotherapy, patients with osteosarcomas still have a poor prognosis if adequate surgical control cannot be obtained. These patients may benefit from therapy with radiolabeled phosphonates. Patients and Methods: Six patients (three male, three female; seven to 41 years) with unresectable primary osteosarcoma (n = 3) or unresectable recurrent sites of osteosarcomas (n = 3) were treated with high-activity of Sm-153-EDTMP (150 MBq/kg BW). In all patients autologous peripheral blood stem cells had been collected before Sm-153-EDTMP therapy. Results: No immediate adverse reactions were observed in the patients. In one patient bone pain increased during the first 48 hrs after therapy. Three patients received pain relief. Autologous peripheral blood stem cell reinfusion was performed on day +12 to +27 in all patients to overcome potentially irreversible damage to the hematopoietic stem cells. In three patient external radiotherapy of the primary tumor site was performed after Sm-153-EDTMP therapy and in two of them polychemotherapy was continued. Thirty-six months later one of these patients is still free of progression. Two further patients are still alive. However, they have developed new metastases. The three patients who had no accompanying external radiotherapy, all died of disease progression five to 20 months after therapy. Conclusion: These preliminary results show that high-dose Sm-153-EDTMP therapy is feasible and warrants further evaluation of efficacy. The combination with external radiation and polychemotherapy seems to be most promising. Although osteosarcoma is believed to be relatively radioresistant, the total focal dose achieved may delay local progression or even achieve permanent local tumor control in patients with surgically inaccessible primary or relapsing tumors. (orig.)

  7. In vitro expansion of Lin+ and Lin− mononuclear cells from human peripheral blood

    International Nuclear Information System (INIS)

    Norhaiza, H. Siti; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul; Rohaya, M. A. W.

    2013-01-01

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin − ) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin + ) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin − cell population. The ability of Lin + and Lin − to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin + and Lin − were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin + mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin − stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation

  8. In vitro expansion of Lin+ and Lin- mononuclear cells from human peripheral blood

    Science.gov (United States)

    Norhaiza, H. Siti; Rohaya, M. A. W.; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul

    2013-11-01

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin-) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin+) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin- cell population. The ability of Lin+ and Lin- to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin+ and Lin- were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin+ mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin- stem cells were not able to survive in proliferation medium however, addition of cytokines into the proliferation medium support Lin

  9. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system

    OpenAIRE

    Uhm, Kyung-Ok; Jo, Eun Hee; Go, Gue Youn; Kim, So-Jung; Choi, Hye Young; Im, Young Sam; Ha, Hye-Yeong; Jung, Ji-Won; Koo, Soo Kyung

    2017-01-01

    Urinary cells can be an ideal source for generating hiPSCs and progenitors, as they are easily accessible, non-invasive, and universally available. We generated human induced pluripotent stem cells (hiPSCs) from the urinary cells of a healthy donor using a Sendai virus-based gene delivery method. The generated hiPSC line, KSCBi001-A, has a normal karyotype (46,XY). The pluripotency and capacity of multilineage differentiation were characterized by comparison with those of a human embryonic st...

  10. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  11. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  12. Improved survival of acute lymphoblastic leukemia patients of HLA-A3/11 absent for donor KIR3DL2 after non-T-cell depleted HLA-identical sibling hematopoietic stem cells transplantation

    Directory of Open Access Journals (Sweden)

    farhad shahsavar

    2011-08-01

    Conclusion: These data indicate that the absence of HLA class I ligand in the recipient for donor-inhibitory KIR can be a prognostic factor for transplantation outcomes in non-T-cell depleted HLA-identical sibling hematopoietic stem-cell transplantation and that the lack of HLA-A3/11 for donor KIR3DL2 can contribute to improved survival for patients with ALL.

  13. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    International Nuclear Information System (INIS)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs

  14. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  15. 78 FR 41934 - Agency Information Collection Activities; Proposed Collection; Comment Request; Human Cells...

    Science.gov (United States)

    2013-07-12

    ... under Sec. 1271.350(a)(1) and (a)(3) to investigate and report to FDA adverse reactions (defined in Sec... (which include conventional tissue donors, eye tissue donors, peripheral and cord blood stem cell donors... Determination for Donors; and Current Good Tissue Practice AGENCY: Food and Drug Administration, HHS. ACTION...

  16. Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell-Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide.

    Science.gov (United States)

    Bashey, Asad; Zhang, Mei-Jie; McCurdy, Shannon R; St Martin, Andrew; Argall, Trevor; Anasetti, Claudio; Ciurea, Stefan O; Fasan, Omotayo; Gaballa, Sameh; Hamadani, Mehdi; Munshi, Pashna; Al Malki, Monzr M; Nakamura, Ryotaro; O'Donnell, Paul V; Perales, Miguel-Angel; Raj, Kavita; Romee, Rizwan; Rowley, Scott; Rocha, Vanderson; Salit, Rachel B; Solh, Melhem; Soiffer, Robert J; Fuchs, Ephraim Joseph; Eapen, Mary

    2017-09-10

    Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up.

  17. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  18. Syngeneic peripheral blood stem cell transplantation with immunosuppression for hepatitis-associated severe aplastic anemia

    Directory of Open Access Journals (Sweden)

    Aleksandar Savic

    2010-12-01

    Full Text Available Hepatitis-associated aplastic anemia occurs in up to 10% of all aplastic anemia cases. Syngeneic bone marrow transplantation is rare in patients with severe aplastic anemia and usually requires pre-transplant conditioning to provide engraftment. We report on a 29-year-old male patient with hepatitis-associated severe aplastic anemia who had a series of severe infectious conditions before transplantation, including tracheal inflammation. Life-threatening bleeding, which developed after bronchoscopy, was successfully treated with activated recombinant factor VII and platelet transfusions. Syngeneic peripheral blood stem cell transplantation using immunosuppressive treatment with antithymocyte globulin and cyclosporin A without high-dose pre-transplant conditioning was performed, followed by complete hematologic and hepatic recovery.

  19. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  20. Prolonged Survival of Subcutaneous Allogeneic Islet Graft by Donor Chimerism without Immunosuppressive Treatment

    Directory of Open Access Journals (Sweden)

    Brend Ray-Sea Hsu

    2017-01-01

    Full Text Available The aim of this study was to investigate whether tolerance-induced protection of islets in the renal subcapsular space can also prevent subcutaneous allogeneic islets from being rejected. We used bone marrow stem cells from C57BL/6 (H2b mice to construct donor chimerism in conditioned diabetic BALB/c (H2d mice and investigated the effect of donor chimerism on engraftment and survival of subcutaneously transplanted allogeneic islets in streptozotocin-induced diabetic mice. We also studied the anti-inflammatory effect of mesenchymal stem cell on islet engraftment. Full but not low-grade or no donor chimerism was associated with successful engraftment of allogeneic islets and restoration of normoglycemia in the treated diabetic mice. The temporary hyperglycemia was 11 ± 1 versus 19 ± 5 days (p<0.05 for the mice with full donor chimerism with transplanted islets in the renal subcapsular space versus the subcutaneous space, respectively. Cotransplantation of mesenchymal stem cell did not enhance alloislet engraftment. Full multilineage donor chimerism was associated with a higher transient expansion of CD11b+ and Gr-1+ myeloid progenitor cells and effector memory CD4 and CD8 T cells. In conclusion, full donor chimerism protected both renal subcapsular and subcutaneous allogeneic islets in this rodent transplantation model.

  1. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    Science.gov (United States)

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  2. GVHD (Graft-Versus-Host Disease): A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Disease): A guide for patients and families after stem cell transplant The immune system is the body's tool ... and attacking them. When you receive a donor's stem cells (the “graft”), the stem cells recreate the donor's ...

  3. [Analysis of factors related to the number of mesenchymal stem cells derived from synovial fluid of the temporomandibular joint].

    Science.gov (United States)

    Sun, Y P; Zheng, Y H; Zhang, Z G

    2017-06-09

    Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain ( r= 0.041, P= 0.672), blood containing ( P= 0.063), condylar bony destruction ( P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week ( r= 0.186, P= 0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state ( P= 0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group ( P= 0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.

  4. Haematopoietic transplants combining a single unrelated cord blood unit and mobilized haematopoietic stem cells from an adult HLA-mismatched third party donor. Comparable results to transplants from HLA-identical related donors in adults with acute leukaemia and myelodysplastic syndromes.

    Science.gov (United States)

    Sebrango, Ana; Vicuña, Isabel; de Laiglesia, Almudena; Millán, Isabel; Bautista, Guiomar; Martín-Donaire, Trinidad; Regidor, Carmen; Cabrera, Rafael; Fernandez, Manuel N

    2010-06-01

    We describe results of the strategy, developed by our group, of co-infusion of mobilized haematopoietic stem cells as a support for single-unit unrelated cord blood transplant (dual CB/TPD-MHSC transplants) for treatment of haematological malignancies in adults, and a comparative analysis of results obtained using this strategy and transplants performed with mobilized haematopoietic stem cells from related HLA-identical donors (RTD) for treatment of adults with acute leukaemia and myelodysplastic syndromes. Our data show that the dual CB/TPD-MHSC transplant strategy results in periods of post-transplant neutropenia, final rates of full donor chimerism and transplant-related mortality rates comparable to those of the RTD. Final survival outcomes are comparable in adults transplanted because of acute leukaemia, with different incidences of the complications that most influence these: a higher incidence of infections related to late recovery of protective immunity dependent on T cell functions, and a lower incidence of serious acute graft-versus-host disease and relapses. Recent advances in cord blood transplant techniques allow allogeneic haematopoietic stem cell transplantation (HSCT) to be a viable option for almost every patient who may benefit from this therapeutic approach. Development of innovative strategies to improve the post-transplant recovery of T cells function is currently the main challenge to further improving the possibilities of unrelated cord blood transplantation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Granulocytic Sarcoma by AML M4eo (inv16 after Allogeneic Stem Cell Transplantation without Bone Marrow Involvement

    Directory of Open Access Journals (Sweden)

    Stephan Zaenker

    2011-01-01

    Full Text Available Granulocytic sarcoma (GS represents a rare type of extramedullar manifestation from the acute myeloid leukaemia (AML. We report the case of a patient with recurrences of AML M4eo leukaemia in the uterus and the small intestine at 3 and 5 years, respectively, after matched related peripheral blood stem cell transplantation (PBSCT. The patient underwent the withdrawal of immunosuppression, hysterectomy, and local irradiation at first relapse, as well as systemic chemotherapy and donor lymphocyte infusions at second recurrence, inducing a second and third complete remission, respectively. At year six after transplantation, the patient experienced disease progression by meningeosis leukaemia to which she succumbed despite intrathecal chemotherapy. Following allogeneic stem cell transplantation, awareness for atypical manifestations of granulocytic sarcoma appears prudent, the cellular immunotherapy should aim at immunological disease control.

  6. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  7. The Core of Sibling Stem Cell Donation - A Grounded Theory Study.

    Science.gov (United States)

    Kisch, Annika M; Forsberg, Anna

    2017-01-01

    There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. The purpose of this study was to explore sibling stem cell donors' main concerns and how they deal with them before and after donation. Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors.

  8. Two subpopulations of stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Amagai, T.; Kina, T.; Sado, T.; Nishikawa, S.

    1985-01-01

    An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells

  9. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    International Nuclear Information System (INIS)

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-01-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. 51 Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras

  10. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  11. Unrelated haematopoietic stem cell transplantation in Taiwan and beyond.

    Science.gov (United States)

    Yang, K L; Chang, C Y; Lin, S; Shyr, M H; Lin, P Y

    2009-06-01

    Since its inception in October 1993, the world-renowned Buddhist Tzu Chi Marrow Donor Registry has facilitated more than 1800 cases of stem cell donations for patients in 27 countries to date. Under the auspices of the Buddhist Tzu Chi Stem Cells Center (BTCSCC), the Registry (> 310,000 donors) offers, on average, one case of stem cell donation every day to national or international transplantation community. The accomplishment of the Registry stems from the philosophy and spirit of giving without reward that was inspired by its founder Dharma Master Cheng Yen, the Samaritan devotions of selfless voluntary stem cell donors and the efforts from a dedicated network of volunteer workers. Demographically speaking, slightly less than one third of the donations are provided to domestic patients and the rest to mainland China and countries in Asia, North America, Europe, Middle East, Oceania, and South Africa. While most of the patients belong to the Oriental ethnic group, a few of the patients are non-Oriental. In addition to the Registry, a non-profit umbilical cord blood (UCB) bank is operating since 2002 to provide a complimentary role for patients unable to identify appropriate bone marrow stem cell donors in the Registry in time. To date, with an inventory of over 12,000 units of UCB cryopreserved in the Tzu Chi Cord Blood Bank, 47 units have been employed in 37 cases of transplantation for both paediatric and adult patients domestically and internationally. The fact that Buddhist Tzu Chi Marrow Donor Registry and Cord Blood Bank are established and operating without governmental financial support is unique and special. To facilitate haematopoietic stem cells to its domestic patients experiencing financial burdens, the BTCSCC offers financial aids to the underprivileged for their medical relief. This humanitarian approach and compassion is definitely a role model for many countries in the world.

  12. HLA-Matched Sibling versus Unrelated versus Haploidentical Related Donor Allogeneic Hematopoietic Stem Cell Transplantation for Patients Aged Over 60 Years with Acute Myeloid Leukemia: A Single-Center Donor Comparison.

    Science.gov (United States)

    Devillier, Raynier; Legrand, Faezeh; Rey, Jérôme; Castagna, Luca; Fürst, Sabine; Granata, Angela; Charbonnier, Aude; Harbi, Samia; d'Incan, Evelyne; Pagliardini, Thomas; Faucher, Catherine; Lemarie, Claude; Saillard, Colombe; Calmels, Boris; Mohty, Bilal; Maisano, Valerio; Weiller, Pierre-Jean; Chabannon, Christian; Vey, Norbert; Blaise, Didier

    2018-02-12

    Haploidentical related donor (HRD) allogeneic hematopoietic stem cell transplantation (allo-HSCT) was developed as a valid option for the treatment of acute myeloid leukemia (AML) in the absence of a matched donor. However, many investigators are reluctant to consider the use of this alternative in elderly patients, anticipating high morbidity. Here, we report a single-center comparison of HRD versus matched sibling donor (MSD) and unrelated donor (UD) allo-HSCT for patients with AML aged ≥60 years. Ninety-four patients (MSD: n = 31; UD: n = 30; HRD: n = 33) were analyzed. The median age was 65 (range, 60 to 73) years. We observed a higher cumulative incidence of grade 3 to 4 acute graft-versus-host disease (GVHD) after UD allo-HSCT (MSD versus UD versus HRD: 3% versus 33% versus 6%, respectively; P = .006). Two-year cumulative incidence of moderate or severe chronic GVHD was 17%, 27%, and 16% in the MSD, UD, and HRD groups, respectively (P = .487). No difference was observed in the 2-year cumulative incidence of relapse or nonrelapse mortality (NRM) (relapse: MSD versus UD versus HRD: 32% versus 25% versus 25%, respectively; P = .411; NRM: MSD versus UD versus HRD: 19% versus 27% versus 24%, respectively; P = .709). At 2 years, progression-free survival, overall survival, and GVHD- and relapse-free survival were 48%, 50%, and 39%, respectively, in the MSD group; 48%, 51%, and 23%, respectively, in the UD group; and 50%, 52%, and 32%, respectively, in the HRD group, without statistically significant differences between the groups. We conclude that HRD allo-HSCT is highly feasible and no less efficient than MSD or UD allo-HSCT in patients with AML aged ≥60 years. Thus, the absence of a HLA-identical donor should not limit the consideration of allo-HSCT for the treatment of AML. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  14. The effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    International Nuclear Information System (INIS)

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-01-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. 51 Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras. These results raise the possibility that the fulminant GVHD seen in human marrow transplantation is in part due to the major contamination of bone marrow with peripheral blood that results from the techniques currently used for human bone marrow harvest

  15. Donor-Cell Origin High-Risk Myelodysplastic Syndrome Synchronous with an Intracranial Meningioma-Like Tumor, 8 Years after Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    G. Brás

    2017-01-01

    Full Text Available Secondary neoplasias are well known consequences of radiotherapy or chemotherapy for a primary cancer. In this report, we describe two rare secondary neoplasias occurring in the same patient: a meningioma-like intracranial tumor and high-risk myelodysplastic syndrome (MDS of donor-cells origin, both diagnosed simultaneously, 8 years after an allogeneic hematopoietic stem cell transplantation (allo-HSCT for chronic lymphocytic leukemia (CLL. Due to an engraftment failure during the first allo-HSCT of a matched related donor for CLL treatment, the salvage treatment was a second allo-HSCT. At the moment of meningioma-like tumor diagnosis, the patient was pancytopenic due to high-risk MDS, so it was decided to postpone a surgical intervention until hematological improvement. For the high-risk MDS of donor-cells origin the chosen treatment was induction with intensive chemotherapy. Due to refractory disease, the patient was treated with 5-azacitidine and donor-lymphocytes infusion with no response and, finally, a third allo-HSCT of a matched unrelated donor was performed. The patient died 6 months after the third allo-HSCT, in cytogenetic remission but without hematological recovery, due to an intracranial hemorrhage with origin in the meningioma-like tumor.

  16. The osteogenic response of undifferentiated human mesenchymal stem cells (hMSCs) to mechanical strain is inversely related to body mass index of the donor.

    Science.gov (United States)

    Friedl, Gerald; Windhager, Reinhard; Schmidt, Helena; Aigner, Reingard

    2009-08-01

    While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients. We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor's anthropomorphometric and biochemical parameters related to donor's fat and bone metabolism. The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = -0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = -0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor's fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.

  17. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  18. Successful collection of peripheral blood stem cells upon VIDE chemomobilization in sarcoma patients.

    Science.gov (United States)

    Kriegsmann, Katharina; Heilig, Christoph; Cremer, Martin; Novotny, Philipp; Kriegsmann, Mark; Bruckner, Thomas; Müller-Tidow, Carsten; Egerer, Gerlinde; Wuchter, Patrick

    2017-11-01

    In patients with Ewing sarcoma and some distinct subgroups of soft tissue sarcoma (STS), a quantitatively sufficient autologous peripheral blood stem cell (PBSC) collection for stem cell support might facilitate treatment continuation, dose-intensification, and high-dose chemotherapy. Here, we provide a detailed evaluation of PBSC collection upon vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) chemomobilization. Mobilization and collection parameters of 42 sarcoma patients (Ewing sarcoma n = 35, other STS n = 7) were analyzed retrospectively. Data were evaluated with regard to the number of previous VIDE therapy cycles. All patients reached the collection goal of ≥2.0 × 10 6 CD34 + cells/kg body weight (bw) upon VIDE/G-CSF mobilization, in the majority of cases with one single leukapheresis (LP) session (n = 29, 69%). No significant differences were identified with regard to mobilization and collection variables or the number of previous induction VIDE therapy cycles. However, upon 5 cycles of VIDE, we found the highest relative proportion of patients who required two or three LP sessions. Our data demonstrate the feasibility of successful PBSC collection upon VIDE chemomobilization even after up to five cycles of induction therapy, while at the same time the increasing risk of bone marrow exhaustion with every consecutive cycle is outlined. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion.

    Directory of Open Access Journals (Sweden)

    Claudia Cattoglio

    2010-12-01

    Full Text Available The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+ hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.

  20. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.

  1. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap

    International Nuclear Information System (INIS)

    Ni, Hsiao-Chiang; Tseng, Ting-Chen; Hsu, Shan-hui; Chen, Jeng-Rung; Chiu, Ing-Ming

    2013-01-01

    Nerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro. Different conduits were tested for their ability to bridge a 15 mm critical gap defect in a rat sciatic nerve injury model. Axon regeneration and functional recovery were evaluated by histology, walking track analysis and electrophysiology. Among different conduits, PLA conduits grafted with chitosan–nano Au and the FGF1 after plasma activation had the greatest regeneration capacity and functional recovery in the experimental animals. When the above conduit was seeded with aligned neural stem cells, the efficacy was further enhanced and it approached that of the autograft group. This work suggested that microporous/micropatterned nerve conduits containing bioactive growth factors may be successfully fabricated by micropatterning techniques, open plasma activation, and immobilization, which, combined with aligned stem cells, may synergistically contribute to the regeneration of the severely damaged peripheral nerve. (paper)

  2. Radiosensitivity of human haematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Kato, Kengo; Kashiwakura, Ikuo; Omori, Atsuko

    2013-01-01

    The haematopoietic system is regenerative tissue with a high proliferative potential; therefore, haematopoietic stem cells (HSCs) are sensitive to extracellular oxidative stress caused by radiation and chemotherapeutic agents. An understanding of this issue can help predict haematopoietic recovery from radiation exposure as well as the extent of radiation damage to the haematopoietic system. In the present study, the radiosensitivity of human lineage-committed myeloid haematopoietic stem/progenitor cells (HSPCs), including colony-forming unit–granulocyte macrophage, burst-forming unit–erythroid and colony-forming unit–granulocyte–erythroid–macrophage–megakaryocyte cells, which are contained in adult individual peripheral blood (PB) and fetus/neonate placental/umbilical cord blood (CB), were studied. The PB of 59 healthy individual blood donors and the CB of 42 neonates were investigated in the present study. HSPCs prepared from PB and CB were exposed to 0.5 or 2 Gy x-irradiation. The results showed that large individual differences exist in the surviving fraction of cells. In the case of adult PB, a statistically significant negative correlation was observed between the surviving fraction observed at a dose of 0.5 Gy and the age of the blood donors; however, none of these correlations were observed after 2 Gy x-irradiation. In addition, seasonal and gender variation were observed in the surviving fraction of CB HSPCs. The present results suggest that there are large individual differences in the surviving fraction of HSPCs contained in both adult PB and fetus/neonate CB. In addition, some factors, including the gender, age and season of birth, affect the radiosensitivity of HSPCs, especially with a relatively low-dose exposure. (paper)

  3. Peripheral blood stem cell harvest in patients with limited stage small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Katakami, Nobuyuki; Takakura, Shunji; Fujii, Hiroshi; Nishimura, Takashi; Umeda, Bunichi [Kobe City General Hospital (Japan)

    2000-06-01

    Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) induced mobilization of peripheral blood stem cells (PBSC) was performed in patients with limited stage small-cell lung cancer. Chemotherapy consisted of cisplatin/etoposide or cisplatin/adriamycin/etoposide. The amounts of CD34 positive cells and granulocyte-macrophage colony forming units (CFU-GM) collected during 2-3 courses of apheresis were 3.1{+-}2.9 x 10{sup 6}/kg (n=10) and 3.1{+-}1.5 x 10{sup 5}/kg (n=8) , respectively. Adequate amounts of PBSC were also harvested even in patients treated with concurrent chemoradiotherapy. Eight patients were successfully treated with high-dose chemotherapy consisting of ifosfamide, carboplatin and etoposide with PBSC transfusion. The patients'-bone marrow reconstruction was rapid and no treatment-related death was observed. (author)

  4. Day 100 Peripheral Blood Absolute Lymphocyte/Monocyte Ratio and Survival in Classical Hodgkin's Lymphoma Postautologous Peripheral Blood Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Luis F. Porrata

    2013-01-01

    Full Text Available Day 100 prognostic factors of postautologous peripheral blood hematopoietic stem cell transplantation (APBHSCT to predict clinical outcome in classical Hodgkin lymphoma (cHL patients have not been evaluated. Thus, we studied if the day 100 peripheral blood absolute lymphocyte/monocyte ratio (Day 100 ALC/AMC affects clinical outcomes by landmark analysis from day 100 post-APBHSCT. Only cHL patients achieving a complete remission at day 100 post-APBHSCT were studied. From 2000 to 2010, 131 cHL consecutive patients qualified for the study. The median followup from day 100 was 4.1 years (range: 0.2–12.3 years. Patients with a Day 100 ALC/AMC ≥ 1.3 experienced superior overall survival (OS and progression-free survival (PFS compared with Day 100 ALC/AMC < 1.3 (from day 100: OS, median not reached versus 2.8 years; 5 years OS rates of 93% (95% CI, 83%–97% versus 35% (95% CI, 19%–51%, resp., P<0.0001; from day 100: PFS, median not reached versus 1.2 years; 5 years PFS rates of 79% (95% CI, 69%–86% versus 27% (95% CI, 14%–45%, resp., P<0.0001. Day ALC/AMC ratio was an independent predictor for OS and PFS. Thus, Day 100 ALC/AMC ratio is a simple biomarker that can help to assess clinical outcomes from day 100 post-APBHSCT in cHL patients.

  5. 75 FR 11545 - Agency Information Collection Activities; Proposed Collection; Comment Request; Human Cells...

    Science.gov (United States)

    2010-03-11

    ... and report to FDA adverse reactions (defined in Sec. 1271.3(y)) using Form FDA-3500A (Sec. 1271.350(a.... 1271.290(f). FDA estimates 38 HCT[sol]P establishments submitted 76 adverse reaction reports involving... conventional tissue donors, eye tissue donors, peripheral and cord blood stem cell donors, and reproductive...

  6. T Cell-Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia.

    Science.gov (United States)

    How, Joan; Slade, Michael; Vu, Khoan; DiPersio, John F; Westervelt, Peter; Uy, Geoffrey L; Abboud, Camille N; Vij, Ravi; Schroeder, Mark A; Fehniger, Todd A; Romee, Rizwan

    2017-04-01

    Outcomes for patients with acute myeloid leukemia (AML) who fail to achieve complete remission remain poor. Hematopoietic cell transplantation (HCT) has been shown to induce long-term survival in AML patients with active disease. HCT is largely performed with HLA-matched unrelated or HLA-matched related donors. Recently, HCT with HLA-haploidentical related donors has been identified as a feasible option when HLA-matched donors are not immediately available. However, there are little data comparing outcomes for AML patients with active disease who receive haploidentical versus traditionally matched HCT. We retrospectively analyzed data from 99 AML patients with active disease undergoing allogeneic HCT at a single institution. Forty-three patients received unrelated donor HCT, 32 patients received matched related donor HCT, and 24 patients received peripheral blood haploidentical HCT with post-transplantation cyclophosphamide. We found no significant differences between treatment groups in terms of overall survival (OS), event-free survival, transplantation-related mortality, cumulative incidence of relapse, and cumulative incidence of acute and chronic graft-versus-host disease (GVHD). We performed univariate regression analysis of variables that modified OS in all patients and found only younger age at transplantation and development of chronic GVHD significantly improved outcome. Although limited by our relatively small sample size, these results indicate that haploidentical HCT in active AML patients have comparable outcomes to HCT with traditionally matched donors. Haploidentical HCT can be considered in this population of high-risk patients when matched donors are unavailable or when wait times for transplantation are unacceptably long. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs

    International Nuclear Information System (INIS)

    Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.; Doxiadis, I.; Mahmoud, H.K.; Emde, C.; Schmidt-Weinmar, A.; Schaefer, U.W.

    1986-01-01

    Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels. Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells

  8. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    Science.gov (United States)

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  9. The effects of equine peripheral blood stem cells on cutaneous wound healing: a clinical evaluation in four horses.

    Science.gov (United States)

    Spaas, J H; Broeckx, S; Van de Walle, G R; Polettini, M

    2013-04-01

    Stem-cell therapy represents a promising strategy for the treatment of challenging pathologies, such as large, infected wounds that are unresponsive to conventional therapies. The present study describes the clinical application of peripheral blood stem cells (PBSCs) for the treatment of four adult Warmblood horses with naturally occurring wounds, which were unresponsive to conventional therapies for at least 3 months. A visual assessment was performed, and a number of wound-healing parameters (granulation tissue, crust formation and scar formation) were evaluated. In all cases, tissue overgrowth was visible within 4 weeks after PBSC injection, followed by the formation of crusts and small scars in the centre of the wound, with hair regeneration at the edges. In conclusion, this is the first report of PBSC therapy of skin wounds in horses, and it produced a positive visual and clinical outcome. © The Author(s) CED © 2013 British Association of Dermatologists.

  10. Hematopoietic stem cell transplantation monitoring in childhood. Hematological diseases in Serbia: STR-PCR techniques

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra D.

    2007-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a very successful method of treatment for children with different aquired or inborn diseases. The main goal of post-transplantation chimerism monitoring in HSCT is to predict negative events (such as disease relapse and graft rejection, in order to intervene with appropriate therapy and improve the probability of long-term DFS (disease free survival. In this context, by quantifying the relative amounts of donor and recipient cells present in the peripheral blood sample, it can be determined if engraftment has taken place at all, or if full or mixed chimerism exists. In a group of patients who underwent hematopoietic stem cell transplantation at the Mother and Child Health Care Institute, we decided to use standard human identfication tests based on multiplex PCR analyses of short tandem repeats (STRs, as they are highly informative, sensitive, and fast and therefore represent an optimal methodological approach to engraftment analysis.

