WorldWideScience

Sample records for doe offsite mixed

  1. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  2. OFFSITE RADIOLOGICAL CONSEQUENCE CALCULATION FOR THE BOUNDING MIXING OF INCOMPATIBLE MATERIALS ACCIDENT

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2006-01-01

    This document quantifies the offsite radiological consequence of the bounding mixing of incompatible materials accident for comparison with the 25 rem Evaluation Guideline established in Appendix A of DOE-STD-3009. The bounding accident is an inadvertent addition of acid to a waste tank. The calculated offsite dose does not challenge the Evaluation Guideline. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  3. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  4. Offsite demonstrations for MWLID technologies

    International Nuclear Information System (INIS)

    Williams, C.; Gruebel, R.

    1995-01-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner trademark/PLUME, Hybrid Directional Drilling, Seamist trademark/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals

  5. Benchmarking of RESRAD-OFFSITE : transition from RESRAD (onsite) to RESRAD-OFFSITE and comparison of the RESRAD-OFFSITE predictions with peercodes

    International Nuclear Information System (INIS)

    Yu, C.; Gnanapragasam, E.; Cheng, J.-J.; Biwer, B.

    2006-01-01

    The main purpose of this report is to document the benchmarking results and verification of the RESRAD-OFFSITE code as part of the quality assurance requirements of the RESRAD development program. This documentation will enable the U.S. Department of Energy (DOE) and its contractors, and the U.S. Nuclear Regulatory Commission (NRC) and its licensees and other stakeholders to use the quality-assured version of the code to perform dose analysis in a risk-informed and technically defensible manner to demonstrate compliance with the NRC's License Termination Rule, Title 10, Part 20, Subpart E, of the Code of Federal Regulations (10 CFR Part 20, Subpart E); DOE's 10 CFR Part 834, Order 5400.5, ''Radiation Protection of the Public and the Environment''; and other Federal and State regulatory requirements as appropriate. The other purpose of this report is to document the differences and similarities between the RESRAD (onsite) and RESRAD-OFFSITE codes so that users (dose analysts and risk assessors) can make a smooth transition from use of the RESRAD (onsite) code to use of the RESRAD-OFFSITE code for performing both onsite and offsite dose analyses. The evolution of the RESRAD-OFFSITE code from the RESRAD (onsite) code is described in Chapter 1 to help the dose analyst and risk assessor make a smooth conceptual transition from the use of one code to that of the other. Chapter 2 provides a comparison of the predictions of RESRAD (onsite) and RESRAD-OFFSITE for an onsite exposure scenario. Chapter 3 documents the results of benchmarking RESRAD-OFFSITE's atmospheric transport and dispersion submodel against the U.S. Environmental Protection Agency's (EPA's) CAP88-PC (Clean Air Act Assessment Package-1988) and ISCLT3 (Industrial Source Complex-Long Term) models. Chapter 4 documents the comparison results of the predictions of the RESRAD-OFFSITE code and its submodels with the predictions of peer models. This report was prepared by Argonne National Laboratory's (Argonne

  6. Determinations of TSD facility acceptability under the CERCLA Off-Site Rule

    International Nuclear Information System (INIS)

    1997-06-01

    On September 22, 1993, the US Environmental Protection Agency (EPA) published the ''Off-Site Rule'' to implement section 121(d)(3) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA section 121(d)(3) requires that wastes generated as a result of remediation activities taken under CERCLA authority and transferred off-site be managed only at facilities that comply with the Resource Conservation and Recovery Act. In 1994, the DOE's Office of Environmental Policy and Assistance (OEPA), RCRA/CERCLA Division (EH-413) published a CERCLA Information Brief titled ''The Off-Site Rule'' which describes the content of the Off-Site Rule and clarifies some of its implications for DOE remedial actions under CERCLA. Additionally, EH-413 published the Guide on Selecting Compliant Off-Site Hazardous Waste Treatment, Storage and Disposal Facilities which provides a regulatory roadmap for accomplishing off-site transfers of environmental restoration and process hazardous waste at DOE facilities in a manner compliant with the Off-Site Rule and other relevant Federal regulations. Those guidance documents concentrate primarily on DOE's perspective as a hazardous waste generator. The purpose of this Information Brief is to address the implications of the Off-Site Rule for DOE-owned hazardous waste treatment, storage or disposal facilities that accept CERCLA remediation wastes from off-site locations

  7. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  8. Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  9. Offsite Shipment Campaign Readiness Assessment (OSCRA): A tool for offsite shipment campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Michelhaugh, R.D.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Bisaria, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-31

    The Offsite Shipment Campaign Readiness Assessment (OSCRA) tool is designed to assist program managers in identifying, implementing, and verifying applicable transportation and disposal regulatory requirements for specific shipment campaigns. OSCRA addresses these issues and provides the program manager with a tool to support planning for safe and compliant transportation of waste and other regulated materials. Waste transportation and disposal requirements must be identified and addressed in the planning phase of a waste management project. In the past, in some cases, transportation and disposal requirements have not been included in overall project plans. These planning deficiencies have led to substantial delays and cost impacts. Additionally, some transportation regulatory requirements have not been properly implemented, resulting in substantial fines and public embarrassment for the U.S. Department of Energy (DOE). If a material has been processed and packaged for onsite storage (prior to offsite disposal) in a package that does not meet transportation requirements, it must be repackaged in U.S. Department of Transportation (DOT)-compliant packaging for transport. This repackaging can result in additional cost, time, and personnel radiation exposure. The original OSCRA concept was developed during the Pond Waste Project at the K-25 Site in Oak Ridge, Tennessee. The continued development of OSCRA as a user-friendly tool was funded in 1995 by the DOE Office of Environmental Management, Transportation Management Division (TMD). OSCRA is designed to support waste management managers, site remediation managers, and transportation personnel in defining applicable regulatory transportation and disposal requirements for offsite shipment of hazardous waste and other regulated materials. The need for this tool stems from increasing demands imposed on DOE and the need to demonstrate and document safe and compliant packaging and shipment of wastes from various DOE sites.

  10. DOE's planning process for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Case, J.T.; Letourneau, M.J.; Chu, M.S.Y.

    1995-01-01

    A disposal planning process was established by the Department of Energy (DOE) Mixed Low-Level Waste (MLLW) Disposal Workgroup. The process, jointly developed with the States, includes three steps: site-screening, site-evaluation, and configuration study. As a result of the screening process, 28 sites have been eliminated from further consideration for MLLW disposal and 4 sites have been assigned a lower priority for evaluation. Currently 16 sites are being evaluated by the DOE for their potential strengths and weaknesses as MLLW disposal sites. The results of the evaluation will provide a general idea of the technical capability of the 16 disposal sites; the results can also be used to identify which treated MLLW streams can be disposed on-site and which should be disposed of off-site. The information will then serve as the basis for a disposal configuration study, which includes analysis of both technical as well as non-technical issues, that will lead to the ultimate decision on MLLW disposal site locations

  11. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  12. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  13. CLASSIFICATION OF THE MGR OFFSITE UTILITIES SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) offsite utilities system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  14. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  15. User's Guide for RESRAD-OFFSITE

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-01

    The RESRAD-OFFSITE code can be used to model the radiological dose or risk to an offsite receptor. This User’s Guide for RESRAD-OFFSITE Version 3.1 is an update of the User’s Guide for RESRAD-OFFSITE Version 2 contained in the Appendix A of the User’s Manual for RESRAD-OFFSITE Version 2 (ANL/EVS/TM/07-1, DOE/HS-0005, NUREG/CR-6937). This user’s guide presents the basic information necessary to use Version 3.1 of the code. It also points to the help file and other documents that provide more detailed information about the inputs, the input forms and features/tools in the code; two of the features (overriding the source term and computing area factors) are discussed in the appendices to this guide. Section 2 describes how to download and install the code and then verify the installation of the code. Section 3 shows ways to navigate through the input screens to simulate various exposure scenarios and to view the results in graphics and text reports. Section 4 has screen shots of each input form in the code and provides basic information about each parameter to increase the user’s understanding of the code. Section 5 outlines the contents of all the text reports and the graphical output. It also describes the commands in the two output viewers. Section 6 deals with the probabilistic and sensitivity analysis tools available in the code. Section 7 details the various ways of obtaining help in the code.

  16. User's Guide for RESRAD-OFFSITE

    International Nuclear Information System (INIS)

    Gnanapragasam, E.; Yu, C.

    2015-01-01

    The RESRAD-OFFSITE code can be used to model the radiological dose or risk to an offsite receptor. This User's Guide for RESRAD-OFFSITE Version 3.1 is an update of the User's Guide for RESRAD-OFFSITE Version 2 contained in the Appendix A of the User's Manual for RESRAD-OFFSITE Version 2 (ANL/EVS/TM/07-1, DOE/HS-0005, NUREG/CR-6937). This user's guide presents the basic information necessary to use Version 3.1 of the code. It also points to the help file and other documents that provide more detailed information about the inputs, the input forms and features/tools in the code; two of the features (overriding the source term and computing area factors) are discussed in the appendices to this guide. Section 2 describes how to download and install the code and then verify the installation of the code. Section 3 shows ways to navigate through the input screens to simulate various exposure scenarios and to view the results in graphics and text reports. Section 4 has screen shots of each input form in the code and provides basic information about each parameter to increase the user's understanding of the code. Section 5 outlines the contents of all the text reports and the graphical output. It also describes the commands in the two output viewers. Section 6 deals with the probabilistic and sensitivity analysis tools available in the code. Section 7 details the various ways of obtaining help in the code.

  17. Off-site response for radiological emergencies

    International Nuclear Information System (INIS)

    Eldridge, J.S.; Oakes, T.W.; Hubbard, H.M.; Hibbitts, H.W.

    1982-01-01

    Environmental radiological surveillance under emergency conditions at off-site locations is one of the advisory functions provided by DOE within the ORO jurisdiction. The Department of Environmental Management of ORNL has been requested to provide sampling and analytical assistance at such emergency response activities. We have assembled and identified specific individuals and equipment to provide a rapid response force to perform field measurements for environmental radioactivity releases as a consequence of nuclear accidents. Survey teams for sample collection and field measurements are provided along with analytical assistance to operate the radioactivity measuring equipment in the DOE emergency van

  18. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  19. Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short

  20. Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377

    International Nuclear Information System (INIS)

    Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C.

    2013-01-01

    RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short

  1. DOE's performance evaluation project for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Waters, R.D.; Chu, M.S.Y.; Gruebel, M.M.; Lee, D.W.

    1995-01-01

    A performance evaluation (PE) is an analysis that estimates radionuclide concentration limits for 16 potential Department of Energy (DOE) mixed low-level waste (ULLW) disposal sites based on the analysis of two environmental exposure pathways (air and water) to an off-site individual and an inadvertent-intruder exposure pathway. Sites are analyzed for their ability to attenuate concentrations of specific radionuclides that could be released from wastes in a hypothetical ULLW disposal facility. Site-specific data and knowledge are used within a generic framework that is consistent across all sites being evaluated. After estimates of waste concentrations for the three pathways are calculated, the minimum of the waste concentration values is selected as the permissible waste concentration for each radionuclide. The PE results will be used as input to the process for DOE's ULLW disposal configuration. Preliminary comparisons of results from the PE and site-specific performance assessments indicate that the simple PE results generally agree with results of the performance assessments, even when site conditions are complex. This agreement with performance-assessment results increases confidence that similar results can be obtained at other sites that have good characterization data. In addition, the simple analyses contained in the PE illustrate a potential method to satisfy the needs of many regulators and the general public for a simple, conservative, defensible, and easily understandable analysis that provides results similar to those of more complex analyses

  2. Environmental Assessment for the off-site commercial cleaning of lead and asbestos contaminated laundry from the Savannah River Site

    International Nuclear Information System (INIS)

    1995-12-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts of off-site commercial cleaning of lead and asbestos contaminated laundry generated at the Savannah River Site (SRS), located near Aiken, South Carolina. The proposed action constitutes an addition to the already-implemented action of sending controlled and routine SRS laundry to an off-site commercial facility for cleaning. This already-implemented action was evaluated in a previous EA (i.e., DOE/EA-0990; DOE, 1994) prepared under the National Environmental Policy Act of 1969 (NEPA)

  3. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  4. Analysis of offsite Emergency Planning Zones (EPZs) for the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Petrocchi, A.J.; Zimmerman, G.A.

    1994-01-01

    During Phase 3 of the EPZ project, a sitewide analysis will be performed applying a spectrum-of-accidents approach to both radiological and nonradiological hazardous materials release scenarios. This analysis will include the MCA but will be wider in scope and will produce options for the State of Colorado for establishing a bounding EPZ that is intended to more comprehensively update the interim, preliminary EPZ developed in Phase 2. EG ampersand G will propose use of a hazards assessment methodology that is consistent with the DOE Emergency Management Guide for Hazards Assessments and other methods required by DOE orders. This will include hazards, accident, safety, and risk analyses. Using this methodology, EG ampersand G will develop technical analyses for a spectrum of accidents. The analyses will show the potential effects from the spectrum of accidents on the offsite population together with identification of offsite vulnerable zones and areas of concern. These analyses will incorporate state-of-the-art technology for accident analysis, atmospheric plume dispersion modeling, consequence analysis, and the application of these evaluations to the general public population at risk. The analyses will treat both radiological and nonradiological hazardous materials and mixtures of both released accidentally to the atmosphere. DOE/RFO will submit these results to the State of Colorado for the State's use in determining offsite emergency planning zones for the Rocky Flats Plant. In addition, the results will be used for internal Rocky Flats Plant emergency planning

  5. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  6. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  7. Effects of spent fuel types on offsite consequences of hypothetical accidents

    International Nuclear Information System (INIS)

    Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

    2000-01-01

    Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor (χ/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only 134 Cs, 137 Cs- 137m Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents

  8. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  9. 40 CFR 68.22 - Offsite consequence analysis parameters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Offsite consequence analysis... PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Hazard Assessment § 68.22 Offsite consequence analysis parameters. (a) Endpoints. For analyses of offsite consequences, the following endpoints shall be...

  10. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  11. Characterization of mixed waste for shipment to TSD Facilities Program

    International Nuclear Information System (INIS)

    Chandler, K.; Goyal, K.

    1995-01-01

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility's waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal

  12. EPA/DOE joint efforts on mixed waste treatment

    International Nuclear Information System (INIS)

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-01-01

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final open-quotes Hazardous Waste Combustion Strategyclose quotes in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit open-quotes Roadmapclose quotes Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit

  13. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  14. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected

  15. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  16. 40 CFR 273.55 - Off-site shipments.

    Science.gov (United States)

    2010-07-01

    ....55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.55 Off-site... universal waste being shipped off-site meets the Department of Transportation's definition of hazardous...

  17. Radiological assessment of depleted uranium migration offsite from an ordnance range

    International Nuclear Information System (INIS)

    Rynders, D.G.

    1996-01-01

    The military utilizes ordnance loaded with depleted uranium in order to maximize armor penetrating capabilities. These weapons are tested on open ranges where the weapons are fired through a cloth target and impact into the soil. This paper examines the potential environmental impact from use of depleted uranium in an open setting. A preliminary pathway analysis was performed to examine potential routes of exposure to nonhuman species in the vicinity and ultimately to man. Generic data was used in the study to estimate the isotopic mix and weight of the ordnance. Key factors in the analysis included analyzing the physics of weapon impact on soil, chemical changes in material upon impact, and mechanisms of offsite transport (including atmospheric and overland transport). Non-standard exposure scenarios were investigated, including the possibility of offsite contaminant transport due to range grassfires. Two radiological assessment codes, MEPAS (Multi media Environmental Pollutant Assessment System) and RESRAD were used to help analyze the scenarios

  18. 40 CFR 68.165 - Offsite consequence analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Offsite consequence analysis. 68.165 Section 68.165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.165 Offsite consequence...

  19. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation

    DEFF Research Database (Denmark)

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki

    2017-01-01

    that choice of setting for simulations does not seem to influence individual and team learning. Department-based local simulation, such as simulation in-house and especially in situ simulation, leads to gains in organisational learning. The overall objectives of simulation-based education and factors......BACKGROUND: Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities...... simulations. DISCUSSION: Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence...

  20. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  1. Monitoring the performance of off-site processors

    International Nuclear Information System (INIS)

    Miller, C.C.

    1995-01-01

    Commercial nuclear power plants have been able to utilize the latest technologies and achieve large volume reduction by obtaining off-site waste processor services. Although the use of such services reduce the burden of waste processing it also reduces the utility's control over the process. Monitoring the performance of off-site processors is important so that the utility is cognizant of the waste disposition for required regulatory reporting. In addition to obtaining data for Reg Guide 1.21 reporting, Performance monitoring is important to determine which vendor and which services to utilize. Off-site processor services were initially offered for the decontamination of metallic waste. Since that time the list of services has expanded to include supercompaction, survey for release, incineration and metal melting. The number of vendors offering off-site services has increased and the services they offer vary. processing rates vary between vendors and have different charge bases. Determining which vendor to use for what service can be complicated and confusing

  2. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  3. Off-Site Prefabrication: What Does it Require from the Trade Contractor?

    DEFF Research Database (Denmark)

    Bekdik, Baris; Hall, Daniel; Aslesen, Sigmund

    2016-01-01

    The purpose of the paper is to show what is required to industrialize a building process from the standpoint of the trade contractor. Rationalization of building processes has, over the years, caught the attention of numerous IGLC papers. Although significant contributions have been made to further...... understand and improve existing construction processes, relatively few contributions have focused on the opportunities for industrialization from the trade contractor’s perspective. This paper uses an in-depth case study to address the deployment strategy for off-site fabrication techniques and processes...... at only one case study, the conclusions are limited in generalizability to other prefabrication operations. However, it represents an important in-depth case from the trade contractors’ perspective and will contribute to the growing body of research focused on industrialization and prefabrication in lean...

  4. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  5. State of offsite construction in India-Drivers and barriers

    Science.gov (United States)

    Arif, M.; Bendi, D.; Sawhney, A.; Iyer, K. C.

    2012-05-01

    The rapid growth of the construction industry in India has influenced key players in the industry to adopt alternative technologies addressing time, cost and quality. The rising demand in housing, infrastructure and other facilities have further highlighted the need for the construction industry to look at adopting alternate building technologies. Offsite construction has evolved as a panacea to dealing with the under-supply and poor quality in the current age construction industry. Several offsite techniques have been adopted by the construction sector. Although, different forms of offsite techniques have been around for a while but their uptake has been low in the Indian context. This paper presents the perceptions about offsite construction in India and highlights some of the barriers and drivers facing the Indian construction industry. The data was gathered through a survey of 17 high level managers from some of the largest stakeholder organizations of the construction sector in India. The influence of time and cost has been highlighted as a major factor fuelling the adoption of offsite construction. However, the influence of current planning systems and the need for a paradigm shift are some of the prominent barriers towards the adoption of offsite techniques.