  11. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  12. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    Science.gov (United States)

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  13. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry

    DEFF Research Database (Denmark)

    Michallet, M; Sobh, M; Milligan, D

    2010-01-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high...... worsened significantly when EBMT risk score increased. HLA matching had no significant impact on relapse (siblings: 24% (21-27); WMUD: 35% (26-44), P=0.11 and MM: 21% (18-24), P=0.81); alemtuzumab T-cell depletion and stem cell source (peripheral blood) were associated with an increased risk. Our findings...... support the use of WMUD as equivalent alternative to HLA-matched sibling donors for allogeneic HSCT in CLL, and justify the application of EBMT risk score in this disease....

  14. Treatment of Arsenite Intoxication-Induced Peripheral Vasculopathy with Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yi-Hung Chiang

    2018-03-01

    Full Text Available Arsenite (As, a notorious toxic metal, is ubiquitously distributed in the earth and poses a serious threat to human health. Histopathological lesions of As intoxication are known as thromboangiitis obliterans, which are resistant to current treatment and often lead to lower limb amputation. In this study, we attempt to find that treatment with mesenchymal stem cells (MSCs may be effective for As-induced vasculopathy. We first conducted an in vitro study with a co-culture system containing human MSCs and human umbilical vein endothelial cells (HUVECs and treated individual and co-cultured cells with various concentrations of arsenite. We also designed an in vivo study in which Sprague Dawley (SD rats received periodic intraperitoneal (IP injections of 16 ppm arsenite for 12 weeks. MSCs were harvested from BALB/c mice that were transplanted via tail vein injection. We found that there was significantly higher cellular viability in human mesenchymal stem cells (hMSCs than in HUVECs under concentrations of arsenite between 15 and 25 μM. The Annexin V apoptosis assay further confirmed this finding. Cytokine array assay for As-conditioned media revealed an elevated vascular endothelial growth factor (VEGF level secreted by MSCs, which is crucial for HUVEC survival and was evaluated by an siRNA VEGF knockdown test. In the in vivo study, we demonstrated early apoptotic changes in the anterior tibial vessels of As-injected SD rats with a Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay, but these apoptotic changes were less frequently observed upon MSCs transplantation, indicating that the cytoprotective effect of MSCs successfully protected against As-induced peripheral vasculopathy. The feasibility of MSCs to treat and /or prevent the progression of As-induced vasculopathy is justified. Further clinical studies are required to demonstrate the therapeutic efficacy of MSCs in patients suffering from As intoxication with

  15. Generation of integration-free induced pluripotent stem cells (GZHMUi001-A by reprogramming peripheral blood mononuclear cells from a 47, XXX syndrome patient

    Directory of Open Access Journals (Sweden)

    Yuchang Chen

    2017-08-01

    Full Text Available 47, XXX syndrome is one of several sex-chromosomal aneuploidies, and it has an incidence of approximately 1/1000 in newborn females. Because of heterogeneity in X-inactivation, these patients may exhibit a variety of clinical symptoms. Here, we report the generation of an integration-free human induced pluripotent stem cell line (GZHMUi001-A by using Sendai virus to reprogram peripheral blood mononuclear cells from a 47, XXX syndrome patient with premature ovarian failure. This 47, XXX iPS cell line has characteristics of pluripotent stem cells and is a useful tool for the investigation of this X chromosome aneuploid disease.

  16. Generation of integration-free induced pluripotent stem cells (GZHMUi001-A) by reprogramming peripheral blood mononuclear cells from a 47, XXX syndrome patient.

    Science.gov (United States)

    Chen, Yuchang; Ou, Zhanhui; Song, Bing; Xian, Yexing; Ouyang, Shuming; Xie, Yuhuan; Xue, Yanting; Sun, Xiaofang

    2017-08-01

    47, XXX syndrome is one of several sex-chromosomal aneuploidies, and it has an incidence of approximately 1/1000 in newborn females. Because of heterogeneity in X-inactivation, these patients may exhibit a variety of clinical symptoms. Here, we report the generation of an integration-free human induced pluripotent stem cell line (GZHMUi001-A) by using Sendai virus to reprogram peripheral blood mononuclear cells from a 47, XXX syndrome patient with premature ovarian failure. This 47, XXX iPS cell line has characteristics of pluripotent stem cells and is a useful tool for the investigation of this X chromosome aneuploid disease. Copyright © 2017. Published by Elsevier B.V.

  17. Dengue antibodies in blood donors.

    Science.gov (United States)

    Ribas-Silva, Rejane Cristina; Eid, Andressa Ahmad

    2012-01-01

    Dengue is an urban arbovirus whose etiologic agent is a virus of the genus Flavorius with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. The Campo Mourão region in Brazil is endemic for dengue fever. OBTECTIVE: The aim of this study was to evaluate the presence of IgG and IgM antibodies specific to the four serotypes of dengue in donors of the blood donor service in the city of Campo Mourão. Epidemiological records were evaluated and 4 mL of peripheral blood from 213 blood donors were collected in tubes without anticoagulant. Serum was then obtained and immunochromatographic tests were undertaken (Imuno-Rápido Dengue IgM/IgG(TM)). Individuals involved in the study answered a social and epidemiological questionnaire on data which included age, gender and diagnosis of dengue. Only three (1.4%) of the 213 blood tests were positive for IgG anti-dengue antibodies. No donors with IgM antibody, which identifies acute infection, were identified. The results of the current analysis show that the introduction of quantitative or molecular serological methods to determine the presence of anti-dengue antibodies or the detection of the dengue virus in blood donors in endemic regions should be established so that the quality of blood transfusions is guaranteed.

  18. The Core of Sibling Stem Cell Donation – A Grounded Theory Study

    Science.gov (United States)

    Kisch, Annika M; Forsberg, Anna

    2017-01-01

    Background: There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. Objective: The purpose of this study was to explore sibling stem cell donors’ main concerns and how they deal with them before and after donation. Method: Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. Results: This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Conclusions: Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors. PMID:28839511

  19. Stem cell Transplantation for Eradication of Minimal PAncreatic Cancer persisting after surgical Excision (STEM PACE Trial, ISRCTN47877138): study protocol for a phase II study

    International Nuclear Information System (INIS)

    Schmitz-Winnenthal, Friedrich H; Schmidt, Thomas; Lehmann, Monika; Beckhove, Philipp; Kieser, Meinhard; Ho, Anthony D; Dreger, Peter; Büchler, Markus W

    2014-01-01

    Pancreatic cancer is the third most common cancer related cause of death. Even in the 15% of patients who are eligible for surgical resection the outlook is dismal with less than 10% of patients surviving after 5 years. Allogeneic hematopoietic (allo-HSCT) stem cell transplantation is an established treatment capable of to providing cure in a variety of hematopoietic malignancies. Best results are achieved when the underlying neoplasm has been turned into a stage of minimal disease by chemotherapy. Allo-HSCT in advanced solid tumors including pancreatic cancer have been of limited success, however studies of allo-HSCT in solid tumors in minimal disease situations have never been performed. The aim of this trial is to provide evidence for the clinical value of allo-HSCT in pancreatic cancer put into a minimal disease status by effective surgical resection and standard adjuvant chemotherapy. The STEM PACE trial is a single center, phase II study to evaluate adjuvant allogeneic hematopoietic stem cell transplantation in pancreatic cancer after surgical resection. The study will evaluate as primary endpoint 2 year progression free survival and will generate first time state-of-the-art scientific clinical evidence if allo-HSCT is feasible and if it can provide long term disease control in patients with effectively resected pancreatic cancer. Screened eligible patients after surgical resection and standard adjuvant chemotherapy with HLA matched related stem cell donor can participate. Patients without a matched donor will be used as a historical control. Study patients will undergo standard conditioning for allo-HSCT followed by transplantation of allogeneic unmanipulated peripheral blood stem cells. The follow up of the patients will continue for 2 years. Secondary endpoints will be evaluated on 7 postintervention visits. The principal question addressed in this trial is whether allo-HSCT can change the unfavourable natural course of this disease. The underlying

  20. The infrapatellar fat pad from diseased joints inhibits chondrogenesis of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    W Wei

    2015-12-01

    Full Text Available Cartilage repair by bone marrow derived mesenchymal stem cells (MSCs can be influenced by inflammation in the knee. Next to synovium, the infrapatellar fat pad (IPFP has been described as a source for inflammatory factors. Here, we investigated whether factors secreted by the IPFP affect chondrogenesis of MSCs and whether this is influenced by different joint pathologies or obesity. Furthermore, we examined the role of IPFP resident macrophages. First, we made conditioned medium from IPFP obtained from osteoarthritic joints, IPFP from traumatically injured joints during anterior cruciate ligament reconstruction, and subcutaneous adipose tissue. Additionally, we made conditioned medium of macrophages isolated from osteoarthritic IPFP and of polarised monocytes from peripheral blood. We evaluated the effect of different types of conditioned medium on MSC chondrogenesis. Conditioned medium from IPFP decreased collagen 2 and aggrecan gene expression as well as thionin and collagen type 2 staining. This anti-chondrogenic effect was the same for conditioned medium from IPFP of osteoarthritic and traumatically injured joints. Furthermore, IPFP from obese (Body Mass Index >30 donors did not inhibit chondrogenesis more than that of lean (Body Mass Index <25 donors. Finally, conditioned medium from macrophages isolated from IPFP decreased the expression of hyaline cartilage genes, as did peripheral blood monocytes stimulated with pro-inflammatory cytokines. The IPFP and the resident pro-inflammatory macrophages could therefore be targets for therapies to improve MSC-based cartilage repair.

  1. Controversies in hybrid banking: attitudes of Swiss public umbilical cord blood donors toward private and public banking.

    Science.gov (United States)

    Manegold, Gwendolin; Meyer-Monard, Sandrine; Tichelli, André; Granado, Christina; Hösli, Irene; Troeger, Carolyn

    2011-07-01

    Umbilical cord blood (UCB) stored in public inventories has become an alternative stem cell source for allogeneic stem cell transplantation. The potential use of autologous UCB from private banks is a matter of debate. In the face of the limited resources of public inventories, a discussion on "hybrid" public and private UCB banking has evolved. We aimed to explore the attitudes of the donating parents toward public and private UCB banking. A standardized, anonymous questionnaire was sent to the most recent 621 public UCB donors including items regarding satisfaction with recruitment process, the need for a second consent before release of the UCB unit for stem cell transplantation, and the donors' views on public and private UCB banking. Furthermore, we asked about their views on UCB research. Of the questionnaires, 48% were returned, and 16% were lost due to mail contact. Of our donors, 95% would donate to the public bank again. As much as 35% of them were convinced that public banking was useful. Whereas 27% had never heard about private UCB banking, 34% discussed both options. Nearly 70% of donors opted for public banking due to altruism and the high costs of private banking. Of our public UCB donors, 81% stated that they did not need a re-consent before UCB release for stem cell transplantation. In case of sample rejection, 53.5% wanted to know details about the particular research project. A total of 9% would not consent. Almost all donors would choose public banking again due to altruism and the high costs of private banking. Shortly after donation, mail contact with former UCB donors was difficult. This might be a relevant issue in any sequential hybrid banking.

  2. Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL?

    Science.gov (United States)

    Morris, Edward S; MacDonald, Kelli P A; Hill, Geoffrey R

    2006-05-01

    The separation of graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) remains the "holy grail" of allogeneic stem cell transplantation, and improvements are urgently needed to allow more effective therapy of malignant disease. The use of G-CSF-mobilized peripheral blood as a clinical stem cell source is associated with enhanced GVL effects without amplification of significant acute GVHD. Preclinical studies have demonstrated that G-CSF modulates donor T cell function before transplantation, promoting T(H)2 differentiation and regulatory T cell function. In addition, the expansion of immature antigen-presenting cells (APCs) and plasmacytoid dendritic cells (DCs) favors the maintenance of this pattern of T cell differentiation after transplantation. Although these patterns of T cell differentiation attenuate acute GVHD, they do not have an impact on the cytolytic pathways of the CD8(+) T cells that are critical for effective GVL. Recently, it has been demonstrated that modification of G-CSF, either by pegylation of the native cytokine or conjugation to Flt-3L, results in the expansion and activation of donor iNKT cells, which significantly augment CD8(+) T cell-mediated cytotoxicity and GVL effects after transplantation. Given that these cytokines also enhance the expansion of regulatory T cells and APCs, they further separate GVHD and GVL, offering potential clinical advantages for the transplant recipient.

  3. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  4. Turnover of circulating hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Dorie, M J; Maloney, M A; Patt, H M

    1979-10-01

    Short-term parabiosis of male and female CBA/CaJ mice was used to investigate the turnover of circulating hematopoietic stem cells. The change and subsequent disappearance of donor stem cells were monitored by spleen colony assay and chromosome analysis of individual colonies. The results revealed an exponential disappearance of pluripotent stem cells from blood with a characteristic half time of 1.7 h. Blood-borne stem cells were shown to be equilibrated with a subpopulation of marrow stem cells exhibiting a disappearance half time of 9.5 h. Splenectomy did not change the apparent rate of stem cell removal from the blood.

  5. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration.

    Science.gov (United States)

    Cunha, Carla; Panseri, Silvia; Antonini, Stefania

    2011-02-01

    Effective nerve regeneration and functional recovery subsequent to peripheral nerve injury is still a clinical challenge. Autologous nerve graft transplantation is a feasible treatment in several clinical cases, but it is limited by donor site morbidity and insufficient donor tissue, impairing complete functional recovery. Tissue engineering has introduced innovative approaches to promote and guide peripheral nerve regeneration by using biomimetic conduits creating favorable microenvironments for nervous ingrowth, but despite the development of a plethora of nerve prostheses, few approaches have as yet entered the clinic. Promising strategies using nanotechnology have recently been proposed, such as the use of scaffolds with functionalized cell-binding domains, the use of guidance channels with cell-scale internally oriented fibers, and the possibility of sustained release of neurotrophic factors. This review addresses the fabrication, advantages, drawbacks, and results achieved by the most recent nanotechnology approaches in view of future solutions for peripheral nerve repair. Peripheral nerve repair strategies are very limited despite numerous advances on the field of neurosciences and regenerative medicine. This review discusses nanotechnology based strategies including scaffolds with functionalized cell binding domains, the use of guidance channels, and the potential use of sustained release neurotropic factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. In vitro expansion of Lin{sup +} and Lin{sup −} mononuclear cells from human peripheral blood

    Energy Technology Data Exchange (ETDEWEB)

    Norhaiza, H. Siti; Zarina, Z. A. Intan; Hisham, Z. A. Shahrul [School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Selangor (Malaysia); Rohaya, M. A. W. [Department of Orthodontics, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur (Malaysia)

    2013-11-27

    Haematopoietic stem cells (HSCs) are used in the therapy of blood disorders due to the ability of these cells to reconstitute haematopoietic lineage cells when transplanted into myeloablative recipients. However, substantial number of cells is required in order for the reconstitution to take place. Since HSCs present in low frequency, larger number of donor is required to accommodate the demand of transplantable HSCs. Therefore, in vitro expansion of HSCs will have profound impact on clinical purposes. The aim of this study was to expand lineage negative (Lin{sup −}) stem cells from human peripheral blood. Total peripheral blood mononuclear cells (PBMNCs) were fractionated from human blood by density gradient centrifugation. Subsequently, PBMNCs were subjected to magnetic assisted cell sorter (MACS) which depletes lineage positive (Lin{sup +}) mononuclear cells expressing lineage positive markers such as CD2, CD3, CD11b, CD14, CD15, CD16, CD19, CD56, CD123, and CD235a to obtained Lin{sup −} cell population. The ability of Lin{sup +} and Lin{sup −} to survive in vitro was explored by culturing both cell populations in complete medium consisting of Alpha-Minimal Essential Medium (AMEM) +10% (v/v) Newborn Calf Serum (NBCS)+ 2% (v/v) pen/strep. In another experiment, Lin{sup +} and Lin{sup −} were cultured with complete medium supplemented with 10ng/mL of the following growth factors: stem cell factor (SCF), interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF), 2IU/mL of Erythropoietin (Epo) and 20ng/mL of IL-6. Three samples were monitored in static culture for 22 days. The expansion potential was assessed by the number of total viable cells, counted by trypan blue exclusion assay. It was found that Lin{sup +} mononuclear cells were not able to survive either in normal proliferation medium or proliferation medium supplemented with cytokines. Similarly, Lin{sup −} stem cells were not able to survive in proliferation medium however

  7. Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression.

    Science.gov (United States)

    Wang, Mei; Chen, Bin; Sun, Xiao-Xian; Zhao, Xiang-Dong; Zhao, Yuan-Yuan; Sun, Li; Xu, Chang-Gen; Shen, Bo; Su, Zhao-Liang; Xu, Wen-Rong; Zhu, Wei

    2017-12-01

    Gastric cancer tissue-derived mesenchymal stem cells (GC-MSCs) are important resident stromal cells in the tumor microenvironment (TME) and have been shown to play a key role in gastric cancer progression. Whether GC-MSCs exert a tumor-promoting function by affecting anti-tumor immunity is still unclear. In this study, we used GC-MSC conditioned medium (GC-MSC-CM) to pretreat peripheral blood mononuclear cells (PBMCs) from healthy donors. We found that GC-MSC-CM pretreatment markedly reversed the inhibitory effect of PBMCs on gastric cancer growth in vivo, but did not affect functions of PBMCs on gastric cancer cell proliferation, cell cycle and apoptosis in vitro. PBMCs pretreated with GC-MSC-CM significantly promoted gastric cancer migration and epithelial-mesenchymal transition in vitro and liver metastases in vivo. Flow cytometry analysis showed that GC-MSC-CM pretreatment increased the proportion of Treg cells and reduced that of Th17 cells in PBMCs. CFSE labeling and naïve CD4 + T cells differentiation analysis revealed that GC-MSC-CM disrupted the Treg/Th17 balance in PBMCs by suppressing Th17 cell proliferation and inducing differentiation of Treg cells. Overall, our collective results indicate that GC-MSCs impair the anti-tumor immune response of PBMCs through disruption of Treg/Th17 balance, thus providing new evidence that gastric cancer tissue-derived MSCs contribute to the immunosuppressive TME. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A perspective on the selection of unrelated donors and cord blood units for transplantation

    Science.gov (United States)

    Spellman, Stephen R.; Eapen, Mary; Logan, Brent R.; Mueller, Carlheinz; Rubinstein, Pablo; Setterholm, Michelle I.; Woolfrey, Ann E.; Confer, Dennis L.; Hurley, Carolyn K.

    2012-01-01

    Selection of a suitable graft for allogeneic hematopoietic stem cell transplantation involves consideration of both donor and recipient characteristics. Of primary importance is sufficient donor-recipient HLA matching to ensure engraftment and acceptable rates of GVHD. In this Perspective, the National Marrow Donor Program and the Center for International Blood and Marrow Transplant Research provide guidelines, based on large studies correlating graft characteristics with clinical transplantation outcomes, on appropriate typing strategies and matching criteria for unrelated adult donor and cord blood graft selection. PMID:22596257

  9. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    Science.gov (United States)

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic

  10. Antibody responses to tetanus toxoid and Haemophilus influenzae type b conjugate vaccines following autologous peripheral blood stem cell transplantation (PBSCT).

    Science.gov (United States)

    Chan, C Y; Molrine, D C; Antin, J H; Wheeler, C; Guinan, E C; Weinstein, H J; Phillips, N R; McGarigle, C; Harvey, S; Schnipper, C; Ambrosino, D M

    1997-07-01

    Accelerated granulocyte and platelet recovery following peripheral blood stem cell transplantation (PBSCT) are well documented. We hypothesize that functional immunity may also be enhanced in PBSCT and performed a phase II trial of immunizations in patients with lymphoma undergoing autologous transplantation with peripheral blood stem cells or bone marrow. Seventeen BMT and 10 PBSCT recipients were immunized at 3, 6, 12, and 24-months post-transplantation with Haemophilus influenzae type b (HIB)-conjugate and tetanus toxoid (TT) vaccines. IgG anti-HIB and anti-TT antibody concentrations were measured and compared between the two groups. Geometric mean IgG anti-HIB antibody concentrations were significantly higher for PBSCT recipients compared to BMT recipients at 24 months post-transplantation (11.3 micrograms/ml vs 0.93 microgram/ml, P = 0.051) and following the 24 month immunization (66.2 micrograms/ml vs 1.30 micrograms/ml, P = 0.006). Similar results were noted for IgG anti-TT antibody with significantly higher geometric mean antibody concentrations in the PBSCT group at 24 months post-transplantation (182 micrograms/ml vs 21.6 micrograms/ml, P = 0.039). Protective levels of total anti-HIB antibody were achieved earlier in PBSCT recipients compared with those of BMT recipients. PBSCT recipients had higher antigen-specific antibody concentrations following HIB and TT immunizations. These results suggest enhanced recovery of humoral immunity in PBSCT recipients and earlier protection against HIB with immunization.

  11. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.

  12. Evaluation of two different protocols for peripheral blood stem cell collection with the Fresenius AS 104 blood cell separator.

    Science.gov (United States)

    Menichella, G; Lai, M; Pierelli, L; Vittori, M; Serafini, R; Ciarli, M; Foddai, M L; Salerno, G; Sica, S; Scambia, G; Leone, G; Bizzi, B

    1997-01-01

    Reconstitution of hematopoiesis by means of peripheral blood stem cells is a valid alternative to autologous bone marrow transplantation. The aim of this investigation was to increase the efficiency of collection of circulating blood progenitor cells and to obtain a purer product for transplant. We carried out leukapheresis procedures with the Fresenius AS 104 blood cell separator, using two different protocols, the previously used PBSC-LYM and a new mononuclear cell collection program. Both programs were highly effective in collecting mononuclear cells (MNC) and CD34+ cells. Some differences were found, especially regarding MNC yield and efficiencies. There are remarkable differences in the efficiency of collection of CD34+ cells (62.38% with the new program as opposed to 31.69% with the older one). Linear regression analysis showed a negative correlation between blood volume processed and MNC efficiency only for the PBSC-LYM program. Differences were also observed in the degree of inverse correlation existing in both programs between patients' white blood cell precount and MNC collection efficiency. The inverse correlation was stronger for the PBSC-LYM program. Seven patients with solid tumors and hematologic malignancies received high dose chemotherapy and were subsequently transplanted with peripheral blood stem cells collected using the new protocol. All patients obtained a complete and stable engraftment with the reinfusion product collected with one or two leukapheresis procedures. High efficiencies and yields were observed in the new protocol for MNC and CD34+ cells. These were able to effect rapid and complete bone marrow recovery after myeloablative chemotherapy.

  13. Genotoxic damage in cultured human peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Falaq Naz

    2012-06-29

    Jun 29, 2012 ... Genotoxic damage in cultured human peripheral blood lymphocytes of oral ... catechol estrogens and quinines, via redox reactions causes oxidative damage to .... volume was prepared for each donor. About, 0.8 ml of cell sus .... duce the adverse effects of OCs, such as the reduction in the estrogen content.

  14. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    Science.gov (United States)

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  15. Management to optimize organ procurement in brain dead donors.

    Science.gov (United States)

    Mascia, L; Mastromauro, I; Viberti, S; Vincenzi, M; Zanello, M

    2009-03-01

    The demand for donor organs continues to exceed the number of organs available for transplantation. Many reasons may account for this discrepancy, such as the lack of consent, the absence of an experienced coordinator team able to solve logistical problems, the use of strict donor criteria, and suboptimal, unstandardized critical care management of potential organ donors. This has resulted in efforts to improve the medical care delivered to potential organ donors, so as to reduce organ shortages, improve organ procurement, and promote graft survival. The physiological changes that follow brain death entail a high incidence of complications jeopardizing potentially transplantable organs. Adverse events include cardiovascular changes, endocrine and metabolic disturbances, and disruption of internal homeostasis. Brain death also upregulates the release of pro-inflammatory molecules. Recent findings support the hypothesis that a preclinical lung injury characterized by an enhanced inflammatory response is present in potential donors and may predispose recipients to an adverse clinical prognosis following lung transplantation. In clinical practice, hypotension, diabetes insipidus, relative hypothermia, and natremia are more common than disseminated intravascular coagulation, cardiac arrhythmias, pulmonary oedema, acute lung injury, and metabolic acidosis. Strategies for the management of organ donors exist and consist of the normalization of donor physiology. Management has been complicated by the recent use of ''marginal'' donors and donors of advanced age or with ''extended'' criteria. Current guidelines suggest that the priority of critical care management for potential organ donors should be shifted from a ''cerebral protective'' strategy to a multimodal strategy aimed to preserve peripheral organ function.

  16. The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization.

    Science.gov (United States)

    Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu

    2011-05-01

    Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.

  17. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study.

    Science.gov (United States)

    Cruz, Conrad Russell Y; Micklethwaite, Kenneth P; Savoldo, Barbara; Ramos, Carlos A; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A John; Ito, Sawa; Shpall, Elizabeth J; Krance, Robert A; Kamble, Rammurti T; Carrum, George; Hosing, Chitra M; Gee, Adrian P; Mei, Zhuyong; Grilley, Bambi J; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Bollard, Catherine M; Dotti, Gianpietro

    2013-10-24

    Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.

  18. The role of missing killer cell immunoglobulin-like receptor ligands in T cell replete peripheral blood stem cell transplantation from HLA-identical siblings.

    Science.gov (United States)

    Clausen, Johannes; Kircher, Brigitte; Auberger, Jutta; Schumacher, Petra; Ulmer, Hanno; Hetzenauer, Gabriele; Wolf, Dominik; Gastl, Günther; Nachbaur, David

    2010-02-01

    The contribution of natural killer (NK) cells to graft-versus-malignancy (GVM) effects following hematopoietic stem cell transplantation (HSCT) remains uncertain, particularly in the HLA-identical setting. A model considering missing HLA ligands to the donor's inhibitory killer cell immunoglobulin-like receptor (KIR), termed the missing KIR ligand model, has been established in T cell depleted bone marrow transplantation (BMT), but lacks validity in other cohorts with different treatment characteristics. We hypothesized that the impact of missing KIR ligands on relapse-free survival (RFS) and overall survival (OS) in T cell replete peripheral blood SCT (PBSCT) differs from that in the T cell depleted BMT setting, and retrospectively evaluated 100 consecutive, HLA-identical sibling transplantations for hematologic malignancies. In addition to KIR ligand status, we considered the donors' activating KIRs and grafted NK, T, and CD34(+) cell doses. Our findings demonstrate noninferiority for OS (P = .005) and RFS (P = .002) for the heterozygous HLA-C group KIR ligand status (C1/2; n = 47) compared with patients missing either C1 or C2 (n = 53). Similarly, OS (P = .031) and RFS (P = .034) of Bw4-positive patients was noninferior to that of patients missing a Bw4 ligand to KIR3DL1. By multivariate analysis, C1/2 heterozygous patients had a favorable risk ratio (RR) for relapse (RR = 0.28; P = .003), RFS (RR = 0.56; P = .046), and acute graft-versus-host disease grade II-IV (RR = 0.36; P = .05). Following reduced-intensity conditioning (RIC), but not standard-intensity conditioning, myeloablative (MA) transplantation, a grafted NK cell dose above the median (3.4 x 10(7)/kg) was associated with a lower risk of relapse (RR = 0.57; P = .003) and improved survival (RR = 0.78; P = .03). Overall, our findings support a role for NK alloreactivity in HLA-identical HSCT, but argue against a favorable impact of missing KIR ligands in the given setting. We conclude that the mechanism

  19. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro

    2016-01-01

    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  20. Hematopoietic stem cell transplantation in children and young adults with secondary myelodysplastic syndrome and acute myelogenous leukemia after aplastic anemia.