  6. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Transportation study, Volume 1, Appendix I

    International Nuclear Information System (INIS)

    1996-08-01

    This report has been prepared to address local transportation issues concerning current and potential operations at the Nevada Test Site (NTS), to document the results of the NTS transportation risk analysis, and to provide information and supporting documentation for the Environmental Impact Statement (EIS) for the NTS and Off-Site Locations in the State of Nevada. Four alternatives are evaluated in the NTS EIS: Alternative 1, Continue Current Operations, (No Action); Alternative 2, Discontinue Operations; Alternative 3, Expanded Use; and Alternative 4, Alternate Use of Withdrawn Lands. The transportation risk analysis estimated the health risk from highway transportation of DOE-generated low-level waste, mixed waste, and defense-related nuclear materials for each of the four alternatives

  7. On-Site or Off-Site Renewable Energy Supply Options?

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The concept of a Net Zero Energy Building (Net ZEB) encompasses two options of supplying renewable energy, which can offset energy use of a building, in particular on-site or off-site renewable energy supply. Currently, the on-site options are much more popular than the off-site; however, taking...... into consideration the limited area of roof and/or façade, primarily in the dense city areas, the Danish weather conditions, the growing interest and number of wind turbine co-ops, the off-site renewable energy supply options could become a meaningful solution for reaching ‘zero’ energy goal in the Danish context...... five technologies, i.e., two on-site options: (1) photovoltaic, (2) micro combined heat and power, and three off-site options: (1) off-site windmill, (2) share of a windmill farm and (3) purchase of green energy from the 100% renewable utility grid. The results indicate that in case of the on...

  8. A re-evaluation of nuclear plant offsite power supplies

    International Nuclear Information System (INIS)

    William E Berger; Robert E Henry

    2005-01-01

    Full text of publication follows: De-regulation of the electric power industry has resulted in separate ownership of the transmission and power generation facilities as well as a revised format for operating the transmission facilities. Currently we see the transfer of large blocks of bulk power between markets which can impact the voltage regulation at the offsite power supply. Where Nuclear Plant operations once knew with a large degree of certainty the operating range of the system supplying the offsite power supply, this may no longer be the case and more challenges to the safety systems could result. These challenges may manifest themselves as either a loss of offsite power or voltage levels approaching the degraded level setpoints. In this paper we will first explore what challenges are caused by deregulation and how they impact offsite power supply operations. Next we will incorporate the knowledge grained regarding accidents and consequences from the Individual Plant Evaluations (IPE's) to see how the offsite power supply could be operated to mitigate the challenges and extend the capacity of the auxiliary power system. Various scenarios will be examined using the Modular Accident Analysis Program (MAAP) as an integral plant model. MAAP simulations that include both the plant thermal hydraulic responses and corresponding electric power demand are presented to demonstrate the impact of alternate approaches to offsite power system operation. The original design phase of the offsite and onsite power distribution system was based on a criterion relating to the starting of all safety loads if a safety injection signal was present independent of the accident or its progression. The IPE and risk informed insights that are readily available today will be applied in the re-analyses of the offsite distribution system response. (authors)

  9. Preliminary screening analysis of the off-site environment downstream of the US Department of Energy Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1990-01-01

    Operations and waste disposal activities at the Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge Gaseous Diffusion Plant (ORGDP), located on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in eastern Tennessee, have introduced airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams that ultimately drain into the Clinch River. Previously reported concentrations of radionuclides, metals, and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of contaminants of possible concern to the protection of human health and the environment. A preliminary screening was conducted of contaminants in the off-site surface water environments downstream of the DOE ORR. This screening analysis represents part of a scoping phase of the Clinch River Resource Conservation and Recovery Facilities Investigation (CRRFI). The purpose of this preliminary screening analysis is to use existing data on off-site contaminant concentrations to identify and prioritize potential contaminants of concern for further evaluation and investigation. The primary objective of this screening analysis is to ensure that CRRFI sampling and analysis efforts focus on those contaminants that may possibly contribute to human health or environmental risk. 8 refs., 3 figs., 6 tabs

  10. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  11. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  12. DOE regulatory reform initiative vitrified mixed waste

    International Nuclear Information System (INIS)

    Carroll, S.J.; Holtzscheiter, E.W.

    1997-01-01

    The US Department of Energy (DOE) is charged with responsibly managing the largest volume of mixed waste in the United States. This responsibility includes managing waste in compliance with all applicable Federal and State laws and regulations, and in a cost-effective, environmentally responsible manner. Managing certain treated mixed wastes in Resource Conservation and Recovery Act (RCRA) permitted storage and disposal units (specifically those mixed wastes that pose low risks from the hazardous component) is unlikely to provide additional protection to human health and the environment beyond that afforded by managing these wastes in storage and disposal units subject to requirements for radiological control. In October, 1995, the DOE submitted a regulatory reform proposal to the Environmental Protection Agency (EPA) relating to vitrified mixed waste forms. The technical proposal supports a regulatory strategy that would allow vitrified mixed waste forms treated through a permit or other environmental compliance mechanism to be granted an exemption from RCRA hazardous waste regulation, after treatment, based upon the inherent destruction and immobilization capabilities of vitrification technology. The vitrified waste form will meet, or exceed the performance criteria of the Environmental Assessment (EA) glass that has been accepted as an international standard for immobilizing radioactive waste components and the LDR treatment standards for inorganics and metals for controlling hazardous constituents. The proposal further provides that vitrified mixed waste would be responsibly managed under the Atomic Energy Act (AEA) while reducing overall costs. Full regulatory authority by the EPA or a State would be maintained until an acceptable vitrified mixed waste form, protective of human health and the environment, is produced

  13. R ampersand D activities at DOE applicable to mixed waste

    International Nuclear Information System (INIS)

    Erickson, M.D.; Devgun, J.S.; Brown, J.J.; Beskid, N.J.

    1991-01-01

    The Department of Energy (DOE) has established the Office of Environmental Restoration and Waste Management. Within the new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Because of US governmental activities dating back to the Manhattan project, mixed radioactive and hazardous waste is an area of particular concern to DOE. The OTD is responsible for a number of R ampersand D activities aimed at improving capabilities to characterize, control, and properly dispose of mixed waste. These activities and their progress to date will be reviewed. In addition, needs for additional R ampersand D on managing mixed waste will be presented. 5 refs., 2 tabs

  14. Minutes of the workshop on off-site release criteria for contaminated materials

    International Nuclear Information System (INIS)

    Singh, S.P.N.

    1989-11-01

    A one and one-half-day workshop was held May 2-3, 1989, at the Pollard Auditorium in Oak Ridge, Tennessee, with the objective of formulating a strategy for developing reasonable and uniform criteria for releasing radioactively contaminated materials from the US Department of Energy (DOE) sites. This report contains the minutes of the workshop. At the conclusion of the workshop, a plan was formulated to facilitate the development of the above-mentioned off-site release criteria

  15. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  16. Off-site environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1985

    International Nuclear Information System (INIS)

    Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome, D.J.; Mullen, A.A.

    1986-04-01

    The EMSL-LV operates an Off-Site Radiological Safety Program around the NTS and other sites as requested by the Department of Energy (DOE) under an Interagency Agreement between DOE and EPA. This report, prepared in accordance with DOE guidelines (DOE85a), covers the program activities for calendar year 1985. It contains descriptions of pertinent features of the NTS and its environs, summaries of the EMSL-LV dosimetry and sampling methods, analytical procedures, quality assurance, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation

  17. In-plant considerations for optimal offsite response to reactor accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Heising, C.D.; Aldrich, D.C.

    1982-11-01

    Offsite response decision-making methods based on in-plant conditions are developed for use during severe reactor-accident situations. Dose projections are used to eliminate all LWR plant systems except the reactor core and the spent-fuel storage pool from consideration for immediate offsite emergency response during accident situations. A simple plant information-management scheme is developed for use in offsite response decision-making. Detailed consequence calculations performed with the CRAC2 model are used to determine the appropriate timing of offsite-response implementation for a range of PWR accidents involving the reactor core. In-plant decision criteria for offsite-response implementation are defined. The definition of decision criteria is based on consideration of core-accident physical processes, in-plant accident monitoring information, and results of consequence calculations performed to determine the effectiveness of various public-protective measures. The benefits and negative aspects of the proposed response-implementation criteria are detailed

  18. Private sector participation for the treatment of DOE and commercial radioactive mixed wastes

    International Nuclear Information System (INIS)

    Harris, T.L.; Steele, S.M.; Bohrer, H.A.; Garrison, T.W.; Owens, C.M.

    1993-01-01

    The ability of the US DOE to accept commercial low-level mixed waste (LLMW) for disposal has been identified as a technically feasible alternative in developing a strategy for managing commercial mixed waste. This document is an estimation of DOE's capabilities to assist the state compacts and the commercial sector with the difficult issues related to the treatment and disposal of LLMW. The first step in determining DOE's capabilities to assist the commercial sector and the state compacts in managing their LLMW is to establish how closely DOE's LLMW resembles the LLMW generated commercially. This report established that a large portion of the low-level mixed waste streams are common to both the DOE and private sectors. A united approach between the DOE and the host states and compacts to cooperatively manage the low-level mixed wastes (LLMW) would prove to be beneficial to all

  19. Off-site shipment request development and review plan

    International Nuclear Information System (INIS)

    1992-05-01

    On May 17, 1991, Department of Energy Headquarters (DOE-HQ) imposed a moratorium on the shipment of all Resource Conservation and Recovery Act (RCRA) hazardous and Toxic Substances Control Act (TSCA) waste to commercial treatment, storage and disposal facilities. The moratorium was imposed after it was discovered that some shipments of RCRA and TSCA waste from Department of Energy (DOE) sites contained small quantities of radioactive and special nuclear material (SNM). The shipment of these wastes has been attributed to inconsistent and possibly erroneous interpretation of DOE Orders and guidance. In an effort to clarify existing DOE Orders and guidance and establish throughout the DOE complex, June 21, 1991, DOE-HQ issued in draft the Performance Objective for Certification of Non-Radioactive Hazardous Waste. This Performance Objective was subsequently approved on November 15, 1991. The Performance Objective contains specific requirements that must be net to allow the shipment of RCRA and TSCA waste for commercial treatment, storage and disposal. On July 16, 1991, based on the initial draft of the Performance Objective, Martin Marietta Energy Systems (MMES) issued a directive which applies the Performance Objective requirements to all wastes and materials. In addition, this MMES directive imposed the requirement for a review by a Central Waste Management (CWM) Readiness Review Board (RRB). Additional DOE and MMES guidance and directives have been issued since May 17, 1991. This plan applies to all waste destined for shipment from the Portsmouth Gaseous Diffusion Plant (PORTS) to off-site commercial treatment, storage and disposal facilities, and to all materials destined for recycle, surplus and salvage

  20. DOE evaluates nine alternative thermal technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In June 1993, the U.S. Department of Energy's (DOE's) Office of Technology Development commissioned a study to evaluate 19 thermal technologies for treating DOE's mixed waste. The study was divided into two phases: Phase I evaluated ten conventional incineration techniques (primarily rotary kiln), and Phase II looked at nine innovative, alternative thermal treatment technologies. The treatment processes were evaluated as part of an integrated waste treatment system, which would include all of the facilities, equipment, and methods required to treat and dispose DOE mixed waste. The relative merits and life-cycle costs were then developed for each of the 19 waste treatment systems evaluated. The study also identified the additional research and development, demonstration, and testing/evaluation steps that would be necessary for the waste treatment systems to successfully treat DOE mixed waste. 3 tabs., 2 refs

  1. LHCb: The LHCb off-Site HLT Farm Demonstration

    CERN Multimedia

    Liu, Guoming

    2012-01-01

    The LHCb High Level Trigger (HLT) farm consists of about 1300 nodes, which are housed in the underground server room of the experiment point. Due to the constraints of the power supply and cooling system, it is difficult to install more servers in this room for the future. Off-site computing farm is a solution to enlarge the computing capacity. In this paper, we will demonstrate the LHCb off-site HLT farm which locate in the CERN computing center. Since we use private IP addresses for the HLT farm, we would need virtual private network (VPN) to bridge both sites. There are two kinds of traffic in the event builder: control traffic for the control and monitoring of the farm and the Data Acquisition (DAQ) traffic. We adopt IP tunnel for the control traffic and Network Address Translate (NAT) for the DAQ traffic. The performance of the off-site farm have been tested and compared with the on-site farm. The effect of the network latency has been studied. To employ a large off-site farm, one of the potential bottle...

  2. Environmental assessment for the off-site volume reduction of low-level radioactive waste from the Savannah River Site

    International Nuclear Information System (INIS)

    1995-07-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1061) for the proposed off-site volume reduction of low-level radioactive wastes (LLW) generated at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  3. Survey of commercial firms with mixed-waste treatability study capability

    International Nuclear Information System (INIS)

    McFee, J.; McNeel, K.; Eaton, D.; Kimmel, R.

    1996-01-01

    According to the data developed for the Proposed Site Treatment Plans, the US Department of Energy (DOE) mixed low-level and mixed transuranic waste inventory was estimated at 230,000 m 3 and embodied in approximately 2,000 waste streams. Many of these streams are unique and may require new technologies to facilitate compliance with Resource Conservation and Recovery Act disposal requirements. Because most waste streams are unique, a demonstration of the selected technologies is justified. Evaluation of commercially available or innovative technologies in a treatability study is a cost-effective method of providing a demonstration of the technology and supporting decisions on technology selection. This paper summarizes a document being prepared by the Mixed Waste Focus Area of the DOE Office of Science and Technology (EM-50). The document will provide DOE waste managers with a list of commercial firms (and universities) that have mixed-waste treatability study capabilities and with the specifics regarding the technologies available at those facilities. In addition, the document will provide a short summary of key points of the relevant regulations affecting treatability studies and will compile recommendations for successfully conducting an off-site treatability study. Interim results of the supplier survey are tabulated in this paper. The tabulation demonstrates that treatment technologies in 17 of the US Environmental Protection Agency's technology categories are available at commercial facilities. These technologies include straightforward application of standard technologies, such as pyrolysis, as well as proprietary technologies developed specifically for mixed waste. The paper also discusses the key points of the management of commercial mixed-waste treatability studies

  4. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history

  5. Offsite doses from SRP radioactive releases - 1985

    International Nuclear Information System (INIS)

    Marter, W.L.

    1986-01-01

    This memorandum summarizes the offsite doses from releases of radioactive materials to the environment from SRP operations in 1985. These doses were calculated for inclusion in the environmental report for 1985 to be issued by the Health Protection Department (DPSPU-86-30-1). The environmental report is prepared annually for distribution to state environmental agencies, the news media, and interested members of the public. More detailed data on offsite exposures by radionuclide and exposure pathway will be included in the environmental report

  6. 13 CFR 120.1025 - Off-site reviews and monitoring.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Off-site reviews and monitoring. 120.1025 Section 120.1025 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Risk-Based Lender Oversight Supervision § 120.1025 Off-site reviews and monitoring. SBA may conduct off...

  7. Integrate offsites management with information systems

    Energy Technology Data Exchange (ETDEWEB)

    Valleur, M. (TECHNIP, Paris (France))

    1993-11-01

    Computerized offsites management systems in oil refineries offer a unique opportunity to integrate advanced technology into a coherent refinery information system that contributes to benefits-driven optimal operations: from long-term, multirefinery linear programming (LP) models to sequential control of transfer lineups in the tank farm. There are strong incentives to automate and optimize the offsites operations, and benefits can be quantified to justify properly sized projects. The paper discusses the following: business opportunities, oil movement and advanced technology, project scoping and sizing, review of functional requirements, transfer automation, blending optimal control, on-line analyzers, oil movement and scheduling, organizational issues, and investment and benefits analysis.

  8. User's Manual for RESRAD-OFFSITE Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Gnanapragasam, E.; Biwer, B. M.; Kamboj, S.; Cheng, J. -J.; Klett, T.; LePoire, D.; Zielen, A. J.; Chen, S. Y.; Williams, W. A.; Wallo, A.; Domotor, S.; Mo, T.; Schwartzman, A.; Environmental Science Division; DOE; NRC

    2007-09-05

    The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code, which has been widely used for calculating doses and risks from exposure to radioactively contaminated soils. The development of RESRAD-OFFSITE started more than 10 years ago, but new models and methodologies have been developed, tested, and incorporated since then. Some of the new models have been benchmarked against other independently developed (international) models. The databases used have also expanded to include all the radionuclides (more than 830) contained in the International Commission on Radiological Protection (ICRP) 38 database. This manual provides detailed information on the design and application of the RESRAD-OFFSITE code. It describes in detail the new models used in the code, such as the three-dimensional dispersion groundwater flow and radionuclide transport model, the Gaussian plume model for atmospheric dispersion, and the deposition model used to estimate the accumulation of radionuclides in offsite locations and in foods. Potential exposure pathways and exposure scenarios that can be modeled by the RESRAD-OFFSITE code are also discussed. A user's guide is included in Appendix A of this manual. The default parameter values and parameter distributions are presented in Appendix B, along with a discussion on the statistical distributions for probabilistic analysis. A detailed discussion on how to reduce run time, especially when conducting probabilistic (uncertainty) analysis, is presented in Appendix C of this manual.

  9. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-01-01

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site's preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised

  10. Off-site emergency preparedness activities within the European Commission

    International Nuclear Information System (INIS)

    Kelly, G.N.

    1998-01-01

    Increasing attention is being given by the European Commission to off-site emergency preparedness as part of its broader contribution to improving nuclear safety in Eastern Europe. The main initiatives being taken or planned by the Commission in this area are summarised. Particular attention is given to two topics: Firstly, the development of the RODOS (Real-time On-line DecisiOn Support) system for supporting off-site emergency management in the event of a nuclear accident; and, secondly, the work of an Inter-Service Group on nuclear Off-Site Emergency Preparedness (OSEP) in Eastern Europe that has been established within the Commission. The contribution that each is making to improving emergency preparedness, both in Eastern Europe and in Europe more widely, is described. (orig.)

  11. European commission contribution to improving off-site emergency preparedness

    International Nuclear Information System (INIS)

    Kelly, G.N.

    1996-01-01

    Increasing attention is being given by the European Commission to off-site emergency preparedness as part of its broader contribution to improving nuclear safety in Eastern Europe. The main initiatives being taken or planned by the Commission in this area are summarized. Particular attention is given to two topics: firstly, the development of the RODOS (Real-time On-line Decision Support) system for supporting off-site emergency management in the event of a nuclear accident; and, secondly, the work of an Inter-Service Group on nuclear Off-Site Emergency Preparedness (OSEP) in Eastern Europe that has recently been established within the Commission. The contribution that each is making to improving emergency preparedness, both in Eastern Europe and in Europe more widely, is described

  12. Application service provider (ASP) financial models for off-site PACS archiving

    Science.gov (United States)

    Ratib, Osman M.; Liu, Brent J.; McCoy, J. Michael; Enzmann, Dieter R.

    2003-05-01

    For the replacement of its legacy Picture Archiving and Communication Systems (approx. annual workload of 300,000 procedures), UCLA Medical Center has evaluated and adopted an off-site data-warehousing solution based on an ASP financial with a one-time single payment per study archived. Different financial models for long-term data archive services were compared to the traditional capital/operational costs of on-site digital archives. Total cost of ownership (TCO), including direct and indirect expenses and savings, were compared for each model. Financial parameters were considered: logistic/operational advantages and disadvantages of ASP models versus traditional archiving systems. Our initial analysis demonstrated that the traditional linear ASP business model for data storage was unsuitable for large institutions. The overall cost markedly exceeds the TCO of an in-house archive infrastructure (when support and maintenance costs are included.) We demonstrated, however, that non-linear ASP pricing models can be cost-effective alternatives for large-scale data storage, particularly if they are based on a scalable off-site data-warehousing service and the prices are adapted to the specific size of a given institution. The added value of ASP is that it does not require iterative data migrations from legacy media to new storage media at regular intervals.

  13. 40 CFR 1400.8 - Access to off-site consequence analysis information by Federal government officials.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Access to off-site consequence... MANAGEMENT PROGRAMS UNDER THE CLEAN AIR ACT SECTION 112(r)(7); DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION Access to Off-Site Consequence Analysis...

  14. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Geimer, R.M.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  15. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  16. Pathways for Off-site Corporate PV Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, Jenny S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-06

    Through July 2017, corporate customers contracted for more than 2,300 MW of utility-scale solar. This paper examines the benefits, challenges, and outlooks for large-scale off-site solar purchasing through four pathways: power purchase agreements, retail choice, utility partnerships (green tariffs and bilateral contracts with utilities), and by becoming a licensed wholesale seller of electricity. Each pathway differs based on where in the United States it is available, the value provided to a corporate off-taker, and the ease of implementation. The paper concludes with a discussion of future pathway comparison, noting that to deploy more corporate off-site solar, new procurement pathways are needed.

  17. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    International Nuclear Information System (INIS)

    Maldonado, Delis

    2012-01-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  18. AGR steel corrosion monitoring schemes: progress on off-site testing of coupon specimens to end of 1985: Pt. 1

    International Nuclear Information System (INIS)

    Whittle, I.; Meredith, M.E.

    1988-03-01

    Off-site Advanced Gas-cooled Reactor steel corrosion monitoring through experiments on mild steel coupon specimens is reported. The appearance of all mild steel coupons oxidised over the temperature range 375 to 450 0 C is consistent with what is expected for the appropriate silicon content, temperature and in the gas mixes used. Likewise, weight gain data from the tests is as expected and where linear (breakaway) oxidation kinetics are in evidence, measured rates are within one standard deviation of the mean oxidation rates predicted by the 1/R model. Also, data relating mean breakaway oxide thickness to weight gain is in good agreement with the currently recommended relationship of 1 mg cm -2 weight gain = 6.72 μm oxide thickness. The observed oxidation behaviour of the off-site mild steel coupons is consistent with the most recent design data. (author)

  19. TEMA-DOE annual report, July 1, 1997--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The Tennessee Emergency Management Agency (TEMA) will develop off-site Multi-Jurisdictional Emergency Response Plans (MJERPs) in coordination with Federal, State, and local agencies. The MJERPs will describe actions to minimize the risks to the citizens of Tennessee as a result of an off-site release of hazardous material from the DOE Oak Ridge Reservation. This report describes actions made during each quarter of the year.

  20. Planning, Coordinating, and Managing Off-Site Storage is an Area of Increasing, Professional Responsibility for Special Collections Departments

    Directory of Open Access Journals (Sweden)

    Melissa Goertzen

    2016-03-01

    two locations instead of one. Also, the integration of new workflows required additional oversight to ensure adequate control at all points of process. Static staffing levels and increased levels of responsibility impacted preservation and conservation activities as well. A central concern was the handling of materials by facility staff not trained as special collections professionals. In regard to the facilities themselves, a general concern was that commercial warehouses do not always provide the kind of environmental control systems recommended for storage of special collections materials. Of the total sample group, 12 participants (19% said their institution does not use off-site storage for special collections. When asked if this may occur in the future, four directors (33% said they anticipate off-site storage use within the next five years. Lack of space was listed as the primary motivation. Conclusion – Study findings provide evidence for what was previously known anecdotally: planning, coordinating, and managing off-site storage is a significant professional responsibility that will only grow in the future. As primary resources are integrated into research, teaching, and learning activities, the acquisition of special collections materials will continue to grow. Discussions regarding off-site storage workflows and strategic planning will continue as professionals seek compromises that meet the unique needs of acquisition, preservation, and public service.

  1. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. American Indian Assessments. Volume 1, Appendix G

    International Nuclear Information System (INIS)

    1996-08-01

    The Native American Resource Document is a summary of opinions expressed by the Consolidated Group of Tribes and Organizations (CGTO) regarding the Environmental Impact Statement for the Nevada Test Site and Other Off-Site Locations within the State of Nevada (NTS EIS). The document contains (a) general concerns regarding long-term impacts of the U.S. Department of Energy's (DOE) operations on the NTS and (b) a synopsis of specific comments made by the American Indian Writers Subgroup (AIWS) for various chapters of the NTS EIS. The Native American Resource Document was produced in response to consultation required for the NTS EIS, in accordance with DOE Order 1230.2, American Indian Tribal Government Policy. The consultation focused specifically on four alternative management decisions concerning the future mission of the NTS and related off-site locations in Nevada. However, the present CGTO's response to this consultation is not limited to EIS alternatives, but also integrates relevant recommendations made by Indian people for previous DOE projects in which American Indians participated

  2. Importance ranking of various aspects of offsite radiological emergency preparedness

    International Nuclear Information System (INIS)

    Hockert, J.W.; Carter, T.F.

    1987-01-01

    Under contract to the Edison Electric Institute, IEAL developed a method to assess the relative importance of various aspects of offsite radiological emergency preparedness. The basic approach involved structuring the 35 objectives that the Federal Emergency Management Agency expects offsite emergency planners to demonstrate during nuclear power plant emergency preparedness exercises into a hierarchy based upon the emergency response capabilities they support. The analytical hierarchy process (AHP) was employed to derive the quantitative relative importance of each of the 35 objectives based upon its contribution to the overall capability of offsite agencies to assist in protecting public health and safety in the event of an emergency at a nuclear power plant. The judgments of a cross-section of state and local emergency planners, federal regulators, and intervenors were solicited to rank the 35 objectives

  3. Losses of off-site power at U.S. nuclear power plants -- through 1995. Final report

    International Nuclear Information System (INIS)

    Wyckoff, H.

    1996-04-01

    This report provides a database and summary analysis of losses of off-site power at US nuclear generating units. It includes the 16 years 1980 through 1995. This is the twelfth update of this database and analysis. During 1994 there were no losses of all off-site power and in 1995 only two short losses. Both the short term and long term US loss of all off-site power experience is extremely favorable. The frequency of losing all off-site power is an important input to many nuclear plant safety assessments. The industry's loss of all off-site power experience that is set forth in this report can provide perspective to plant specific probabilistic safety assessments

  4. 40 CFR 1400.9 - Access to off-site consequence analysis information by State and local government officials.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Access to off-site consequence... CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION Access to Off-Site Consequence Analysis Information by Government Officials. § 1400.9 Access to off-site consequence analysis...

  5. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  6. Planning and exercise experiences related to an off-site nuclear emergency in Canada: the federal component

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1986-01-01

    The Canadian Government's Federal Nuclear Emergency Response Plan (off-site) (FNERP) was issued in 1984. In this plan, a nuclear emergency is defined as an emergency involving the release of radionuclides but does not include the use of nuclear weapons against North America. Because of the federal nature of Canada and its large area, special considerations are required for the plan to cover both the response to nuclear emergencies where the national government has primary responsibility and to provincial requests for assistance where the federal response becomes secondary to the provincial. The nuclear emergencies requiring the implementation of this plan are: (a) an accident in the nuclear energy cycle in Canada with off-site implications; (b) an accident in the nuclear energy cycle in another country which may affect Canada; (c) nuclear weapons testing with off-site implications which may affect Canada; and (d) nuclear-powered devices impacting on Canadian territory. Each emergency requires a separate sub-plan and usually requires different organizations to respond. Some scenarios are described. The Department of National Health and Welfare has established a Federal Nuclear Emergency Control Centre (FNECC). The FNECC participated in September 1985 in an exercise involving a nuclear reactor facility in the Province of Ontario and the experience gained from this activity is presented. The FNECC co-operates with its counterparts in the United States of America through a nuclear emergency information system and this network is also described. (author)

  7. 29 CFR 1908.4 - Offsite consultation.

    Science.gov (United States)

    2010-07-01

    ... on occupational safety and health issues by telephone and correspondence, and at locations other than... 29 Labor 5 2010-07-01 2010-07-01 false Offsite consultation. 1908.4 Section 1908.4 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  8. Offsite testing in support of the Salt Repository Project

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1987-04-01

    This report presents a rationale and recommendation to perform an offsite testing program in support of the Salt Repository Project. The investigation to be performed primarily consists of qualifying test methods and procedures, qualifying personnel-training procedures, evaluating test instruments and selected equipment, and obtaining mining and production equipment performance-related information. The key objective of these activities is to develop capabilities to be used at the exploratory shaft facility (ESF). The ESF is to be excavated at the Deaf Smith County site to characterize the salt site for the construction of a repository used to isolate radioactive waste from the biosphere. The bulk of the offsite testing work will be performed at Avery Island Salt Mine at New Iberia, Lousiana. Additional knowledge will be obtained by exchanging technical information either as participants or as observers at the Waste Isolation Pilot Plant (WIPP) site and the Asse Mine in the Federal Republic of Germany (FRG). It is estimated that the offsite testing program will cost approximately $9.3 million over 4 fiscal years. 14 refs., 1 fig., 8 tabs

  9. Study on the operational guides of the off-site emergency management center

    International Nuclear Information System (INIS)

    Park, Won Jong; Han, S. J.; Oh, K. H.

    2005-01-01

    The emergency response organizational groups and roles of Off-site Emergency Management Center was proposed to respond in case of radiological emergency. Development of implementing procedures of Off-site Emergency Management Center in case of radiological emergency to improve effective co-operation and rapid response in radiological emergency. Establishment of 'The Ordinance of Operation of residence radiological emergency office of the Minister of Science and Technology' and announced by the Minister of Science and Technology. The Implementing procedures of Off-site Emergency Management Center and 'The Ordinance of Operation of residence radiological emergency office of the Minister of Science and Technology' can be provide guidelines in case of emergency

  10. Using RFID to Enhance Security in Off-Site Data Storage

    Directory of Open Access Journals (Sweden)

    Enrique de la Hoz

    2010-08-01

    Full Text Available Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system’s benefits in terms of efficiency and failure prevention.

  11. Using RFID to Enhance Security in Off-Site Data Storage

    Science.gov (United States)

    Lopez-Carmona, Miguel A.; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R.

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system’s benefits in terms of efficiency and failure prevention. PMID:22163638

  12. Using RFID to enhance security in off-site data storage.

    Science.gov (United States)

    Lopez-Carmona, Miguel A; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system's benefits in terms of efficiency and failure prevention.

  13. DOE Land Disposal Restrictions Strategy Report for Radioactive Mixed Waste

    International Nuclear Information System (INIS)

    1989-09-01

    This report represents an effort by the Department of Energy (DOE) and its contractors to develop a strategy for achieving radioactive mixed waste (RMW) compliance with the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR). Preliminary information provided by the Operations Offices has been reviewed to formulate an overall strategy that will enable DOE operations to comply with the Land Disposal Restrictions. The effort has concluded that all DOE Operations Offices are impacted by LDR due to the inability to meet existing and future LDR storage prohibition requirements or treatment standards for RMW. A total of 178 RMW streams subject to LDR are identified in this report. Quantities of RMW impacted by LDR have been estimated at approximately 710,785 cubic meters. DOE must place a high priority on resolving LDR compliance issues. Failure to resolve these issues could result in the curtailment of waste generating operations at DOE facilities. Actions will be required from both DOE (Headquarters and Operations Offices) and EPA in order to achieve DOE complex-wide compliance. Specific recommendations are included. 1 fig., 4 tabs

  14. Offsite emergency radiological monitoring system and technology

    International Nuclear Information System (INIS)

    Mao Yongze

    1994-01-01

    The study and advance of the offsite radiological monitoring system and technology which is an important branch in the field of nuclear monitoring technology are described. The author suggests that the predicting and measuring system should be involved in the monitoring system. The measuring system can further be divided into four sub-systems, namely plume exposure pathway, emergency worker, ingestion exposure pathway and post accident recovery measuring sub-systems. The main facilities for the monitoring system are concluded as one station, one helicopter, one laboratory and two vehicles. The instrumentation for complement of the facilities and their good performance characteristics, up-to-date technology are also introduced in brief. The offsite emergency radiation monitoring system and technology are compared in detail with those recommended by FEMA U.S.A.. Finally the paper discusses some trends in development of emergency radiation monitoring system and technology in the developed countries

  15. Offsite Source Recovery Program (OSRP) Workshop Module: Tianjin, China, July 16-July 17, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Houlton, Robert J. [Los Alamos National Laboratory

    2012-07-11

    Recovering and disposal of radioactive sources that are no longer in service in their intended capacity is an area of high concern Globally. A joint effort to recover and dispose of such sources was formed between the US Department of Energy and the Chinese Ministry of Environmental Protection (MEP), in preparation for the 2008 Beijing Olympics. LANL involvement in this agreement continues today under the DOE-Global Threat Reduction Initiative (GTRI) program. LANL will be presenting overview information on their Offsite Source Recovery (OSRP) and Source Disposal programs, in a workshop for the Ministry of Environmental Protection (MEP) at Tianjin, China, on July 16 and 17, 2012.

  16. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  17. 40 CFR 273.18 - Off-site shipments.

    Science.gov (United States)

    2010-07-01

    ....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18... universal waste. (c) If a universal waste being offered for off-site transportation meets the definition of...

  18. 40 CFR 273.38 - Off-site shipments.

    Science.gov (United States)

    2010-07-01

    ....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38... universal waste. (c) If a universal waste being offered for off-site transportation meets the definition of...

  19. Regionalization as a strategy for management of low-level and mixed wastes in the DOE system

    International Nuclear Information System (INIS)

    Bradford, J.D.; Garcia, E.C.; Gillins, R.L.

    1988-01-01

    The Department of Energy has been routinely performing low-level waste volume reduction and/or stabilization treatment at various sites for some time. In general, treatment is performed on waste generated onsite. Disposal is also usually performed onsite since most DOE sites have their own LLW disposal facilities. The DOE initiated studies to evaluate strategies for treatment, storage, and disposal of hazardous and mixed wastes covered in the Resource Conservation and Recovery Act (RCRA) and to ensure that DOE sites are in compliance with RCRA. These studies recommend regionalization as the most cost-effective solution to the treatment and disposal of hazardous and mixed wastes. The DOE's Defense Low-Level Waste Management Program conducted an additional survey of DOE sites to evaluate the status of one specific treatment method, incineration, at these sites. This study included facilities currently in use or intended for treatment of low-level and mixed wastes. A summary of the findings is presented in this paper

  20. Pesticide use and off-site risk assessment

    NARCIS (Netherlands)

    Yang, X.

    2016-01-01

    Pesticide use and off-site risk assessment: a case study of glyphosate fate in Chinese Loess soil

    Xiaomei Yang

    Abstract: Repeated applications of pesticide may contaminate the soil and water, threatening their quality within the

  1. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    International Nuclear Information System (INIS)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics

  2. Closure of Off-Site FTP

    CERN Multimedia

    2004-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE FTP ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from: Tuesday 20th January 2004 If you use ftp to access CERN computers from outside CERN then please see the link below for alternative access means and further advice: http://cern.ch/security/ftp Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  3. Closure of Off-Site Telnet

    CERN Multimedia

    Denise Heagerty

    2003-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE TELNET ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from Tuesday 28th January 2003 If you use telnet to access CERN computers from outside CERN then please see the link below for alternative access means and further advice http://cern.ch/security/telnet Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  4. Closure of Off-Site FTP

    CERN Multimedia

    2003-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE FTP ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from: Tuesday 20th January 2004 If you use ftp to access CERN computers from outside CERN then please see the link below for alternative access means and further advice: http://cern.ch/security/ftp Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  5. CLOSURE OF OFF-SITE TELNET

    CERN Multimedia

    Denise Heagerty

    2002-01-01

    To reduce the number of regular break-ins on CERN machines due to passwords exposed on the network in clear text, OFF-SITE TELNET ACCESS TO CERN WILL BE BLOCKED in the CERN firewall from Tuesday 28 January 2003 If you use telnet to access CERN computers from outside CERN then please see the link below for alternative access means and further advice http://cern.ch/security/telnet Denise Heagerty, CERN Computer Security officer, Computer.Security@cern.ch

  6. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    International Nuclear Information System (INIS)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs

  7. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    International Nuclear Information System (INIS)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. ''Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3

  8. 40 CFR 1400.5 - Internet access to certain off-site consequence analysis data elements.

    Science.gov (United States)

    2010-07-01

    ... consequence analysis data elements. 1400.5 Section 1400.5 Protection of Environment ENVIRONMENTAL PROTECTION... UNDER THE CLEAN AIR ACT SECTION 112(r)(7); DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION Public Access § 1400.5 Internet access to certain off...

  9. Spent nuclear fuel characterization for a bounding reference assembly for the receiving basin for off-site fuel

    International Nuclear Information System (INIS)

    Kahook, S.D.; Garrett, R.L.; Canas, L.R.

    1995-01-01

    A basis for interim operation 1 (BIO) for the receiving basin for off-site fuel (RBOF) facility at the U.S. Department of Energy's (DOE) Savannah River site nuclear materials production complex has been developed in accordance to draft DOE-STD-0019-93 (Ref. 2). The latter document requires a hazard categorization per DOE-STD-1027-92 (Ref. 3) for the safety analysis portion of the BIO. This classification places the facility in one of three categories as defined in DOE 5480.23 (Ref. 4) per the total radioactivity, which can be released during an accident. The diversity of spent nuclear fuels stored in the RBOF made an exacting assessment of the total radioactive inventory virtually impossible. This restriction led to a conservative calculation based on the concept of a hypothetical bounding reference fuel assembly (RFA) integrated over the total capacity of the facility. The RFA is derived from a systematic ranking of the real assemblies (current and expected) according to a maximum burnup criterion. The indicated scheme is not only simple but precluded a potential delay in the completion of the BIO

  10. Proposed Site Treatment Plan (PSTP). STP reference document

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare a plan describing the development of treatment capacities and technologies for treating mixed waste (hazardous/radioactive waste). DOE decided to prepare its site treatment plan in a three phased approach. The first phase, called the Conceptual Site Treatment Plan (CSTP), was issued in October 1993. At the Savannah River Site (SRS) the CSTP described mixed waste streams generated at SRS and listed treatment scenarios for each waste stream utilizing an onsite, offsite DOE, and offsite or onsite commercial or vendor treatment option. The CSTP is followed by the Draft Site Treatment Plan (DSTP), due to be issued in August 1994. The DSTP, the current activity., will narrow the options discussed in the CSTP to a preferred treatment option, if possible, and will include waste streams proposed to be shipped to SRS from other DOE facilities as well as waste streams SRS may send offsite for treatment. The SRS DSTP process has been designed to address treatment options for each of the site's mixed waste streams. The SRS Proposed Site Treatment Plan (PSTP) is due to be issued in February 1995. The compliance order would be derived from the PSTP

  11. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2006-01-01

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  12. Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-05-01

    Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported

  13. Collection and evaluation of complete and partial losses of off-site power at nuclear power plants

    International Nuclear Information System (INIS)

    Battle, R.E.

    1985-02-01

    Events involving loss of off-site power that have occurred at nuclear power plants through 1983 are described and categorized as complete or partial losses. The events were identified as plant-centered or grid-related failures. In addition, the causes of the failures were classified as weather, human error, design error, or hardware failure. The plant-centered failures were usually of shorter duration than the weather-related grid failures. For this reason, the weather-related events were reviewed in detail. Design features that may be important factors affecting off-site power system reliability were tabulated for most of the operating nuclear power plants. The tabulated information was provided to NRC for a statistical analysis to determine the importance of these design features for losses of off-site power. The frequency of losses of off-site power versus duration was estimated for three time periods. The frequency of loss of off-site power was estimated to be 0.09/reactor-year based on industry-wide data for the years 1959 through 1983

  14. 40 CFR 68.33 - Defining offsite impacts-environment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Defining offsite impacts-environment. 68.33 Section 68.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... impacts—environment. (a) The owner or operator shall list in the RMP environmental receptors within a...