    Science.gov (United States)

    Yoshimi, Ayami; Strahm, Brigitte; Baumann, Irith; Furlan, Ingrid; Schwarz, Stephan; Teigler-Schlegel, Andrea; Walther, Joachim-Ulrich; Schlegelberger, Brigitte; Göhring, Gudrun; Nöllke, Peter; Führer, Monika; Niemeyer, Charlotte M

    2014-03-01

    Secondary myelodysplastic syndrome and acute myelogenous leukemia (sMDS/sAML) are the most serious secondary events occurring after immunosuppressive therapy in patients with aplastic anemia. Here we evaluate the outcome of hematopoietic stem cell transplantation (HSCT) in 17 children and young adults with sMDS/sAML after childhood aplastic anemia. The median interval between the diagnosis of aplastic anemia and the development of sMDS/sAML was 2.9 years (range, 1.2 to 13.0 years). At a median age of 13.1 years (range, 4.4 to 26.7 years), patients underwent HSCT with bone marrow (n = 6) or peripheral blood stem cell (n = 11) grafts from HLA-matched sibling donors (n = 2), mismatched family donors (n = 2), or unrelated donors (n = 13). Monosomy 7 was detected in 13 patients. The preparative regimen consisted of busulfan, cyclophosphamide, and melphalan in 11 patients and other agents in 6 patients. All patients achieved neutrophil engraftment. The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 47%, and that of chronic GVHD was 70%. Relapse occurred in 1 patient. The major cause of death was transplant-related complication (n = 9). Overall survival and event-free survival at 5 years after HSCT were both 41%. In summary, this study indicates that HSCT is a curative therapy for some patients with sMDS/sAML after aplastic anemia. Future efforts should focus on reducing transplantation-related mortality. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. T cell reconstitution in allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, K; Jordan, K K; Uhlving, H H

    2015-01-01

    Infections and acute graft-versus-host disease (aGVHD) are major causes of treatment-related mortality and morbidity following allogeneic haematopoietic stem cell transplantation (HSCT). Both complications depend on reconstitution of the T-lymphocyte population based on donor T cells. Although...... it is well established that Interleukin-7 (IL-7) is a cytokine essential for de novo T cell development in the thymus and homoeostatic peripheral expansion of T cells, associations between circulating levels of IL-7 and T cell reconstitution following HSCT have not been investigated previously. We...... in patients treated with anti-thymocyte globulin (ATG) compared with those not treated with ATG (P = 0.0079). IL-7 levels at day +7 were negatively associated with T cell counts at day +30 to +60 (at day +60: CD3(+) : β = -10.6 × 10(6) cells/l, P = 0.0030; CD8(+) : β = -8.4 × 10(6) cells/l, P = 0.061; CD4...

  2. Infusion of Sibling Marrow in a Patient with Purine Nucleoside Phosphorylase Deficiency Leads to Split Mixed Donor Chimerism and Normal Immunity

    Directory of Open Access Journals (Sweden)

    Laura Yeates

    2017-06-01

    Full Text Available Purine nucleoside phosphorylase (PNP deficiency, a rare autosomal recessive metabolic disease causes combined immunodeficiency and developmental delay, hypotonia, and spasticity. Patients present with recurrent infections associated with T-lymphocytopenia, characteristically presenting later than patients with classical severe combined immunodeficiency (SCID. PNP, with adenosine deaminase (ADA, is part of the purine salvage pathway. The only curative therapy is hematopoietic stem cell transplantation. Myeloablative conditioning is recommended to prevent rejection caused by residual immune function. However, HLA-identical sibling stem cell infusions in ADA-SCID result in some donor stem cell engraftment and long-term thymopoiesis. We report a patient with PNP deficiency, who received HLA-identical sibling marrow without chemotherapy because of disseminated cytomegalovirus (CMV infection. The patient presented at 14 months of age following recurrent infections, from early infancy, with persistent irritability, developmental delay, and hypotonia. She had neutropenia, pan-lymphocytopenia, and hypogammaglobulinemia with low plasma urate and erythrocyte PNP activity. Diagnosis was confirmed with a homozygous mutation in PNP. The patient was viremic with CMV detected in blood and CSF by PCR. Dual antiviral therapy improved the clinical condition and reduced the viral load. In view of the disseminated CMV infection, the decision was made to infuse stem cells without any pre-conditioning chemotherapy. She received a matched sibling donor unconditioned stem cell infusion at 16 months of age. The post-transplant course was uneventful. Blood PCR became negative for CMV. Global hypotonia persisted, although with significant improvement in irritability. At 4 years of age and 29 months post-transplant, the patient demonstrated normal T-lymphocyte and natural killer cell numbers. Recent thymic emigrants represented 12% of the total T

  3. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture.

    Science.gov (United States)

    Watanabe, Daisuke; Koyanagi-Aoi, Michiyo; Taniguchi-Ikeda, Mariko; Yoshida, Yukiko; Azuma, Takeshi; Aoi, Takashi

    2018-01-01

    γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  4. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    Science.gov (United States)

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  5. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  6. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast...

  7. Mesenchymal stem cells: Properties and clinical potential for cell based therapies in reconstructive surgery with a focus on peripheral nerve surgery

    Directory of Open Access Journals (Sweden)

    Kuhbier, Jörn W.

    2015-08-01

    Full Text Available The isolation and expansion of multipotent mesenchymal stem cells (MSCs could be demonstrated from bone marrow, peripheral blood, skin, umbilical cord blood and adipose issue. They can be differentiated to different mesodermal cell lines like bone, cartilage, muscle or adipose tissue cells as well as . Thus MSCs represent an attractive cell population for the substitution of mesenchymal tissues via tissue engineering due to their potential of differentiation and their favourable expansion properties. In contrast to embryonic stem cells (ESCs they have the advantage that they can be autologously harvested in high numbers. Besides, there are fewer ethical issues in the use of MSCs. Another advantage of MSCs is the highly regenerative secretion profile of cytokines and growth factors, in particular supporting angiogenesis. A plethora of studies describe the morphological and phenotypical characterization of this cell type as well as regulatory mechanisms lying the differentiation into specific tissues aiming to optimize conditions for differentiation and thus clinical application. This review describes the definition of a mesenchymal stem cell, methods for isolation and phenotypical characterization, possibilities of differentiation and possible therapeutical applications of MSCs.

  8. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  9. Cytomegalovirus pp65 antigenemia-guided pre-emptive treatment with ganciclovir after allogeneic stem transplantation: a single-center experience.

    Science.gov (United States)

    Manteiga, R; Martino, R; Sureda, A; Labeaga, R; Brunet, S; Sierra, J; Rabella, N

    1998-11-01

    The optimal prophylactic strategy for cytomegalovirus (CMV) disease after allogeneic hematopoietic stem cell transplantation has not yet been established. The aim of this study was to analyze our single-center experience with a uniform protocol of CMV antigenemia-guided pre-emptive treatment with ganciclovir (GCV) after allografting. Fifty-two consecutive adult patients, 48 of them transplanted from HLA-identical matched related donors were included. T cell-depleted marrow or peripheral blood were used in 21 cases. After engraftment, weekly blood samples were tested for CMV pp65 antigenemia and viremia (conventional cultures) until day +100. GCV was started if CMV antigenemia and/or CMV viremia were detected. CMV infection (CMV-I) was found in 19 patients (37%). Seven patients suffered from CMV disease (CMV-D), three colitis and four pneumonias. There was one death directly related to CMV-D and three further cases died from refractory GVHD with CMV-D. Only one patient developed CMV pneumonia without any previous positive antigenemia and/or viremia. Multivariate analysis identified grades II-IV acute GVHD (P = 0.02) and peripheral blood stem cell transplantation (P = 0.03) to be risk factors for developing CMV-I. In conclusion, this monitoring protocol allowed early treatment of CMV-I without progression to CMV-D. Pre-emptive therapy had the additional advantage of avoiding GCV administration in most of our allograft recipients.

  10. CMV infection after transplant from cord blood compared to other alternative donors: the importance of donor-negative CMV serostatus.

    Science.gov (United States)

    Mikulska, Małgorzata; Raiola, Anna Maria; Bruzzi, Paolo; Varaldo, Riccardo; Annunziata, Silvana; Lamparelli, Teresa; Frassoni, Francesco; Tedone, Elisabetta; Galano, Barbara; Bacigalupo, Andrea; Viscoli, Claudio

    2012-01-01

    Cytomegalovirus (CMV) infection and disease are important complications after hematopoietic stem cell transplant, particularly after transplant from alternative donors. Allogeneic cord blood transplantation (CBT) is being increasingly used, but immune recovery may be delayed. The aim of this study was to compare CMV infection in CBT with transplants from unrelated or mismatched related donors, from now on defined as alternative donors. A total of 165 consecutive transplants were divided in 2 groups: (1) alternative donors transplants (n = 85) and (2) CBT recipients (n = 80). Donor and recipient (D/R) CMV serostatus were recorded. The incidence of CMV infection, its severity, timing, and outcome were compared. Median follow-up was 257 days (1-1328). CMV infection was monitored by CMV antigenemia and expressed as CMV Ag positive cell/2 × 10(5) polymorphonuclear blood cells. There was a trend toward a higher cumulative incidence of CMV infection among CBT than alternative donor transplant recipients (64% vs 51%, P = .12). The median time to CMV reactivation was 35 days, and was comparable in the 2 groups (P = .8). The maximum number of CMV-positive cells was similar in the 2 groups (11 versus 16, P = .2). The time interval between the first and the last positive CMV antigenemia was almost 4 times longer in CBT compared with alternative donor transplants (109 vs 29 days, respectively, P = .008). The incidence of late CMV infection was also higher in CBT (62% vs 24%, P donor transplants, whereas no difference in mortality was observed. The duration and incidence of late CMV infection were similar when D-/R+ CBT were compared with D-/R+ alternative donor transplants. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Daunorubicin, Cytarabine, and Cladribine Regimen Plus Radiotherapy and Donor Lymphocyte Infusion for Extramedullary Relapse of Acute Myeloid Leukemia after Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Marco Sanna

    2013-01-01

    Full Text Available Myeloid sarcoma is a rare tumor consisting of myeloid blasts that involve anatomic sites outside the bone marrow. Fatal prognosis is inevitable in patients with extramedullary relapse after hematopoietic stem cell transplantation (HSCT, and no standard treatments are available yet. We report the first case of extramedullary relapse after HSCT treated with a combination of daunorubicin, cytarabine, and cladribine (DAC regimen plus radiotherapy and donor lymphocyte infusion (DLI. This treatment induced a new and durable remission in our patient. The favorable toxicity profile and the reduced cost make this combination worthy of further investigations.

  12. Influence of age on the proliferation and peripheralization of thymic T cells

    International Nuclear Information System (INIS)

    Hirokawa, K.; Utsuyama, M.; Katsura, Y.; Sado, T.

    1988-01-01

    Bone marrow cells obtained from B10.Thy-1.1 mice (H-2b, Thy-1.1) were injected directly into the thymus of C57BL/6 mice (H-2b,Thy 1.2) of various ages. Thymocyte precursors in the injected donor-bone marrow cells could proliferate in the thymic microenvironment in the following manner: first, preferentially proliferating into the subcapsular cortex; and second, spreading to the whole layer of the cortex, a portion of them gradually moving into the medulla. The proliferation of donor-type thymocytes was most pronounced when intrathymic injection of bone marrow cells (ITB) was performed in newborn mice and especially prominent in week-old mice; it took approximately ten weeks for donor-type thymocytes to finish the whole course of proliferation, differentiation, and emigration to the periphery. When ITB was performed in mice 4 weeks of age and older, the proliferation of donor-type thymocytes was retarded at onset, less pronounced in magnitude, and disappeared earlier. Emigration of donor-type T cells from the thymus to the peripheral lymphoid tissues occurred most rapidly when ITB was performed in newborn mice, and these T cells continued to reside thereafter in the peripheral lymphoid tissues. However, when ITB was performed in mice 4 weeks of age and older, the number of emigrated T cells in the spleen decreased (about a tenth of that in newborn mice) and, moreover, these T cells resided only transiently in the spleen. It was suggested that T cells emigrating from the thymus of mice from newborn to 2 weeks of age are long-lived, whereas those from the thymus in mice 4 weeks of age and older are short-lived. However, when 4-week-old young adult mice were treated by irradiation or hydrocortisone, the thymic capacity was enhanced in terms of proliferation and peripheralization of thymocytes, and emigrated T cells became long-lived

  13. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  14. Hemostatic Status of Pre and Post Intracoronary Injection of Peripheral Blood Stem Cells in Patients with Recent Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Cosphiadi Irawan

    2014-01-01

    Full Text Available Aim: to investigate hemostatic parameter changes, such as platelet aggregation, blood and plasma viscosity, prothrombin time, APTT, CRP and fibrinogen, before and after administration of stem cell therapy. Methods: a total of 24 patients were enrolled. Peripheral blood stem cells (PBSCs were harvested and injected into the infarct-related artery after 5 consecutive days of G-CSF administration. Recombinant human erythropoietin was administered at the time of intracoronary PBSCs injection. Results: we were able to evaluate 11 from 24 of patients regarding hemostatic status pre–post stem cell injection. There were no significant difference between baseline vs 3 months in spontaneous aggregation (p=0.350, PT (p=0.793, aPTT (p=0.255 and TT (p=0.254. There were also no significant difference between baseline vs 3 months in plasma viscosity (p=0.442 and blood viscosity (p=0.843. Nevertheless the patient who had their blood and plasma viscosity above or below normal laboratory range return to normal level after the treatment. Both PT and APTT also show normalization value. Both Fibrinogen and CRP level show significant decrease between baseline and 3 months after treatment (p=0.009 and (p=0.04 respectively. Conclusion: combined G-CSF and EPO based-intracoronary infusion of PBSCs may open new perspective in the treatment of hypercoagulable state post AMI.

  15. Safety of growth factor administration for leukapheresis in those with WBC counts greater than 60,000/µl.

    Science.gov (United States)

    Chen, Weihong; Rizzieri, David; Drago, Susan

    2015-02-01

    Peripheral blood stem cell mobilization using growth factors is a common method of stem cell collection for transplantation, however, little is reported concerning safety of continued growth factor delivery in exceptional responders with very high white blood cell (WBC) counts in preparation for pheresis. We performed a retrospective study of the safety of growth factor delivery for leukapheresis in those with WBC counts greater than 60,000/µl. Allogeneic donors received 5 days of granulocyte colony-stimulating factor (G-CSF) at a daily dose of 10 or 16 µg/kg. Autologous donors received G-CSF 10 µg/kg/day +/- chemotherapy until peripheral blood CD34(+) count reached 10/µl. Granulocyte donors received 300 µg dose of G-CSF the day prior to donation. Out of 3,037 leukapheresis collections from 1998 to 2005, we identified 303 collections from 204 donors or patients who had a WBC > 60,000/µl. WBC counts were ≥100,000/µl in seven of these subjects. If inadequate stem cell dose was obtained with pheresis with WBC counts this high, patients had growth factor dosing decreased 50% but still received a dose till stem cell collection was completed. Of the 204 subjects, 122 were patients and 82 were donors. These 204 donors/patients had no serious adverse events reported other than the common reports of myalgia, bone pain, and headache associated with administration of growth factors. Pain levels ranged from mild to severe and usually were managed by over the counter analgesics. Continuing ½ the dose of neupogen to complete the pheresis process appears safe in subjects with very high white blood counts. © 2014 Wiley Periodicals, Inc.

  16. In Silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem Cell Transplant Donors and Recipients: Understanding the Quantitative Immunobiology of Allogeneic Transplantation

    Directory of Open Access Journals (Sweden)

    Max eJameson-Lee

    2014-11-01

    Full Text Available Donor T cell mediated graft versus host effects (GVH may result from the aggregate alloreactivity to minor histocompatibility antigens (mHA presented by the HLA molecules in each donor-recipient pair undergoing stem cell transplantation (SCT. Whole exome sequencing has previously demonstrated a large number of nonsynonymous single nucleotide polymorphisms (SNP present in HLA-matched recipients of SCT donors (GVH direction. The nucleotide sequence flanking each of these SNPs was obtained and the amino acid sequence determined. All the possible nonameric-peptides incorporating the variant amino acid resulting from these SNPs were interrogated in-silico for their likelihood to be presented by the HLA class I molecules using the Immune Epitope Database stabilized matrix method (SMM and NetMHCpan algorithms. The SMM algorithm predicted that a median of 18,396 peptides weakly bound HLA class I molecules in individual SCT recipients, and 2,254 peptides displayed strong binding. A similar library of presented peptides was identified when the data was interrogated using the NetMHCpan algorithm. The bioinformatic algorithm presented here demonstrates that there may be a high level of mHA variation in HLA-matched individuals, constituting an HLA-specific alloreactivity potential.

  17. Allogeneic split-skin grafting in stem cell transplanted patients

    DEFF Research Database (Denmark)

    Olsen, Jan Kyrre Berg; Vindeløv, Lars; Schmidt, G.

    2008-01-01

    donor chimaerism will not recognise skin from the stem cell donor as foreign. Due to advances in haematology, the number of BMT patients and their long-term survival is expected to increase. cGvHD, predisposing to skin problems and ulcerations, complicates up to 70% of cases of BMT. In BMT patients...

  18. Secretome of Aggregated Embryonic Stem Cell-Derived Mesenchymal Stem Cell Modulates the Release of Inflammatory Factors in Lipopolysaccharide-Induced Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Mohammadi Ghahhari, Nastaran; Maghsood, Faezeh; Jahandideh, Saeed; Lotfinia, Majid; Lak, Shirin; Johari, Behrooz; Azarnezhad, Asaad; Kadivar, Mehdi

    2018-07-01

    Bone marrow mesenchymal stem cells (BM-MSCs) have emerged as a potential therapy for various inflammatory diseases. Because of some limitations, several recent studies have suggested the use of embryonic stem cell-derived MSCs (ESC-MSCs) as an alternative for BM-MSCs. Some of the therapeutic effects of the ESC-MSCs are related to the secretion of a broad array of cytokines and growth factors, known as secretome. Harnessing this secretome for therapeutic applications requires the optimization of production of secretary molecules. It has been shown that aggregation of MSCs into 3D spheroids, as a preconditioning strategy, can enhance immunomodulatory potential of such cells. In this study, we investigated the effect of secretome derived from human ESC-MSCs (hESC-MSCs) spheroids on secretion of IL-1β, IL-10, and tumor necrosis factor α (TNF-α) from lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMCs). In the present study, after immunophenotyping and considering mesodermal differentiation of hESC-MSCs, the cells were non-adherently grown to prepare 3D aggregates, and then conditioned medium or secretome was extracted from the cultures. Afterwards, the anti-inflammatory effects of the secretome were assessed in an in vitro model of inflammation. Results from this study showed that aggregate-prepared secretome from hESC-MSCs was able to significantly decrease the secretion of TNF-α (301.7 ± 5.906, p strategy to increase immunomodulatory characteristics of hESC-MSCs.

  19. Publishing SNP genotypes of human embryonic stem cell lines: policy statement of the International Stem Cell Forum Ethics Working Party.

    Science.gov (United States)

    Knoppers, Bartha M; Isasi, Rosario; Benvenisty, Nissim; Kim, Ock-Joo; Lomax, Geoffrey; Morris, Clive; Murray, Thomas H; Lee, Eng Hin; Perry, Margery; Richardson, Genevra; Sipp, Douglas; Tanner, Klaus; Wahlström, Jan; de Wert, Guido; Zeng, Fanyi

    2011-09-01

    Novel methods and associated tools permitting individual identification in publicly accessible SNP databases have become a debatable issue. There is growing concern that current technical and ethical safeguards to protect the identities of donors could be insufficient. In the context of human embryonic stem cell research, there are no studies focusing on the probability that an hESC line donor could be identified by analyzing published SNP profiles and associated genotypic and phenotypic information. We present the International Stem Cell Forum (ISCF) Ethics Working Party's Policy Statement on "Publishing SNP Genotypes of Human Embryonic Stem Cell Lines (hESC)". The Statement prospectively addresses issues surrounding the publication of genotypic data and associated annotations of hESC lines in open access databases. It proposes a balanced approach between the goals of open science and data sharing with the respect for fundamental bioethical principles (autonomy, privacy, beneficence, justice and research merit and integrity).

  20. Discovery of the rare HLA-B*39:77 allele in an unrelated Taiwanese bone marrow stem cell donor using the sequence-based typing method.

    Science.gov (United States)

    Yang, K L; Lee, S K; Lin, P Y

    2013-08-01

    We detected a rare HLA-B locus allele, B*39:77, in a Taiwanese unrelated marrow stem cell donor in our routine HLA sequence-based typing (SBT) exercise for a possible haematopoietic stem cell donation. In exons 2, 3 and 4, the DNA sequence of B*39:77 is identical to the sequence of B*39:01:01:01 except one nucleotide at nucleotide position 733 (G->A) in exon 4. The nucleotide variation caused one amino acid alteration at residue 221 (Gly->Ser). B*39:77 was probably derived from a nucleotide substitution event involving B*39:01:01:01. The probable HLA-A, -B, -C, -DRB1 and -DQB1 haplotype in association with B*39:77 may be deduced as A*02:01-B*39:77-C*07:02-DRB1*08:03-DQB1*06:01. Our discovery of B*39:77 in Taiwanese adds further polymorphism of B*39 variants in Taiwanese population. © 2013 John Wiley & Sons Ltd.

  1. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman

    Directory of Open Access Journals (Sweden)

    Amornrat Tangprasittipap

    2017-04-01

    Full Text Available The MUi019-A human induced pluripotent stem cell line was generated from peripheral blood CD34+ hematopoietic progenitors of a healthy woman using a non-integrative reprogramming method. Episomal vectors carrying reprogramming factors OCT4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 and EBNA-1 were delivered using electroporation. The iPSC line can be used as a control in studying disease mechanisms. Furthermore, gene editing approaches can be used to introduce specific mutations into the MUi019-A to model disease while the cell type affected by the disease is inaccessible.

  2. Adult Stem Cell-Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2017-10-01

    acceptable donor nerves are often not available for this purpose, particularly in patients suffering multiple extremity injuries or faced with traumatic...amputations. Alternatives include the use of a blood vessel graft or a synthetic nerve guide, although these devices are only effective over distances less...of combat-related orthopaedic trauma. Given the severity of the orthopaedic injuries sustained during battlefield trauma, an acceptable donor nerve is

  3. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model.

    Science.gov (United States)

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; Mora-García, María de Lourdes

    2015-09-25

    BACKGROUND Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. MATERIAL AND METHODS Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. RESULTS We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (psodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings.

  4. Stimulation and inhibition of erythropoiesis in donors and hematopoietic effect in irradiated recipient

    Energy Technology Data Exchange (ETDEWEB)

    Ninkov, V; Piletic, O; Stepanovic, D [Institut za Nuklearne Nauke Boris Kidric, Vinca (Yugoslavia); Belgrade Univ. (Yugoslavia). Inst. of Histology)

    1976-03-01

    Regeneration dynamics in bone marrow and spleen was studied in rats after irradiation of 800 R and transfusion of bone marrow cells from donors treated in different ways. Priority of the microenvironment of the recipient or of the information obtained in cell donors with respect to further hematopoietic cell differentiation was studied in irradiated recipients. Rats irradiated with 800 R were used as recipients in the experiments. The donors of marrow cells were the rats with stimulated or inhibited erythropoiesis. Stimulation of erythropoiesis was induced by bleeding and experimental polycythemia was provoked by packed erythrocytes. According to our results, it can be concluded that the processes of postirradiation hematopoiesis after transplantation of the bone marrow cells depend on the number and proliferative state of both donors and recipient stem cells, and microenvironment, not excluding the information introduced with the donor cell transplant.

  5. Characterization of γδ regulatory T cells from peripheral blood in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Ma, Yongyong; Lei, Huyi; Tan, Jie; Xuan, Li; Wu, Xiuli; Liu, Qifa

    2016-01-01

    γδ regulatory T cells are able to inhibit the activation and function of T cells involved in antigen-specific immune responses. This study aimed to investigate the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in patients diagnosed as multiple myeloma (MM). We measured the levels of γδ T cells, the distribution and clonally amplified TCR Vγ and VδT cells in peripheral blood of healthy donors, patients recently diagnosed with MM, and MM patients in remission cohorts. In addition, we evaluated the ability of γδ regulatory T cells to inhibit the proliferation of CD4+CD25- T cells and detected the expression of immunoregulatory-associated molecules. We found that the levels of γδ regulatory T cells from the peripheral blood in patients of MM were significantly higher than those in healthy donors. Comparison of γδT regulatory cells function in MM and healthy donors showed similarly inhibitory effects on the proliferation of T cells. Additionally, TLR8 expression level increased significantly in MM patients compared to healthy donors, while the expression levels of Foxp3, CD25, CTLA4, GITR, GATA3 and Tbet in MM patients and healthy donors showed no significant difference. Taken together, our study reveals the potential role of γδ regulatory T cells in inhibiting anti-tumor immune responses in MM patients.

  6. Cord Blood Stem Cell Procurement in Minority Donors

    National Research Council Canada - National Science Library

    Ratanatharathorn, Voravit

    2008-01-01

    ... of building minority CBU inventory. This final annual report is to give the report of the transplantation outcomes of African/American CBU recipients compared with other racial groups. This analysis is limited to those patients who have received an allogeneic cord blood stem cell transplantation at Karmanos Cancer Center.

  7. Plerixafor and Filgrastim For Mobilization of Donor Peripheral Blood Stem Cells Before A Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    Science.gov (United States)

    2017-06-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  8. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  9. The role of exosomes in peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Rosanna C Ching

    2015-01-01

    Full Text Available Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.

  10. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation?

    Science.gov (United States)

    Oback, B; Wells, D N

    2007-05-01

    Compared to other assisted reproductive technologies, mammalian nuclear transfer (NT) cloning is inefficient in generating viable offspring. It has been postulated that nuclear reprogramming and cloning efficiency can be increased by choosing less differentiated cell types as nuclear donors. This hypothesis is mainly supported by comparative mouse cloning experiments using early blastomeres, embryonic stem (ES) cells, and terminally differentiated somatic donor cells. We have re-evaluated these comparisons, taking into account different NT procedures, the use of donor cells from different genetic backgrounds, sex, cell cycle stages, and the lack of robust statistical significance when post-blastocyst development is compared. We argue that while the reprogrammability of early blastomeres appears to be much higher than that of somatic cells, it has so far not been conclusively determined whether differentiation status affects cloning efficiency within somatic donor cell lineages. Copyright (c) 2006 Wiley-Liss, Inc.

  11. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative

  12. Efficacy of just-in-time plerixafor rescue for Hodgkin's lymphoma patients with poor peripheral blood stem cell mobilization.

    Science.gov (United States)

    Yuan, Shan; Nademanee, Auayporn; Kaniewski, Mark; Palmer, Joycelynne; Shayani, Sepideh; Wang, Shirong

    2014-08-01

    Plerixafor is a Food and Drug Administration-approved agent for improving peripheral blood stem cell (PBSC) mobilization in filgrastim (granulocyte-colony-stimulating factor [G-CSF])-stimulated patients with multiple myeloma and non-Hodgkin's lymphoma. Limited information is available on its use in Hodgkin's lymphoma (HL) patients. We describe our experience with plerixafor as an immediate rescue agent in HL patients with poor PBSC mobilization. We retrospectively reviewed the collection data of 27 consecutive HL patients at our center in whom plerixafor was added to rescue a failing PBSC collection after G-CSF and chemotherapy (26) or G-CSF alone (1). Plerixafor was added in 11 patients due to peripheral blood (PB) CD34+ counts that persisted below the threshold (>10 × 10(6) /L) to initiate collection (median, 1.47 × 10(6) ; range 0 × 10(6) -6.28 × 10(6) /L) and in 16 patients due to low collection yields, who had a median yield of 0.33 × 10(6) (0.14 × 10(6) -0.65 × 10(6) ) CD34+ cells/kg on the last collection before plerixafor administration. After a median of 2 (range, 2-4) collections with plerixafor, the patients collected a median of 1.82 × 10(6) (0.52 × 10(6) -11.14 × 10(6) ) CD34+ cells/kg. The addition of plerixafor enabled 20 patients (74.1%) to reach the 2.0 × 10(6) CD34+ cells/kg minimum required for autologous stem cell transplantation (ASCT) during the same collection cycle. Subsequent remobilization in three patients with plerixafor enabled all three to reach this goal. Plerixafor can be used in HL patients with poor mobilization as a rescue agent and boosts mobilization sufficiently in most patients in the same collection attempt, thus not only permitting ASCT, but also avoiding remobilization and the associated costs, treatment delays, and patient inconvenience. © 2014 AABB.

  13. Hematopoietic Stem Cell Transplantation Activity Worldwide in 2012 and a SWOT Analysis of the Worldwide Network for Blood and Marrow Transplantation Group (WBMT) including the global survey

    Science.gov (United States)

    Niederwieser, Dietger; Baldomero, Helen; Szer, Jeff; Gratwohl, Michael; Aljurf, Mahmoud; Atsuta, Yoshiko; Bouzas, Luis Fernando; Confer, Dennis; Greinix, Hildegard; Horowitz, Mary; Iida, Minako; Lipton, Jeff; Mohty, Mohamad; Novitzky, Nicolas; Nunez, José; Passweg, Jakob; Pasquini, Marcelo C.; Kodera, Yoshihisa; Apperley, Jane; Seber, Adriana; Gratwohl, Alois

    2016-01-01

    Data on 68,146 hematopoietic stem cell transplants (HSCT) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCT were registered from unrelated 16,433 than related 15,493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared to 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCT/team). An increase of 67% was noted in mismatched/haploidentical family HSCT. A SWOT analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four WHO regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood. PMID:26901703

  14. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells.