  15. 40 CFR 1400.3 - Public access to paper copies of off-site consequence analysis information.

    Science.gov (United States)

    2010-07-01

    ...-site consequence analysis information. 1400.3 Section 1400.3 Protection of Environment ENVIRONMENTAL... PROGRAMS UNDER THE CLEAN AIR ACT SECTION 112(r)(7); DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION DISTRIBUTION OF OFF-SITE CONSEQUENCE ANALYSIS INFORMATION Public Access § 1400.3 Public access to...

  16. Using Microsoft Excel to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI).

    Science.gov (United States)

    Vickers, Linda D

    2010-05-01

    This paper describes the method using Microsoft Excel (Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399) to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI) in accordance with guidance from DOE-STD-3009-1994 and U.S. NRC Regulatory Guide 1.145-1982. The accurate determination of the 5% overall site X/Q value is the most important factor in the computation of the 95th percentile of the distribution of doses to the nearest MEOI. This method should be used to validate software codes that compute the X/Q. The 95th percentile of the distribution of doses to the nearest MEOI must be compared to the U.S. DOE Evaluation Guide of 25 rem to determine the relative severity of hazard to the public from a postulated, unmitigated design basis accident that involves an offsite release of radioactive material.

  17. 40 CFR 68.30 - Defining offsite impacts-population.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Defining offsite impacts-population. 68.30 Section 68.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... impacts—population. (a) The owner or operator shall estimate in the RMP the population within a circle...

  18. Off-site preparedness and nuclear-power-plant licensing

    International Nuclear Information System (INIS)

    Perry, S.W.

    1983-01-01

    The first year and a half in which off-site emergency preparedness issues have been litigated before the Atomic Safety and Licensing Boards of the NRC have surfaced unique problems of proof for the applicant as well as the staff. These problems seem to be abating as the boards and the parties become more comfortable with the field and its issues, and as FEMA-NRC emergency management expertise gains credibility. Emergency preparedness presentations have also improved as the parties have become more sensitive to the seasonality of the preparedness case, and have increasingly attempted to raise it at a time when a fully developed set of facts is available for the record. Off-site preparedness issues are only now beginning to be raised on appeal to the NRC appeals board, the full commission, and the courts. Helpful guidance on what constitutes an adequate record in this area will undoubtedly be forthcoming in decisions handed down by these bodies in the months ahead

  19. MWIR-1995 DOE national mixed and TRU waste database users guide

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office's (NTPO's) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses open-quotes storedclose quotes streams. In this instance, open-quotes storedclose quotes streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D ampersand D) activities. Information on future ER/D ampersand D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set

  20. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    McGrath, J.J.; Macphee, R.; Arbeau, N.; Miskin, J.; Scott, C.K.; Winters, E.

    1988-03-01

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  1. Off-site nuclear emergency exercises in Japan

    International Nuclear Information System (INIS)

    Eiji, U.; Kiyoshi, T.; Masao, O.; Shigeru, F.

    1993-01-01

    Nuclear emergency planning and preparedness in Japan have been organized by both national and local governments based on the Disaster Countermeasures Basic Act. Off-site nuclear emergency exercises are classified into two types: national-government level exercises and local-government level exercises. National-government level exercises are carried out once a year by the competent national authorities. Among these authorities, the Science and Technology Agency (STA) fills a leading position in the Japanese nuclear emergency planning and preparedness. Local-government level exercises are carried out once a year or once in a few years by the local governments of the prefectures where nuclear facilities are located. Most of the off-site nuclear emergency exercises in Japan are performed by local-governments. The aim of these exercises is to reinforce the skills of the emergency staff. The national government (STA etc.) provides advices and assistance including financial support to the local-governments. Emergency exercises with the participation of residents have been carried out in some local-governments. As an example of local-government level exercises, an experience in Shizuoka prefecture (central part of Japan) is presented

  2. Evolution of Onsite and Offsite Power Systems in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mathew, Roy K.

    2015-01-01

    The AC electric power system is the source of power for station auxiliaries during normal operation and for the reactor protection system and emergency safety features during abnormal and accident conditions. Since the construction of early plants in US, the functional adequacy and requirements of the offsite power systems, safety and non safety related onsite electric power systems have changed considerably to ensure that these systems have adequate redundancy, independence, quality, maintenance and testability to support safe shutdown of the nuclear plant. The design of AC systems has evolved from a single train to multiple (up to four) redundant trains in the current evolutionary designs coupled with other auxiliary AC systems. The early plants were designed to cope with a Loss of Offsite Power (LOOP) event through the use of onsite power supplies only. However operating experience has indicated that onsite and offsite power AC power systems can fail due to natural phenomena (earthquakes, lightning strikes, fires, geomagnetic storms, tsunamis, etc.) or operational abnormalities such as loss of a single phase, switching surges or human error. The onsite DC systems may not be adequately sized to support plant safe shutdown over an extended period if AC power cannot be restored within a reasonable time. This paper will discuss the requirements to improve availability and reliability of offsite and onsite alternating current (AC) power sources to U.S. Nuclear Power Plants. In addition, the paper will discuss the requirements and guidance beyond design basis events. (author)

  3. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    International Nuclear Information System (INIS)

    Marter, W.L.

    1990-01-01

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models

  4. Development of operation control expert system for off-site facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Masaaki

    1988-09-01

    Concerning off-site facilities of oil refinary, changes of facilities and equipment are frequently made in order to cope flexibly with the market trends and changes of the social environment. In addition, it is desirable to introduce computerization into control and manipulation of off-site facilities for its fast, safe and sure operation. In order to achieve the above, against the existing exclusively control-oriented system, it is necessary to add the processing and generating functions to combinations between valves to be shut and piping as well as equipment to be used along the whole extent of the oil flow in the system and to add the function which makes verification of the above functions easy through a dialogue between users and the system. In order to realize the above, Cosmo Oil and Yokokawa Denki developed jointly an operation control expert system for off-site facilities and the system started its actual operation from October 1986. This article is an outline of the system. The result of its actual operation for one and a half years since its inception showed that the system was operated only by the staff responsible for the operation of the facilities, the workload was reduced to 1/3-1/4 of the workload before the adoption of the system and absolutely no omission of work nor mistake was experienced. (2 figs)

  5. Fluid management plan for the Project Shoal Area Offsites Subproject

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject's Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria

  6. Examination of off-site emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; Ericson, D.M. Jr.; Jones, R.B.

    1978-01-01

    Results from the Reactor Safety Study (RSS) have shown that to cause significant impacts off-site, i.e., sufficient quantities of biologically important radionuclides released, it is necessary to have a core melt accident. To mitigate the impact of such potential accidents, the design of appropriate emergency response actions requires information as to the relative merit of publicly available protective measures. In order to provide this information, a study using the consequence model developed for the RSS is being conducted to evaluate (in terms of reduced public health effects and dose exposure) potential off-site protective strategies. The paper describes the methods being used in the study as well as the results and conclusions obtained

  7. Analysis of HFETR shut-down state caused by loss of off-site power supply

    International Nuclear Information System (INIS)

    Wang Jinghu

    1997-01-01

    During the last 15 years, there are more than 40 unplanned shut-downs caused by loss of off-site power in HFETR. Because HFETR is a special research reactor, the author describes the shut-down state as three period. The author also discusses the influence of the number of shut-down due to loss of off-site power supply on the reactor safety, and propose some suggestions and measures to reduce the effects

  8. Dungeness Power Station off-site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This off-site Emergency Plan in the event of an accidental release of radioactivity at the Dungeness Nuclear power station sets out the necessary management and coordination processes between Nuclear Electric, operators of the site, the emergency services and relevant local authorities. The objectives promoting the aim are identified and the activities which will be undertaken to protect the public and the environment in the event of an emergency are outlined. (UK)

  9. Off-site training of laparoscopic skills, a scoping review using a thematic analysis.

    Science.gov (United States)

    Thinggaard, Ebbe; Kleif, Jakob; Bjerrum, Flemming; Strandbygaard, Jeanett; Gögenur, Ismail; Matthew Ritter, E; Konge, Lars

    2016-11-01

    The focus of research in simulation-based laparoscopic training has changed from examining whether simulation training works to examining how best to implement it. In laparoscopic skills training, portable and affordable box trainers allow for off-site training. Training outside simulation centers and hospitals can increase access to training, but also poses new challenges to implementation. This review aims to guide implementation of off-site training of laparoscopic skills by critically reviewing the existing literature. An iterative systematic search was carried out in MEDLINE, EMBASE, ERIC, Scopus, and PsychINFO, following a scoping review methodology. The included literature was analyzed iteratively using a thematic analysis approach. The study was reported in accordance with the STructured apprOach to the Reporting In healthcare education of Evidence Synthesis statement. From the search, 22 records were identified and included for analysis. A thematic analysis revealed the themes: access to training, protected training time, distribution of training, goal setting and testing, task design, and unsupervised training. The identified themes were based on learning theories including proficiency-based learning, deliberate practice, and self-regulated learning. Methods of instructional design vary widely in off-site training of laparoscopic skills. Implementation can be facilitated by organizing courses and training curricula following sound education theories such as proficiency-based learning and deliberate practice. Directed self-regulated learning has the potential to improve off-site laparoscopic skills training; however, further studies are needed to demonstrate the effect of this type of instructional design.

  10. The DOE/DHHS memorandum of understanding: The DOE perspective

    International Nuclear Information System (INIS)

    Goldsmith, R.

    1991-01-01

    On March 27, 1990, Secretary James D. Watkins established an Office of Health under the Assistant Secretary for Environment, Safety and Health. All epidemiologic activities throughout the department were consolidated into this office as part of an Office of Epidemiology and Health Surveillance (OEHS) with specific responsibilities for occupational and community health surveillance. The mission and functions of the OEHS include the conduct of epidemiologic studies at US Department of Energy (DOE) facilities, nearby communities, and other populations. These studies comprise retrospective mortality studies of DOE contractor workers, hypothesis-generating studies related to the potential health effects of energy production and use, ecologic studies of off-site populations, quick-response investigations of suspected disease clusters, and others as needed. In addition, OEHS is responsible for providing procedures, technical support, and other resources for the conduct of DOE-sponsored epidemiologic research studies to be managed outside of DOE, including analytic studies to be managed by the Department of Health and Human Service (HHS) under a memorandum of understanding (MOU), dose-reconstruction studies, and studies related to DOE facilities to be conducted through state health departments

  11. Research from Afar: Considerations for Conducting an Off-Site Research Project.

    Science.gov (United States)

    Williams, Reg Arthur; Hagerty, Bonnie M.; Hoyle, Kenneth; Yousha, Steven M.; Abdoo, Yvonne; Andersen, Curt; Engler, Dorothy

    1999-01-01

    Critical elements in the success of off-site research projects include the following: negotiation, attention to personnel issues, communication, participation of research subjects, data management, and concern for privacy issues. (SK)

  12. Adequate technologies for wireless real-time dose rate monitoring for off-site emergency management

    International Nuclear Information System (INIS)

    Dielmann, R.; Buerkin, W.

    2003-01-01

    Full text: What are the requirements for off-site gamma dose rate monitoring systems? What are the pros and cons of available communication technologies? This report gives an overview of modern communication techniques and their applicability for reliable real-time data acquisition as basis for off-site nuclear emergency management. The results of three years operating experience with a wireless gamma dose rate monitoring system, installed around the NPPs of KURSK, KALININ and BALAKOVA (Russia) in the year 2000, are shown. (author)

  13. Extensive management of field margins enhances their potential for off-site soil erosion mitigation.

    Science.gov (United States)

    Ali, Hamada E; Reineking, Björn

    2016-03-15

    Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion off-site by trapping eroded material. Here we analyse how local management affects the trapping capacity of field margins in a monsoon region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("intensive managed flat", "intensive managed steep", "extensive managed flat" and "extensive managed steep") with Astroturf mats. The mats (n = 15/site) were placed before, within and after the field margin. Sediment was collected after each rain event until the end of the monsoon season. The effect of management and slope on sediment trapping was analysed using linear mixed effects models, using as response variable either the sediment collected within the field margin or the difference in sediment collected after and before the field margin. There was no difference in the amount of sediment reaching the different field margin types. In contrast, extensively managed field margins showed a large reduction in collected sediment before and after the field margins. This effect was pronounced in steep field margins, and increased with the size of rainfall events. We conclude that a field margin management promoting a dense vegetation cover is a key to mitigating negative off-site effects of soil erosion in monsoon regions, particularly in field margins with steep slopes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  15. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation

    NARCIS (Netherlands)

    Sorensen, J.L.; Ostergaard, D.; Leblanc, V.; Ottesen, B.; Konge, L.; Dieckmann, P.; Vleuten, C. van der

    2017-01-01

    BACKGROUND: Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities

  16. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  17. Estimation of the loss of Offsite power frequency for the probabilistic safety assessment of the Juragua NPP

    International Nuclear Information System (INIS)

    Vilaragut Llanes, J.J.; Valhuerdi Debesa, C.

    1996-01-01

    The loss offsite power is defined as the interruption of the preferred power supply to the essential and non essential switchgear buses necessitating or resulting in the use of emergency AC power supply. Because many safety system required for reactor core decay heat removal and containment heat removal depend on AC power, a loss of offsite power, if emergency power supply (diesel generators) fails, could be severe accidents The purpose of this work was to determine, for the Probabilistic Safety Assessment of the Juragua NPP, the causes, frequency and duration relationships of the loss of offsite power. A description is presented of the different factor that determine the occurrence of this event and the characteristics for the Juragua NPP

  18. The sensitivity of calculated doses to critical assumptions for the offsite consequences of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Moeller, M.P.; Scherpelz, R.I.; Desrosiers, A.E.

    1982-01-01

    This work analyzes the sensitivity of calculated doses to critical assumptions for offsite consequences following a PWR-2 accident at a nuclear power reactor. The calculations include three radiation dose pathways: internal dose resulting from inhalation, external doses from exposure to the plume, and external doses from exposure to contaminated ground. The critical parameters are the time period of integration for internal dose commitment and the duration of residence on contaminated ground. The data indicate the calculated offsite whole body dose will vary by as much as 600% depending upon the parameters assumed. When offsite radiation doses determine the size of emergency planning zones, this uncertainty has significant effect upon the resources allocated to emergency preparedness

  19. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.; Heath, B.A.; Davis, K.D.

    1994-01-01

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs

  20. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required

  1. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  2. 24 CFR 242.47 - Insured advances for building components stored off-site.

    Science.gov (United States)

    2010-04-01

    ... HOUSING ACT AND OTHER AUTHORITIES MORTGAGE INSURANCE FOR HOSPITALS Construction § 242.47 Insured advances... only for components stored off-site in a quantity required to permit uninterrupted installation at the...

  3. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  4. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  5. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    International Nuclear Information System (INIS)

    Ades, M.J.; Vincent, A.M. III.

    1997-01-01

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins

  6. Assessment of off-site consequences of nuclear accidents (MARIA)

    International Nuclear Information System (INIS)

    Haywood, S.M.

    1985-01-01

    A brief report is given of a workshop held in Luxembourg in 1985 on methods for assessing the off-site radiological consequences of nuclear accidents (MARIA). The sessions included topics such as atmospheric dispersion; foodchain transfer; urban contamination; demographic and land use data; dosimetry, health effects, economic and countermeasures models; uncertainty analysis; and application of probabilistic risk assessment results as input to decision aids. (U.K.)

  7. The modelling of off-site economic consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Alonso, A.; Gallego, E.; Martin, J.E.

    1991-01-01

    The paper presents a computer model for the probabilistic assessment of the off-site economic risk derived from nuclear accidents. The model is called MECA (Model for Economic Consequence Assessment) and takes into consideration the direct costs caused, following an accident, by the different countermeasures adopted to prevent both the early and chronic exposure of the population to the radionuclides released, as well as the direct costs derived from health damage to the affected population. The model uses site-specific data that are organized in a socio-economic data base; detailed distributions of population, livestock census, agricultural production and farmland use, as well as of employment, salaries, and added value for different economic sectors are included. This data base has been completed for Spain, based on available official statistics. The new code, coupled to a general ACA code, provides capability to complete probabilistic risk assessments from the point of view of the off-site economic consequences, and also to perform cost-effectiveness analysis of the different countermeasures in the field of emergency preparedness

  8. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Larsen, P.J.; Garcia, J.; Estes, C.H.; Palmer, C.R.; Meyers, G.S.

    2006-01-01

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  9. Principles of off-site nuclear emergency exercises

    International Nuclear Information System (INIS)

    Miska, H.

    2011-01-01

    Due to high safety standards at nuclear power plants, no experience exits with nuclear emergencies in Western Europe. Thus, emergency exercises are the only possibility to assure effective protective measures should the very unlikely severe accident occur. The main objectives of exercises are generally the check of response plans for suitability, the test of the equipment's applicability and training of personnel for the unusual task to manage a nuclear emergency. After an introduction into the different types of exercises, this contribution focuses on offsite nuclear emergency exercises, explaining frame conditions to ensure good practice and, finally, reports some experience from exercises. (orig.)

  10. Data on loss of off-site electric power simulation tests of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2002-07-01

    The high temperature engineering test reactor (HTTR), the first high temperature gas-cooled reactor (HTGR) in Japan, achieved the first full power of 30 MW on December 7 in 2001. In the rise-to-power test of the HTTR, simulation tests on loss of off-site electric power from 15 and 30 MW operations were carried out by manual shutdown of off-site electric power. Because helium circulators and water pumps coasted down immediately after the loss of off-site electric power, flow rates of helium and water decreased to the scram points. To shut down the reactor safely, the subcriticality should be kept by the insertion of control rods and the auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components. About 50 s later from the loss of off-site electric power, the auxiliary cooling system started up by supplying electricity from emergency power feeders. Temperature of hot plenum block among core graphite structures decreased continuously after the startup of the auxiliary cooling system. This report describes sequences of dynamic components and transient behaviors of the reactor and its cooling system during the simulation tests from 15 and 30 MW operations. (author)

  11. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants: Criteria for utility offsite planning and preparedness: Final report

    International Nuclear Information System (INIS)

    Podolak, E.M. Jr.; Sanders, M.E.; Wingert, V.L.; Donovan, R.W.

    1988-09-01

    The Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA) have added a supplement to NUREG-0654/FEMA-REP-1, Rev. 1 that provides guidance for the development, review, and evaluation of utility offsite radiological emergency response planning and preparedness for those situations in which state and/or local governments decline to participate in emergency planning. While this guidance primarily applies to plants that do not have full-power operating licenses, it does have relevance to operating nuclear power plants

  12. AMCO Off-Site Air Monitoring Polygons, Oakland CA, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class was developed to support the AMCO Chemical Superfund Site air monitoring process and depicts a single polygon layer, Off-Site Air Monitors,...

  13. Analysis of Loss-of-Offsite-Power Events 1997-2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nancy Ellen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    Loss of offsite power (LOOP) can have a major negative impact on a power plant’s ability to achieve and maintain safe shutdown conditions. LOOP event frequencies and times required for subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments. This report presents a statistical and engineering analysis of LOOP frequencies and durations at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience during calendar years 1997 through 2015. LOOP events during critical operation that do not result in a reactor trip, are not included. Frequencies and durations were determined for four event categories: plant-centered, switchyard-centered, grid-related, and weather-related. Emergency diesel generator reliability is also considered (failure to start, failure to load and run, and failure to run more than 1 hour). There is an adverse trend in LOOP durations. The previously reported adverse trend in LOOP frequency was not statistically significant for 2006-2015. Grid-related LOOPs happen predominantly in the summer. Switchyard-centered LOOPs happen predominantly in winter and spring. Plant-centered and weather-related LOOPs do not show statistically significant seasonality. The engineering analysis of LOOP data shows that human errors have been much less frequent since 1997 than in the 1986 -1996 time period.

  14. COCO-1: model for assessing the cost of offsite consequences of accidental releases of radioactivity

    International Nuclear Information System (INIS)

    Haywood, S.M.; Robinson, C.A.; Heady, C.

    1991-09-01

    This report describes a new model, called COCO-1 (Cost Of Consequences Offsite), for assessing the offsite economic consequences of an accident involving the release of radioactive material. The costs calculated are a measure of the benefit foregone as a result of the accident, and in addition to tangible monetary costs the model attempts to include costs arising from the effect of the accident on individuals, for instance the disruption caused by the loss of homes. The approach has limitations, which are discussed, but offers a broadly applicable and robust technique for estimating the economic impact of most accidents. (author)

  15. OFF-SITE SMARTPHONE VS. STANDARD WORKSTATION IN THE RADIOGRAPHIC DIAGNOSIS OF SMALL INTESTINAL MECHANICAL OBSTRUCTION IN DOGS AND CATS.

    Science.gov (United States)

    Noel, Peter G; Fischetti, Anthony J; Moore, George E; Le Roux, Alexandre B

    2016-09-01

    Off-site consultations by board-certified veterinary radiologists benefit residents and emergency clinicians by providing immediate feedback and potentially improving patient outcome. Smartphone devices and compressed images transmitted by email or text greatly facilitate availability of these off-site consultations. Criticism of a smartphone interface for off-site consultation is mostly directed at image degradation relative to the standard radiographic viewing room and monitors. The purpose of this retrospective, cross-sectional, methods comparison study was to compare the accuracy of abdominal radiographs in two imaging interfaces (Joint Photographic Experts Group, off-site, smartphone vs. Digital Imaging and Communications in Medicine, on-site, standard workstation) for the diagnosis of small intestinal mechanical obstruction in vomiting dogs and cats. Two board-certified radiologists graded randomized abdominal radiographs using a five-point Likert scale for the presence of mechanical obstruction in 100 dogs or cats presenting for vomiting. The area under the receiver operator characteristic curves for both imaging interfaces was high. The accuracy of the smartphone and traditional workstation was not statistically significantly different for either reviewer (P = 0.384 and P = 0.536). Correlation coefficients were 0.821 and 0.705 for each reviewer when the same radiographic study was viewed in different formats. Accuracy differences between radiologists were potentially related to years of experience. We conclude that off-site expert consultation with a smartphone provides an acceptable interface for accurate diagnosis of small intestinal mechanical obstruction in dogs and cat. © 2016 American College of Veterinary Radiology.

  16. Development of a treatability variance guidance document for US DOE mixed-waste streams

    International Nuclear Information System (INIS)

    Scheuer, N.; Spikula, R.; Harms, T.

    1990-03-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a treatability variance guidance document was prepared. The guidance manual is for use by DOE facilities and operations offices. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA (LDRs). A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. The manual, Guidance For Obtaining Variance From the Treatment Standards of the RCRA Land Disposal Restrictions (1), leads the reader through the process of evaluating whether a variance from the treatment standard is a viable approach and through the data-gathering and data-evaluation processes required to develop a petition requesting a variance. The DOE review and coordination process is also described and model language for use in petitions for DOE radioactive mixed waste (RMW) is provided. The guidance manual focuses on RMW streams, however the manual also is applicable to nonmixed, hazardous waste streams. 4 refs

  17. Evaluating background noise: Assessing off-site data from field surveys around the Italic sanctuary of S. Giovanni in Galdo, Molise, Italy

    NARCIS (Netherlands)

    Waagen, J.

    2014-01-01

    This study demonstrates the potential of intensive sampling and off-site analyses to identify evidence of human activity in the past using the off-site data collected around the Italic sanctuary of S. Giovanni in Galdo, Molise, Italy. Rather than employing general and monocausal explanatory

  18. Investigation of off-site airborne transport of lead from a superfund removal action site using lead isotope ratios and concentrations

    Science.gov (United States)

    Pribil, Michael J.; Maddaloni, Mark A.; Staiger, Kimberly; Wilson, Eric; Magriples, Nick; Ali, Mustafa; Santella, Dennis

    2014-01-01

    Lead (Pb) concentration and Pb isotopic composition of surface and subsurface soil samples were used to investigate the potential for off-site air transport of Pb from a former white Pb processing facility to neighboring residential homes in a six block area on Staten Island, NY. Surface and subsurface soil samples collected on the Jewett White Pb site were found to range from 1.122 to 1.138 for 206Pb/207Pb and 2.393 to 2.411 for 208Pb/207Pb. The off-site surface soil samples collected from residential backyards, train trestle, near site grass patches and background areas varied from 1.144 to 1.196 for 206Pb/207Pb and 2.427 to 2.464 for 208Pb/207Pb. Two soil samples collected along Richmond Terrace, where Jewett site soils accumulated after major rain events, varied from 1.136 to 1.147 for 206Pb/207Pb and 2.407 to 2.419 for 208Pb/207Pb. Lead concentration for on-site surface soil samples ranged from 450 to 8000 ug/g, on-site subsurface soil samples ranged from 90,000 to 240,000 ug/g and off-site samples varied from 380 to 3500 ug/g. Lead concentration and isotopic composition for the Staten Island off-site samples were similar to previously published data for other northeastern US cities and reflect re-suspension and re-mobilization of local accumulated Pb. The considerable differences in both the Pb isotopic composition and Pb concentration of on-site and off-site samples resulted in the ability to geochemically trace the transport of particulate Pb. Data in this study indicate minimal off-site surface transport of Pb from the Jewett site into the neighboring residential area.

  19. An examination of the proposals for the off-site electrical power sources at the Sizewell B PWR

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, P. A. [HM Nuclear Installations Inspectorate, London (United Kingdom)

    1986-02-15

    Over the past few years there has been an increase in the attention being given to the adequacy and reliability of alternative sources of power provided to supply safety equipment should off-site electrical sources fail. This paper discusses the rationale of HM Nuclear Installations Inspectorates assessment of the electrical systems proposed for the UK's first Pressurized water Reactor, Sizewell 3. The requirements for on-site sources are given, and a discussion is provided of the NII's Assessment Principles including common mode failure, single failure criterion and reliability targets. Where the assessment has resulted in notifications to the original design the reasons are given. The UK's large interconnected Grid System makes complete losses of off-site power comparatively rare. The potential exists however and this paper shows how the current approach ensures that not only are adequate on-site sources available but also that their siting, maintenance and testing are such that loss of off-site power will not cause an unacceptable risk to the public. (author)

  20. Off-site relations and emergency planning or the importance of being earnest

    International Nuclear Information System (INIS)

    Dunkle, M.K.

    1987-01-01

    Emergency planning is and will continue to be a vulnerable spot for the nuclear industry. Emergency planning issues can be reopened at any time during the life of the plant and this represents a threat that continues for the life of the plant. The area of planning in which utilities find themselves most vulnerable is off-site relations with the state and local government officials, the public, and even the news media. Utilities face two very basic challenges in developing and maintaining good off-site relations for emergency preparedness: (1) utility managers must understand and be capable of working with the myriad of personalities and dynamics in the emergency preparedness arena. (2) Emergency preparedness is an emotional issue and a technical subject not well understood by the average citizen. The public looks to well-founded emergency plans and strong leaders to effect them. With these, a sound communications strategy, and a good plant record, a utility stands a chance of achieving the real key to success, credibility

  1. Off-site emergency planning

    International Nuclear Information System (INIS)

    Narrog, J.

    1980-01-01

    In the event of a nuclear accident, the actions taken to protect the public from off-site consequences must be effective. An effective organization of emergency actions is based on two components: the actions of the operator of the nuclear facility and the actions of the competent authorities. The measures of the operator are of special importance in the first hours after the beginning of the nuclear accident, because there is no other help. Therefore the operator of a nuclear facility shall be obliged under the nuclear licensing procedure to make provisions of his own and carry out protective measures which should be compiled in a so-called 'alarm-plan'. On the other hand the means of the operator are too small in many cases and there is a need for actions by the responsible authorities. The actions of the authorities should be compiled in a so-called 'emergency response plan'. The emergency response plan shall apply to all cases in which, as a result of occurrences in or at a nuclear facility, a damaging impact on the environment is expected or has occurred requiring the authorities in charge to intervene for its prevention or limitation. (orig./RW)

  2. Rethinking the Business Model in Construction by the Use of Off-Site System Deliverance: Case of the Shaft Project

    DEFF Research Database (Denmark)

    Thuesen, Christian; Hvam, Lars

    2013-01-01

    This paper presents a set of insights to be used in the development of business models for off-site system deliveries contributing to the development of Off-Site Manufacturing practices (OSM). The theoretical offset for discussing the development of business models is the blue ocean strategy...... of installation shafts. Findings from the development and production of the installation shaft show that system deliveries represent a promising strategy for moving from red ocean competitive environment with the predominant cost+ business model, to a blue ocean situation in which the competition emerges...... in the constant pursue of value creation and cost reduction. On the basis of that system deliverances represent a promising strategy in the future development and application of off-site manufacturing practices. The application of system deliveries is however demanding as it represents a fundamental shift...

  3. A PC-based software package for modeling DOE mixed-waste management options

    International Nuclear Information System (INIS)

    Abashian, M.S.; Carney, C.; Schum, K.

    1995-02-01

    The U.S. Department of Energy (DOE) Headquarters and associated contractors have developed an IBM PC-based software package that estimates costs, schedules, and public and occupational health risks for a range of mixed-waste management options. A key application of the software package is the comparison of various waste-treatment options documented in the draft Site Treatment Plans prepared in accordance with the requirements of the Federal Facility Compliance Act of 1992. This automated Systems Analysis Methodology consists of a user interface for configuring complexwide or site-specific waste-management options; calculational algorithms for cost, schedule and risk; and user-selected graphical or tabular output of results. The mixed-waste management activities modeled in the automated Systems Analysis Methodology include waste storage, characterization, handling, transportation, treatment, and disposal. Analyses of treatment options identified in the draft Site Treatment Plans suggest potential cost and schedule savings from consolidation of proposed treatment facilities. This paper presents an overview of the automated Systems Analysis Methodology

  4. Rethinking the Business Model in Construction by the Use of Off-Site System Deliverance: Case of the Shaft Project

    OpenAIRE

    Thuesen, Christian; Hvam, Lars

    2013-01-01

    This paper presents a set of insights to be used in the development of business models for off-site system deliveries contributing to the development of Off-Site Manufacturing practices (OSM). The theoretical offset for discussing the development of business models is the blue ocean strategy literature combined with theories on mass-customization and platform development identifying the optimization of cost and value through the handling of complexity as the central process. This framework is...

  5. A Bookless Library, Part I: Relocating Print Materials to Off-Site Storage

    Science.gov (United States)

    Sewell, Bethany B.

    2013-01-01

    This article presents an analysis of the feasibility of a bookless library in a research setting. As spaces for collections are being converted for increased study and community spaces, many libraries have been moving low-use collections to off-site storage. Issues regarding the types of storage spaces available are addressed. Concerns and…

  6. Development of web-based Off-Site Consequence Analysis Program (OSCAP) for extending ILRT intervals and its application

    International Nuclear Information System (INIS)

    Jeon, Ho-Jun; Hwang, Seok-Won; Oh, Ji-Yong

    2012-01-01

    Highlights: ► We develop web-based offsite consequence analysis program based on MACCS II code. ► The program has an automatic processing module to make the main input data. ► It is effective in conducting risk assessments according to extending ILRT intervals. ► Even a beginner can perform offsite consequence analysis with the program. - Abstract: For an offsite consequence analysis, MELCOR Accident Consequence Code System (MACCS) II code is widely used as a tool. In this study, the algorithm of web-based Off-Site Consequence Analysis Program (OSCAP) using the MACCS II code was developed for an integrated leak rate test (ILRT) interval extension and Level 3 probabilistic safety assessment (PSA), and verification and validation (V and V) of the program was performed. The main input data of the MACCS II code are meteorological data, population distribution data and source term data. However, it requires lots of time and efforts to generate the main input data for an offsite consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each other as a site. To reduce efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site in Korea to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. In case of the source term data, the program includes the release fraction of each source term category resulting from Modular Accident Analysis Program (MAAP) code analysis and the core inventory data from ORIGEN code analysis. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so a

  7. Insights into Architects’ Future Roles in Off-Site Construction

    Directory of Open Access Journals (Sweden)

    Jianing Luo

    2017-03-01

    Full Text Available Today’s construction industry is overflowing with new ideas about its future. Off-Site Manufacture and Construction (OSCM is at the heart of the modern construction industry. Much has been written about the state and context of OSCM in different countries regarding its perceived benefits and barriers to implementation. Off-site production (OSP plays an important role in improving fragmented construction processes. Although most OSP research targets the attitudes and practices of OSP adoption, there is limited understanding of the philosophical issues underpinning OSP-related architecture. The roles of the architects’ personal philosophies are neglected and this hampers their implementation of OSCM (which has had a largely technical focus. This paper explores the traditional thinking patterns of architects in China and predicts possible future roles for them. It then conceptualizes an “architectural work” mode and a “building product” mode of design and construction and identifies the shortcomings of architects in an OSCM environment. The arguments made are based on practitioners’ perceptions and the first author’s practical experiences of leading several real-life projects in recent years. The findings reveal the implications and significance of the transformation from an “architectural work” mode to a “building product” mode. We foresee a study approach that focuses on the order and rules for OSCM, resulting in architects’ existing mindsets being changed to thinking patterns and design methodologies better suited to OSCM.

  8. AMCO Off-Site Air Monitoring Map Service, Oakland CA, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service contains a single layer: Off-Site Air Monitors. The layer draws at all scales. Full FGDC metadata for the layer may be found by clicking the layer...

  9. Development of guidance for preparing treatability variance petitions from the RCRA Land Disposal Restrictions for DOE [Department of Energy] mixed-waste streams

    International Nuclear Information System (INIS)

    Harms, T.; Scheuer, N.; Martin, R.; Van Epp, T.; Triplett, M.

    1990-01-01

    In response to the Department of Energy's (DOE) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) treatment requirements, a treatability variance guidance document is being prepared for use by DOE facilities and operations offices. The guidance document, although applicable to non-mixed hazardous waste streams, provides specific guidance regarding radioactive mixed-waste streams. Preparation of the guidance manual has involved developing an overview of the Land Disposal Restrictions, as well as an overview of the petition preparation process. The DOE internal review requirements are specifically addressed in the manual. Specific data requirements and engineering analyses are also described. A discussion of EPA's criteria for granting a treatability variance is also provided. A checklist for completeness of the petition is provided. Model language for use in DOE treatability variance petitions will be provided in a petition for a DOE waste stream as an appendix to the document

  10. Analysis of loss of offsite power events reported in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Volkanovski, Andrija, E-mail: Andrija.VOLKANOVSKI@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Ballesteros Avila, Antonio; Peinador Veira, Miguel [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Kančev, Duško [Kernkraftwerk Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Maqua, Michael [Gesellschaft für Anlagen-und-Reaktorsicherheit (GRS) gGmbH, Schwertnergasse 1, 50667 Köln (Germany); Stephan, Jean-Luc [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17 – 92262 Fontenay-aux-Roses Cedex (France)

    2016-10-15

    Highlights: • Loss of offsite power events were identified in four databases. • Engineering analysis of relevant events was done. • The dominant root cause for LOOP are human failures. • Improved maintenance procedures can decrease the number of LOOP events. - Abstract: This paper presents the results of analysis of the loss of offsite power events (LOOP) in four databases of operational events. The screened databases include: the Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) and Institut de Radioprotection et de Sûreté Nucléaire (IRSN) databases, the IAEA International Reporting System for Operating Experience (IRS) and the U.S. Licensee Event Reports (LER). In total 228 relevant loss of offsite power events were identified in the IRSN database, 190 in the GRS database, 120 in U.S. LER and 52 in IRS database. Identified events were classified in predefined categories. Obtained results show that the largest percentage of LOOP events is registered during On power operational mode and lasted for two minutes or more. The plant centered events is the main contributor to LOOP events identified in IRSN, GRS and IAEA IRS database. The switchyard centered events are the main contributor in events registered in the NRC LER database. The main type of failed equipment is switchyard failures in IRSN and IAEA IRS, main or secondary lines in NRC LER and busbar failures in GRS database. The dominant root cause for the LOOP events are human failures during test, inspection and maintenance followed by human failures due to the insufficient or wrong procedures. The largest number of LOOP events resulted in reactor trip followed by EDG start. The actions that can result in reduction of the number of LOOP events and minimize consequences on plant safety are identified and presented.

  11. Application of GO methodology in reliability analysis of offsite power supply of Daya Bay NPP

    International Nuclear Information System (INIS)

    Shen Zupei; Li Xiaodong; Huang Xiangrui

    2003-01-01

    The author applies the GO methodology to reliability analysis of the offsite power supply system of Daya Bay NPP. The direct quantitative calculation formulas of the stable reliability target of the system with shared signals and the dynamic calculation formulas of the state probability for the unit with two states are derived. The method to solve the fault event sets of the system is also presented and all the fault event sets of the outer power supply system and their failure probability are obtained. The resumption reliability of the offsite power supply system after the stability failure of the power net is also calculated. The result shows that the GO methodology is very simple and useful in the stable and dynamic reliability analysis of the repairable system

  12. Effect of source term composition on offsite doses

    International Nuclear Information System (INIS)

    Karahalios, P.; Gardner, R.

    1985-01-01

    The development of new realistic accident source terms has identified the need to establish a basis for comparing the impact of such source terms. This paper attempts to develop a generalized basis of comparison by investigating contributions to offsite acute whole body doses from each group of radionuclides being released to the atmosphere, using CRAC2. The paper also investigates the effect of important parameters such as regional meteorology, sheltering, and duration of release. Finally, the paper focuses on significant changes in the relative importance of individual radionuclide groups in PWR2, SST1, and a revision of the Stone and Webster proposed interim source term

  13. 40 CFR 300.440 - Procedures for planning and implementing off-site response actions.

    Science.gov (United States)

    2010-07-01

    ... unless the Remedial Project Manager or OSC assures the proper management of the CERCLA waste samples or... OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Hazardous Substance Response § 300.440... § 300.440(d). (5) Off-site transfers of those laboratory samples and treatability study CERCLA wastes...