    Science.gov (United States)

    Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K

    2017-05-01

    Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  15. Polymorphism in the interleukin-7 receptor-alpha and outcome after allogeneic hematopoietic cell transplantation with matched unrelated donor

    DEFF Research Database (Denmark)

    Shamim, Z; Spellman, S; Haagenson, M

    2013-01-01

    Interleukin-7 (IL-7) is essential for T cell development in the thymus and maintenance of peripheral T cells. The α-chain of the IL-7R is polymorphic with the existence of SNPs that give rise to non-synonymous amino acid substitutions. We previously found an association between donor genotypes...... significance of IL-7Rα SNP genotypes in 590-recipient/donor pairs that received HLA-matched unrelated donor HCT for haematological malignancies. Consistent with the primary studies, the rs1494555GG and rs1494558TT genotypes of the donor were associated with aGvHD and chronic GvHD in the univariate analysis...

  16. Analysis of the motivation for hematopoietic stem cell donation.

    Science.gov (United States)

    Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M

    2011-05-01

    The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    International Nuclear Information System (INIS)

    Kim, Su Jin; Cho, Hyun Hwa; Kim, Yeon Jeong; Seo, Su Yeong; Kim, Han Na; Lee, Jae Bong; Kim, Jae Ho; Chung, Joo Seop; Jung, Jin Sup

    2005-01-01

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  18. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  19. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Macias Abraham, Consuelo; Valle Perez, Lazaro O del; Baganet Cobas, Aymara

    2011-01-01

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90 +c ells in mononuclear cells from CD34 -/ CD45 -p eripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34 +c ells in peripheral blood stem cells with a low expression of molecules CD117 -a nd DR -s uggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  20. Xenotransplantation: A Potential Solution to the Critical Organ Donor Shortage

    Directory of Open Access Journals (Sweden)

    K Howe Sim

    1999-01-01

    Full Text Available The success of allotransplantation as a treatment for end-stage organ failure has resulted in the need for an increasing number of organ donors. Attempts to meet this need include the use of organs from living related and unrelated donors, financial or other incentives for the donor family, and even the reuse of transplanted organs. Despite these initiatives, the supply of organs for transplantation still falls far short of the demand, as evidenced by longer waiting times for transplantation and decreasing transplantation rates. Even if Canada were able to increase its organ donor rate to that of Spain (40 to 50/million, where organ donation is governed by ‘presumed consent’ legislation, this would not alleviate the problem of donor shortage. Interest in xenotransplantation stems from the need to overcome this increasingly severe shortage of human organs. Indeed, some argue that xenotransplantation is the only potential way of addressing this shortage. As immunological barriers to xenotransplantation are better understood, those hurdles are being addressed through genetic engineering of donor animals and the development of new drug therapies. However, before xenotransplantation can be fully implemented, both the scientific/medical communities and the general public must seriously consider and attempt to resolve the many complex ethical, social and economic issues that it presents.

  1. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    Science.gov (United States)

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  2. Functional and Pharmacological Analysis of Cardiomyocytes Differentiated from Human Peripheral Blood Mononuclear-Derived Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael Riedel

    2014-07-01

    Full Text Available Advances in induced pluripotent stem cell (iPSC technology have set the stage for routine derivation of patient- and disease-specific human iPSC-cardiomyocyte (CM models for preclinical drug screening and personalized medicine approaches. Peripheral blood mononuclear cells (PBMCs are an advantageous source of somatic cells because they are easily obtained and readily amenable to transduction. Here, we report that the electrophysiological properties and pharmacological responses of PBMC-derived iPSC CM are generally similar to those of iPSC CM derived from other somatic cells, using patch-clamp, calcium transient, and multielectrode array (MEA analyses. Distinct iPSC lines derived from a single patient display similar electrophysiological features and pharmacological responses. Finally, we demonstrate that human iPSC CMs undergo acute changes in calcium-handling properties and gene expression in response to rapid electrical stimulation, laying the foundation for an in-vitro-tachypacing model system for the study of human tachyarrhythmias.

  3. Recruitment of feces donors among blood donors

    DEFF Research Database (Denmark)

    Dahl Jørgensen, Simon Mark; Erikstrup, Christian; Dinh, Khoa Manh

    2018-01-01

    As the use of fecal microbiota transplantation (FMT) has gained momentum, an increasing need for continuous access to healthy feces donors has developed. Blood donors constitute a healthy subset of the general population and may serve as an appropriate group for recruitment. In this study, we...... investigated the suitability of blood donors as feces donors. In a prospective cohort study, we recruited blood donors onsite at a public Danish blood bank. Following their consent, the blood donors underwent a stepwise screening process: First, blood donors completed an electronic pre-screening questionnaire...... to rule out predisposing risk factors. Second, eligible blood donors had blood and fecal samples examined. Of 155 blood donors asked to participate, 137 (88%) completed the electronic pre-screening questionnaire, 16 declined, and 2 were excluded. Of the 137 donors who completed the questionnaire, 79 (58...

  4. Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Liu, Zhongliang; Hui, Yi; Shi, Lei; Chen, Zhenyu; Xu, Xiangjie; Chi, Liankai; Fan, Beibei; Fang, Yujiang; Liu, Yang; Ma, Lin; Wang, Yiran; Xiao, Lei; Zhang, Quanbin; Jin, Guohua; Liu, Ling; Zhang, Xiaoqing

    2016-09-13

    Loss-of-function studies in human pluripotent stem cells (hPSCs) require efficient methodologies for lesion of genes of interest. Here, we introduce a donor-free paired gRNA-guided CRISPR/Cas9 knockout strategy (paired-KO) for efficient and rapid gene ablation in hPSCs. Through paired-KO, we succeeded in targeting all genes of interest with high biallelic targeting efficiencies. More importantly, during paired-KO, the cleaved DNA was repaired mostly through direct end joining without insertions/deletions (precise ligation), and thus makes the lesion product predictable. The paired-KO remained highly efficient for one-step targeting of multiple genes and was also efficient for targeting of microRNA, while for long non-coding RNA over 8 kb, cleavage of a short fragment of the core promoter region was sufficient to eradicate downstream gene transcription. This work suggests that the paired-KO strategy is a simple and robust system for loss-of-function studies for both coding and non-coding genes in hPSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Facts about Stem Cells and Importance of Them

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-05-01

    Full Text Available Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three accessible sources of autologous adult stem cells in humans: Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest, Adipose tissue (lipid cells, which requires extraction by liposuction, and Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation, and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation

  6. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells.

    Science.gov (United States)

    Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe

    2011-04-01

    Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  7. Steady state peripheral blood provides cells with functional and metabolic characteristics of real hematopoietic stem cells.

    Science.gov (United States)

    Bourdieu, Antonin; Avalon, Maryse; Lapostolle, Véronique; Ismail, Sadek; Mombled, Margaux; Debeissat, Christelle; Guérinet, Marianne; Duchez, Pascale; Chevaleyre, Jean; Vlaski-Lafarge, Marija; Villacreces, Arnaud; Praloran, Vincent; Ivanovic, Zoran; Brunet de la Grange, Philippe

    2018-01-01

    Hematopoietic stem cells (HSCs), which are located in the bone marrow, also circulate in cord and peripheral blood. Despite high availability, HSCs from steady state peripheral blood (SSPB) are little known and not used for research or cell therapy. We thus aimed to characterize and select HSCs from SSPB by a direct approach with a view to delineating their main functional and metabolic properties and the mechanisms responsible for their maintenance. We chose to work on Side Population (SP) cells which are highly enriched in HSCs in mouse, human bone marrow, and cord blood. However, no SP cells from SSBP have as yet been characterized. Here we showed that SP cells from SSPB exhibited a higher proliferative capacity and generated more clonogenic progenitors than non-SP cells in vitro. Furthermore, xenotransplantation studies on immunodeficient mice demonstrated that SP cells are up to 45 times more enriched in cells with engraftment capacity than non-SP cells. From a cell regulation point of view, we showed that SP activity depended on O 2 concentrations close to those found in HSC niches, an effect which is dependent on both hypoxia-induced factors HIF-1α and HIF-2α. Moreover SP cells displayed a reduced mitochondrial mass and, in particular, a lower mitochondrial activity compared to non-SP cells, while they exhibited a similar level of glucose incorporation. These results provided evidence that SP cells from SSPB displayed properties of very primitive cells and HSC, thus rendering them an interesting model for research and cell therapy. © 2017 Wiley Periodicals, Inc.

  8. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview.

    Science.gov (United States)

    Singh, Anurag K; McGuirk, Joseph P

    2016-11-15

    The field of hematopoietic stem cell transplant (HSCT) has made ground-breaking progress in the treatment of many malignant and nonmalignant conditions. It has also pioneered the concepts of stem cell therapy and immunotherapy as a tool against cancer. The success of transplant for hematologic malignancies derives both from the ability to treat patients with intensive chemoradiotherapy and from potent graft-versus-leukemia (GVL) effects mediated by donor immunity. Additionally, HSCT has been a curative therapy for several nonmalignant hematologic disorders through the provision of donor-derived hematopoiesis and immunity. Preclinical and clinical research in the field has contributed to an advanced understanding of histocompatibility, graft-versus-host disease (GVHD), GVL effect, and immune reconstitution after transplant. Improved donor selection, tailored conditioning regimens, and better supportive care have helped reduce transplant-related morbidity and mortality and expanded access. The development of unrelated donor registries and increased utilization of cord blood and partially matched related donor transplants have ensured a donor for essentially everyone who needs a transplant. However, significant barriers still remain in the form of disease relapse, GVHD infectious complications, and regimen-related toxicities. Recent developments in the field of cellular therapy are expected to further improve the efficacy of transplant. In this review, we discuss the current science of HSCT from a historical perspective, highlighting major discoveries. We also speculate on future directions in this field. Cancer Res; 76(22); 6445-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors

    Directory of Open Access Journals (Sweden)

    Rasmus O. Bak

    2017-07-01

    Full Text Available The CRISPR/Cas9 system has recently been shown to facilitate high levels of precise genome editing using adeno-associated viral (AAV vectors to serve as donor template DNA during homologous recombination (HR. However, the maximum AAV packaging capacity of ∼4.5 kb limits the donor size. Here, we overcome this constraint by showing that two co-transduced AAV vectors can serve as donors during consecutive HR events for the integration of large transgenes. Importantly, the method involves a single-step procedure applicable to primary cells with relevance to therapeutic genome editing. We use the methodology in primary human T cells and CD34+ hematopoietic stem and progenitor cells to site-specifically integrate an expression cassette that, as a single donor vector, would otherwise amount to a total of 6.5 kb. This approach now provides an efficient way to integrate large transgene cassettes into the genomes of primary human cells using HR-mediated genome editing with AAV vectors.

  10. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance.

    Science.gov (United States)

    Mollov, J L; Lucas, C L; Haspot, F; Gaspar, J Kurtz C; Guzman, A; Sykes, M

    2010-03-01

    Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.

  11. Current outcome of HLA identical sibling versus unrelated donor transplants in severe aplastic anemia

    DEFF Research Database (Denmark)

    Bacigalupo, Andrea; Socié, Gerard; Hamladji, Rose Marie

    2015-01-01

    We have analyzed 1448 patients with acquired aplastic anemia grafted between 2005 and 2009, and compared outcome of identical sibling (n=940) versus unrelated donor (n=508) transplants. When compared to the latter, sibling transplants were less likely to be performed beyond 180 days from diagnosis.......04). In conclusion, in multivariate analysis, the outcome of unrelated donor transplants for acquired aplastic anemia, is currently not statistically inferior when compared to sibling transplants, although patients are at greater risk of acute and chronic graft-versus-host disease. The use of peripheral blood grafts...

  12. Stem Cell Therapy for Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Gunduz E

    2011-01-01

    Full Text Available IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone followed autologous stem cell transplantation (SCT. After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI and coronary artery bypass grafting (CABG was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 µg/kg/day granulocyte colony-stimulating factor (G-CSF subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric

  13. [EFFECT OF RECOMBINANT ADENOVIRUS-BONE MORPHOGENETIC PROTEIN 12 TRANSFECTION ON DIFFERENTIATION OF PERIPHERAL BLOOD MESENCHYMAL STEM CELLS INTO TENDON/LIGAMENT CELLS].

    Science.gov (United States)

    Fu, Weili; Chen, Gang; Tang, Xin; Li, Qi; Ll, Jian

    2015-04-01

    To research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells. Peripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR. GFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type I gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061+/- 0.013 vs. 0.004 +/- 0.002, t = -7.700, P=0.031; 0.029 +/- 0.008 vs. 0.003 +/- 0.001, t = -5.741, P=0.020; 0.679 +/- 0.067 vs. 0.142 +/- 0.024, t = -12.998, P=0.000). Ad-BMP-12 can significantly promote differentiation of peripheral blood MSCs into

  14. Development of an encapsulated stem cell-based therapy for diabetes.

    Science.gov (United States)

    Tomei, Alice Anna; Villa, Chiara; Ricordi, Camillo

    2015-01-01

    Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.

  15. Incidence and dynamics of active cytomegalovirus infection in allogeneic stem cell transplant patients according to single nucleotide polymorphisms in donor and recipient CCR5, MCP-1, IL-10, and TLR9 genes.

    Science.gov (United States)

    Corrales, Isabel; Giménez, Estela; Solano, Carlos; Amat, Paula; de la Cámara, Rafael; Nieto, José; Garcia-Noblejas, Ana; Navarro, David

    2015-02-01

    Single nucleotide polymorphisms (SNPs) in genes involved in the activation or regulation of innate and adaptive immune responses may modulate the susceptibility to and the natural history of certain chronic viral infections. The current study aimed to investigate whether donor and recipient SNPs in the chemokine receptor 5 (rs1800023), monocyte chemoattractant protein 1 (rs13900), interleukin-10 (rs1878672), and Toll-like receptor 9 (rs352140) genes would exert any influence on the rate of incidence and features of CMV DNAemia in the allogeneic stem cell transplantation setting. This was a retrospective observational multicenter study. The cohort consisted of 102 non-consecutive allogeneic stem cell transplant recipients. SNP genotyping was performed by allele-specific real-time PCR. CMV surveillance was performed by the pp65 antigenemia assay/and or by real-time PCR. Seventy-three patients developed CMV DNAemia within the first 100 days after transplantation (71.5%). Neither donor nor recipient SNPs were associated significantly with the rate of incidence of active CMV infection, nor with the need for pre-emptive antiviral therapy. Both the duration of CMV DNAemia and the plasma CMV DNA peak load during episodes were significantly higher in patients harboring the donor (but not the recipient) chemokine receptor 5 A/A genotype, than in their A/G and G/G counterparts (P = 0.022 and P = 0.045, respectively). The data reported suggest that SNPs in chemokine receptor 5 may influence the dynamics of CMV infection in the Allo-SCT setting. © 2014 Wiley Periodicals, Inc.

  16. Brain stem type neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kataoka, Satoshi; Hirose, Genjiro; Kosoegawa, Hiroshi; Oda, Rokuhei; Yoshioka, Akira

    1987-01-01

    Two cases of brain stem type Neuro-Behcet's syndrome were evaluated by brain CT and Magnetic Resonance Imaging (Super-conducting type, 0.5 tesla) to correlate with the neurological findings. In the acute phase, low density area with peripheral enhancement effect and mass effect were seen at the brain stem in brain CT. MRI revealed a extensive high intensity signal area mainly involving the corticospinal tract in the meso-diencephalon as well as pons by T 2 weighted images (spin echo, TR = 1, 600 msec, TE = 90 msec) and the value of T 1 , T 2 , at the brain stem lesion were prolonged moderately. After high dose steroid treatment, the low density area in brain CT and high signal area in MRI were gradually reduced in its size. Peripheral enhancement effect in brain CT disappeared within 10 months in case 1, one month in the other case. In the chronic stage, the reduction of low density area and atrophy of brain stem were noted in brain CT. The lesion in chronic stage had low intensity in T 1 , T 2 weighted images and the T 1 , T 2 values at the lesion were mildly prolonged in MRI. Sequentially CT with enhancement and MRI examinations with T 1 , T 2 weighted images were useful to detect the lesion and to evaluate the activity, evolution of brain stem type Neuro-Behcet's syndrome. (author)

  17. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    Science.gov (United States)

    Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R

    2009-07-15

    Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.

  18. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  19. Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells.

    Science.gov (United States)

    Chen, Yung-Ching; Wu, King-Chuen; Huang, Bu-Miin; So, Edmund Cheung; Wang, Yang-Kao

    2018-05-01

    Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high-density culture performed with TGF-β-driven chondrogenic induction medium. Treatment of the Midazolam dose-dependently inhibited chondrogenesis, examined using Alcian blue-stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor-β-induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam-induced congenital malformations of the musculoskeletal system through PBR. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Role of HLA in Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Meerim Park

    2012-01-01

    Full Text Available The selection of hematopoietic stem cell transplantation (HSCT donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.

  1. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry.

    Science.gov (United States)

    Michallet, M; Sobh, M; Milligan, D; Morisset, S; Niederwieser, D; Koza, V; Ruutu, T; Russell, N H; Verdonck, L; Dhedin, N; Vitek, A; Boogaerts, M; Vindelov, L; Finke, J; Dubois, V; van Biezen, A; Brand, R; de Witte, T; Dreger, P

    2010-10-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high resolution ('well matched' unrelated donor, WMUD), and 139 were mismatched (MM), including 30 matched in low resolution; 266 patients (72%) received reduced-intensity conditioning and 102 (28%) received standard. According to the EBMT risk score, 11% were in scores 1-3, 23% in score 4, 40% in score 5, 22% in score 6 and 4% in score 7. There was no difference in overall survival (OS) at 5 years between HLA-identical siblings (55% (48-64)) and WMUD (59% (41-84)), P=0.82. In contrast, OS was significantly worse for MM (37% (29-48) P=0.005) due to a significant excess of transplant-related mortality. Also OS worsened significantly when EBMT risk score increased. HLA matching had no significant impact on relapse (siblings: 24% (21-27); WMUD: 35% (26-44), P=0.11 and MM: 21% (18-24), P=0.81); alemtuzumab T-cell depletion and stem cell source (peripheral blood) were associated with an increased risk. Our findings support the use of WMUD as equivalent alternative to HLA-matched sibling donors for allogeneic HSCT in CLL, and justify the application of EBMT risk score in this disease.

  2. Comparisons Between Allogeneic Peripheral Blood Stem Cell Transplantation and Allogeneic Bone Marrow Transplantation in Adult Hematologic Disease: A Single Center Experience

    Directory of Open Access Journals (Sweden)

    Yi-Chang Liu

    2003-11-01

    Full Text Available This retrospective study compared the outcomes in 32 adult patients with hematologic diseases (acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, myelodysplastic syndrome, severe aplastic anemia who received allogeneic bone marrow transplantation (BMT, n = 14; median age, 28 years or allogeneic peripheral blood stem cell transplantation (PBSCT, n = 18; median age, 29 years from human leukocyte antigen-identical sibling donors. Median follow-up was 58 months in BMT recipients and 18 months in PBSCT recipients. Neutrophil (median, Day 8 vs Day 13, p < 0.001 and platelet engraftment (median, Day 9 vs Day 17, p < 0.001 was faster in the PBSCT group than in the BMT group. Patients receiving PBSCT required less platelet transfusion than those receiving BMT (median, 54 units vs 144 units, p < 0.001, but there was no significant difference in red cell transfusion. At 100 days, there was no difference in the incidence of acute graft-versus-host disease (GVHD (42.9% vs 33.3%, p = 0.72 or grade II-IV acute GVHD (14.3% vs 5.6%, p = 0.57, and there was no difference in the cumulative incidence of chronic GVHD (20% vs 33.3%, p = 0.67. No chronic GVHD was noted in any relapsed patients (BMT, 5; PBSCT, 3, and no patients with chronic GVHD during follow-up had a relapse. Relapse was the most frequent cause of death in both groups (BMT, 5/9, 55.6%; PBSCT, 3/4, 75%; p = 0.25; all relapses occurred within 1 year after transplantation. Overall survival was significantly better in the PBSCT group (35.7% vs 77.8%, p = 0.029, but this difference was lost if only hematologic malignancies were analyzed (30.8% vs 63.6%, p = 0.20. Our results are similar to those reported previously, with faster neutrophil and platelet engraftment and less severe acute GVHD and extensive chronic GVHD with PBSCT. Allogeneic PBSCT is a feasible and beneficial alternative to allogeneic BMT in adult hematologic disease.

  3. Stem Cell Banking for Regenerative and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    David T. Harris

    2014-02-01

    Full Text Available Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source.

  4. Stem Cell Banking for Regenerative and Personalized Medicine

    Science.gov (United States)

    Harris, David T.

    2014-01-01

    Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060

  5. Hematopoietic stem cell transplantation in children with leukemia: a single institution experience with respect to donors.

    Science.gov (United States)

    Baek, Hee Jo; Kook, Hoon; Han, Dong Kyun; Hwang, Tai Ju

    2011-12-01

    Aim of this study was to compare the outcomes of transplantation by donor source and to help select the best alternative donor in children with leukemia. Donor sources included matched related donor (MRD, n = 35), allele-matched unrelated donor (M-UD, n = 10) or -mismatched (MM)-UD (n = 13) or unrelated umbilical cord blood (UCB, n = 11). UCB group had a significantly higher incidence of grade II-IV acute graft versus host disease (MRD, 11.8%; M-UD, 30.0%; MM-UD, 15.4%, UCB, 54.4%, P = 0.004) but there was no difference in incidence of chronic graft versus host disease between 4 groups. The 5-yr leukemia-free survival (LFS) was 76.7%, 60.0%, 69.2%, and 45.5%, respectively (P = 0.128). MRD group showed higher LFS rate than UCB group (P = 0.022). However, LFS of M-UD and MM-UD together (65.2%) was not different from that of MRD group (76.7%, P = 0.325), or from that of UCB (45.5%, P = 0.190). The relapse incidence at 5 yr was 17.1%, 20.0%, 15.4%, and 0%, respectively (P = 0.460). The 100-day treatment-related mortality was 2.9%, 20.0%, 7.7%, and 36.4%, respectively (P = 0.011). Despite the limitations of small number of patients, unrelated donor transplants including even allele-mismatched ones, seem to be as effective in children with leukemia lacking suitable relative donors. Also, UCB transplant may serve as another possible option in urgent transplants.

  6. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Canninga-van Dijk, MR; Sanders, CJ; Verdonck, LF; Fijnheer, R; van den Tweel, JG

    Allogeneic haematopoietic stem cell transplantation (i.e. bone marrow or peripheral blood stem cell transplantation) is a common procedure in the treatment of various haematological disorders such as aplastic anaemia, (pre)leukaemias, some malignant lymphomas, multiple myeloma and immunodeficiency

  7. Conversion of adult human peripheral blood mononuclear cells into induced neural stem cell by using episomal vectors

    Directory of Open Access Journals (Sweden)

    Xihe Tang

    2016-03-01

    Full Text Available Human neural stem cells (NSCs hold great promise for research and therapy in neural diseases. Many studies have shown direct induction of NSCs from human fibroblasts, which require an invasive skin biopsy and a prolonged period of expansion in cell culture prior to use. Peripheral blood (PB is routinely used in medical diagnoses, and represents a noninvasive and easily accessible source of cells. Here we show direct derivation of NSCs from adult human PB mononuclear cells (PB-MNCs by employing episomal vectors for transgene delivery. These induced NSCs (iNSCs can expand more than 60 passages, can exhibit NSC morphology, gene expression, differentiation potential, and self-renewing capability and can give rise to multiple functional neural subtypes and glial cells in vitro. Furthermore, the iNSCs carry a specific regional identity and have electrophysiological activity upon differentiation. Our findings provide an easily accessible approach for generating human iNSCs which will facilitate disease modeling, drug screening, and possibly regenerative medicine.

  8. Biological Significance of the Suppression of Oxidative Phosphorylation in Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-11-01

    Full Text Available We discovered that induced pluripotent stem cell (iPSC clones generated from aged tissue donors (A-iPSCs fail to suppress oxidative phosphorylation. Compared to embryonic stem cells (ESCs and iPSCs generated from young donors (Y-iPSCs, A-iPSCs show poor expression of the pluripotent stem cell-specific glucose transporter 3 (GLUT3 and impaired glucose uptake, making them unable to support the high glucose demands of glycolysis. Persistent oxidative phosphorylation in A-iPSCs generates higher levels of reactive oxygen species (ROS, which leads to excessive elevation of glutathione (a ROS-scavenging metabolite and a blunted DNA damage response. These phenotypes were recapitulated in Y-iPSCs by inhibiting pyruvate dehydrogenase kinase (PDK or supplying citrate to activate oxidative phosphorylation. In addition, oxidative phosphorylation in A-iPSC clones depletes citrate, a nuclear source of acetyl group donors for histone acetylation; this consequently alters histone acetylation status. Expression of GLUT3 in A-iPSCs recovers the metabolic defect, DNA damage response, and histone acetylation status.

  9. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    Science.gov (United States)

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  10. Disease-specific hematopoietic stem cell transplantation in children with inherited bone marrow failure syndromes.

    Science.gov (United States)

    Li, Qian; Luo, Changying; Luo, Chengjuan; Wang, Jianmin; Li, Benshang; Ding, Lixia; Chen, Jing

    2017-08-01

    Hematopoietic stem cell transplantation (HSCT) using an optimized conditioning regimen is essential for the long-term survival of patients with inherited bone marrow failure syndromes (IBMFS). We report HSCT in 24 children with Fanconi anemia (FA, n = 12), Diamond-Blackfan anemia (DBA, n = 7), and dyskeratosis congenita (DC, n = 5) from a single HSCT center. The graft source was peripheral blood stem cells (n = 19) or cord blood stem cells (n = 5). FA and DC patients received reduced-intensity conditioning, while DBA patients had myeloablative conditioning. The median numbers of infused mononuclear cells and CD34+ cells were 14.20 × 10 8 /kg and 4.3 × 10 6 /kg, respectively. The median time for neutrophil and platelet recovery was 12 and 18 days, respectively. Complete donor engraftment was achieved in 23 of 24 patients. There was one primary graft failure. During a median follow-up of 27.5 months (range, 2-130 months), the overall survival in all patients was 95.8%. The incidence of grade II-III acute graft versus host disease (GvHD) and chronic GvHD was 29.2% and 16.7%, respectively. We conclude that HSCT can be a curative option for patients with IBMFS. Modification of the conditioning regimen based on the type of disease may lead to encouraging long-term outcomes.

  11. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    Science.gov (United States)

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.

  12. Risk of Exposure to Zika Virus and Impact on Cord Blood Banking and Adult Unrelated Donors in Hematopoietic Cell Transplantation: The Canadian Blood Services Experience.

    Science.gov (United States)

    Adams, Zachary; Morris, Gail; Campbell, Todd; Mostert, Karen; Dibdin, Nicholas; Fearon, Margaret; Elmoazzen, Heidi; Mercer, Dena; Young, Kimberly; Allan, David

    2018-04-01

    Zika virus has emerged as a potential threat to the Canadian blood supply system. Stem cell donors within Canadian Blood Services' Cord Blood Bank (CBB) and OneMatch Stem Cell and Marrow Network (OM) now undergo screening measures designed to reduce the risk of Zika virus transmission. The impact these screening measures have on cord blood and unrelated adult stem cell donations is currently unknown. Among 146 donor workups initiated by OM between July 2016 and May 2017, 102 were completed and 44 workups were canceled. There were 17 potential donors (11.6%) with a risk of Zika virus exposure identified by the donor questionnaire (13 completed, 4 canceled workups). None of the workups involved a donor diagnosed with confirmed Zika virus within the past 6 months. Only 1 of the 44 canceled workups (and only 1 of 4 cases with a risk of Zika transmission) was canceled because of the risk of Zika transmission, and a backup donor was selected. Canadian Blood Services' CBB identified 25 of 875 cord blood units (2.9%) from women who donated their infants' cord blood and underwent screening that otherwise met the initial cell number thresholds for banking and had at least 1 risk factor for exposure to Zika virus. No women were diagnosed with Zika virus at any point of their pregnancy. All 25 units were discarded. Unrelated donors at OM have a higher incidence of a risk of exposure to Zika virus compared with cord blood donors. Only rarely did transplant centers cancel donor workups due to potential Zika virus exposure. The impact of screening for Zika virus exposure risk on cord blood banking was minor. Continued vigilance and surveillance is recommended. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. © 2014 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  14. stem cell research: applications in haematological conditions

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    chemotherapy and radiation. This has allowed HSCT to be conducted in older patients without the need for hospitalization. STEM CELL COLLECTION. Types of Donors. There are two major types of bone marrow transplantation namely;. Autologous and Allogenic transplantations. Autologous: Bone marrow transplantation.

  15. Proliferative capacity of murine hematopoietic stem cells

    International Nuclear Information System (INIS)

    Hellman, S.; Botnick, L.E.; Hannon, E.C.; Vigneulle, R.M.