  14. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    Science.gov (United States)

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of

  15. 3D Analysis of Cooling Performance with Loss of Offsite Power Using GOTHIC Code

    International Nuclear Information System (INIS)

    Oh, Kye Min; Heo, Gyun Young; Na, In Sik; Choi, Yu Jung

    2010-01-01

    GOTHIC code enables to analyze one-dimensional or multi-dimensional problems for evaluating the cooling performance of loss of offsite power. The conventional GOTHIC code analysis performs heat transfer between plant containment and the outside of the fan cooler tubes by modeling each of fan cooler part model and component cooling water inside tube each to analyze boiling probability. In this paper, we suggest a way which reduces the multi-procedure of the cooling performance with loss of offsite power or the heat transfer states with complex geometrical structure to a single-procedure and verify the applicability of the heat transfer differences from the containment atmosphere humidity changes by the multi-nodes which component cooling water of tube or air of Reactor Containment Fan Cooler in the containment, otherwise the component model uses only one node

  16. Practical use of offsite atmospheric measurements to enhance profitability of onsite wind prediction

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Craig [GL Garrad Hassan (Canada)

    2011-07-01

    This paper presents the use of offsite atmospheric measurements to improve the profitability of onsite wind prediction. There are two common sensitivities used, intraday and interday. Results from US mid-western sites show that the error associated with wind predictions is large but there are possibilities for improvement. Inter- and intraday can be used traditionally to contribute towards NWP bias correction. Intraday alone can be used with machine learning and NWP. These techniques are compared and given in order of ease of use and potential accuracy gains. Some considerations and differences for all three techniques, namely, traditional, data assimilation and machine learning are also detailed. An offsite selection matrix shows how elements like location, geography and telemetry rate in the 3 techniques. The experimental setup for all 3 techniques over a 3-month period is given and the results are presented. It can be concluded that the results from these simple experiments show promise but vary in method and time scale.

  17. Thermal desorption treatability test conducted with VAC*TRAX Unit

    International Nuclear Information System (INIS)

    1996-01-01

    In 1992, Congress passed the Federal Facilities Compliance Act, requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) treatment standards. In response to the need for mixed-waste treatment capacity, where off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed waste with treatment options and develop a strategy for treatment of mixed waste. DOE-AL manages nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment units (MTUs) to treat waste at the sites where the wastes are generated. Treatment processes used for mixed wastes must remove the hazardous component (i.e., meet RCRA treatment standards) and contain the radioactive component in a form that will protect the worker, public, and environment. On the basis of the recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (DOE-GJPO) include thermal desorption (TD), evaporative oxidation, and waste water evaporation

  18. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    International Nuclear Information System (INIS)

    2005-01-01

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) (section) 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  19. Development of a decision support system for off-site emergency management in the early phase of a nuclear accident

    International Nuclear Information System (INIS)

    Datta, D.; Sharma, R.M.

    2002-01-01

    Full text: Experience gained after the Chernobyl accident clearly demonstrated the importance of improving administrative, organizational and technical emergency management arrangements in India. The more important areas where technical improvements were needed were early warning monitoring, communication networks for the rapid and reliable exchange of radiological and other information and decision support systems for off-site emergency management. A PC based artificial intelligent software has been developed to have a decision support system that can easily implement to manage off-site nuclear emergency and subsequently analyze the off-site consequences of the nuclear accident. A decision support tool, STEPS (source term estimate based on plant status), that provides desired input to the present software was developed. The tool STEPS facilitates meta knowledge of the system. The paper describes the details of the design of the software, functions of various modules, tuning of respective knowledge base and overall its scope in real sense in nuclear emergency preparedness and response

  20. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    International Nuclear Information System (INIS)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP

  1. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Receiving Basin for Offsite Fuel (Supplement 3)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P M

    1983-09-01

    Analysis of the Savannah River Plant RBOF and RRF included an evaluation of the reliability of process equipment and controls, administrative controls, and engineered safety features. The evaluation also identified potential scenarios and radiological consequences. Risks were calculated in terms of 50-year population dose commitment per year (man-rem/year) to the onsite and offsite population within an 80 Km radius of RBOF and RRF, and to an individual at the plant boundary. The total 50-year onsite and offsite population radiological risks of operating the RBOF and RRF were estimated to be 1.0 man-rem/year. These risks are significantly less than the population dose of 54,000 man/rem/yr for natural background radiation in a 50-mile radius. The 50-year maximum offsite individual risk from operating the facility was estimated to be 2.1 {times} 10{sup 5} rem/yr. These risks are significantly lower than 93 mrem/yr an individual is expected to receive from natural background radiation in this area. The analysis shows. that the RBOF and RRF can be operated without undue risk to onsite personnel or to the general public.

  2. Risk methodologies for offsite hazardous materials

    International Nuclear Information System (INIS)

    Kot, C.A.; Eichler, T.V.; Wiedermann, A.H.

    1983-01-01

    A number of suggestions have been advanced in recent years concerning the risks posed to nuclear power plants by offsite hazardous materials relative to (1) the regulatory approach including considerations of minimum and safe standoff distances, exclusion distances, site acceptance ceilings and floors, screening distances and screening probabilities, plant design, etc., and (2) the analysis and evaluation procedures such as material screening criteria, plant vulnerability, standarized physical models, etc. An evaluation of current analyses and approaches indicates that this complex problem, variety of approaches, and safety concerns may be better accommodated by developing criteria and treatments along the lines of a so-called conditional risk approach. Specifically, the probability (P) of some ultimate consequence (C) occurring from an accident (A) involving hazardous materials is given as P(C) = P(C/A) x P(A). Assuming that the plant to accident site standoff distance is the fundamental independent variable of the risk methodology, certain conditional risk designations and conditions can be made and are presented

  3. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  4. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1990 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory -- Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release

  5. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  6. Off-site emergency planning in Czech Republic

    International Nuclear Information System (INIS)

    Prouza, Z.; Drabova, D.

    1996-01-01

    In the Czech Republic, the NPP Dukovany - PWR 440/213-type (4 blocks) is currently in operation (from 1985) and NPP Temelin - PWR 1000 (2 blocks) is under construction. Radiation accident on the NPP is defined as an unexpected or unintentional event in a facility with a potential of off-site consequences. The principles of emergency planning in Czech Republic now are based on the philosophy and principles described in the ICRP Publication 40 and the IAEA Safety Series No. 55, 72, and includes already the post Chernobyl experiences. Nevertheless, Czech Republic legislation experiences an extensive reconstruction. The Atomic Act, which will be based from point of view the structure, philosophy and principles on new International Basic Safety Standards, already being elaborated. That acts and related laws should solve our legislative problems on field of emergency planning and preparedness

  7. Department of Energy – Office of Science Pacific Northwest Site Office Environmental Monitoring Plan for the DOE-SC PNNL Site

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Meier, Kirsten M.; Barnett, J. Matthew; Bisping, Lynn E.; Poston, Ted M.; Rhoads, Kathleen

    2011-12-21

    The Pacific Northwest Site Office (PNSO) manages the contract for operations at the U.S. Depart¬ment of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site in Richland, Washington. Radiological operations at the DOE-SC PNNL Site expanded in 2010 with the completion of facilities at the Physical Sciences Facility. As a result of the expanded radiological work at the site, the Washington State Department of Health (WDOH) has required that offsite environmental surveillance be conducted as part of the PNNL Site Radioactive Air Emissions License. The environ¬mental monitoring and surveillance requirements of various orders, regulations, and guidance documents consider emission levels and subsequent risk of negative human and environmental impacts. This Environmental Monitoring Plan (EMP) describes air surveillance activities at the DOE-SC PNNL Site. The determination of offsite environmental surveillance needs evolved out of a Data Quality Objectives process (Barnett et al. 2010) and Implementation Plan (Snyder et al. 2010). The entire EMP is a compilation of several documents, which include the Main Document (this text), Attachment 1: Sampling and Analysis Plan, Attachment 2: Data Management Plan, and Attachment 3: Dose Assessment Guidance.

  8. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  9. An approach to estimating radiological risk of offsite release from a design basis earthquake for the Process Experimental Pilot Plant (PREPP)

    International Nuclear Information System (INIS)

    Lucero, V.; Meale, B.M.; Reny, D.A.; Brown, A.N.

    1990-09-01

    In compliance with Department of Energy (DOE) Order 6430.1A, a seismic analysis was performed on DOE's Process Experimental Pilot Plant (PREPP), a facility for processing low-level and transuranic (TRU) waste. Because no hazard curves were available for the Idaho National Engineering Laboratory (INEL), DOE guidelines were used to estimate the frequency for the specified design-basis earthquake (DBE). A dynamic structural analysis of the building was performed, using the DBE parameters, followed by a probabilistic risk assessment (PRA). For the PRA, a functional organization of the facility equipment was effected so that top events for a representative event tree model could be determined. Building response spectra (calculated from the structural analysis), in conjunction with generic fragility data, were used to generate fragility curves for the PREPP equipment. Using these curves, failure probabilities for each top event were calculated. These probabilities were integrated into the event tree model, and accident sequences and respective probabilities were calculated through quantification. By combining the sequences failure probabilities with a transport analysis of the estimated airborne source term from a DBE, onsite and offsite consequences were calculated. The results of the comprehensive analysis substantiated the ability of the PREPP facility to withstand a DBE with negligible consequence (i.e., estimated release was within personnel and environmental dose guidelines). 57 refs., 19 figs., 20 tabs

  10. An approach to estimating radiological risk of offsite release from a design basis earthquake for the Process Experimental Pilot Plant (PREPP)

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, V.; Meale, B.M.; Reny, D.A.; Brown, A.N.

    1990-09-01

    In compliance with Department of Energy (DOE) Order 6430.1A, a seismic analysis was performed on DOE's Process Experimental Pilot Plant (PREPP), a facility for processing low-level and transuranic (TRU) waste. Because no hazard curves were available for the Idaho National Engineering Laboratory (INEL), DOE guidelines were used to estimate the frequency for the specified design-basis earthquake (DBE). A dynamic structural analysis of the building was performed, using the DBE parameters, followed by a probabilistic risk assessment (PRA). For the PRA, a functional organization of the facility equipment was effected so that top events for a representative event tree model could be determined. Building response spectra (calculated from the structural analysis), in conjunction with generic fragility data, were used to generate fragility curves for the PREPP equipment. Using these curves, failure probabilities for each top event were calculated. These probabilities were integrated into the event tree model, and accident sequences and respective probabilities were calculated through quantification. By combining the sequences failure probabilities with a transport analysis of the estimated airborne source term from a DBE, onsite and offsite consequences were calculated. The results of the comprehensive analysis substantiated the ability of the PREPP facility to withstand a DBE with negligible consequence (i.e., estimated release was within personnel and environmental dose guidelines). 57 refs., 19 figs., 20 tabs.

  11. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part A comments

    International Nuclear Information System (INIS)

    1996-08-01

    On February 2, 1996, the U.S. Department of Energy (DOE) issued the Draft Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (NTS EIS) for review by the state of Nevada, Indian tribes, local governments, other federal agencies, groups and organizations, and the general public. The formal comment period lasted 90 days, ending May 3, 1996. As part of the comment process, the DOE held public hearings in St. George, Utah, and in Pahrump, Reno, and Las Vegas, Nevada. Community Workshops were held in Caliente, Tonopah, Boulder City, and North Las Vegas, Nevada, in conjunction with the University of Nevada Las Vegas to discuss the Draft NTS EIS. Volume 3 of the Final NTS EIS contains 3 chapters. Chapter 1 summarizes the major issues raised by the public. Chapter 2 contains the full text of the public comments on the Draft NTS EIS received by the DOE; it includes public hearing transcripts, written comments, and comments received via a toll-free comment open-quotes hot line.close quotes Chapter 3 contains the DOE's responses to the public comments and describes how the comments were considered in the Final NTS EIS

  12. Impact of Uncertainty on Calculations for Recovery from Loss of Offsite Power

    International Nuclear Information System (INIS)

    Kelly, Dana L.

    2010-01-01

    Uncertainty, both aleatory and epistemic, can have a significant impact on estimated probabilities of recovering from loss of offsite power within a specified time window, and such probabilities are an input to risk-informed decisions as to the significance of inspection findings in the U.S. Nuclear Regulatory Commission's Reactor Oversight Process. In particular, the choice of aleatory model for offsite power recovery time can have a significant impact on the estimated nonrecovery probability, especially if epistemic uncertainty regarding parameters in the aleatory model is accounted for properly. In past and current analyses, such uncertainty has largely been ignored. This paper examines the impact of both aleatory and epistemic uncertainty on the results, using modern open-source Bayesian inference software, which implements Markov chain Monte Carlo sampling. It includes examples of time-dependent convolution calculations to show the impact that uncertainty can have on this increasingly frequent type of calculation, also. The results show that the 'point estimate' result, which is an input to risk-informed decisions, can easily be uncertain by a factor of 10 if both aleatory and epistemic uncertainties are considered. The paper also illustrates the use of Bayesian model selection criteria to aid in the choice of aleatory model.

  13. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  14. Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-03-01

    To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus

  15. Offsite source recovery project - ten years of sealed source recovery and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources

  16. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  17. Modeling time to recovery and initiating event frequency for loss of off-site power incidents at nuclear power plants

    International Nuclear Information System (INIS)

    Iman, R.L.; Hora, S.C.

    1988-01-01

    Industry data representing the time to recovery of loss of off-site power at nuclear power plants for 63 incidents caused by plant-centered losses, grid losses, or severe weather losses are fit with exponential, lognormal, gamma and Weibull probability models. A Bayesian analysis is used to compare the adequacy of each of these models and to provide uncertainty bounds on each of the fitted models. A composite model that combines the probability models fitted to each of the three sources of data is presented as a method for predicting the time to recovery of loss of off-site power. The composite model is very general and can be made site specific by making adjustments on the models used, such as might occur due to the type of switchyard configuration or type of grid, and by adjusting the weights on the individual models, such as might occur with weather conditions existing at a particular plant. Adjustments in the composite model are shown for different models used for switchyard configuration and for different weights due to weather. Bayesian approaches are also presented for modeling the frequency of initiating events leading to loss of off-site power. One Bayesian model assumes that all plants share a common incidence rate for loss of off-site power, while the other Bayesian approach models the incidence rate for each plant relative to the incidence rates of all other plants. Combining the Bayesian models for the frequency of the initiating events with the composite Bayesian model for recovery provides the necessary vehicle for a complete model that incorporates uncertainty into a probabilistic risk assessment

  18. RODOS: decision support system for off-site emergency management in Europe

    International Nuclear Information System (INIS)

    Ehrhardt, J.; Shershakov, V.; Zheleznyak, M.; Mikhalevich, A.

    1996-01-01

    The integrated and comprehensive real-time on-line decision support system, RODOS, for off-site emergency management of nuclear accidents is being developed under the auspices of the European Commission's Radiation Protection Research Action. A large number of both West and East European institutes are involved in the further development of the existing prototype versions to operational use with significant contributions coming from the partner institutes in the CIS Republics. This paper summarizes the structure, the main functions and the status of the RODOS system

  19. 10 years and 20,000 sources: the offsite source recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia R [Los Alamos National Laboratory; Abeyta, Cristy L [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory

    2009-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  20. Characterisation of focal liver lesions with unenhanced and contrast enhanced low MI real time ultrasound: On-site unblinded versus off-site blinded reading

    International Nuclear Information System (INIS)

    Hohmann, Joachim; Skrok, Jan; Basilico, Raffaella; Jennett, Manfred; Müller, Anja; Wolf, Karl-Jürgen; Albrecht, Thomas

    2012-01-01

    Objective: To compare on-site and blinded off-site reading of baseline ultrasound (US) and contrast enhanced ultrasound (CEUS) for classification and characterisation of focal liver lesions. Materials and methods: 99 patients (57 women and 42 men, age range 18–89 years, mean age: 59 years) with 53 malignant and 46 benign liver lesions were studied with unenhanced US followed by contrast enhanced US after injection of 2.4 ml SonoVue ® (Bracco, Milano, Italy). Image interpretation was performed on-site with clinical information available by consensus of two readers and off-site by two independent blinded readers at two different centers. Comparison of pre and post contrast scans and of the different readers was performed. Reference examinations were histology, intraoperative US, MRI or CT. Results: Sensitivity for malignancy improved from 81/89/66% (on-site/off-site reader 1/2) before to 100/96/96% post contrast administration (p < 0.05, except for reader 1). Specificity improved from 48/48/54% on baseline US to 89/80/76% on CEUS (p < 0.05). Accuracy for specific lesion diagnosis was 62/59/50% pre and 90/77/72% post contrast (p < 0.05). Classification and characterisation post contrast were mildly inferior for off-site reading. Agreement between on-site and off-site readers of unenhanced scans was fair (κ = 0.29–0.39) while it was good for CEUS (κ = 0.63–0.79). Conclusions: CEUS improves classification and characterisation of focal liver lesions and interobserver agreement compared to conventional US. Classification and characterisation post contrast were mildly but statistically significantly better for on-site than for off-site reading.

  1. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  2. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    International Nuclear Information System (INIS)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program

  3. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  4. RPV in-situ segmentation combined with off-site treatment for volume reduction and recycling - Proven In-Situ Segmentation Combined with Off-Site Treatment for Volume Reduction and Recycling. RPV case study

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Segerud, Per; Hedin, Gunnar

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the large components and the dismantling waste are key success factors in a decommissioning project. A large component of major interest is, due to its size and its span in radioactivity content, the RVP, which can be disposed as is or be segmented, treated, partially free released for recycling and conditioned for disposal in licensed packages. To a certain extent the decommissioning program have to be led by the waste management process. The costs for the plant decommissioning can be reduced by the usage of off-site waste treatment facilities as the time needed for performing the decommissioning project will be reduced as well as the waste volumes for disposal. Long execution times and delays due to problems with on-site waste management processes are major cost drivers for decommissioning projects. This involves also the RPV. In Sweden, the extension of the geological repository SFR plans for a potential disposal of whole RPVs. Disposal of whole RPVs is currently the main alternative but other options are considered. The target is to avoid extensive on-site waste management of RPVs to reduce the risk for delays. This paper describes in-situ RPV segmentation followed by off-site treatment aiming for free release for recycling of a substantial amount of the material, and volume efficient conditioning of the remaining parts. Real data from existing LWR RPVs was used for this study. Proven segmentation methods are intended to be used for the in situ segmentation followed by proven methods for packaging, transportation, treatment, recycling and conditioning for disposal. The expected volume reduction for disposal can be about 90% compared to whole RPV disposal. In this respect the in-situ segmentation of the RVPs to large pieces followed by off-site treatment is an interesting alternative that fits very well with the objective

  5. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    International Nuclear Information System (INIS)

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data

  6. Packed-bed reactor/silent-discharge plasma design data report

    International Nuclear Information System (INIS)

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described

  7. Packed-bed reactor/silent-discharge plasma design data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described.

  8. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  9. A unique manual method for emergency offsite dose calculations

    International Nuclear Information System (INIS)

    Wildner, T.E.; Carson, B.H.; Shank, K.E.

    1987-01-01

    This paper describes a manual method developed for performance of emergency offsite dose calculations for PP and L's Susquehanna Steam Electric Station. The method is based on a three-part carbonless form. The front page guides the user through selection of the appropriate accident case and inclusion of meteorological and effluent data data. By circling the applicable accident descriptors, the user circles the dose factors on pages 2 and 3 which are then simply multiplied to yield the whole body and thyroid dose rates at the plant boundary, two, five, and ten miles. The process used to generate the worksheet is discussed, including the method used to incorporate the observed terrain effects on airflow patterns caused by the Susquehanna River Valley topography

  10. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  11. Design basis of off-site emergency response plans for fuel cycle installations

    International Nuclear Information System (INIS)

    Rzepka, J.P.; Dubiau, Ph.; Jouve, A.C.; Charles, T.; Mercier, J.P.