    1978-01-01

    The present study demonstrates a decrease in self-renewal capacity with serial transfer of murine hematopoietic stem cells. Production of differentiated cell progeny is maintained longer than stem cell self-renewal. In normal animals the capacity for self-renewal is not decreased with increasing donor age. The stem cell compartment in normal animals, both young and old, appears to be proliferatively quiescent. After apparent recovery from the alkylating agent busulfan, the probability of stem cell self-renewal is decreased, there is a permanent defect in the capacity of the bone marrow for serial transplantation, and the stem cells are proliferatively active. These findings support a model of the hematopoietic stem cell compartment as a continuum of cells with decreasing capacities for self-renewal, increasing likelihood for differentiation, and increasing proliferative activity. Cells progress in the continuum in one direction and such progression is not reversible

  16. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Directory of Open Access Journals (Sweden)

    Viviana Meraviglia

    2018-03-01

    Full Text Available Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3, encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies.Resource tableImage 1Unique stem cell lines identifierEURACi001-AEURACi002-AEURACi003-AAlternative names of stem cell linesB2CAV3 (EURACi001-AL1CAV3 (EURACi002-AN1CAV3 (EURACi003-AInstitutionInstitute for Biomedicine, Eurac ResearchContact information of distributorAlessandra Rossini (alessandra.rossini@eurac.eduType of cell linesiPSCsOriginHumanCell sourcePeripheral blood mononuclear cells (PBMCsMethod of reprogrammingElectroporation of episomal vectors (pCXLE hOCT3/4-shp53-F, pCXLE-hSK, and pCXLE-hULMultiline rationaleNon-isogenic cell lines obtained from patients with mutations in the same gene (CAV3Gene modificationNOType of modificationSpontaneous mutationsAssociated diseaseCaveolinopathiesGene/locusHeterozygous CAV3 c.Δ184–192 (EURACi001-AHeterozygous CAV3 c.303 TGG > TGC (EURACi002-AHeterozygous CAV3 c.233 ACG > AAG (EURACi003-AMethod of modificationN/AName of transgene or resistanceN/AInducible/constitutive systemN/ADate archived/stock dateJanuary 2016 (EURACi001-ASeptember 2016 (EURACi002-AMay 2016 (EURACi003-ACell line repository/bankN/AEthical approvalPeripheral blood was collected from patients after signing the informed consent provided by Cell Line and DNA Biobank from Patients Affected by Genetic Diseases, member of the

  17. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  18. Seeding of single hemopoietic stem cells and self renewal of committed stem cells

    International Nuclear Information System (INIS)

    Brecher, G.

    1986-01-01

    Single cells and two to five proliferating cells were transfused into mice whose own stem cells had been killed by irradiation. When a small inoculum of 50,000 AB marrow cells was given only 4 of 20 recipients survived, but all 4 had only PGK A enzyme in their peripheral blood cells. The results indicate that the survivors received a single pluripotential stem cell capable of proliferating. Survivors showed no deterioration in their blood picture after many months. It was concluded that there is no clonal succession in the marrow cells. Further studies with transfusions of 100,000 and 10,000,000 marrow cells after lethal irradiation suggest that there is production of committed stem cells with significant self-renewal

  19. Hematopoietic stem cell transplantation from unrelated donors in children with DOCK8 deficiency.

    Science.gov (United States)

    Uygun, Dilara Fatma K; Uygun, Vedat; Reisli, İsmail; Keleş, Sevgi; Özen, Ahmet; Yılmaz, Mustafa; Sayar, Esra H; Daloğlu, Hayriye; Öztürkmen, Seda I; Çakı, Suar; Karasu, Gülsün T; Yeşilipek, Akif

    2017-11-01

    DIDS is a unique form of combined immune deficiency characterized by an unusual susceptibility to cutaneous viral infections, severe allergies with eosinophilia and elevated immunoglobulin E titers, autoimmunity, and cancer. HSCT is considered the standard of care for this deadly disease. We have retrospectively analyzed the outcome of allogeneic HSCT from unrelated donors in patients with DIDS. Data from four patients, with five transplants, are presented. All patients received transplants from unrelated donors' BM, except for one patient who received a cord blood transplant. The conditioning regimens were based on myeloablative protocols for BM derived transplants; a NM regimen was pursued for the patient who received a cord blood transplant, which resulted in graft rejection. Although recurrent pneumonia and skin infections resolved immediately after transplantation, all patients subsequently developed human herpesvirus infection, including cutaneous herpetic lesions, cytomegalovirus reactivation, and zona zoster, which could be attributed to the use of ATG. Despite the presence of serious morbidities prior to transplantation, all patients recovered successfully. DIDS can be successfully treated with allogeneic HSCT from unrelated donors following a myeloablative conditioning regimen, with a reasonable safety profile. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  1. Timing of Peripheral Blood Stem Cell Yield: Comparison of Alternative Methods with the Classic Method for CD34+ Cell Determination

    Directory of Open Access Journals (Sweden)

    I. Fatorova

    2014-01-01

    Full Text Available Hematopoietic stem cells (HSCs, still represent a certain mystery in biology, have a unique property of dividing into equal cells and repopulating the hematopoietic tissue. This potential enables their use in transplantation treatments. The quality of the HSC grafts for transplantation is evaluated by flow cytometric determination of the CD34+ cells, which enables optimal timing of the first apheresis and the acquisition of maximal yield of the peripheral blood stem cells (PBSCs. To identify a more efficient method for evaluating CD34+ cells, we compared the following alternative methods with the reference method: hematopoietic progenitor cells (HPC enumeration (using the Sysmex XE-2100 analyser, detection of CD133+ cells, and quantification of aldehyde dehydrogenase activity in the PBSCs. 266 aphereses (84 patients were evaluated. In the preapheretic blood, the new methods produced data that were in agreement with the reference method. The ROC curves have shown that for the first-day apheresis target, the optimal predictive cut-off value was 0.032 cells/mL for the HPC method (sensitivity 73.4%, specificity 69.3%. HPC method exhibited a definite practical superiority as compared to other methods tested. HPC enumeration could serve as a supplementary method for the optimal timing of the first apheresis; it is simple, rapid, and cheap.

  2. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    OpenAIRE

    El-Badri, Nagwa; Ghoneim, Mohamed A.

    2013-01-01

    Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy...

  3. Collection and composition of autologous peripheral blood stem cells graft in patients with acute myeloid leukemia: influence on hematopoietic recovery and outcome.

    Science.gov (United States)

    Raos, Mirela; Nemet, Damir; Bojanić, Ines; Sertić, Dubravka; Batinić, Drago; Dusak, Vesna; Dubravcić, Klara; Mazić, Sanja; Serventi-Seiwerth, Ranka; Mrsić, Mirando; Golubić-Cepulić, Branka; Labar, Boris

    2010-03-01

    Hematopoietic stem cell (HSC) transplantation is a standard approach in the treatment of hematological malignant diseases. For the last 15 years the main source of cells for transplantation have been peripheral blood stem cells (PBSC). With the availability of hematopoietic growth factors and understanding the advantages of treatment with PBSC, the application of bone marrow (BM) was supplanted. The aim of this survey was to explore the success of PBSC collection, the factors which influence the success of PBSC collection, the composition and the quality of graft and their influence on hematopoietic recovery and outcome after transplantation in patients with acute myeloid leukemia (AML). PBSC were collected by the method of leukapheresis after applying a combination of chemotherapy and growth factors or only growth factors. The quality of graft was determined with the clonogenic progenitor cell assay and with the flow cytometry analysis. Of the total 134 patients with AML, who were submitted to HSC mobilization, the collection was successful in 78 (58.2%) patients. The collection was more successful after the first than after the second attempt of HSC mobilization (49% vs. 11%). The criteria for effective mobilization were the number of leukocytes > 3 x 10(9)/L and the concentration of CD34+ cells > 20 x 10(3)/mL in the peripheral blood on the first day of leukapheresis. The number of CD34+ cells infused had the strongest impact on hematopoietic recovery. We noted significantly faster hematological recovery of neutrophils and platelets, fewer number of transfused units of red blood cells and platelets, shorter duration of the tranfusion support, shorter treatment with intravenous antibiotic therapy and shorter hospitalization after PBSC compared to BM transplantation. These advantages could provide their standard application in the treatment of patients with AML.

  4. A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR.

    Directory of Open Access Journals (Sweden)

    Kelly Broen

    Full Text Available Nonmyeloablative allogeneic stem cell transplantation (SCT can induce remission in patients with renal cell carcinoma (RCC, but this graft-versus-tumor (GVT effect is often accompanied by graft-versus-host disease (GVHD. Here, we evaluated minor histocompatibility antigen (MiHA-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI. One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT.

  5. Isolation of highly suppressive CD25+FoxP3+ T regulatory cells from G-CSF-mobilized donors with retention of cytotoxic anti-viral CTLs: application for multi-functional immunotherapy post stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Edward R Samuel

    Full Text Available Previous studies have demonstrated the effective control of cytomegalovirus (CMV infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T. Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from

  6. Immediate Regrafting of the Split Thickness Skin Graft Donor Site Assists Healing.

    Science.gov (United States)

    Bradow, Brian P; Hallock, Geoffrey G; Wilcock, Samuel P

    2017-05-01

    Delayed or even lack of healing of a split-thickness skin graft (STSG) donor site is a potential problem with elderly patients or those with poor wound healing capabilities. A proactive solution that may minimize this risk is to regraft that donor site using otherwise discarded skin graft remnants. A prospective, nonrandomized, consecutive study was designed to compare the time to healing of the commonly used anterior thigh STSG donor site in patients who had routine dressings (n = 113) versus those with comorbidities known to adversely affect wound healing and had planned regrafting (n = 204). Those comorbidities included age (≥65 years), diabetes mellitus, peripheral vascular disease, chronic renal disease, and chronic steroid use. The average number of comorbidities in the regrafted subgroup versus those not regrafted was 1.41 and 0.31, respectively. This was considered to be a significant difference ( P skin graft materials when so indicated and can be a proactive solution to a potentially cumbersome dilemma.

  7. Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody Mediated Rejection After Vascularized Composite Allotransplantation

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0664 TITLE: Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody-Mediated Rejection after...Annual 3. DATES COVERED 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Autologous Hematopoietic Stem Cell Transplantation to...sensitization, autologous hematopoietic stem cell transplantation, antibody mediated rejection, donor specific antibodies 16. SECURITY CLASSIFICATION OF

  8. Microculture assay for isolation of human immunodeficiency virus type 1 and for titration of infected peripheral blood mononuclear cells.

    Science.gov (United States)

    Dimitrov, D H; Melnick, J L; Hollinger, F B

    1990-04-01

    To define the optimal conditions for human immunodeficiency virus (HIV) detection in microcultures, experiments were conducted with different ratios of patient and donor peripheral blood mononuclear cells (PBMCs). Donor/patient PBMC ratios ranged from 1:1 to 1:125. Optimal results were obtained when 1,500,000 donor cells were cocultured with equal or smaller quantities of patient PBMCs. Thus, virologic endpoints could be achieved by diluting patient cells. Smaller numbers of donor cells, with or without larger numbers of patients cells, resulted in lower rates of HIV isolation. Similarly, the direct stimulation of patient PBMCs with phytohemagglutinin without the addition of normal donor cells lowered the sensitivity of the assay significantly. We suggest that a microculture procedure using a fixed quantity of donor cells with different dilutions of patient cells may be useful for monitoring changing HIV levels during antiviral therapy.

  9. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    International Nuclear Information System (INIS)

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-01-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine- 125 I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity

  10. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  11. Clinico-serologic co-relation in bi-directional ABO incompatible hemopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sabita Basu

    2015-01-01

    Full Text Available Background: The ABO blood group system is of prime significance in red cell transfusion and organ transplantation. However, ABO compatibility is not critical in allogenic hemopoietic stem cell transplantation (HSCT and approximately 40-50% of hemopoietic stem cell transplants are ABO incompatible. This incompatibility may be major, minor or bi-directional. Though there are descriptions of transfusion practice and protocols in ABO incompatible HSCT, there are considerable variations and transfusion support in these patients can be very challenging. Aims: The immunohematologic observations in two cases of bi-directional ABO incompatible HSCT have been described, and clinico-serologic correlation has been attempted. Materials and Methods: In both cases, peripheral blood stem cell harvests were obtained using the Cobe spectra cell separator. Immunohematologic assessments in the donor and recipient were done as a part of pre HSCT evaluation. Both the standard tube technique and column agglutination method (Ortho Biovue Micro Bead System was used. Antibody screen was done by column agglutination method using three cell panel (Surgiscreen cells. Isoagglutinin titration was done by the master dilution method and standard validated techniques were used. Results: The pattern of laboratory findings in the two cases was different and so were the clinical outcomes. Although there was early engraftment in the first case, the second case developed pure red cell aplasia and this was well-reflected in the immunohematologic assessments. Conclusion: Immunohematologic assessment correlated well with the clinical picture and could be used to predict clinical outcome and onset of complications in ABO incompatible HSCT.

  12. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    Directory of Open Access Journals (Sweden)

    Bhatia M

    2015-07-01

    Full Text Available Monica Bhatia,1 Sujit Sheth21Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, 2Division of Pediatric Hematology and Oncology, Weill Cornell Medical College, New York, NY, USAAbstract: Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD. The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to

  13. Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly

    Directory of Open Access Journals (Sweden)

    Trivanović Drenka

    2013-01-01

    Full Text Available Introduction. Mesenchymal stem cells (MSCs are a promising tool for regenerative medicine, but due to the heterogeneity of their populations, different sources and isolation techniques, the characteristics defining MSCs are inconsistent. Objective. The aim of this study was to compare the characteristics of MSCs derived from two different human tissues: peripheral blood (PB-MSCs and umbilical cord Wharton’s Jelly (UC-MSCs. Methods. The PB-MSC and UC-MSC were isolated by adherence to plastic after gradient-density separation or an explant culture method, respectively, and compared regarding their morphology, clonogenic efficiency, proliferating rates, immunophenotype and differentiation potential. Results. MSCs derived from both sources exhibit similar morphology, proliferation capacity and multilineage (osteogenic, chondrogenic, adipogenic and myogenic differentiation potential. Differences were observed in the clonogenic capacity and the immunophenotype, since UC-MSCs showed higher CFU-F (colony-forming units-fibroblastic cloning efficiency, as well as higher embryonic markers (Nanog, Sox2, SSEA4 expression. When additional surface antigens were analyzed by flow cytometry (CD44, CD90, CD105, CD33, CD34, CD45, CD11b, CD235a or immunofluorescent labeling (vimentin, STRO-1 and α-smooth muscle actin, most appeared to have similar epitope profiles irrespective of MSC source. Conclusion. The results obtained demonstrated that both MSCs represent good alternative sources of adult MSCs that could be used in cell therapy applications. [Projekat Ministarstva nauke Republike Srbije, br. 175062

  14. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells.

    Science.gov (United States)

    Ezzelarab, M B; Raich-Regue, D; Lu, L; Zahorchak, A F; Perez-Gutierrez, A; Humar, A; Wijkstrom, M; Minervini, M; Wiseman, R W; Cooper, D K C; Morelli, A E; Thomson, A W

    2017-06-01

    Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg preloaded with cell membrane vesicles from allogeneic peripheral blood mononuclear cells induce T cell hyporesponsiveness to donor alloantigen (alloAg) in vitro. These donor alloAg-pulsed autologous DCreg (1.4-3.6 × 10 6 /kg) were administered intravenously, 1 day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 immunoglobulin [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n = 6 historical controls) and 29 days with control unpulsed DCreg (n = 2), to 56 days with donor Ag-pulsed DCreg (n = 5) was associated with evidence of modulated host CD4 + and CD8 + T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4 Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days posttransplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy

    Directory of Open Access Journals (Sweden)

    Song Peng

    2017-01-01

    Full Text Available Neuropeptide Y (NPY, a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.

  16. MAJOR AND LYMPHOCYTE POPULATIONS OF HUMAN PERIPHERAL BLOOD LYMPHOCYTES AND THEIR REFERENCE VALUES, AS ASSAYED BY MULTI-COLOUR CYTOMETRY

    Directory of Open Access Journals (Sweden)

    S. V. Khaidukov

    2009-01-01

    Full Text Available Abstract. Determination of lymphocyte subpopulations and their phenotypes is an important diagnostic feature, in order to elucidate some disturbances connected with immune system functioning. However, insufficient data are obtained when analyzing only major populations of peripheral lymphocytes. In order to perform clinical diagnostics, the data about minor lymphocytic populations and activated cellular pools seem to be more pertinent.Studies of peripheral blood cell subpopulations of healthy donors performed in different Russian regions allowed to assess quantitative distribution intervals for both major and minor immune cell subpopulations in humans. The results obtained, as compared with data from literature, provide an evidence for similar reference intervals for main immune cell subpopulations in healthy donors, independent on their habitation area.Present work has resulted into development of algorithms for cytometric studies and generation of certain panels of monoclonal antibodies enabling evaluation of all main lymphocyte subpopulations, as well as their minor subsets participating in emerging immune response. The distribution intervals have been estimated for such minor subpopulations, as B1- and B2-lymphocytes, memory B-cells, γδ- and αβT-cells, regulatory and naїve T-cells, cytotoxic and secretory NK-cell polupations.The results of present study, while been performed with peripheral blood of healthy donors, may provide a basis of reference values when studying subpopulation profile of immune cells.

  17. Donor Outcomes in Living Donor Liver Transplantation-Analysis of 275 Donors From a Single Centre in India.

    Science.gov (United States)

    Narasimhan, Gomathy; Safwan, Mohamed; Kota, Venugopal; Reddy, Mettu S; Bharathan, Anand; Dabora, Abderrhaim; Kaliamoorthy, Ilankumaran; Kanagavelu, Rathnavel G; Srinivasan, Vijaya; Rela, Mohamed

    2016-06-01

    Live donor liver transplantation is the predominant form of liver transplantation in India and in most Asian countries. Donor outcome reports are an important source of information to be shared with prospective donors at the time of informed consent. This is the first donor outcome series from India. Analysis of donor characteristics and morbidity of 275 live donors from a single large volume center is documented. Two hundred seventy-five patients donated from November 2009 to October 2014, 144 were women and 131 were men, 180 donated to adults and 95 donated to children. Right lobe donors were majority at 62.2% followed by left lateral segment 28%. Two thirds of the live donors did not have any morbidity; 114 complications were encountered in 85 patients. The complications were graded as per Clavien 5 tier grading and major morbidity (grade III b, grade IV grade V) was 4.36%. Postoperative biliary complication was seen in 3 donors. This large single-center study is the first donor outcome report from India, and the results are comparable to other published donor series. Documentation and regular audit of donor outcomes is important to help improve the safety of donor hepatectomy and to provide a database for informed consent of prospective donors.

  18. Peripheral nerve regeneration with conduits: use of vein tubes

    OpenAIRE

    Sabongi, Rodrigo Guerra; Fernandes, Marcela; dos Santos, Jo?o Baptista Gomes

    2015-01-01

    Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent los...

  19. Cryopreservation of adult unrelated donor products in hematopoietic cell transplantation: the OneMatch experience and systematic review of the literature.

    Science.gov (United States)

    Aziz, Joseph; Morris, Gail; Rizk, Mina; Shorr, Risa; Mercer, Dena; Young, Kimberly; Allan, David

    2017-11-01

    The frequency of cryopreserving blood stem or progenitor products from unrelated donors is not known and the underlying reasons are poorly documented. Greater insight is needed to develop policies on cryopreservation that balance donor safety with patient needs. Cryopreservation requests between January 1, 2014, and May 31, 2016, at the OneMatch Stem Cell and Marrow Network at Canadian Blood Services were reviewed and a systematic review of the literature was performed. Thirty products of 719 (4.2%) unrelated donor collections facilitated by OneMatch were cryopreserved. Patient-related reasons were most common and included the need to delay transplant for continued antimicrobial treatment (six patients), patient too deconditioned to proceed with scheduled transplant (five patients), and/or need for more treatment for relapsed disease (three patients). Donor-related issues leading to cryopreservation requests were less common (five cases), mainly due to lack of donor availability after attempting to reschedule. Cryopreservation of a product that was never infused occurred infrequently (two cases, 7%). In our systematic review of the literature, 993 cases were identified in 32 published reports. Both patient-related and donor-related reasons were cited but not specifically reported, precluding quantitative insight regarding the relative frequency of causes. The impact of cryopreservation on hematopoietic engraftment appears negligible when compared to controls in a subset of studies; however, reporting of outcomes was inconsistent. Future studies with standard outcome measures are needed to clarify the impact of cryopreservation on engraftment and other transplant outcomes. International guidelines that consider the ethical framework surrounding requests for donor product cryopreservation are needed. © 2017 AABB.

  20. Hematopoietic stem cell transplantation from non-sibling matched family donors for patients with thalassemia major in Jordan.

    Science.gov (United States)

    Hussein, Ayad Ahmed; Al-Zaben, Abdulhadi; Khattab, Eman; Haroun, Anas; Frangoul, Haydar

    2016-02-01

    There are limited data on the outcome of patients with thalassemia receiving HSCT from non-sibling matched family donors. Of the 341 patients with thalassemia major that underwent donor search at our center from January 2003 to December 2011, 236 (69.2%) had fully matched family donor of which 28 patients (8.2%) had non-sibling matched family donors identified. We report on seven patients with a median age of eight yr (4-21) who underwent myeloablative (n = 4) or RIC (n = 3) HSCT. The median age of the donors was 33 yr (4-47), three were parents, two first cousins, one paternal uncle, and one paternal aunt. All patients achieved primary neutrophil and platelet engraftment at a median of 18 (13-20) and 16 days (11-20), respectively. One patient developed grade II acute GVHD, and two patients developed limited chronic GVHD. One patient experienced secondary GF requiring a second transplant. At a median follow-up of 69 months (7-110), all patients are alive and thalassemia free. Our data emphasize the need for extended family HLA typing for patients with thalassemia major in regions where there is high rate of consanguinity. Transplant from non-sibling matched family donor can result in excellent outcome. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.

    1979-01-01

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  2. Romidepsin Used as Monotherapy in Sequence with Allogeneic Stem Cell Transplant in a Patient with Peripheral T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Nicholas Finn

    2014-01-01

    Full Text Available Despite advances in the field, a clear treatment algorithm for most peripheral T-cell lymphoma (PTCL subtypes remains to be defined. Generating reliable randomized data for this type of pathology remains a challenge because of the relative rarity of the disease and the heterogeneity of subtypes. Newer agents, such as the class-I selective histone deacetylase inhibitor romidepsin, have demonstrated efficacy and manageable toxicity in the relapsed and refractory setting. Whether novel agents should be used in conjunction with more conventional cytotoxic therapies or in sequence with a transplant strategy is unknown at this time. Here we report the successful use of romidepsin monotherapy as a bridge to allogeneic stem cell transplantation in a patient who had previously relapsed after several lines of conventional cytotoxic therapy for PTCL. Romidepsin provided the patient with sufficient disease control to proceed to transplantation while remaining in complete remission.

  3. Nonmyeloablative and reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation: a clinical review.

    Science.gov (United States)

    Pollack, Seth M; O'Connor, Thomas P; Hashash, Jana; Tabbara, Imad A

    2009-12-01

    Allogeneic hematopoietic stem cell transplantation provides many patients, with hematological and malignant diseases, hope of remission and in some cases cure. Because the toxicities of this approach are severe, its use has been limited to younger healthier patients. Nonmyeloablative and reduced intensity conditioning regimens depend more on donor cellular immune effects and less on the cytotoxic effects of the conditioning regimen to eradicate the underlying disease. This approach is based on the induction of host tolerance to donor cells followed by the administration of scheduled donor T-lymphocytes infusions. Accumulated clinical data have been encouraging, and prospective studies are underway to compare this approach to conventional myeloablative allogeneic stem cell transplantation with regard to outcome, durability of responses, effects on the immune system, and the consequences of late complications such as chronic graft-versus-host disease.

  4. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation.

    Science.gov (United States)

    Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu

    2004-11-01

    The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a

  5. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Science.gov (United States)

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-01-01

    Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652

  6. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  7. Banking Umbilical Cord Blood (UCB) Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India).

    Science.gov (United States)

    Pandey, Deeksha; Kaur, Simar; Kamath, Asha

    2016-01-01

    The concept of Umbilical Cord blood (UCB) stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India). Obtaining this information may help optimize recruitment efforts and improve patient education. Present explorative questionnaire based survey included 254 pregnant women in the final analysis. We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1%) was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB. Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  8. Banking Umbilical Cord Blood (UCB Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India.

    Directory of Open Access Journals (Sweden)

    Deeksha Pandey

    Full Text Available The concept of Umbilical Cord blood (UCB stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India. Obtaining this information may help optimize recruitment efforts and improve patient education.Present explorative questionnaire based survey included 254 pregnant women in the final analysis.We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1% was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB.Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  9. Mesenchymal stem cell therapy for immune-modulation: the donor, the recipient, and the drugs in-between.

    Science.gov (United States)

    Nemeth, Krisztian

    2014-09-01

    Adoptive transfer of cultured bone marrow stromal cells (mesenchymal stem cells also known as MSCs) is a promising new way to aid tissue regeneration and treat a wide variety of diseases where regulation of inflammatory responses is derailed. Although significant advances have been made in the field, pinpointing important mechanistic details about how MSCs function in vitro and in vivo, there are still many unanswered questions that need to be addressed before welcoming MSCs in the therapeutic arsenal of immune mediated diseases. In this viewpoint, we highlight and discuss a few factors that we believe are critical in terms of therapeutic success employing cultured MSCs. Selecting the right donor population, choosing the best culture conditions and picking the patient population that is most likely to give a favourable therapeutic response is just as important as considering interactions between MSCs and the combination of drugs in the recipient's body. Given the complexity of MSC-host interactions, it is also imperative to develop screening tools that account for as many variables as possible and predict precisely the in vivo response rates before MSCs enter the body. To achieve this, a multidisciplinary approach is required with comprehensive knowledge of basic MSC biology, immunology, pharmacology and good clinical practice. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Total lymphoid irradiation based conditioning for hematopoietic stem cell transplantation in severe aplastic anemia

    International Nuclear Information System (INIS)

    Lee, Yun Hee; Kim, Ji Yoon; Choi, Byung Ock; Ryu, Mi Ryeong; Chung, Su Mi

    2012-01-01

    To retrospectively evaluate the outcome and toxicity of total lymphoid irradiation (TLI) based conditioning regimen for allogeneic hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) patients who experienced an engraftment failure from prior HSCT or were heavily transfused. Between 1995 and 2006, 20 SAA patients received TLI for conditioning of HSCT. All patients were multi-transfused or had long duration of disease. Fifteen (75%) patients had graft failure from prior HSCT. In 18 (90%) patients, the donors were human leukocyte antigen identical siblings. The stem cell source was the peripheral blood stem cell in 15 (75%) patients. The conditioning regimen was composed of antithymocyte globulin plus TLI with a median dose of 750 cGy in 1 fraction. The graft-versus-host disease (GVHD) prophylaxis used cyclosporine with methotrexate. With a median follow-up of 10.8 years, graft failures developed in 6 patients. Among them, 3 patients received their third HSCT to be engrafted finally. The Kaplan-Meier overall survival rate was 85.0% and 83.1% at 5 and 10 years, respectively. The incidence of acute and chronic GVHD was 20% and 20%, respectively. None of the patients have developed a malignancy after HSCT. In our study, TLI based conditioning in allogeneic HSCT was feasible with acceptable rates of GVHD in SAA patients who experienced graft failure from prior HSCT or was at a high risk of graft rejection. We achieved relatively better results of engraftment and survival with a long term follow-up.

  11. Total lymphoid irradiation based conditioning for hematopoietic stem cell transplantation in severe aplastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hee; Kim, Ji Yoon; Choi, Byung Ock; Ryu, Mi Ryeong; Chung, Su Mi [Dept. of Radiation Oncology, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2012-12-15

    To retrospectively evaluate the outcome and toxicity of total lymphoid irradiation (TLI) based conditioning regimen for allogeneic hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) patients who experienced an engraftment failure from prior HSCT or were heavily transfused. Between 1995 and 2006, 20 SAA patients received TLI for conditioning of HSCT. All patients were multi-transfused or had long duration of disease. Fifteen (75%) patients had graft failure from prior HSCT. In 18 (90%) patients, the donors were human leukocyte antigen identical siblings. The stem cell source was the peripheral blood stem cell in 15 (75%) patients. The conditioning regimen was composed of antithymocyte globulin plus TLI with a median dose of 750 cGy in 1 fraction. The graft-versus-host disease (GVHD) prophylaxis used cyclosporine with methotrexate. With a median follow-up of 10.8 years, graft failures developed in 6 patients. Among them, 3 patients received their third HSCT to be engrafted finally. The Kaplan-Meier overall survival rate was 85.0% and 83.1% at 5 and 10 years, respectively. The incidence of acute and chronic GVHD was 20% and 20%, respectively. None of the patients have developed a malignancy after HSCT. In our study, TLI based conditioning in allogeneic HSCT was feasible with acceptable rates of GVHD in SAA patients who experienced graft failure from prior HSCT or was at a high risk of graft rejection. We achieved relatively better results of engraftment and survival with a long term follow-up.