    1995-01-01

    In France, the term 'off-site emergency response plan' refers to all the arrangements which should be made by the government authorities to protect the population in the event of an accident affecting the installations of the site considered. The outline of the method of defining typical accidents, evaluation of 'source-terms' and health consequences is presented. Two applications to installations from the front-end and from the back-end of the fuel cycle are discussed. (K.A.). 1 tab

  12. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Framework for the resource management plan, Volume 2

    International Nuclear Information System (INIS)

    1996-08-01

    The purpose of this document is to publicize how the U.S. Department of Energy Nevada Operations Office (DOE/NV) proposes to develop and use a Resource Management Plan for the Nevada Test Site (NTS) so the public could comment on and assist in the following activities: (1) Developing the methods for creating and using the plan; (2) Identifying the values people place on manmade and natural resources found on the NTS; (3) Developing the goals the DOE/NV will use to guide the conservation and use of those resources; (4) Identifying the management actions needed to meet constraints and resource management goals; and (5) Incorporating the principles of ecosystem management into land and resource management on the NTS. This framework for the Resource Management Plan was developed in conjunction with the Environmental Impact Statement for the Nevada Test Site and off-site locations in the state of Nevada (NTS EIS) to take advantage of the extensive data collection and public participation activities associated with the National Environmental Policy Act. After public input was received during the comment period for the Draft NTS EIS, DOE/NV revised this description of the Resource Management Plan and published it with the NTS Final EIS. This revision includes the goals DOE/NV has developed for managing resources and land-use constraints. It also includes the final plans for developing the Resource Management Plan. These plans will guide DOE/NV as it develops a Resource Management Plan in the coming years

  13. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  14. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1997

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency's (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods

  15. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  16. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    International Nuclear Information System (INIS)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans

  17. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  18. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  19. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    International Nuclear Information System (INIS)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0

  20. Evolution of EPA/DOE technical cooperation in remediation of radiation/mixed waste contaminated sites

    International Nuclear Information System (INIS)

    Dyer, Robert S.; Garcia-Frias, Beverly; Wolbarst, Anthony B.; Coe, Larry J.

    1992-01-01

    The EPA Office of Radiation Programs (ORP) and the DOE Office of Environmental Restoration and Waste Management (EM) are cooperating in efforts related to restoration of radioactive and mixed waste sites. The impetus for these efforts derived from DOE's need to perform restoration activities according to CERCLA/RCRA requirements, and from ORP's role as a supplier of radiation expertise to federal agencies. These activities include: assessing remediation technology, developing radioanalytical protocols; matching cleanup technologies to soil characteristics; developing a process for the evaluation, selection, and appropriate use of groundwater models; reviewing incinerator practices; and addressing technical issues associated with the WIPP. Cooperative projects planned for the future include: evaluation of methodologies for streamlining the restoration process; assessment of the applicability of process knowledge for waste characterization; evaluation of recycling of radioactive metals; and expansion of selected environmental protection initiatives at the International Atomic Energy Agency (IAEA). Public acceptance is a crucial component of the remediation process. An underlying objective of these cooperative initiatives is to address issues of concern to the public in an open and honest fashion. (author)

  1. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    International Nuclear Information System (INIS)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions

  2. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  3. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    International Nuclear Information System (INIS)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982

  4. Application of GIS in prediction and assessment system of off-site accident consequence for NPP

    International Nuclear Information System (INIS)

    Wang Xingyu; Shi Zhongqi

    2002-01-01

    The assessment and prediction software system of off-site accident consequence for Guangdong Nuclear Power Plant (GNARD2.0) is a GIS-based software system. The spatial analysis of radioactive materials and doses with geographic information is available in this system. The structure and functions of the GNARD system and the method of applying ArcView GIS are presented

  5. Mercury removal from solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-01-01

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste

  6. Nuclear power plants in Germany. Recent developments in off-site nuclear emergency preparedness and response; Kernkraftwerke in Deutschland. Neue Entwicklungen im anlagenexternen Notfallschutz

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Florian [Bundesamt fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany). Abt. SW 2.2 Entscheidungshilfesysteme, Lageermittlung und Kommunikation

    2014-10-15

    The reactor accident in Fukushima, Japan, in 2011 triggered a thorough review of the off-site emergency preparedness and response for nuclear power plants in Germany. ''Off-site emergency preparedness and response'' includes all actions to protect the public outside the fence of a nuclear power plant. This review resulted in several changes in off-site emergency preparedness and response, which are briefly described in this article. Additionally, several recent activities are described which may influence emergency preparedness and response in the future.

  7. Examination of offsite emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Ericson, D.M. Jr.; Jones, R.B.; Rasmussen, N.C.

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to potential nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each protective measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment falure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  8. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  9. Wireless remote control of clinical image workflow: using a PDA for off-site distribution and disaster recovery.

    Science.gov (United States)

    Documet, Jorge; Liu, Brent J; Documet, Luis; Huang, H K

    2006-07-01

    This paper describes a picture archiving and communication system (PACS) tool based on Web technology that remotely manages medical images between a PACS archive and remote destinations. Successfully implemented in a clinical environment and also demonstrated for the past 3 years at the conferences of various organizations, including the Radiological Society of North America, this tool provides a very practical and simple way to manage a PACS, including off-site image distribution and disaster recovery. The application is robust and flexible and can be used on a standard PC workstation or a Tablet PC, but more important, it can be used with a personal digital assistant (PDA). With a PDA, the Web application becomes a powerful wireless and mobile image management tool. The application's quick and easy-to-use features allow users to perform Digital Imaging and Communications in Medicine (DICOM) queries and retrievals with a single interface, without having to worry about the underlying configuration of DICOM nodes. In addition, this frees up dedicated PACS workstations to perform their specialized roles within the PACS workflow. This tool has been used at Saint John's Health Center in Santa Monica, California, for 2 years. The average number of queries per month is 2,021, with 816 C-MOVE retrieve requests. Clinical staff members can use PDAs to manage image workflow and PACS examination distribution conveniently for off-site consultations by referring physicians and radiologists and for disaster recovery. This solution also improves radiologists' effectiveness and efficiency in health care delivery both within radiology departments and for off-site clinical coverage.

  10. The practical outfall of DOE compliance agreements

    International Nuclear Information System (INIS)

    Smith, Leanne; Henrie, Gregory O.

    1992-01-01

    Perhaps the significant regulatory issue facing the Department of Energy (DOE or the Department) is the compliant treatment, storage, and disposal of mixed (radioactive and hazardous) waste. Since DOE'S By-Product Rulemaking in 1987, when the Department acknowledged that the Resource Conservation and Recovery Act (RCRA) applied to the hazardous component of mixed waste, DOE has repeatedly communicated to the Environmental Protection Agency (EPA) and host States that, for mixed waste, DOE is not always able to strictly comply with RCRA standards and that bringing treatment on-line in an expeditious manner is proving very difficult. One of the most effective methods used between DOE and its regulators to address mixed waste management issues is the negotiation of compliance agreements. These agreements establish formal mile stones for bringing DOE sites into compliance. The milestones are not completed without overcoming technical roadblocks and a struggle for funding. However, agreements can establish technically attainable compliance methods that take into account the special problems radiation introduces into RCRA waste management. Compliance agreements help promote a cooperative relationship within the Department and between DOE and its regulators in that all parties have reached agreement and have a stake in attaining the same goal. Where agreements exist, mixed waste compliance efforts can proceed in a situation where all parties have a full understanding of each other's needs and expectations. (author)

  11. Factors and Drivers Effecting the Decision of Using Off-Site Manufacturing (OSM Systems in House Building Industry

    Directory of Open Access Journals (Sweden)

    Hussein Elnaas

    2014-01-01

    Full Text Available Much has been written on Off-site Manufacturing (OSM in construction, particularly regarding the perceived benefits and barriers to implementation. However, there seems to be a wide misunderstanding of the state of OSM associated with the concept of decision by many of those involved in decision making process within the house building industry. This has led to a demand for guidance’s on decision making process for construction project leaders particularly at early project stages. Choosing a construction method for a project will require an optimum decision strategy which involves careful understanding, measurement and evaluation of a number of decision factors that can have the most influence on successful decision action. This paper, therefore, aims to identify the key decision factors to be considered at evaluation stage when choosing to use Off-Site Manufacturing (OSM as a construction strategy in house building projects. This will reveal the key drivers for change in the industry towards the use of OSM in house building.

  12. Hinkley Point 'C' power station public inquiry: proof of evidence on potential off-site effects of radiation

    International Nuclear Information System (INIS)

    Western, D.J.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. This evidence to the Inquiry is concerned with the potential of the proposed Hinkely Point ''C'' PWR to increase the exposure of members of the public offsite to radiation. The policy is to replicate the design of the Sizewell ''B'' reactor. The evidence examined in great detail at the Sizewell ''B'' Public Inquiry where the Inspector concluded that the risk would be very small. The purpose of this evidence is to provide an explicit account of the potential off-site effects of radiation at the Hinkley Point site, so that it can be seen that there is nothing specific to this location that could lead to a different conclusion. (author)

  13. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  14. Does the thermal spike affect low energy ion-induced interfacial mixing?

    International Nuclear Information System (INIS)

    Suele, P.; Menyhard, M.; Nordlund, K.

    2003-01-01

    Molecular dynamics simulations have been used to obtain the three-dimensional distribution of interfacial mixing and cascade defects in Ti/Pt multilayer system due to single 1 keV Ar + impact at grazing angle of incidence. The Ti/Pt system was chosen because of its relatively high heat of mixing in the binary alloy and therefore a suitable candidate for testing the effect of heat of mixing on ion-beam mixing. However, the calculated mixing profile is not sensitive to the heat of mixing. Therefore the thermal spike model of mixing is not fully supported under these irradiation conditions. Instead we found that the majority of mixing occurs after the thermal spike during the relaxation process. These conclusions are supported by liquid, vacancy as well as adatom analysis. The interfacial mixing is in various aspects anomalous in this system: the time evolution of mixing is leading to a phase delay for Ti mixing, and Pt exhibits an unexpected double peaked mixing evolution. The reasons to these effects are discussed

  15. Developments in the JRodos decision support system for off-site nuclear emergency management and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Landman, Claudia [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pro-Science GmbH, Ettlingen (Germany); Raskob, Wolfgang; Trybushnyi, Dmytro [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    JRodos is a non-commercial computer-based decision support system for nuclear accidents. The simulation models for assessing radiological and other consequences and the system features and components allow real-time operation for off-site emergency management as well as the use as a tool for preparing exercises and pre-plannng of countermeasures. There is an active user community that takes influence on further developments.

  16. Treatment of DOE and commercial mixed waste by the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  17. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    International Nuclear Information System (INIS)

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation's allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered

  18. Robotics for mixed waste operations, demonstration description

    International Nuclear Information System (INIS)

    Ward, C.R.

    1993-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper

  19. Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men

    DEFF Research Database (Denmark)

    Matikainen, N; Söderlund, S; Björnson, E

    2017-01-01

    were measured during oral glucose tolerance test (OGTT) and triglycerides (TG), GLP-1, GIP and PYY during a mixed meal test before and after fructose intervention. Fructose intervention did not worsen glucose and insulin responses during OGTT, and GLP-1 and GIP responses during OGTT and fat-rich meal...... responses during OGTT or GLP-1, GIP or PYY responses during a mixed meal. Therefore, fructose intake, even accompanied with mild weight gain, increases in liver fat and worsening of postprandial TG profile, does not impair glucose tolerance or gut incretin response to oral glucose or mixed meal challenge....

  20. Assessment of LANL transuranic mixed waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from the evaluation of the Los Alamos National Laboratory (LANL) TRU Mixed Waste Acceptance Criteria to determine its compliance with applicable DOE requirements. The driving requirements for s TRU Mixed Waste Acceptance Criteria are essentially those contained in the ''TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant'' or WIPP WAC (DOE Report WIPP-DOE-069), 40 CFR 261-270, and DOE Order 5820.2A (Radioactive Waste Management), specifically Chapter II which is entitled ''Management of Transuranic Waste''. The primary purpose of the LANL WAC is the establishment of those criteria that must be met by generators of TRU mixed waste before such waste can be accepted by the Waste Management Group. An annotated outline of a genetic TRU mixed waste acceptance criteria document was prepared from those requirements contained in the WIPP WAC, 40 CFR 261-270, and 5820.2A, and is based solely upon those requirements

  1. System transient response to loss of off-site power

    International Nuclear Information System (INIS)

    Sozer, A.

    1990-01-01

    A simultaneous trip of the reactor, main circulation pumps, secondary coolant pumps, and pressurizer pump due to loss of off-site power at the High Flux Isotope Reactor (HFIR) located at the Oak Ridge National Laboratory (ORNL) has been analyzed to estimate available safety margin. A computer model based on the Modular Modeling System code has been used to calculate the transient response of the system. The reactor depressurizes from 482.7 psia down to about 23 psia in about 50 seconds and remains stable thereafter. Available safety margin has been estimated in terms of the incipient boiling heat flux ratio. It is a conservative estimate due to assumed less than available primary and secondary flows and higher than normal depressurization rate. The ratio indicates no incipient boiling conditions at the hot spot. No potential damage to the fuel is likely to occur during this transient. 2 refs., 6 figs

  2. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    Denise Lach; Stephanie Sanford

    2006-01-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  3. Assessing mixed waste treatment technologies

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m 3 of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers

  4. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  5. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1983

    International Nuclear Information System (INIS)

    Patzer, R.G.; Black, S.C.; Grossman, R.F.; Smith, D.D.

    1984-07-01

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with standards, to identify trends in environmental radiation, and to provide such information to the public. It summarizes these activities for calendar year 1983. No radioactivity attributable to NTS activities was detectable offsite by the monitoring networks. Using recorded wind data and Pasquill stability categories, atmospheric dispersion calculations based on reported radionuclide releases yield an estimated dose of 5 x 10 -5 man-rem to the population within 80 km of the Nevada Test Site during 1983. World-wide fallout of Kr-85, Sr-90, Cs-137, and Pu-239 detected by the monitoring networks would cause maximum exposure to an individual of less than 0.2 mrem per year. Plutonium and krypton in air were similar to 1982 levels while cesium and strontium in other samples were near the detection limits. An occasional net exposure to offsite residents has been detected by the TLD network. On investigation, the cause of such net exposures has been due to personal habits or occupational activities, not to NTS activities. 29 references, 35 figures, 30 tables

  6. Study on the code system for the off-site consequences assessment of severe nuclear accident

    International Nuclear Information System (INIS)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents

  7. A simplified model for calculating early offsite consequences from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1988-07-01

    A personal computer-based model, SMART, has been developed that uses an integral approach for calculating early offsite consequences from nuclear reactor accidents. The solution procedure uses simplified meteorology and involves direct analytic integration of air concentration equations over time and position. This is different from the discretization approach currently used in the CRAC2 and MACCS codes. The SMART code is fast-running, thereby providing a valuable tool for sensitivity and uncertainty studies. The code was benchmarked against both MACCS version 1.4 and CRAC2. Results of benchmarking and detailed sensitivity/uncertainty analyses using SMART are presented. 34 refs., 21 figs., 24 tabs

  8. Off-Site Storage and Special Collections: A Study in Use and Impact in ARL Libraries in the United States

    Science.gov (United States)

    Priddle, Charlotte; McCann, Laura

    2015-01-01

    Special collections libraries collect and preserve materials of intellectual and cultural heritage, providing access to unique research resources. As their holdings continue to expand, special collections in research libraries confront increased space pressures. Off-site storage facilities, used frequently by research libraries for general…

  9. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  10. Evaluation of Secondary Streams in Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Haywood, Fred F.; Goldsmith, William A.; Allen, Douglas F.; Mezga, Lance J.

    1995-12-01

    The United States Department of Energy (DOE) and its predecessors have generated waste containing radioactive and hazardous chemical components (mixed wastes) for over 50 years. Facilities and processes generating these wastes as well as the regulations governing their management have changed. Now, DOE has 49 sites where mixed waste streams exist. The Federal Facility Compliance Act of 1992 (1) required DOE to prepare and obtain regulatory approval of plans for treating these mixed waste streams. Each of the involved DOE sites submitted its respective plan to regulators in April 1995 (2). Most of the individual plans were approved by the respective regulatory agencies in October 1995. The implementation of these plans has begun accordance with compliance instruments (orders) issued by the cognizant regulatory authority. Most of these orders include milestones that are fixed, firm and enforceable as defined in each compliance order. In many cases, mixed waste treatment that was already being carried out and survived the alternative selection process is being used now to treat selected mixed waste streams. For other waste streams at sites throughout the DOE complex treatment methods and schedules are subject to negotiation as the realties of ever decreasing budgets begin to drive the available options. Secondary wastes generated by individual waste treatment systems are also mixed wastes that require treatment in the appropriate treatment system. These secondary wastes may be solid or liquid waste (or both). For example debris washing will generate wastewater requiring treatment; wastewater treatment, in turn, will generate sludge or other residuals requiring treatment; liquid effluents must meet applicable limits of discharge permits. At large DOE sites, secondary waste streams will be a major influence in optimizing design for primary treatment. Understanding these impacts is important not only foe system design, but also for assurances that radiation releases and

  11. Commercial treatability study capabilities for application to the US Department of Energy's anticipated mixed waste streams

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE's waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE's mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters

  12. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits

  13. New Source Term Model for the RESRAD-OFFSITE Code Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Charley [Argonne National Lab. (ANL), Argonne, IL (United States); Gnanapragasam, Emmanuel [Argonne National Lab. (ANL), Argonne, IL (United States); Cheng, Jing-Jy [Argonne National Lab. (ANL), Argonne, IL (United States); Kamboj, Sunita [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Shih-Yew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    This report documents the new source term model developed and implemented in Version 3 of the RESRAD-OFFSITE code. This new source term model includes: (1) "first order release with transport" option, in which the release of the radionuclide is proportional to the inventory in the primary contamination and the user-specified leach rate is the proportionality constant, (2) "equilibrium desorption release" option, in which the user specifies the distribution coefficient which quantifies the partitioning of the radionuclide between the solid and aqueous phases, and (3) "uniform release" option, in which the radionuclides are released from a constant fraction of the initially contaminated material during each time interval and the user specifies the duration over which the radionuclides are released.

  14. Clarifying the learning experiences of healthcare professionals with in situ and off-site simulation-based medical education: a qualitative study

    NARCIS (Netherlands)

    Sorensen, J.L.; Navne, L.E.; Martin, H.M.; Ottesen, B.; Albrecthsen, C.K.; Pedersen, B.W.; Kjaergaard, H.; Vleuten, C. van der

    2015-01-01

    OBJECTIVE: To examine how the setting in in situ simulation (ISS) and off-site simulation (OSS) in simulation-based medical education affects the perceptions and learning experience of healthcare professionals. DESIGN: Qualitative study using focus groups and content analysis. PARTICIPANTS:

  15. Mixed wasted integrated program: Logic diagram

    International Nuclear Information System (INIS)

    Mayberry, J.; Stelle, S.; O'Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-01-01

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development's Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR)

  16. Mixed wasted integrated program: Logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  17. Soil-bentonite design mix for slurry cutoff walls used as containment barriers

    International Nuclear Information System (INIS)

    Rad, N.S.; Bachus, R.C.; Jacobson, B.D.