  12. Chromosome aberrations frequencies in peripheral blood lymphocytes from patients with larynx cancer

    International Nuclear Information System (INIS)

    Lisowska, H.; Lankoff, A.; Banasik, A.; Padjas, A.; Wieczorek, A.; Kuszewski, T.; Gozdz, A.; Wojcik, A.

    2005-01-01

    There is data suggesting that the sensitivity to ionising radiation of peripheral blood lymphocytes of cancer patients is higher than in healthy donors. This effect is especially prominent when chromosomal aberrations induced in S/G2 phase of the cell cycle are analysed. The aim of our study was to investigate if the S/G2- aberration frequencies in lymphocytes of patients with larynx cancer were higher than in control individuals. In addition, the multiple fixation regimen was applied in lymphocytes of the cancer patients. The aim of this was to check if the aberration frequencies scored in cells harvested at one time point were representative for a larger fraction of the cell cycle. Peripheral blood of 40 patients was collected before the onset of radiotherapy, cultured and irradiated with Co-60 (2 Gy) after 67 hours of culture time. Irradiation was performed in the Swietokrzyskie Oncology Center. Chromosome specimens were prepared from cells fixed at three time points after irradiation: 5, 7 and 9 hours. Colcemide was always added for 2 hours before harvest. Lymphocytes of 40 healthy donors were cultured and irradiated in the same way like in the case of patients with cancer, however, they were only harvested at one time point (5 hours p.r.). No statistically significant differences in aberration frequencies were observed between lymphocytes harvested at the 3 time points. In both donor groups, individual differences in aberration frequencies were observed. Despite this, the aberration frequencies in lymphocytes of patients were in average higher than in the healthy donors. This suggests, that the radiation sensitivity of lymphocytes of patients with larynx cancer may be a marker of cancer predisposition. More patients must be analysed to confirm this hypothesis. (author)

  13. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Pezzi, Annelise; Amorin, Bruna; Laureano, Álvaro; Valim, Vanessa; Dahmer, Alice; Zambonato, Bruna; Sehn, Filipe; Wilke, Ianaê; Bruschi, Lia; Silva, Maria Aparecida Lima da; Filippi-Chiela, Eduardo; Silla, Lucia

    2017-10-01

    Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O 2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O 2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P cells cultured in low O 2 tension had lower mitochondrial activity (P Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Stem cell-based approach in diabetes and pancreatic cancer management

    Directory of Open Access Journals (Sweden)

    Yi-Zhou Jiang

    2017-01-01

    Full Text Available Stem cell-mediated therapy is a promising strategy for treating pancreatic diseases such as Type-1 diabetes (T1D and pancreatic cancers. Although islet transplantation has been reported to be an effective diabetes therapy, its worldwide application is extremely limited due to the shortage of donor islets and immune rejection problems. Stem cell-based approach for islet neogenesis in vivo could provide a promising alternative source of islets for treating diabetes. On the other hand, targeting the cancer stem cells could be very effective for the treatment of pancreatic cancers. In this review, we focused on the present progress in the field of adult pancreatic stem cells, stem cell-mediated strategies for treating T1D, and pancreatic cancer stem cells, while discussing of the possible challenges involved in them.

  15. Application of MultiStem® allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft vs host disease

    Directory of Open Access Journals (Sweden)

    Bart eVaes

    2012-11-01

    Full Text Available The last decade has seen much progress in adjunctive cell therapy for immune disorders. Both corporate and institutional Phase III studies have been run using mesenchymal stromal cells (MSC for treatment of Graft vs Host Disease (GvHD, and product approval has been achieved for treatment of pediatric GvHD in Canada and New Zealand (Prochymal®; Osiris Therapeutics. This effectiveness has prompted the prophylactic use of adherent stem cells at the time of allogeneic hematopoietic stem cell transplantation (HSCT to prevent occurrence of GvHD and possibly provide stromal support for hematopoietic recovery. The MultiStem® product is an adult adherent stem cell product derived from bone marrow which has significant clinical exposure. MultiStem cells are currently in phase II clinical studies for treatment of ischemic stroke and ulcerative colitis, with Phase I studies completed in acute myocardial infarction and for GvHD prophylaxis in allogeneic HSCT, demonstrating that MultiStem administration was well tolerated while the incidence and severity of GvHD was reduced. In advancing this clinical approach, it is important to recognize that alternate models exist based on clinical manufacturing strategies. Corporate sponsors exploit the universal donor properties of adherent stem cells and manufacture at large scale, with many products obtained from one or limited donors and used across many patients. In Europe, institutional sponsors often produce allogeneic product in a patient designated context. For this approach, disposable bioreactors producing <10 products per donor in a closed system manner are very well suited. In this review, the use of adherent stem cells for GvHD prophylaxis is summarized and the suitability of disposable bioreactors for MultiStem production is presented, with an emphasis on quality control parameters, which are critical with a multiple donor approach for manufacturing.

  16. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Vishal Koparde

    Full Text Available Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA and graft versus host disease (GVHD pathophysiology in stem cell transplant (SCT donor-recipient pairs (DRP is not established. In order to elucidate this relationship, whole exome sequencing (WES was performed on 27 HLA matched related (MRD, & 50 unrelated donors (URD, to identify nonsynonymous single nucleotide polymorphisms (SNPs. An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01; resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0 and the tissue expression of proteins these were derived from determined (GTex. MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA with an IC50 of <500 nM, and URD, had 5,386 (p<0.01. To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone's proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.

  17. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  18. Application of hollow cylindrical wheat stem for electromembrane extraction of thorium in water samples

    DEFF Research Database (Denmark)

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Barkhordar, Afsaneh

    2015-01-01

    -octanol and 5%v/v Di-(2-ethylhexyl) phosphate (DEHP) immobilized in the pores of a porous stem, and into an acceptor phase solution present inside the lumen of the stem. The pH of donor and acceptor phases, extraction time, voltage, and stirring speed were optimized. At the optimum conditions...

  19. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  20. Characterization of lymphokine-activated killer cells from peripheral blood and lymph nodes of non-Hodgkin's lymphoma patients

    International Nuclear Information System (INIS)

    Nadkarni, J.J.; Jehaver, K.G.; De, A.K.; Soman, C.S.; Nadkarni, K.S.

    1993-01-01

    Peripheral blood lymphocytes (PBL) and lymph node lymphocytes (LNL) from non-Hodgkin's lymphoma patients were tested for lymphokine-activated killer cells (LAK) cells cytotoxicity using appropriate targets in a short-term 51 chromium-release assay. The results showed a significant depression in LNL-LAK activity suggesting the reduced capacity of LNL to generate LAK cells. LNL-LAK cells demonstrated significantly low percentages of cells expressing CD16, CD56 and CD25 as compared to PBL-LAK and healthy donors. The reduced capacity to generate LAK cells in lymph nodes could by due to the presence of low numbers of natural killer cells which are thought to be the main precursors of LAK cells. The IL-2 producing ability of lymph node mononuclear cells was found to by significantly higher than that of peripheral blood mononuclear cells from both healthy donors and and NHL patients. (author)

  1. CD4+CD25highCD127low Regulatory T Cells in Peripheral Blood Are Not an Independent Factor for Chronic Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Jolanta B. Perz

    2012-01-01

    Full Text Available Background. The therapeutic efficacy of allogeneic hemopoietic stem cell transplantation (HSCT largely relies on the graft-versus-leukemia (GVL effect. Uncontrolled graft-versus-host disease (GVHD is a feared complication of HSCT. Regulatory T cells (Treg are a subset of CD4+ T-helper cells believed to maintain tolerance after HSCT. It remains unclear whether low peripheral blood Treg have an impact on the risk for acute (aGVHD and chronic GVHD (cGVHD. Methods. In this paper we enumerated the CD4+CD25highCD127low Treg in the peripheral blood of 84 patients after at least 150 days from HSCT and in 20 healthy age-matched controls. Results. Although similar mean lymphocyte counts were found in patients and controls, CD3+CD4+ T-cell counts were significantly lower in patients. Patients also had significantly lower Treg percentages among lymphocytes as compared to controls. Patients with cGVHD had even higher percentages of Treg if compared to patients without cGVHD. In multivariate analysis, Treg percentages were not an independent factor for cGVHD. Conclusions. This paper did not show a relation between deficient peripheral blood Treg and cGVHD, therefore cGVHD does not seem to occur as a result of peripheral Treg paucity.

  2. Limiting dilution analysis of the stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Kina, T.; Amagai, T.; Tsubata, T.; Hirayoshi, K.; Takaoki, Y.; Sado, T.; Nishikawa, S.I.

    1986-01-01

    Stem cell activities of bone marrow, spleen, thymus, and fetal liver cells for T cell lineage were studied comparatively by transferring the cells from these organs through i.v. or intrathymus (i.t.) route into right leg- and tail-shielded (L-T-shielded) and 900 R-irradiated recipient mice, which were able to survive without supplying hemopoietic stem cells. Cells from B10.Thy-1.1 (H-2b, Thy-1.1) mice were serially diluted and were transferred into L-T-shielded and irradiated C57BL/6 (H-2b, Thy-1.2) mice, and 21 days later the thymus cells of recipient mice were assayed for Thy-1.1+ cells by flow cytofluorometry. The percentage of recipient mice possessing donor-type T cells was plotted against the number of cells transferred, and the stem cell activity in each cell source was expressed as the 50% positive value, the number of donor cells required for generating donor-type T cells in the thymuses of 50% of recipient mice. In i.v. transfer experiments, the activity of bone marrow cells was similar to that of fetal liver cells, and about 100 times and nearly 1000 times higher than those of spleen cells and thymus cells, respectively. In i.t. transfer experiments, the number of cells required for generating donor-type T cells was much lower than that in i.v. transfer experiments, although the ratio in 50% positive values between i.v. and i.t. transfers differed among cell sources. In i.t. transfers, the 50% positive value of bone marrow cells was five times, 400 times, and 500 times higher than that of fetal liver cells, spleen cells, and thymus cells, respectively. Our previous finding that stem cells are enriched in the spleens of mice which were whole body-irradiated and marrow-reconstituted 7 days earlier was confirmed also by the present limiting dilution assay carried out in i.v. as well as i.t. transfers

  3. The impact of preapheresis white blood cell count on autologous peripheral blood stem cell collection efficiency and HSC infusion side effect rate.

    Science.gov (United States)

    Sakashita, Araci M; Kondo, Andrea T; Yokoyama, Ana Paula H; Lira, Sanny M C; Bub, Carolina B; Souza, Aline M; Cipolletta, Andrea N F; Alvarez, Kelen C; Hamerschlak, Nelson; Kutner, Jose M; Chiattone, Carlos S

    2018-01-19

    Autologous peripheral blood hematopoietic stem cell (PBSC) collection efficiency (CE) is reportedly affected by the patient's blood properties; however, studies to identify factors correlated with CE have shown inconsistent results. Additionally, variables such as stem cell graft granulocyte content and patient age, sex, and underlying disease, may be associated with hematopietic stem cell (HSC) infusion-related adverse reactions. In this study, we evaluated the correlation of preleukapheresis PB granulocyte count and PBSC harvest variables with CD34 + collection yield and efficiency, and thawed HSC infusion side effect occurrence. We evaluated data from 361 patients who had undergone autologous PBSC transplant. Large volume leukapheresis was the method for PBSC collection. Complete Blood Count and CD34 + cell enumeration were performed in the preapheresis PB and the apheresis product sample. The PBSC grafts were submitted to non-controlled rate freezing after addition of 5% DMSO plus 6% hidroxyethylstarch as a cryoprotectant solution. The cryopreserved graft was thawed in a 37°C water bath and then infused without further manipulation. The CD34 + yield was associated with preapheresis PB CD34 + count and immature granulocyte count. The PBSC CE was negatively correlated with preapheresis white blood cell (WBC), immature granulocyte and granulocyte count. The leukapheresis product total nucleated cell (TNC) and granulocyte content was correlated with the thawed graft infusion side effect occurrence. This study has shown that preapheresis PB WBC and granulocyte counts were associated with leukapheresis CE. Additionally, the leukapheresis product TNC and granulocyte content was correlated with thawed graft infusion side effect occurrence. © 2018 Wiley Periodicals, Inc.

  4. A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Siddaraju V. Boregowda

    2016-02-01

    Full Text Available In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs also exhibit potent effector (angiogenic, antiinflammatory, immuno-modulatory functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2 and interferon gamma (IFN-gamma alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a CLinical Indications Prediction (CLIP scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications.

  5. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    OpenAIRE

    Engela, Anja; Baan, Carla; Peeters, Anna; Weimar, Willem; Hoogduijn, Martin

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We investigated the interaction between both cell types using perirenal adipose tissue-derived MSCs (ASCs) from kidney donors and Tregs from blood bank donors or kidney recipients 6 months after transplant...

  6. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A) from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene.

    Science.gov (United States)

    Meraviglia, Viviana; Benzoni, Patrizia; Landi, Sara; Murano, Carmen; Langione, Marianna; Motta, Benedetta M; Baratto, Serena; Silipigni, Rosamaria; Di Segni, Marina; Pramstaller, Peter P; DiFrancesco, Dario; Gazzerro, Elisabetta; Barbuti, Andrea; Rossini, Alessandra

    2018-03-01

    Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies. Resource table. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Combination stem cell therapy for heart failure

    Directory of Open Access Journals (Sweden)

    Ichim Thomas E

    2010-04-01

    Full Text Available Abstract Patients with congestive heart failure (CHF that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a increasing stem cell migration to the heart; b augmenting stem cell activity; and c combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells.

  8. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  9. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves

    OpenAIRE

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M.

    2005-01-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but ne...

  10. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype.

    Science.gov (United States)

    Hsieh, Matthew M; Fitzhugh, Courtney D; Weitzel, R Patrick; Link, Mary E; Coles, Wynona A; Zhao, Xiongce; Rodgers, Griffin P; Powell, Jonathan D; Tisdale, John F

    2014-07-02

    Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. From July 16, 2004, to October 25, 2013, 30 patients aged 16-65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5-31.7 × 10(6) cells/kg) from human leukocyte antigen-matched siblings. The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell-thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. Twenty-nine patients survived a median 3.4 years (range, 1-8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%-62%); the myeloid chimerism levels, 86% (95% CI, 70%-100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and

  11. Generation of dendritic cells from human bone marrow mononuclear cells: advantages for clinical application in comparison to peripheral blood monocyte derived cells.

    Science.gov (United States)

    Bai, L; Feuerer, M; Beckhove, P; Umansky, V; Schirrmacher, V

    2002-02-01

    Dendritic cells (DCs) currently used for vaccination in clinical studies to induce immunity against malignant cells are normally generated from peripheral blood-derived monocytes. Here we studied conditions for the generation of DCs from unseparated human bone marrow (BM) mononuclear cells and compared them functionally with DCs from blood. The two types of DCs, from bone marrow (BM-DC) and peripheral blood (BL-DC), were generated in parallel from the same normal healthy donors by culturing in serum-free X-VIVO 20 medium containing GM-CSF and IL-4, and then the phenotypes and functions were compared. BM-DC generation occurred in 14 days and involved proliferative expansion from CD34 stem cells and differentiation while BL-DC generation occurred in 7 days from CD14 monocytes and involved only differentiation. A 7- to 25-fold higher number of DCs could be obtained from BM than from blood. BM-DC had similar phenotypes as BL-DC. The capacity to stimulate MLR reactivity in allogeneic T lymphocytes was higher with BM-DC than that with BL-DC. Also, the capacity to stimulate autologous memory T cell responses to tetanus toxoid (TT) or tuberculin (PPD) was higher with BM-DC than with BL-DC. These results suggest that BM-DC as produced here may be a very economic and useful source of professional antigen-presenting cells for anti-tumor immunotherapeutic protocols.

  12. MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors

    NARCIS (Netherlands)

    Georgi, Nicole; Taipaleenmaeki, H.; Raiss, C.C.; Groen, N.; Portalska, K.K.; van Blitterswijk, Clemens; de Boer, Jan; Post, Janine Nicole; van Wijnen, A.; Karperien, Hermanus Bernardus Johannes

    2015-01-01

    The ability of human mesenchymal stromal/stem cells (hMSCs) to differentiate into various mesenchymal cell lineages makes them a promising cell source for the use in tissue repair strategies. Because the differentiation potential of hMSCs differs between donors, it is necessary to establish

  13. HIV-1 isolation from infected peripheral blood mononuclear cells.

    Science.gov (United States)

    Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A; Schuitemaker, Hanneke; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and not in tumor derived cell lines. The procedure involves culture of PBMCs from an infected patient with phytohemagglutinin (PHA)-stimulated PBMC from seronegative donors, which provide susceptible target cells for HIV replication. HIV can be isolated from the bulk population of PBMCs or after cloning of the cells to obtain viral biological clones. Viral production is determined with p24 antigen (Ag) detection assays or with reverse transcriptase (RT) activity assay. Once isolated, HIV-1 can be propagated by infecting PHA-stimulated PBMCs from healthy donors. Aliquots from culture with a high production of virus are stored for later use.

  14. Umbilical Cord-Derived Mesenchymal Stem Cells for Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is becoming an effective therapeutic modality for a variety of diseases. Mesenchymal stem cells (MSCs can be used to enhance hematopoietic engraftment, accelerate lymphocyte recovery, reduce the risk of graft failure, prevent and treat graft-versus-host disease, and repair tissue damage in patients receiving HSCT. Till now, most MSCs for human clinical application have been derived from bone marrow. However, acquiring bone-marrow-derived MSCs involves an invasive procedure. Umbilical cord is rich with MSCs. Compared to bone-marrow-derived MSCs, umbilical cord-derived MSCs (UCMSCs are easier to obtain without harm to the donor and can proliferate faster. No severe adverse effects were noted in our previous clinical application of UCMSCs in HSCT. Accordingly, application of UCMSCs in humans appears to be feasible and safe. Further studies are warranted.

  15. What Unrelated Hematopoietic Stem Cell Transplantation in Thalassemia Taught us about Transplant Immunogenetics

    Science.gov (United States)

    La Nasa, Giorgio; Vacca, Adriana; Littera, Roberto; Piras, Eugenia; Orru, Sandro; Greco, Marianna; Carcassi, Carlo; Caocci, Giovanni

    2016-01-01

    Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT) continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cord blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS) and thalassemia-free survival (TFS) rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD) remains the most important complication in unrelated HSCT in thalassemia, leading to significant rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individualize appropriate strategies for its prevention and management. This review provides an overview of recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia. PMID:27872728

  16. WHAT UNRELATED HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THALASSEMIA TAUGHT US ABOUT TRANSPLANT IMMUNOGENETICS.

    Directory of Open Access Journals (Sweden)

    Giorgio La Nasa

    2016-10-01

    Full Text Available Abstract Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cordon blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS and thalassemia-free survival (TFS rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD remains the most important complication in unrelated HSCT in thalassemia, leading to considerable rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individuate appropriate strategies for its prevention and management. This review provides an overview on recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia.

  17. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  18. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Scollay, R.

    1990-01-01

    To define cell populations which participate in the very early stages of T cell development in the mouse thymus, we enriched hematopoietic stem cells from mouse bone marrow and injected them into thymic lobes of irradiated Ly-5 congenic recipients. The progeny of the stem cells were identified and their phenotypes were determined by two-color flow cytometry for the expression of various cell surface differentiation Ag during the course of their subsequent intrathymic development. The majority of the differentiation which occurred in the first 10 days after intrathymic cell transfer was myeloid in nature; hence, this study demonstrates that the irradiated thymus is not strictly selective for T cell development. Further, the maximum rate of T cell development was observed after intrathymic injection of 200 stem cells. Donor-derived cells which did not express Ag characteristic of the myeloid lineage could be detected and their phenotypes could be determined by flow cytometry as early as 7 days after intrathymic injection. At this time, the cells were still very similar phenotypically to the bone marrow hematopoietic stem cells. Exceptions to this were the expression of stem cell Ag 2 and a decrease in the level of MHC class I Ag expression. After 9 days, the donor-derived cells expressed high levels of the Thy-1 Ag and proceeded to change in cell surface phenotype as differentiation continued. These cell phenotypes are described for the time frame ending 18 days after injection, when most donor-derived cells were phenotypically small CD4+ CD8+ (double-positive) thymocytes

  19. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  20. In utero hematopoietic stem cell transfer: current status and future strategies.

    Science.gov (United States)

    Surbek, D V; Gratwohl, A; Holzgreve, W

    1999-07-01

    Successful prenatal treatment of severe immunodeficiencies by allogeneic hematopoietic stem cell transplantation in utero has been reported. Though other diseases like hemoglobinopathies or storage diseases are potentially amenable to this novel therapeutic approach, no success has yet been achieved in recipients without severe immunodeficiency. Graft rejection by the developing fetus and/or lack of selective, competitive advantage of donor versus host stem cells preventing stable engraftment seem to be the major obstacles. Several strategies to overcome these hurdles are being explored in preclinical settings, including timing and repeated dosing of stem cell administration to the fetus, ex vivo modification of the transplant, using different fetal compartments as targets for early stem cell transfer, or inducing microchimerism for postnatal transplantation from the same donor. In addition, the exact definition of the basic concept of early fetal immunologic naivete and the understanding of the molecular basics of migration and homing in fetal hematopoiesis system seem mandatory for a successful approach. Gene therapy using ex vivo transduced autologous cord blood cells or direct gene targeting in utero are other potential means to correct hematopoietic and immunologic single gene disorders in utero, though this approach is still away from the stage of clinical trials.

  1. Effect of donor STAT4 polymorphism rs7574865 on clinical outcomes of pediatric acute leukemia patients after hematopoietic stem cell transplant.

    Science.gov (United States)

    Wun, Cheng Mun; Piao, Zhe; Hong, Kyung Taek; Choi, Jung Yoon; Hong, Che Ry; Park, June Dong; Park, Kyung Duk; Shin, Hee Young; Kang, Hyoung Jin

    2017-02-01

    STAT4 polymorphism, rs7574865 is linked to various autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Its T minor allele is associated with higher STAT4 mRNA and protein expression, indicating a stronger skewed immune response than the norm. Although widely studied in autoimmune disease patients and the general population, its effect on immunocompromised subjects is still unknown. Especially in situations, i.e. post-hematopoietic stem cell transplantation (post-HSCT), where control of the immune response is crucial. Hence, this study investigates if the presence of the T minor allele in donors would affect immunological response and clinical outcomes post-HSCT. Samples from 161 pediatric patients who underwent allogeneic HSCT for acute leukemia and showed complete chimerism by donor cells were obtained. Six clinical outcomes were investigated; hepatic veno-occlusive disease, acute graft-vs-host disease, chronic graft-vs-host disease, cytomegalovirus (CMV) infection, relapse and overall survival. The TT genotype was found to be significant in the occurrence of CMV infection (P=0.049), showing higher incidence of CMV infection compared to the others. Multivariate analysis confirmed that association of the TT genotype is independent from other variables in CMV infection occurrence (P=0.010). This is the first study on STAT4 polymorphism rs7574865 in allogeneic HSCT as well as immunocompromised patients. As the TT genotype is associated with autoimmune diseases, our results seem at a paradox with current evidence hinting at a different role of STAT4 in normal circumstances versus immunocompromised patients. Further investigation is needed to elicit the reason behind this and discover novel applications for better post-transplant outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Donor-recipient human leukocyte antigen matching practices in vascularized composite tissue allotransplantation: a survey of major transplantation centers.

    Science.gov (United States)

    Ashvetiya, Tamara; Mundinger, Gerhard S; Kukuruga, Debra; Bojovic, Branko; Christy, Michael R; Dorafshar, Amir H; Rodriguez, Eduardo D

    2014-07-01

    Vascularized composite tissue allotransplant recipients are often highly sensitized to human leukocyte antigens because of multiple prior blood transfusions and other reconstructive operations. The use of peripheral blood obtained from dead donors for crossmatching may be insufficient because of life support measures taken for the donor before donation. No study has been published investigating human leukocyte antigen matching practices in this field. A survey addressing human leukocyte antigen crossmatching methods was generated and sent to 22 vascularized composite tissue allotransplantation centers with active protocols worldwide. Results were compiled by center and compared using two-tailed t tests. Twenty of 22 centers (91 percent) responded to the survey. Peripheral blood was the most commonly reported donor sample for vascularized composite tissue allotransplant crossmatching [78 percent of centers (n=14)], with only 22 percent (n=4) using lymph nodes. However, 56 percent of the 18 centers (n=10) that had performed vascularized composite tissue allotransplantation reported that they harvested lymph nodes for crossmatching. Of responding individuals, 62.5 percent (10 of 16 individuals) felt that lymph nodes were the best donor sample for crossmatching. A slight majority of vascularized composite tissue allotransplant centers that have performed clinical transplants have used lymph nodes for human leukocyte antigen matching, and centers appear to be divided on the utility of lymph node harvest. The use of lymph nodes may offer a number of potential benefits. This study highlights the need for institutional review board-approved crossmatching protocols specific to vascularized composite tissue allotransplantation, and the need for global databases for sharing of vascularized composite tissue allotransplantation experiences.

  3. Are drowned donors marginal donors? A single pediatric center experience.

    Science.gov (United States)

    Kumm, Kayla R; Galván, N Thao N; Koohmaraie, Sarah; Rana, Abbas; Kueht, Michael; Baugh, Katherine; Hao, Liu; Yoeli, Dor; Cotton, Ronald; O'Mahony, Christine A; Goss, John A

    2017-09-01

    Drowning, a common cause of death in the pediatric population, is a potentially large donor pool for OLT. Anecdotally, transplant centers have deemed these organs high risk over concerns for infection and graft dysfunction. We theorized drowned donor liver allografts do not portend worse outcomes and therefore should not be excluded from the donation pool. We reviewed our single-center experience of pediatric OLTs between 1988 and 2015 and identified 33 drowned donor recipients. These OLTs were matched 1:2 to head trauma donor OLTs from our center. A chart review assessed postoperative peak AST and ALT, incidence of HAT, graft and recipient survival. Recipient survival at one year between patients with drowned donor vs head trauma donor allografts was not statistically significant (94% vs 97%, P=.63). HAT incidence was 6.1% in the drowned donor group vs 7.6% in the control group (P=.78). Mean postoperative peak AST and ALT was 683 U/L and 450 U/L for drowned donors vs 1119 U/L and 828 U/L in the matched cohort. These results suggest drowned donor liver allografts do not portend worse outcomes in comparison with those procured from head trauma donors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Imaging evaluation of potential donors in living-donor liver transplantation

    International Nuclear Information System (INIS)

    Low, G.; Wiebe, E.; Walji, A.H.; Bigam, D.L.

    2008-01-01

    Liver transplants, originally obtained from deceased donors, can now be harvested from living donors as well. This technique, called living-donor liver transplantation (LDLT), provides an effective alternative means of liver transplantation and is a method of expanding the donor pool in light of the demand and supply imbalance for organ transplants. Imaging plays an important role in LDLT programmes by providing robust evaluation of potential donors to ensure that only anatomically suitable donors with no significant co-existing pathology are selected and that crucial information that allows detailed preoperative planning is available. Imaging evaluation helps to improve the outcome of LDLT for both donors and recipients, by improving the chances of graft survival and reducing the postoperative complication rate. In this review, we describe the history of LDLT and discuss in detail the application of imaging in donor assessment with emphasis on use of modern computed tomography (CT) and magnetic resonance imaging (MRI) techniques

  5. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves.

    Science.gov (United States)

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M

    2005-12-06

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with beta-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.

  6. Gamete donation: parents' experiences of searching for their child's donor siblings and donor.

    Science.gov (United States)

    Freeman, T; Jadva, V; Kramer, W; Golombok, S

    2009-03-01

    This study investigates the new phenomenon of parents of donor offspring searching for and contacting their child's 'donor siblings' (i.e. donor offspring conceived by the same donor) and donor. Online questionnaires were completed by 791 parents (39% lone-mother, 35% lesbian-couple, 21% heterosexual-couple, 5% non-specified) recruited via the Donor Sibling Registry; a US-based international registry that facilitates contact between donor conception families who share the same donor. Data were collected on parents' reasons for searching for their child's donor siblings and/or donor, the outcome of these searches and parents' and their child's experiences of any resulting contact. Parents' principal motivation for searching for their child's donor siblings was curiosity and for their donor, enhancing their child's sense of identity. Some parents had discovered large numbers of donor siblings (maximum = 55). Most parents reported positive experiences of contacting and meeting their child's donor siblings and donor. This study highlights that having access to information about a child's donor origins is important for some parents and has potentially positive consequences. These findings have wider implications because the removal of donor anonymity in the UK and elsewhere means that increasing numbers of donor offspring are likely to seek contact with their donor relations in the future.

  7. Comparison of Nutrition-Related Adverse Events and Clinical Outcomes Between ICE (Ifosfamide, Carboplatin, and Etoposide) and MCEC (Ranimustine, Carboplatin, Etoposide, and Cyclophosphamide) Therapies as Pretreatment for Autologous Peripheral Blood Stem Cell Transplantation in Patients with Malignant Lymphoma

    Science.gov (United States)

    Imataki, Osamu; Arai, Hidekazu; Kume, Tetsuo; Shiozaki, Hitomi; Katsumata, Naomi; Mori, Mariko; Ishide, Keiko; Ikeda, Takashi

    2018-01-01

    Background The aim of this study was to compare nutrition-related adverse events and clinical outcomes of ifosfamide, carboplatin, and etoposide regimen (ICE therapy) and ranimustine, carboplatin, etoposide, and cyclophosphamide regimen (MCEC therapy) instituted as pretreatment for autologous peripheral blood stem cell transplantation. Material/Methods We enrolled patients who underwent autologous peripheral blood stem cell transplantation between 2007 and 2012. Outcomes were compared between ICE therapy (n=14) and MCEC therapy (n=14) in relation to nutrient balance, engraftment day, and length of hospital stay. In both groups, we compared the timing of nutrition-related adverse events with oral caloric intake, analyzed the correlation between length of hospital stay and duration of parenteral nutrition, and investigated the association between oral caloric intake and the proportion of parenteral nutrition energy in total calorie supply. Five-year survival was compared between the groups. Results Compared with the MCEC group, the ICE group showed significant improvement in oral caloric intake, length of hospital stay, and timing of nutrition-related adverse events and oral calorie intake, but a delay in engraftment. Both groups showed a correlation between duration of parenteral nutrition and length of hospital stay (P=0.0001) and between oral caloric intake (P=0.0017) and parenteral nutrition energy sufficiency rate (r=−0.73, P=0.003; r=−0.76, P=0.002). Five-year survival was not significantly different between the groups (P=0.1355). Conclusions Our findings suggest that compared with MCEC therapy, ICE therapy improves nutrition-related adverse events and reduces hospital stay, conserving medical resources, with no significant improvement in long-term survival. The nutritional pathway may serve as a tool for objective evaluation of pretreatment for autologous peripheral blood stem cell transplantation. PMID:29398693

  8. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  9. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    Science.gov (United States)

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  10. Peripheral lymphocyte subpopulations in recurrent aphthous ulceration

    DEFF Research Database (Denmark)

    Pedersen, A; Klausen, B; Hougen, H P

    1991-01-01

    Peripheral lymphocyte subsets--T-helper (CD4+), T-suppressor/cytotoxic (CD8+), and naive/virgin T cells/natural killer cells (CD45RA)--were studied quantitatively in 30 patients with recurrent aphthous ulceration (RAU) and 29 sex- and age-matched RAU-free control donors. The CD4+ percentage...... was significantly lower in the patients than in the control group (P less than 0.0001), whereas CD8+ and CD4/CD8 ratio figures did not differ significantly between patients and controls. The CD45RA+ counts were significantly higher in the patient group (P less than 0.01). The study supports previous investigations...

  11. Stem Cell Treatment for Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-03-01

    Full Text Available Type 1 diabetes mellitus (T1DM is a common chronic disease in children, characterized by a loss of  cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal  cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs such as bone marrow-, adipose tissue- and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.

  12. Factors Influencing Hematopoietic Stem Cell Donation Intention in Hong Kong: A Web-Based Survey.

    Science.gov (United States)

    Kwok, Janette; Leung, Eva; Wong, William; Leung, Kate; Lee, Cheuk Kwong; Lam, Wendy; Ip, Patrick

    2015-10-08

    Hematopoietic stem cell transplantation (HSCT) has become increasingly common for treatment of severe hematological disorders. However, the number of compatible hematopoietic stem cell (HSC) donors is usually limited. Expanding donor pool size would enhance matching success by increasing donor frequency and introducing allelic diversity within the registry. Identifying factors that affect public willingness towards HSC donation allows better strategic recruitment planning to facilitate donor pool expansion. Previous studies in white populations showed knowledge, family attitude, trust towards the healthcare system, fear, self-identity, and social identity are important factors related to HSC donation intention. However, given the differences in cultural and society values that exist across different regions, in particular between the East and West, whether these factors influence HSC donation willingness in Hong Kong remained to be determined. The objective of this study was to identify factors associated with HSC donation motivation in Hong Kong. A large-scale, cross-sectional, observational study involving 3479 local participants. There is a positive correlation of HSC donation intention with younger age (18-32, OR: 1.80, p≤0·001) and higher education (OR: 1·47, p≤0.001). Better HSCT knowledge is also related to greater HSC donation intention (OR: 2.55, p£0.001). Our data suggests HSCT education could help to improve donor recruitment and that more resources should be allocated for public education.

  13. Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    Science.gov (United States)

    2017-12-11

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia in Remission; Acute Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2) or t(3;3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Multilineage Dysplasia; Acute Myeloid Leukemia With t(6;9) (p23;q34.1); DEK-NUP214; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Complete Remission; B Acute Lymphoblastic Leukemia With t(1;19)(q23;p13.3); E2A-PBX1 (TCF3-PBX1); B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Complete Remission; DS Stage II Plasma Cell Myeloma; DS Stage III Plasma Cell Myeloma; Myelodysplastic Syndrome; Recurrent Anaplastic Large Cell Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Acute Myeloid Leukemia; T Lymphoblastic Lymphoma

  14. Associations of health status with subsequent blood donor behavior-An alternative perspective on the Healthy Donor Effect from Donor InSight

    NARCIS (Netherlands)

    van den Hurk, Katja; Zalpuri, Saurabh; Prinsze, Femmeke J.; Merz, Eva-Maria; de Kort, Wim L. A. M.

    2017-01-01

    In donor health research, the 'Healthy Donor Effect' (HDE) often biases study results and hampers their interpretation. This refers to the fact that donors are a selected 'healthier' subset of a population due to both donor selection procedures and self-selection. Donors with long versus short donor

  15. Inactivation of hemopoietic stem cells by lymphocytes as related to genotype of interacting cells

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R V; Seslavina, L S; Panteleev, E I; Egorova, O S

    1975-05-01

    Inoculation of a mixture of bone marrow cells with allogeneic lymphocytes into irradiated mice of inbred strains or into F/sub 1/ hybrids results in the depression of bone marrow cell proliferation in the spleen of the recipient: the effect of inactivation of nonsyngeneic stem cells. The inactivation of stem cells by allogeneic lymphocytes can be detected in all tested combinations of mice strains - donors of lymphocytes and bone marrow cells and mice - recipients but the degree of inactivation differs and depends on the genotype of cell donors rather than on the genotype of the recipient. Lymphocytes of some mice strains (haplotypes H-2sup(k) and H-2sup(a)) are more active killers of bone marrow cells as compared with lymphocytes of other strains (hyplotypes H-2sup(b) and H-2sup(d)). Probably, the degree of stem cells inactivation by lymphocytes depends on the differences of their histocompatibility in H-2 system.

  16. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning

    OpenAIRE

    Olson, Timothy S.; Caselli, Anna; Otsuru, Satoru; Hofmann, Ted J.; Williams, Richard; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M.

    2013-01-01

    After radioablative conditioning, host megakaryocytes promote endosteal HSC niche expansion and donor stem cell engraftment.Thrombopoietin administration before radiation and bone marrow transplant enhances megakaryocyte promotion of HSC engraftment.

  17. Stem Cells and Liver Disease | Akhter | Internet Journal of Medical ...

    African Journals Online (AJOL)

    Liver transplantation is the primary treatment for various end-stage hepatic diseases but is hindered by the lack of donor organs, complications associated with rejection and immunosuppression. An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Hence stem cell research ...

  18. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Zhouhui Geng

    Full Text Available Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70-85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.

  19. Iron Administration before Stem Cell Harvest Enables MR Imaging Tracking after Transplantation

    OpenAIRE

    Khurana, Aman; Chapelin, Fanny; Beck, Graham; Lenkov, Olga D.; Donig, Jessica; Nejadnik, Hossein; Messing, Solomon; Derugin, Nikita; Chan, Ray Chun-Fai; Gaur, Amitabh; Sennino, Barbara; McDonald, Donald M.; Kempen, Paul J.; Tikhomirov, Grigory A.; Rao, Jianghong

    2013-01-01

    Transplanted mesenchymal stem cells (MSCs) could be detected and tracked with MR imaging, if the donor is treated with an intravenous injection of the Food and Drug Administration–approved iron supplement ferumoxytol prior to MSC harvesting.

  20. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  1. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  2. Antibody to histo-blood group A antigen neutralizes HIV produced by lymphocytes from blood group A donors but not from blood group B or O donors

    DEFF Research Database (Denmark)

    Arendrup, M; Hansen, J E; Clausen, H

    1991-01-01

    Three virus isolates HTLV-IIIB/lyA, HTLV-IIIB/lyB and HTLV-IIIB/lyO, obtained by passaging and propagating the HTLV-IIIB/H9 isolate in three separate cultures of mixed peripheral blood mononuclear cells (PBMC) from donors of blood type A, B or O, respectively, were tested for susceptibility...... for virus neutralization by the monoclonal antibody (MAb) AH16 directed against the blood group A epitope. MAb AH16 was previously shown to inhibit cell-free virus infection using HTLV-IIIB propagated in H9 cells. AH16 showed a concentration-dependent inhibition of the HTLV-IIIB/lyA isolate but did...... not inhibit the HTLV-IIIB/lyB or the HTLV-IIIB/lyO isolate. Specificity of the MAb-mediated inhibition was shown using A-antigen (tetrasaccharide). Thus, HIV infection of PBMC from donors with blood type A appears to induce expression of host-cell-encoded carbohydrate blood group A epitope on HIV which can...

  3. Antibody to histo-blood group A antigen neutralizes HIV produced by lymphocytes from blood group A donors but not from blood group B or O donors

    DEFF Research Database (Denmark)

    Arendrup, M; Hansen, J E; Clausen, H

    1991-01-01

    Three virus isolates HTLV-IIIB/lyA, HTLV-IIIB/lyB and HTLV-IIIB/lyO, obtained by passaging and propagating the HTLV-IIIB/H9 isolate in three separate cultures of mixed peripheral blood mononuclear cells (PBMC) from donors of blood type A, B or O, respectively, were tested for susceptibility...... not inhibit the HTLV-IIIB/lyB or the HTLV-IIIB/lyO isolate. Specificity of the MAb-mediated inhibition was shown using A-antigen (tetrasaccharide). Thus, HIV infection of PBMC from donors with blood type A appears to induce expression of host-cell-encoded carbohydrate blood group A epitope on HIV which can...... for virus neutralization by the monoclonal antibody (MAb) AH16 directed against the blood group A epitope. MAb AH16 was previously shown to inhibit cell-free virus infection using HTLV-IIIB propagated in H9 cells. AH16 showed a concentration-dependent inhibition of the HTLV-IIIB/lyA isolate but did...

  4. Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Hayam Abdel Meguid El Aggan

    2013-09-01

    Full Text Available Introduction: Chronic allograft nephropathy (CAN is a poorly understood clinico-pathological entity associated with chronic allograft loss due to immunologic and non-immunologic causes. It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs and mesenchymal stem cells (MSCs. Characterization of HSCs includes their multipotency, expression of typical surface markers such as CD34 and CD45, while characterization of MSC includes their multipotency, expression of typical surface markers such as CD90 and CD105, and the absence of hemopoietic lineage markers. Aim & methods: The aim of the present work was to study the role of bone marrow-derived HSCs and MSCs, renal progenitor cells and SCF in chronic renal allograft nephropathy in relation to renal hemodynamics and histopathological changes. We studied 30 patients with kidney transplantation for more than 6 months, divided into 15 patients with stable serum creatinine and 15 patients who developed CAN. Detection of HSCs and MSCs in the peripheral blood using flow cytometry via detection of CD34, CD45, CD117 and CD106, as well as immunohistochemical detection of CD34, CD133, VEGF and αSMA in transplanted kidney biopsies of patients with CAN were done. Results: There was a significant increase in the levels of SCF, number of peripheral blood HSCs and MSCs in both transplanted patient groups than the controls and they were higher in patients of group Ia than patients of group Ib, (F = 39.73, P < 0.001, (F = 13.28, P < 0.001, (F = 11.94, P < 0.001, respectively and this was accompanied by evident expression of markers of renal repair. Conclusion: Stem cells might have a role in renal regeneration in CAN and this may pave the way toward the use of stem cells in correction of CAN. KEYWORDS

  5. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy

    OpenAIRE

    Guillaume Spielmann; Catherine M. Bollard; Hawley Kunz; Patrick J. Hanley; Richard J. Simpson

    2016-01-01

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exer...

  6. Estimating the Number of Organ Donors in Australian Hospitals—Implications for Monitoring Organ Donation Practices

    Science.gov (United States)

    Pilcher, David; Gladkis, Laura; Arcia, Byron; Bailey, Michael; Cook, David; Cass, Yael; Opdam, Helen

    2015-01-01

    Background The Australian DonateLife Audit captures information on all deaths which occur in emergency departments, intensive care units and in those recently discharged from intensive care unit. This information provides the opportunity to estimate the number of donors expected, given present consent rates and contemporary donation practices. This may then allow benchmarking of performance between hospitals and jurisdictions. Our aim was to develop a method to estimate the number of donors using data from the DonateLife Audit on the basis of baseline patient characteristics alone. Methods All intubated patient deaths at contributing hospitals were analyzed. Univariate comparisons of donors to nondonors were performed. A logistic regression model was developed to estimate expected donor numbers from data collected between July 2012 and December 2013. This was validated using data from January to April 2014. Results Between July 2012 and April 2014, 6861 intubated patient deaths at 68 hospitals were listed on the DonateLife Audit of whom 553 (8.1%) were organ donors. Factors independently associated with organ donation included age, brain death, neurological diagnoses, chest x-ray findings, PaO2/FiO2, creatinine, alanine transaminase, cancer, cardiac arrest, chronic heart disease, and peripheral vascular disease. A highly discriminatory (area under the receiver operatory characteristic, 0.940 [95% confidence interval, 0.924-0.957]) and well-calibrated prediction model was developed which accurately estimated donor numbers. Three hospitals appeared to have higher numbers of actual donors than expected. Conclusions It is possible to estimate the expected number of organ donors. This may assist benchmarking of donation outcomes and interpretation of changes in donation rates over time. PMID:25919766

  7. Challenges in unrelated hematopoietic stem cell transplantation. Access | Donor search and selection | Outcome

    NARCIS (Netherlands)

    Jöris, Monique Maria

    2013-01-01

    The studies described in this thesis are aimed at improving the whole spectrum of unrelated HSCT in order to help as many patients in need of HSCT as possible. It covers three different but related topics; from access to HSCT to optimizing donor search and selection of acceptable mismatches to

  8. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro

    OpenAIRE

    Yin, Li; Huang, Dan; Liu, Xinxin; Wang, Yongshun; Liu, Jingjin; Liu, Fang; Yu, Bo

    2017-01-01

    Background Mesenchymal stem cells (MSCs) are emerging as an extremely promising therapeutic agent for tissue repair. However, limitations exist such as the low numbers of MSCs obtained from donors, and the poor survival and function of donor cells. Omentin-1, a new fat depot-specific secretory adipokine, exerts proproliferation, prosurvival, and proangiogenic functions in certain cells via an Akt-dependent mechanism; however, little is known about the influence of omentin-1 on MSCs. Methods M...

  9. Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles

    International Nuclear Information System (INIS)

    Neubauer, Antje; Bendig, Juergen; Rettig, Wolfgang

    2009-01-01

    Derivatives of N-pyrrolobenzene with a para-donor and a para-acceptor substituent on the benzene ring are compared. It is shown that by a suitable increase of the donor strength of the pyrrolo group, CT fluorescence can be achieved even for donor-donor-substituted benzenes. The ICT emission for sterically hindered compounds is more forbidden than that of unhindered phenyl pyrroles. This suggests conformational effects which induce a narrower twist angle distribution around a perpendicular minimum in the excited state.

  10. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man

    DEFF Research Database (Denmark)

    Thomsen, L L; Brennum, J; Iversen, Helle Klingenberg

    1996-01-01

    Several animal studies suggest that nitric oxide (NO) plays a role in central and peripheral modulation of nociception. Glyceryl trinitrate (GTN) exerts its physiological actions via donation of NO. The purpose of the present study was to examine the effect of this NO donor on nociceptive...... central facilitation of nociception by NO. However, we regard convergence of nociceptive input from pericranial myofascial tissue and from cephalic blood vessels dilated by NO as a more likely explanation of our findings....

  11. Outcomes of hematopoietic cell transplantation using donors or recipients with inherited chromosomally integrated HHV-6.

    Science.gov (United States)

    Hill, Joshua A; Magaret, Amalia S; Hall-Sedlak, Ruth; Mikhaylova, Anna; Huang, Meei-Li; Sandmaier, Brenda M; Hansen, John A; Jerome, Keith R; Zerr, Danielle M; Boeckh, Michael

    2017-08-24

    Human herpesvirus 6 (HHV-6) species have a unique ability to integrate into chromosomal telomeres. Mendelian inheritance via gametocyte integration results in HHV-6 in every nucleated cell. The epidemiology and clinical effect of inherited chromosomally integrated HHV-6 (iciHHV-6) in hematopoietic cell transplant (HCT) recipients is unclear. We identified 4319 HCT donor-recipient pairs (8638 subjects) who received an allogeneic HCT and had archived pre-HCT peripheral blood mononuclear cell samples. We screened these samples for iciHHV-6 and compared characteristics of HCT recipients and donors with iciHHV-6 with those of recipients and donors without iciHHV-6, respectively. We calculated Kaplan-Meier probability estimates and Cox proportional hazards models for post-HCT outcomes based on recipient and donor iciHHV-6 status. We identified 60 HCT recipients (1.4%) and 40 donors (0.9%) with iciHHV-6; both recipient and donor harbored iciHHV-6 in 13 HCTs. Thus, there were 87 HCTs (2%) in which the recipient, donor, or both harbored iciHHV-6. Acute graft-versus-host disease (GVHD) grades 2-4 was more frequent when recipients or donors had iciHHV-6 (adjusted hazard ratios, 1.7-1.9; P = .004-.001). Cytomegalovirus viremia (any and high-level) was more frequent among recipients with iciHHV-6 (adjusted HRs, 1.7-3.1; P = .001-.040). Inherited ciHHV-6 status did not significantly affect risk for chronic GVHD, hematopoietic cell engraftment, overall mortality, or nonrelapse mortality. Screening for iciHHV-6 could guide donor selection and post-HCT risk stratification and treatment. Further study is needed to replicate these findings and identify potential mechanisms. © 2017 by The American Society of Hematology.

  12. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  13. Impact of pretransplant donor and recipient cytomegalovirus serostatus on outcome for multiple myeloma patients undergoing reduced intensity conditioning allogeneic stem cell transplantation.

    Science.gov (United States)

    El-Cheikh, Jean; Devillier, Raynier; Crocchiolo, Roberto; Fürst, Sabine; Calmels, Boris; Faucher, Catherine; Stoppa, Anne Marie; Granata, Angela; Castagna, Luca; Ladaique, Patrick; Lemarie, Claude; Bouabdallah, Reda; Zandotti, Christine; Merlin, Michele; Berger, Pierre; Chabannon, Christian; Blaise, Didier

    2013-01-01

    Scope of the study was to investigate the impact of pre-transplant CMV serostatus of the donor and/or recipient on the outcome of patients undergoing allogeneic hematopoietic stem cell transplantation (Allo-SCT) for Multiple Myeloma (MM). To our knowledge no data are available in the literature about this issue. We retrospectively followed 99 consecutive patients who underwent reduced-intensity conditioning (RIC) Allo-SCT for MM in our cancer center at Marseille between January 2000 and January 2012. Based upon CMV serostatus, patients were classified as low risk (donor [D]-/recipient [R] -) 17 patients (17.1%), intermediate risk (D+/R) 14 patients (14.1%), or high risk - either (D-/R+) 31 patients (31.3%) or (D+/R+), 37 patients (37.3%). Cumulative incidence of CMV reactivation was 39% with a median time of 61 days (26-318). Three patients (3%) developed CMV disease. Two factors were associated with CMV reactivation: CMV serostatus group (low: 0% vs. intermediate: 29% vs. high: 50%; p=0.001) and the presence of grade II-IV acute GvHD (Hazard Ratio: HR=2.1 [1.1-3.9]). Thirty-six of the 39 patients (92%) with CMV reactivation did not present positive detection of CMV after a 21-day median duration preemptive treatment with ganciclovir. Cumulative incidence of day 100 grade II-IV acute GvHD, 1-year chronic GvHD and day 100 transplantation related mortality (TRM) were 37%, 36% and 9%, respectively. CMV reactivation and serostatus were not associated with increased GvHD and TRM or short survival. Only the presence of acute GvHD as a time dependent variable was significantly associated with increased TRM (p=0.005). Two-year overall and progression free survival were 56% and 34%, respectively. Donor and recipient CMV serostatus and acute GvHD are independent factors for increased CMV reactivation in high-risk MM patients undergoing RIC Allo-SCT. However, we did not find any influence of CMV reactivation on post transplantation outcome. CMV monitoring and pre

  14. IMPACT OF PRETRANSPLANT DONOR AND RECIPIENT CYTOMEGALOVIRUS SEROSTATUS ON OUTCOME FOR MULTIPLE MYELOMA PATIENTS UNDERGOING REDUCED INTENSITY CONDITIONING ALLOGENEIC STEM CELL TRANSPLANTATION.

    Directory of Open Access Journals (Sweden)

    Jean Elcheikh

    2013-04-01

    Full Text Available To investigate the impact of pre-transplant CMV serostatus of donor or recipient on outcome of patients undergoing allogeneic hematopoietic stem cell transplantation (Allo-SCT for Multiple Myeloma (MM. To our knowledge no data are available in the literature about this issue. We retrospectively followed 99 consecutive patients who underwent reduced-intensity conditioning (RIC Allo-SCT for MM in our cancer centre at Marseille between January 2000 and January 2012. Based upon CMV serostatus, patients were classified as low risk (donor [D]-/recipient [R]- 17 patients (17.1%, intermediate risk (D+/R 14 patients (14.1%, or high risk – either (D-/R+ 31 patients (31.3% or (D+/R+, 37 patients (37.3%. Cumulative incidence of CMV reactivation was 39% with a median time of 61 days (26–318. Three patients (3% developed CMV disease. Two factors were associated with CMV reactivation: CMV serostatus group (low: 0% vs intermediate: 29% vs high: 50%; p=0.001 and the presence of grade II–IV acute GvHD (Hazard Ratio: HR=2.1 [1.1–3.9]. Thirty-six of the 39 patients (92% with CMV reactivation did not present positive detection of CMV after a 21-day median duration preemptive treatment with ganciclovir. Cumulative incidence of day 100 grade II–IV acute GvHD, 1-year chronic GvHD and day 100 transplantation related mortality (TRM were 37%, 36% and 9%, respectively. CMV reactivation and serostatus were not associated with increased GvHD and TRM or short survival. Only the presence of acute GvHD as a time dependent variable was significantly associated with increased TRM (p=0.005. Two-year overall and progression free survival were 56% and 34%, respectively. Donor and recipient CMV serostatus and acute GvHD are independent factors for increased CMV reactivation in high-risk MM patients undergoing RIC Allo-SCT. However, we did not find any influence of CMV reactivation on post transplantation outcome. CMV monitoring and pre-emptive treatment strategy could in

  15. Experiences of offspring searching for and contacting their donor siblings and donor.

    Science.gov (United States)

    Jadva, Vasanti; Freeman, Tabitha; Kramer, Wendy; Golombok, Susan

    2010-04-01

    This study investigates a new phenomenon whereby individuals conceived by donor insemination are searching for and contacting their donor and/or 'donor siblings' (i.e. donor offspring conceived by the same donor who are their genetic half siblings). On-line questionnaires were completed by members of the Donor Sibling Registry (DSR), a US-based registry that facilitates contact between donor conception families who share the same donor. Of the 165 donor offspring who completed the survey, 15% were searching for their donor siblings, 13% were searching for their donor, and 64% were searching for both. Differences were found according to family type and age of disclosure. Fewer offspring from heterosexual couple families had told their father about their search when compared with offspring from lesbian couple families who had told their co-parent. Offspring who had found out about their conception after age 18 were more likely to be searching for medical reasons, whereas those who had found out before age 18 tended to be searching out of curiosity. Some offspring had discovered large numbers of half siblings (maximum=13). The majority of offspring who had found their donor relations reported positive experiences and remained in regular contact with them. Copyright (c) 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Analysis of the postoperative status of peripheral blood caused by gastric volvulus of dogs

    OpenAIRE

    VATNIKOV Y.A.; SAHNO N.V.; GOLEVA A.A.

    2016-01-01

    The paper presents analysis of post-operative state of peripheral blood caused by volvulus of the dogs’ stomach. The use of erythrocyte mass in early post-operative period reduces severity of anemia and inflammatory process. The introduction of donor red blood cells reduces severity of action immunosuppressive splenectomy and effects of anesthesia, causing the production of platelets, reticulocytes thus improving reparative processes in the postoperative period.

  17. Stem and Progenitor Cell-Based Therapy of the Central Nervous System

    DEFF Research Database (Denmark)

    Goldman, Steven A.

    2016-01-01

    A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreove...

  18. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Science.gov (United States)

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  19. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  20. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih; Ting, Hao-Chun; Li, Ya-Ze; Li, Yi-Hua; Liu, Shun-Wei; Huang, Kuo-Wei; Wong, Ken-Tsung

    2016-01-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  1. The synthesis, structure, and properties of 5,6,11,12-tetraarylindeno[1,2-b]fluorenes and their applications as donors for organic photovoltaic devices

    KAUST Repository

    Lo, Yuan-Chih

    2016-12-01

    The synthesis, structure, and properties of three new 5,6,11,12-tetraarylindeno[1,2-b]fluorenes are reported. The highly twisted conformations between an indeno[1,2-b]fluorene core and peripheral aryl substitutions endow these indeno[1,2-b]fluorene derivatives with good photostability for use as electron donors for vacuum-deposited photovoltaic devices. The optimized device based on a TAInF2 donor blended with C70 as an electron acceptor produces a high open-circuit voltage (>0.9 V) and a power conversion efficiency of 2.91%. This work demonstrates the first application of an indenofluorene derivative as an electron donor in organic solar cells.

  2. Survival of Peripheral Blood Neutrophil Following Treatment with Soluble Factors from Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    S Hamounnavard

    2014-11-01

    Full Text Available Introduction: Mesenchymal stem cells have immunomodulatory properties and own extensive potentials to proliferate and differentiate into different cell lineages. Thus, this study was conducted to investigate the effect of supernatant of rat MSCs on the neutrophils viability. Methods: MSCs was isolated from femoral and tibial bone marrow of rat (6-8 weeks and was cultured in DMEM. After maturation of MSCs, its supernatant was incubated with neutrophils isolated from peripheral blood of rat at 37 ° C for 1 h. Neutrophil survival was measured at 6 and 24 h incubation with supernatant of MSCs by flow cytometric analysis using An/PI. Data were analyzed by one-way ANOVA followed by Tukey test (P˂0.05. Results: 6-hour incubation of neutrophils with supernatant of MSCs significantly increased the healthy cells percentage and significantly decreased the amount of necrosis (P˂0.05, but no significant decrease was observed in regard with apoptosis compared to the controls (P˃0.05. The 24-hour incubation of neutrophils with cell supernatant significantly increased the percentage of healthy cells and apoptosis was significantly reduced compared to the control group (P˂0.05. Moreover, a reduction in cell necrosis was not significant in the treated groups compared to the control (P˃0.05. Conclusions: In addition to the clinical importance of MSCs, their biological aspects are of great potential for cell therapy, such as self-renewal, proliferation and immune modulatory effects.

  3. Hickman catheter embolism in a child during stem cell transplantation

    International Nuclear Information System (INIS)

    Ahmed, P.; Khan, B.; Ullah, K.; Ahmed, W.; Hussain, I.; Khan, A.A.; Anwar, M.

    2003-01-01

    The majority of stem cell recipients rely on indwelling central venous catheters situated in superior vena cava or right atrium. Semi-permanent tunneled silicone rubber Hickman catheters are widely used to provide durable central venous access for patients undergoing stem cell transplantation. A case of 5 years old child with diagnosis of severe aplastic anemia is reported. The patient received peripheral blood stem cells (PBSC) and had successful engraftment with complete hematological recovery. He had Hickman catheter embolism in the pulmonary circulation following unsuccessful attempt to remove the line. The catherter was successfully removed by midsternostomy operation. The child is normal with sustained remission on day +218 post stem cell transplant. (author)

  4. Chemotherapy ± cetuximab modulates peripheral immune responses in metastatic colorectal cancer.

    Science.gov (United States)

    Xynos, Ioannis D; Karadima, Maria L; Voutsas, Ioannis F; Amptoulach, Sousana; Skopelitis, Elias; Kosmas, Christos; Gritzapis, Angelos D; Tsavaris, Nikolas

    2013-01-01

    To identify changes in peripheral immune responses in patients with metastatic colorectal cancer (mCRC) treated with irinotecan/5-fluorouracil/leucovorin (IFL) alone or in combination with cetuximab (C-IFL). Peripheral blood mononuclear cells (PBMCs) collected from healthy donors (n = 20) and patients with mCRC receiving treatment with either IFL (n = 30) or C-IFL (n = 30) were tested for cytokine production upon polyclonal stimulation with anti-CD3 monoclonal antibody, T cell proliferation in the autologous mixed lymphocyte reaction (auto-MLR) and T regulatory cell (Treg) frequency. The respective results were evaluated over two treatment cycles and further assessed in relation to response to treatment. PBMCs prior to treatment exhibited significantly lower production of IL-2, IFN-γ, IL-12 and IL-18 cytokines and lower auto-MLR responses, whereas Treg frequency, IL-4, IL-10 cytokines were increased compared to healthy donors. During treatment, IL-2, IFN-γ, IL-12, IL-18 and auto-MLR responses increased, while Treg frequency and IL-10 secretion decreased significantly compared to the baseline. Responders to treatment exhibited a significantly higher increase in IL-2, IFN-γ, IL-12 and IL-18 production and auto-MLR responses, and higher decrease in IL-4, IL-10 secretion and Treg frequency. Among all patient subgroups analysed, responders to C-IFL demonstrated significantly higher increase in auto-MLR responses, IL-12 and IL-18 secretion and higher decrease in Treg frequency. The disturbed immune parameters observed in patients with mCRC at presentation can be significantly improved during treatment with IFL and this effect can be potentiated by the addition of cetuximab. Monitoring of the peripheral immune system function could be used as surrogate marker in predicting treatment-related outcome. Copyright © 2013 S. Karger AG, Basel.

  5. Use of superficial peroneal nerve graft for treating peripheral nerve injuries

    Directory of Open Access Journals (Sweden)

    Samuel Ribak

    2016-02-01

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the clinical results from treating chronic peripheral nerve injuries using the superficial peroneal nerve as a graft donor source. METHODS: This was a study on eleven patients with peripheral nerve injuries in the upper limbs that were treated with grafts from the sensitive branch of the superficial peroneal nerve. The mean time interval between the dates of the injury and surgery was 93 days. The ulnar nerve was injured in eight cases and the median nerve in six. There were three cases of injury to both nerves. In the surgery, a longitudinal incision was made on the anterolateral face of the ankle, thus viewing the superficial peroneal nerve, which was located anteriorly to the extensor digitorum longus muscle. Proximally, the deep fascia between the extensor digitorum longus and the peroneal longus muscles was dissected. Next, the motor branch of the short peroneal muscle (one of the branches of the superficial peroneal nerve was identified. The proximal limit of the sensitive branch was found at this point. RESULTS: The average space between the nerve stumps was 3.8 cm. The average length of the grafts was 16.44 cm. The number of segments used was two to four cables. In evaluating the recovery of sensitivity, 27.2% evolved to S2+, 54.5% to S3 and 18.1% to S3+. Regarding motor recovery, 72.7% presented grade 4 and 27.2% grade 3. There was no motor deficit in the donor area. A sensitive deficit in the lateral dorsal region of the ankle and the dorsal region of the foot was observed. None of the patients presented complaints in relation to walking. CONCLUSIONS: Use of the superficial peroneal nerve as a graft source for treating peripheral nerve injuries is safe and provides good clinical results similar to those from other nerve graft sources.

  6. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells.

    Science.gov (United States)

    Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2018-03-03

    Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.

  7. CMV-specific T cell isolation from G-CSF mobilized peripheral blood: depletion of myeloid progenitors eliminates non-specific binding of MHC-multimers.

    Science.gov (United States)

    Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo

    2014-11-19

    Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired

  8. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  9. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  10. Biological characteristics of human menstrual blood-derived endometrial stem cells.

    Science.gov (United States)

    Liu, Yanli; Niu, Rongcheng; Yang, Fen; Yan, Yan; Liang, Shengying; Sun, Yuliang; Shen, Ping; Lin, Juntang

    2018-03-01

    Successful isolation of human endometrial stem cells from menstrual blood, namely menstrual blood-derived endometrial stem cells (MenSCs), has provided enticing alternative seed cells for stem cell-based therapy. MenSCs are enriched in the self-regenerative tissue, endometrium, which shed along the periodic menstrual blood and thus their acquisition involves no physical invasiveness. However, the impact of the storage duration of menstrual blood prior to stem cell isolation, the age of the donor, the number of passages on the self-renewing of MenSCs, the paracrine production of biological factors in MenSCs and expression of adhesion molecules on MenSCs remain elusive. In this study, we confirmed that MenSCs reside in shedding endometrium, and documented that up to 3 days of storage at 4°C has little impact on MenSCs, while the age of the donor and the number of passages are negatively associated with proliferation capacity of MenSCs. Moreover, we found that MenSCs were actually immune-privileged and projected no risk of tumour formation. Also, we documented a lung- and liver-dominated, spleen- and kidney-involved organic distribution profile of MenSC 3 days after intravenous transfer into mice. At last, we suggested that MenSCs may have potentially therapeutic effects on diseases through paracrine effect and immunomodulation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Science.gov (United States)

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  12. Report of the International Stem Cell Banking Initiative Workshop Activity: Current Hurdles and Progress in Seed-Stock Banking of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jung-Hyun; Kurtz, Andreas; Yuan, Bao-Zhu; Zeng, Fanyi; Lomax, Geoff; Loring, Jeanne F; Crook, Jeremy; Ju, Ji Hyeon; Clarke, Laura; Inamdar, Maneesha S; Pera, Martin; Firpo, Meri T; Sheldon, Michael; Rahman, Nafees; O'Shea, Orla; Pranke, Patricia; Zhou, Qi; Isasi, Rosario; Rungsiwiwut, Ruttachuk; Kawamata, Shin; Oh, Steve; Ludwig, Tenneille; Masui, Tohru; Novak, Thomas J; Takahashi, Tsuneo; Fujibuchi, Wataru; Koo, Soo Kyung; Stacey, Glyn N

    2017-11-01

    This article summarizes the recent activity of the International Stem Cell Banking Initiative (ISCBI) held at the California Institute for Regenerative Medicine (CIRM) in California (June 26, 2016) and the Korean National Institutes for Health in Korea (October 19-20, 2016). Through the workshops, ISCBI is endeavoring to support a new paradigm for human medicine using pluripotent stem cells (hPSC) for cell therapies. Priority considerations for ISCBI include ensuring the safety and efficacy of a final cell therapy product and quality assured source materials, such as stem cells and primary donor cells. To these ends, ISCBI aims to promote global harmonization on quality and safety control of stem cells for research and the development of starting materials for cell therapies, with regular workshops involving hPSC banking centers, biologists, and regulatory bodies. Here, we provide a brief overview of two such recent activities, with summaries of key issues raised. Stem Cells Translational Medicine 2017;6:1956-1962. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  14. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues

    OpenAIRE

    Yokoo, Takashi; Ohashi, Toya; Shen, Jin Song; Sakurai, Ken; Miyazaki, Yoichi; Utsunomiya, Yasunori; Takahashi, Masanori; Terada, Yoshio; Eto, Yoshikatsu; Kawamura, Tetsuya; Osumi, Noriko; Hosoya, Tatsuo

    2005-01-01

    The use of stem cells has enabled the successful generation of simple organs. However, anatomically complicated organs such as the kidney have proven more refractory to stem-cell-based regenerative techniques. Given the limits of allogenic organ transplantation, an ultimate therapeutic solution is to establish self-organs from autologous stem cells and transplant them as syngrafts back into donor patients. To this end, we have striven to establish an in vitro organ factory to build up complex...

  15. Granulocyte-mobilized bone marrow.

    Science.gov (United States)

    Arcese, William; De Angelis, Gottardo; Cerretti, Raffaella

    2012-11-01

    In the last few years, mobilized peripheral blood has overcome bone marrow as a graft source, but, despite the evidence of a more rapid engraftment, the incidence of chronic graft-versus-host disease is significantly higher with, consequently, more transplant-related mortality on the long follow-up. Overall, the posttransplant outcome of mobilized peripheral blood recipients is similar to that of patients who are bone marrow grafted. More recently, the use of bone marrow after granulocyte colony-stimulating factor (G-CSF) donor priming has been introduced in the transplant practice. Herein, we review biological acquisitions and clinical results on the use of G-CSF-primed bone marrow as a source of hematopoietic stem cells (HSC) for allogeneic stem cell transplantation. G-CSF the increases the HSC compartment and exerts an intense immunoregulatory effect on marrow T-cells resulting in the shift from Th1 to Th2 phenotype with higher production of anti-inflammatory cytokines. The potential advantages of these biological effects have been translated in the clinical practice by using G-CSF primed unmanipulated bone marrow in the setting of transplant from human leukocyte antigen (HLA)-haploidentical donor with highly encouraging results. For patients lacking an HLA-identical sibling, the transplant of G-CSF primed unmanipulated bone marrow from a haploidentical donor combined with an intense in-vivo immunosuppression is a valid alternative achieving results that are well comparable with those reported for umbilical cord blood, HLA-matched unrelated peripheral blood/bone marrow or T-cell-depleted haploidentical transplant.

  16. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408 Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408

    Directory of Open Access Journals (Sweden)

    Thiago Cezar Fujita

    2010-09-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease.Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed

  17. Donor, dad, or…? Young adults with lesbian parents' experiences with known donors.

    Science.gov (United States)

    Goldberg, Abbie E; Allen, Katherine R

    2013-06-01

    In this exploratory qualitative study of 11 young adults, ages 19-29 years, we examine how young people who were raised by lesbian parents make meaning out of and construct their relationships with known donors. In-depth interviews were conducted to examine how participants defined their family composition, how they perceived the role of their donors in their lives, and how they negotiated their relationships with their donors. Findings indicate that mothers typically chose known donors who were family friends, that the majority of participants always knew who their donors were, and that their contact with donors ranged from minimal to involved. Further, participants perceived their donors in one of three ways: as strictly donors and not members of their family; as extended family members but not as parents; and as fathers. The more limited role of donors in participants' construction of family relationships sheds light on how children raised in lesbian, gay, and bisexual families are contributing to the redefinition and reconstruction of complex kinship arrangements. Our findings hold implications for clinicians who work with lesbian-mother families, and suggest that young adulthood is an important developmental phase during which interest in and contact with the donor may shift, warranting a transfer of responsibility from mother to offspring in terms of managing the donor-child relationship. © FPI, Inc.

  18. Proliferation and differentiation of stem cells in contact with eluate from fibrin-rich plasma membrane

    Directory of Open Access Journals (Sweden)

    Fernanda Gimenez de Souza

    Full Text Available ABSTRACT Objective: To evaluate the ability of the eluate from fibrin-rich plasma (FRP membrane to induce proliferation and differentiation of isolated human adipose-derived stem cells (ASCs into chondrocytes. Method: FRP membranes were obtained by centrifugation of peripheral blood from two healthy donors, cut, and maintained in culture plate wells for 48 h to prepare the fibrin eluate. The SCATh were isolated from adipose tissue by collagenase digestion solution, and expanded in vitro. Cells were expanded and treated with DMEM-F12 culture, a commercial media for chondrogenic differentiation, and eluate from FRP membrane for three days, and labeled with BrdU for quantitative assessment of cell proliferation using the High-Content Operetta® imaging system. For the chondrogenic differentiation assay, the SCATh were grown in micromass for 21 days and stained with toluidine blue and aggrecan for qualitative evaluation by light microscopy. The statistical analysis was performed using ANOVA and Tukey's test. Results: There was a greater proliferation of cells treated with the eluate from FRP membrane compared to the other two treatments, where the ANOVA test showed significance (p < 0.001. The differentiation into chondrocytes was visualized by the presence of mucopolysaccharide in the matrix of the cells marked in blue toluidine and aggrecan. Conclusions: Treatment with eluate from FRP membrane stimulated cell proliferation and induced differentiation of the stem cells into chondrocytes, suggesting a potential application of FRP membranes in hyaline cartilage regeneration therapies.

  19. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  20. Selective Depletion of αβ T Cells and B Cells for Human Leukocyte Antigen-Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency.

    Science.gov (United States)

    Li Pira, Giuseppina; Malaspina, David; Girolami, Elia; Biagini, Simone; Cicchetti, Elisabetta; Conflitti, Gianpiero; Broglia, Manuel; Ceccarelli, Stefano; Lazzaro, Stefania; Pagliara, Daria; Meschini, Antonella; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2016-11-01

    HLA-haploidentical family donors represent a valuable option for children requiring allogeneic hematopoietic stem cell transplantation (HSCT). Because graft-versus-host diseases (GVHD) is a major complication of HLA-haploidentical HSCT because of alloreactive T cells in the graft, different methods have been used for ex vivo T cell depletion. Removal of donor αβ T cells, the subset responsible for GVHD, and of B cells, responsible for post-transplantation lymphoproliferative disorders, have been recently developed for HLA-haploidentical HSCT. This manipulation preserves, in addition to CD34 +  progenitors, natural killer, γδ T, and monocytes/dendritic cells, contributing to anti-leukemia activity and protection against infections. We analyzed depletion efficiency and cell yield in 200 procedures performed in the last 3 years at our center. Donors underwent CD34 +   hematopoietic stem cell (HSC) peripheral blood mobilization with granulocyte colony-stimulating factor (G-CSF). Poor CD34 +  cell mobilizers (48 of 189, 25%) received plerixafor in addition to G-CSF. Aphereses containing a median of 52.5 × 10 9 nucleated cells and 494 × 10 6 CD34 +  HSC were manipulated using the CliniMACS device. In comparison to the initial product, αβ T cell depletion produced a median 4.1-log reduction (range, 3.1 to 5.5) and B cell depletion led to a median 3.4-log reduction (range, 2.0 to 4.7). Graft products contained a median of 18.5 × 10 6 CD34 +  HSC/kg recipient body weight, with median values of residual αβ T cells and B cells of 29 × 10 3 /kg and 33 × 10 3 /kg, respectively. Depletion efficiency monitored at 6-month intervals demonstrated steady performance, while improved recovery of CD34 +  cells was observed after the first year (P = .0005). These data indicate that αβ T cell and B cell depletion of HSC grafts from HLA-haploidentical donors was efficient and reproducible. Copyright © 2016 The American Society for Blood and Marrow

  1. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  2. Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq

    Science.gov (United States)

    Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad

    2012-01-01

    Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358

  3. Laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Gupta Nitin

    2005-01-01

    Full Text Available Of the various options for patients with end stage renal disease, kidney transplantation is the treatment of choice for a suitable patient. The kidney for transplantation is retrieved from either a cadaver or a live donor. Living donor nephrectomy has been developed as a method to address the shortfall in cadaveric kidneys available for transplantation. Laparoscopic living donor nephrectomy (LLDN, by reducing postoperative pain, shortening convalescence, and improving the cosmetic outcome of the donor nephrectomy, has shown the potential to increase the number of living kidney donations further by removing some of the disincentives inherent to donation itself. The technique of LLDN has undergone evolution at different transplant centers and many modifications have been done to improve donor safety and recipient outcome. Virtually all donors eligible for an open surgical procedure may also undergo the laparoscopic operation. Various earlier contraindications to LDN, such as right donor kidney, multiple vessels, anomalous vasculature and obesity have been overcome with increasing experience. Laparoscopic live donor nephrectomy can be done transperitoneally or retroperitoneally on either side. The approach is most commonly transperitoneal, which allows adequate working space and easy dissection. A review of literature and our experience with regards to standard approach and the modifications is presented including a cost saving model for the developing countries. An assessment has been made, of the impact of LDN on the outcome of donor and the recipient.

  4. UVB pretreatment of rat bone marrow allografts. Prevention of GVHD and induction of allochimerism and donor-specific unresponsiveness

    International Nuclear Information System (INIS)

    Chabot, J.A.; Pepino, P.; Wasfie, T.; Stegall, M.D.; Marboe, C.; Hardy, M.A.

    1990-01-01

    Ultraviolet B irradiation has been used to pretreat blood and islets to prevent subsequent graft rejection. In this study the optimal dose of UVB irradiation of bone marrow was determined in syngeneic recipients and was subsequently applied to in-vitro treatment of bone marrow allografts. UVB pretreatment of donor bone marrow inoculum led to complete prevention of GVHD in allogeneic rat recipients without major marrow or other toxicity. Long-standing recipients of allogeneic UVB-BM became stable adult chimeras. The recipients of allogeneic BM were populated by donor-type peripheral blood lymphocytes and did not reject host or donor-type heart grafts. The BM allograft recipients were immunocompetent as measured by their ability to normally reject third-party cardiac allografts. We suggest that the prevention of GVHD and induction of stable chimerism in adult recipients of allogeneic UVB-BM may be mediated by suppressor mechanisms

  5. UVB pretreatment of rat bone marrow allografts. Prevention of GVHD and induction of allochimerism and donor-specific unresponsiveness

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, J.A.; Pepino, P.; Wasfie, T.; Stegall, M.D.; Marboe, C.; Hardy, M.A. (Columbia Univ. College of Physicians and Surgeons, New York, NY (USA))

    1990-05-01

    Ultraviolet B irradiation has been used to pretreat blood and islets to prevent subsequent graft rejection. In this study the optimal dose of UVB irradiation of bone marrow was determined in syngeneic recipients and was subsequently applied to in-vitro treatment of bone marrow allografts. UVB pretreatment of donor bone marrow inoculum led to complete prevention of GVHD in allogeneic rat recipients without major marrow or other toxicity. Long-standing recipients of allogeneic UVB-BM became stable adult chimeras. The recipients of allogeneic BM were populated by donor-type peripheral blood lymphocytes and did not reject host or donor-type heart grafts. The BM allograft recipients were immunocompetent as measured by their ability to normally reject third-party cardiac allografts. We suggest that the prevention of GVHD and induction of stable chimerism in adult recipients of allogeneic UVB-BM may be mediated by suppressor mechanisms.

  6. The determination of lymphoid cell chimerism using peripheral blood lymphocytes from murine bone marrow chimeras

    International Nuclear Information System (INIS)

    Skidmore, B.J.; Miller, L.S.

    1978-01-01

    A simple, rapid and accurate method was devised for determining lymphoid cell chimerism in bone marrow-reconstituted mice. Chimeras were produced by reconstituting lethally irradiated mice with semi-allogeneic bone marrow cells. Lymphocytes from the peripheral blood of individual chimeric mice were purified by sedimentation in dextran solution and differential flotation in Ficoll-Hypaque gradients. From 250-500 μl of blood, 1-7 x 10 5 cells were routinely obtained. The extent of chimerism was determined serologically by using peripheral blood lymphocytes as target cells in a dye exclusion microcytotoxicity assay. Using this new technique, approximately 80% of the reconstituted mice were found to be repopulated with lymphocytes of the donor type. (Auth.)

  7. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  8. Five year follow-up after autologous peripheral blood hematopoietic stem cell transplantation for refractory, chronic, corticosteroid-dependent systemic lupus erythematosus: effect of conditioning regimen on outcome.

    Science.gov (United States)

    Burt, Richard K; Han, Xiaoqiang; Gozdziak, Paula; Yaung, Kim; Morgan, Amy; Clendenan, Allison M; Henry, Jacquelyn; Calvario, Michelle A; Datta, Syamal K; Helenowski, Irene; Schroeder, James

    2018-05-31

    Some patients with systemic lupus erythematosus (SLE) are refractory to traditional therapies, dependent on chronic corticosteroids, have organ damage, and are at high risk of mortality. In this group of patients, we report outcome at a median of five years after autologous hematopoietic stem cell transplant (HSCT) using two different non-myeloablative regimens. Four patients received a conditioning regimen of cyclophosphamide (200 mg/kg) and alemtuzumab (60 mg), while 26 patients underwent conditioning with cyclophosphamide (200 mg/kg), rATG (Thymoglobulin) (5.5 mg/kg), and rituximab 1000 mg. Unselected peripheral blood stem cells were infused on day 0. There were no treatment related deaths. Of the four patients treated with cyclophosphamide and alemtuzumab, none entered remission. For the 26 patients treated with cyclophosphamide, rATG, and rituximab, disease remission defined as no immune suppressive drugs except hydroxychloroquine and/or 10 mg or less of prednisone a day was 92% at 6 months, 92% at one year, 81% at 2 years, 71% at 3 years, and 62% at 4 and 5 years post-HSCT. Autologous HSCT outcome is dependent on the conditioning regimen but prior organ damage may cause lingering symptoms.

  9. Primary nodal peripheral T-cell lymphomas: diagnosis and therapeutic considerations

    Directory of Open Access Journals (Sweden)

    Luis Alberto de Pádua Covas Lage

    2015-08-01

    Full Text Available Nodal peripheral T-cell lymphomas are a rare group of neoplasms derived from post-thymic and activated T lymphocytes. A review of scientific articles listed in PubMed, Lilacs, and the Cochrane Library databases was performed using the term "peripheral T-cell lymphomas". According to the World Health Organization classification of hematopoietic tissue tumors, this group of neoplasms consists of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS, angioimmunoblastic T-cell lymphoma (AITL, anaplastic large cell lymphoma-anaplastic lymphoma kinase positive (ALCL-ALK+, and a provisional entity called anaplastic large cell lymphoma-anaplastic lymphoma kinase negative (ALCL-ALK-. Because the treatment and prognoses of these neoplasms involve different principles, it is essential to distinguish each one by its clinical, immunophenotypic, genetic, and molecular features. Except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, which has no adverse international prognostic index, the prognosis of nodal peripheral T-cell lymphomas is worse than that of aggressive B-cell lymphomas. Chemotherapy based on anthracyclines provides poor outcomes because these neoplasms frequently have multidrug-resistant phenotypes. Based on this, the current tendency is to use intensified cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP regimens with the addition of new drugs, and autologous hematopoietic stem cell transplantation. This paper describes the clinical features and diagnostic methods, and proposes a therapeutic algorithm for nodal peripheral T-cell lymphoma patients.

  10. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  11. In vivo stem cell function of interleukin-3-induced blast cells

    International Nuclear Information System (INIS)

    Tsunoda, J.; Okada, S.; Suda, J.; Nagayoshi, K.; Nakauchi, H.; Hatake, K.; Miura, Y.; Suda, T.

    1991-01-01

    The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, the authors obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. They examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 x 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 x 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice

  12. New York State's landmark policies on oversight and compensation for egg donation to stem cell research.

    Science.gov (United States)

    Roxland, Beth E

    2012-05-01

    In 2009, New York became the first US state to implement a policy permitting researchers to use public funds to reimburse women who donate oocytes directly and solely to stem cell research, not only for the woman's out-of-pocket expenses, but also for the time, burden and discomfort associated with the donation process. The debate about the propriety of such compensation was recently renewed with the publication of a stem cell study in which women were provided with compensation for donating their eggs. This article explores the scientific and ethical rationales that led to New York's decision to allow donor compensation. The multifaceted deliberation process and comprehensive policies may serve as a model for other states and countries considering the issue of oocyte donor compensation.

  13. Reduced-intensity conditioning for alternative donor hematopoietic stem cell transplantation in patients with dyskeratosis congenita.

    Science.gov (United States)

    Nishio, Nobuhiro; Takahashi, Yoshiyuki; Ohashi, Haruhiko; Doisaki, Sayoko; Muramatsu, Hideki; Hama, Asahito; Shimada, Akira; Yagasaki, Hiroshi; Kojima, Seiji

    2011-03-01

    DC is an inherited bone marrow failure syndrome mainly characterized by nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. Bone marrow failure is the most common cause of death in patients with DC. Because previous results of HSCT with a myeloablative regimen were disappointing, we used a reduced-intensity conditioning regimen for two patients with classic DC, and one patient with cryptic DC who harbored the TERT mutation. Graft sources included two mismatched-related bone marrow (BM) donors and one unrelated BM donor. Successful engraftment was achieved with few regimen-related toxicities in all patients. They were alive 10, 66, and 72 months after transplantation, respectively. Long-term follow-up is crucial to determine the late effects of our conditioning regimen. © 2010 John Wiley & Sons A/S.

  14. Seleção de doador de medula óssea ou sangue periférico Bone marrow or peripheral blood donor selection

    Directory of Open Access Journals (Sweden)

    Noemi F. Pereira

    2010-05-01

    Full Text Available A compatibilidade HLA é o fator mais valorizado na escolha do doador de medula óssea voluntário, preconizando-se a realização de HLA de alta resolução nos locos HLA-A,B,C, DRB1 e DQB1. Tem sido dado preferência para o doador com consanguinidade alélica 8x8 (A,B,C, DRB1. Na presença de incompatibilidade na classe-I sugere-se a busca de doador com compatibilidade DQB1 (9x10. Já as incompatibilidades dos locos DPB1 não constituem critério de exclusão de doador, exceto quando existir presença de anticorpo contra o loco HLA-DP do doador.The HLA system is considered the most important factor in choosing a volunteer bone marrow donor with the recommendation of performing high resolution HLA tests for the HLA-A, B, C, DRB1 and DQB1 loci. A preference has been given for donor 8x8 (A, B, C, DRB1 allele matching. In the presence of class-I incompatibility a search for DQB1 (9x10 donor compatibility is suggested. The incompatibility of the DPB1 locus does not constitute exclusion of the donor, except when there is the presence of antibodies against the HLA-DP locus of the donor.

  15. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization.

    Science.gov (United States)

    Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2013-09-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.

  16. Marginal kidney donor

    Directory of Open Access Journals (Sweden)

    Ganesh Gopalakrishnan

    2007-01-01

    Full Text Available Renal transplantation is the treatment of choice for a medically eligible patient with end stage renal disease. The number of renal transplants has increased rapidly over the last two decades. However, the demand for organs has increased even more. This disparity between the availability of organs and waitlisted patients for transplants has forced many transplant centers across the world to use marginal kidneys and donors. We performed a Medline search to establish the current status of marginal kidney donors in the world. Transplant programs using marginal deceased renal grafts is well established. The focus is now on efforts to improve their results. Utilization of non-heart-beating donors is still in a plateau phase and comprises a minor percentage of deceased donations. The main concern is primary non-function of the renal graft apart from legal and ethical issues. Transplants with living donors outnumbered cadaveric transplants at many centers in the last decade. There has been an increased use of marginal living kidney donors with some acceptable medical risks. Our primary concern is the safety of the living donor. There is not enough scientific data available to quantify the risks involved for such donation. The definition of marginal living donor is still not clear and there are no uniform recommendations. The decision must be tailored to each donor who in turn should be actively involved at all levels of the decision-making process. In the current circumstances, our responsibility is very crucial in making decisions for either accepting or rejecting a marginal living donor.

  17. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy

    Directory of Open Access Journals (Sweden)

    Ronaldo J. F. C. do Amaral

    2017-01-01

    Full Text Available The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  18. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.

    Science.gov (United States)

    do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  19. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury.

    Science.gov (United States)

    Huang, Stephanie U; Yoon, Jinny J; Ismail, Salim; McGhee, Jennifer J; Sherwin, Trevor

    2015-11-01

    The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue. © 2015 International Federation for Cell Biology.

  20. Premise and promise of mesenchymal stem cell-based therapies in clinical vascularized composite allotransplantation.

    Science.gov (United States)

    Schweizer, Riccardo; Gorantla, Vijay S; Plock, Jan A

    2015-12-01

    Over the past decade, clinical vascularized composite allotransplantation (VCA) has enabled functional and quality of life restoration in a wide range of indications secondary to devastating tissue loss. However, the spectre of toxicity and long-term complications of chronic immunosuppression has curtailed the momentum of VCA. This study summarizes the literature evidence behind successful mesenchymal stem cell (MSC)-based cell therapies highlighting their multipronged immunomodulatory, restorative and regenerative characteristics with special emphasis towards VCA applications. Experimental and clinical studies in solid organs and VCA have confirmed that MSCs facilitate immunosuppression-free allograft survival or tolerance, stimulate peripheral nerve regeneration, attenuate ischaemia-reperfusion injury, and improve tissue healing after surgery. It has been hypothesized that MSC-induced long-term operational tolerance in experimental VCA is mediated by induction of mixed donor-specific chimerism and regulatory T-cell mechanisms. All these characteristics of MSCs could thus help expand the scope and clinical feasibility of VCA. Cellular therapies, especially those focusing on MSCs, are emerging in solid organ transplantation including VCA. Although some clinical trials have begun to assess the effects of MSCs in solid organ transplantation, much scientific domain remains uncharted, especially for VCA.