    1995-01-01

    In recent years, soil-bentonite slurry cutoff walls have been increasingly used as containment barriers around contaminated soils to impede or, in some cases, nearly eliminate the off-site migration of contaminated ground water or other potentially hazardous liquids. The paper presents the procedures used and the results obtained during an extensive laboratory testing program performed to select varying soil-bentonite slurry mix components for a soil-bentonite slurry cutoff wall constructed around an old landfill at a former oil refinery. The landfill is underlain to varying depths by a coarse granular soils that has been exposed to oil-products. Compatibility of three commercially available bentonite products with the free oil-products and the oil-contaminated ground water found at some locations in the landfill was initially investigated. Based on the test results, one of the bentonite products was selected for use in the soil-bentonite slurry testing program. A clayey soil from a borrow source, potable water from the site, and subsurface soils from the proposed soil-bentonite slurry wall alignment were used to form different soil-bentonite slurry mixes. Slump tests were performed to evaluate the workability of the mixes. Based on the test results, a single mix was selected for further study, including permeability/compatibility testing. The results of the compatibility testing program are presented and discussed in the paper. A specific design mix methodology for evaluating the chemical compatibility of soil-bentonite slurry mixes with permeants is proposed

  18. Mixed Waste Working Group report

    International Nuclear Information System (INIS)

    1993-01-01

    The treatment of mixed waste remains one of this country's most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country's largest mixed waste generator, responsible for 95 percent of the Nation's mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE's earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies

  19. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m 3 of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m 3 of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements

  20. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  1. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  2. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  3. Severe accident modeling and offsite dose consequence evaluations for nuclear power plant emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.H.; Feng, T.S.; Huang, K.C. [National Tsing-Hua Univ., Hsinchu, Taiwan (China); Wang, J.R. [Inst. of Nuclear Energy Research, Longtan, Taiwan (China); Cheng, Y.H. [Industrial Tech. Res. Inst., Hsinchu, Taiwan (China); Shih, C., E-mail: ckshih@ess.nthu.edu.tw [National Tsing-Hua Univ., Hsinchu, Taiwan (China)

    2011-07-01

    We have investigated the roles of Firewater Addition System and Passive Flooder in ABWR severe accidents, such as LOCA and SBO. The results are apparent that Firewater System is vital in the highly unlikely situation where all AC are lost. Also in this paper, we present EPZDose, an effective and faster-than-real time code for offsite dose consequences predictions and evaluations. Illustrations with the release from our severe accident scenario show friendly and informative user's interface for supporting decision makings in nuclear emergency situations. (author)

  4. Off-site nuclear emergency management in Germany under the auspices of the federal structure

    International Nuclear Information System (INIS)

    Bayer, A.; Bittner, S.; Korn, H.

    1998-01-01

    Both the individual states (Laender) and the federation (Bund) are involved in off-site emergency management in Germany. The states operate site-related Remote Monitoring Systems for Nuclear Power Plants, while the federation operates a nationwide Integrated Measurement and Information System. The states are responsible for accident response, the federation is responsible for radiation precaution measures. In the event of an accident, the state and federal authorities make their decisions and implement the corresponding emergency measures within their responsibility. Exchange of information exists between the two levels. (P.A.)

  5. Nevada Test Site annual site environmental report for calendar year 1997

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA's) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities

  6. Nevada Test Site annual site environmental report for calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  7. 1995 solid waste 30-year characteristics volume summary

    International Nuclear Information System (INIS)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I.; Valero, O.J.

    1995-10-01

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D ampersand D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford's SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TWunderscoreTRUM)

  8. New method for presenting offsite radiological monitoring data during emergency preparedness exercises

    International Nuclear Information System (INIS)

    Moeller, M.P.; Martin, G.F.; Hickey, E.E.; Jamison, J.D.

    1986-09-01

    As scenarios for exercises become more complicated and flexible to challenge emergency response personnel, improved means of presenting data must be developed. To provide maximum realism and free play during an exercise, staff at the Pacific Northwest Laboratory (PNL) have recently devised a simple method of presenting realistic radiological field monitoring information for a range of possible releases. The method uses only two pieces of paper. The first is a map of the offsite area showing the shape of the plume for the duration of the exercise. The second is a semilog graph containing curves that relate exposure rate and iodine concentration to downwind distance and time. Several techniques are used to maximize the information on the graph

  9. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  10. Evaporative oxidation treatability test report

    International Nuclear Information System (INIS)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment

  11. Preparation of off-site emergency preparedness plans for nuclear installations

    International Nuclear Information System (INIS)

    1999-10-01

    Safety of public, occupational workers and the protection of environment should be assured while activities for economic and social progress are pursued. These activities include the establishment and utilisation of nuclear facilities and use of radioactive sources. This document is issued as a lead document to facilitate preparation of specific site manuals by the Responsible Organisation for emergency response plans at each site to ensure their preparedness to meet any eventuality due to site emergency in order to mitigate its consequences on the health and safety of site personnel. It takes cognizance of an earlier AERB publication on the subject: Safety Manual on Off-Site Emergency Plan for Nuclear Installations, AERB/SM/NISD-2, 1988 and also takes into consideration the urgent need for promoting public awareness and drawing up revised emergency response plans, which has come out in a significant manner after the accidents at Chernobyl and Bhopal

  12. 77 FR 38789 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Concentrator...

    Science.gov (United States)

    2012-06-29

    ... disposal facility, either the Area 5 Radioactive Waste Management Site at DOE's Nevada National Security... offsite LLW disposal facility, either the NNSS Area 5 Radioactive Waste Management Site or the Waste... radioactive waste (HLW) and may be managed and disposed of offsite as low-level waste (LLW). DOE prepared the...

  13. Assessing DOE`s success in implementing the FFC Act: A federal and state partnership to develop treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.; Bubar, P.M. [Dept. of Energy, Germantown, MD (United States)

    1995-12-31

    Implementation of the Federal Facility Compliance Act (FFCAct) required total cooperation among the Department of Energy (DOE), the involved States and interested stakeholders. Although the effort was time consuming, tedious and (at times) trying, the results obtained [Site Treatment Plans (STP)] were an unprecedented success. Through long-range planning, attention to details and organization of effort, a coordinated, cohesive, focused team was developed that included the DOE Headquarters, the Environmental Protection Agency (EPA), 40 DOE sites, 20 states and multiple interested stakeholders. The efforts of the FFCAct team resulted in the preparation of 37 STPs which outline the methods, locations and schedules for the treatment and disposal of DOE`s mixed wastes. The Plans provided a strong foundation upon which consent orders were prepared and approved. The FFCAct approach also resulted in the development of working relationships that will prove not only useful but vital to the planning and implementation necessary to the successful clean-up and disposal DOE`s mixed wastes.

  14. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  15. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  16. Waste minimization and pollution prevention awareness plan

    International Nuclear Information System (INIS)

    1994-08-01

    The primary mission of DOE/NV is to manage and operate the Nevada Test Site (NTS) and other designated test locations, within and outside the United States; provide facilities and services to DOE and non-DOE NTS users; and plan. coordinate, and execute nuclear weapons tests and related test activities. DOE/NV also: (a) Supports operations under interagency agreements pertaining to tests, emergencies, and related functions/activities, (b) Plans, coordinates, and executes environmental restoration, (c) Provides support to the Yucca Mountain Site Characterization Project Office in conjunction with DOE/HQ oversight, (d) Manages the Radioactive Waste Management Sites (RWMS) for disposal of low-level and mixed wastes received from the NTS and off-site generators, and (e) Implements waste minimization programs to reduce the amount of hazardous, mixed, radioactive, and nonhazardous solid waste that is generated and disposed The NTS, which is the primary facility controlled by DOE/NV, occupies 1,350 square miles of restricted-access, federally-owned land located in Nye County in Southern Nevada. The NTS is located in a sparsely populated area, approximately 65 miles northwest of Las Vegas, Nevada

  17. Pollution prevention program plan 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This plan serves as the principal crosscutting guidance to Department of Energy (DOE) Headquarters, Operations Office, laboratory, and contractor management to fully implement pollution prevention programs within the DOE complex between now and 2000. To firmly demonstrate DOE's commitment to pollution prevention, the Secretary of Energy has established goals, to be achieved by December 31, 1999, that will aggressively reduce DOE's routine generation of radioactive, mixed, and hazardous wastes, and total releases and offsite transfers of toxic chemicals. The Secretary also has established sanitary waste reduction, recycling, and affirmative procurement goals. Site progress in meeting these goals will be reported annually to the Secretary in the Annual Report on Waste Generation and Waste Minimization Progress, using 1993 as the baseline year. Implementation of this plan will represent a major step toward reducing the environmental risks and costs associated with DOE operations

  18. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  19. A systematic process to foster development and implementation of an emerging technology for treating DOE's mixed and hazardous wastes

    International Nuclear Information System (INIS)

    Bench, J.; Carlson, T.; Carpenter, C.; Duray, J.; Walker, R.

    1992-01-01

    An innovative approach for the successful implementation of treatment technologies is presented in this paper. This approach, which could be used on any emerging restoration technology, is described through an example, the molten salt oxidation (MSO) process, that is currently being implemented by the U. S. Department of energy (DOE). MSO is being pursued by DOE because it appears to be a promising treatment technology for many of its hazardous and mixed wastes. MSO is a noncombustion process that is basically a combination of chemical and thermal treatments and can be used as both a primary and a secondary treatment (e. g. , as a dry scrubber to treat incinerator off gases). The molten salt technology provides waste minimization and separation capabilities and is competitive with incineration for certain types of wastes. MSO also has advantages that potentially make it more acceptable to regulatory agencies and the public

  20. Off-site environmental monitoring report: radiation monitoring around United States nuclear test areas, calendar year 1984

    International Nuclear Information System (INIS)

    Potter, G.D.; Black, S.C.; Grossman, R.F.; Patzer, R.G.; Smith, D.D.

    1985-04-01

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with standards, to identify trends in environmental radiation, and to provide such information to the public. It summarizes these activities for calendar year 1984. No radioactivity attributable to NTS activities was detectable offsite by the monitoring networks. Using recorded wind data and Pasquill stability categories, atmospheric dispersion calculations based on reported radionuclides releases yield an estimated dose of 1 x 10 -3 person-rem to the population within 80 km of the Nevada Test Site during 1983. World-wide fallout of Kr-85, Sr-90, Cs-137, and Pu-239 detected by the monitoring networks would cause maximum exposure to an individual of less than 0.6 mrem per year. Plutonium in air was still detectable along with krypton-85, which continued its gradual increase, as has been reported previously. Cesium and strontium in air were near their detection limits. An occasional net exposure to offsite residents has been detected by the TLD network. On investigation, the cause of such net exposures has been due to personal habits or occupational activities, not to NTS activities. 32 refs., 36 figs., 27 tabs

  1. Off-site source recovery project case study: disposal of high activity cobalt 60 sources at the Nevada test site 2008

    International Nuclear Information System (INIS)

    Cocina, Frank G.; Stewart, William C.; Wald-Hopkins, Mark; Hageman, John P.

    2009-01-01

    The Off-Site Source Recovery Project has been operating at Los Alamos National Laboratory since 1998 to address the U.S. Department of Energy responsibility for collection and management of orphaned or disused radioactive sealed sources which may represent a risk to public health and national security if not properly managed.

  2. Offsite dose calculation manual guidance: Standard radiological effluent controls for boiling water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-- 01, which allows Radiological Effluent Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft form for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. 11 tabs

  3. Risk assessments of innovative technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Aycock, M.T.; Russell, J.E.

    1993-01-01

    The mission of the US Department of Energy's (DOE'S) Mixed Waste Integrated Program (MWIP) is to develop complete and appropriate technologies for the treatment of DOE mixed low-level waste and transuranic wastes in order to ensure that all affected DOE installations and projects can come into compliance with environmental law and meet DOE's 30-yr cleanup and operational goals. The MWIP will achieve its goal by developing technologies that are in compliance with regulatory requirements, are socially and politically viable, and are cost beneficial and effective in disposed waste source term and volume reduction. The project management plan for MWIP requires that technologies be evaluated in accordance with criteria that rank technologies with regard to performance, risk, and cost-effectiveness. This paper addresses the methodology used to rank alternative mixed-water treatment technologies with regard to relative risk

  4. Case study of shallow soil mixing and soil vacuum extraction remediation project

    International Nuclear Information System (INIS)

    Carey, M.J.; Day, S.R.; Pinewski, R.; Schroder, D.

    1995-01-01

    Shallow Soil Mixing (SSM) and Soil Vacuum Extraction (SVE) are techniques which have been increasingly relied on for the insitu remediation of contaminated soils. The primary applications of SSM have been to mix cement, bentonite, or other reagents to modify properties and thereby remediate contaminated soils or sludges. Soil vacuum extraction has been used at numerous applications for insitu removal of contaminants from soils. At a recent project in southern Ohio, the two technologies were integrated and enhanced to extract volatile organic compounds (VOCs) from soils at a Department of Energy facility. Advantages of the integrated SSM/SVE technology over alternative technologies include a relatively rapid remediation compared to other in-situ techniques at a lower cost, less exposure of waste to the surface environment and elimination of off-site disposal. These advantages led to the selection of the use of both technologies on the project in Southern Ohio. The information presented in this paper is intended to provide Engineers and owners with the level of understanding necessary to apply soil mixing and vacuum extraction technology to a specific site. The most important steps in implementing the technology are site investigation, feasibility estimate, selection of performance criteria, selection of appropriate materials, bench scale testing and construction

  5. Requirements for shipment of DOE radioactive mixed waste

    International Nuclear Information System (INIS)

    Gablin, K.; No, Hyo; Herman, J.

    1993-01-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage

  6. Simulation-based multiprofessional obstetric anaesthesia training conducted in situ versus off-site leads to similar individual and team outcomes: a randomised educational trial

    NARCIS (Netherlands)

    Sorensen, J.L.; Vleuten, C. van der; Rosthoj, S.; Ostergaard, D.; Leblanc, V.; Johansen, M.; Ekelund, K.; Starkopf, L.; Lindschou, J.; Gluud, C.; Weikop, P.; Ottesen, B.

    2015-01-01

    OBJECTIVE: To investigate the effect of in situ simulation (ISS) versus off-site simulation (OSS) on knowledge, patient safety attitude, stress, motivation, perceptions of simulation, team performance and organisational impact. DESIGN: Investigator-initiated single-centre randomised superiority

  7. The changing Arena: New DOE waste management orders

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Kluk, A.F.

    1988-01-01

    There are five orders that address waste management within the Department of Energy (DOE); three of these orders are being revised, which emphasize the rapidly changing arena in which the department is contending in this field. The need to change the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Order arose from the Superfund amendments of 1986 (SARA) with its hammer provisions in Section 120 for compliance at Federal facilities. The need to change the Hazardous and Mixed Waste Management Order was accelerated by the promulgation by DOE of the new mixed waste rule on May 1, 1987, (1) and cancellation of the obsolete existing order on October 5, 1987. The new rule requires coregulation of all DOE mixed waste with the Environmental Protection Agency (EPA) and the respective authorized states. 5 refs

  8. Improved Safety Margin Characterization of Risk from Loss of Offsite Power

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Paul [Texas A & M Univ., College Station, TX (United States)

    2017-11-07

    Original intent: The original intent of this task was “support of the Risk-Informed Safety Margin Characteristic (RISMC) methodology in order” “to address … efficiency of computation so that more accurate and cost-effective techniques can be used to address safety margin characterizations” (S. M. Hess et al., “Risk-Informed Safety Margin Characterization,” Procs. ICONE17, Brussels, July 2009, CD format). It was intended that “in Task 1 itself this improvement will be directed toward upon the very important issue of Loss of Offsite Power (LOOP) events,” more specifically toward the challenge of efficient computation of the multidimensional nonrecovery integral that has been discussed by many previous contributors to the theory of nuclear safety. It was further envisioned that “three different computational approaches will be explored,” corresponding to the three subtasks listed below; deliverables were tied to the individual subtasks.

  9. Plans and Progress on Hanford MLLW Treatment and Disposal

    International Nuclear Information System (INIS)

    McDonald, K. M.; Blackford, L. T.; Nester, D. E.; Connolly, R. R.; McKenney, D. E.; Moy, S. K.

    2003-01-01

    Mixed low-level waste (MLLW) contains both low-level radioactive materials and low-level hazardous chemicals. The hazardous component of mixed waste has characteristics identified by any or all of the following statutes: the Resource Conservation and Recovery Act of 1976 (RCRA), as amended; the Toxic Substances Control Act of 1976; and Washington State dangerous waste regulations. The Fluor Hanford Waste Management Project (WMP) is responsible for storing, treating, and disposing of solid MLLW, which includes organic and inorganic solids, organics and inorganic lab packs, debris, lead, mercury, long-length equipment, spent melters, and remote-handled (RH) and oversized MLLW. Hanford has 7,000 cubic meters, or about 25%, of the MLLW in storage at U.S. Department of Energy (DOE) sites. Hanford plans to receive 57,000 cubic meters from on-site generators, or about 50% of DOE's newly generated MLLW. In addition, the Hanford Environment Restoration Program and off-site generators having approved Federal Facility Consent Agreement site treatment plans will most likely send 200 cubic meters of waste to be treated and returned to the generators. Volumes of off-site waste receipts will be affected when the MLLW Record of Decision is issued as part of the process for the Hanford Site Solid Waste Environmental Impact Statement (EIS). The WMP objective relative to MLLW is to treat and dispose of ∼8000 cubic meters of existing inventory and newly-generated waste by September 30, 2006

  10. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs

  11. Decision support for off-site emergency preparedness in Europe

    International Nuclear Information System (INIS)

    Kelly, G.N.; Ehrhardt, J.

    1996-01-01

    The decision support system, RODOS, for off-site emergency management in the event of a future accident is being developed with support from the European Commission. The development is being carried out within a large and fully integrated international project involving about forty institutes from sixteen countries in Eastern and Western Europe. RODOS has been designed to provide comprehensive (i.e. applicable at all distances, at all times and to all important countermeasures) decision support and to be applicable throughout Europe. The background to the development of RODOS is described in this paper together with its basic features, its current status and plans for its further development. Given the context of this Special Issue, particular attention is given to the contribution made by institutes in the former Soviet Union to the development of RODOS and plans for its implementation in these countries. The benefits of the system are increasingly being recognised following the completion of the pilot version in 1995. Of particular importance is its potential role as part of a wider European network, the existence of which would promote a more effective and coherent response to any future nuclear accident that might affect Europe. (Author)

  12. Mixed Waste Integrated Program Quality Assurance requirements plan

    International Nuclear Information System (INIS)

    1994-01-01

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities

  13. Mixed Waste Integrated Program Quality Assurance requirements plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  14. Passive Mixing inside Microdroplets

    Directory of Open Access Journals (Sweden)

    Chengmin Chen

    2018-04-01

    Full Text Available Droplet-based micromixers are essential units in many microfluidic devices for widespread applications, such as diagnostics and synthesis. The mixers can be either passive or active. When compared to active methods, the passive mixer is widely used because it does not require extra energy input apart from the pump drive. In recent years, several passive droplet-based mixers were developed, where mixing was characterized by both experiments and simulation. A unified physical understanding of both experimental processes and simulation models is beneficial for effectively developing new and efficient mixing techniques. This review covers the state-of-the-art passive droplet-based micromixers in microfluidics, which mainly focuses on three aspects: (1 Mixing parameters and analysis method; (2 Typical mixing element designs and the mixing characters in experiments; and, (3 Comprehensive introduction of numerical models used in microfluidic flow and diffusion.

  15. Preliminary hazards analysis -- vitrification process

    International Nuclear Information System (INIS)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment

  16. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  17. Tracking mixed waste from environmental restoration through waste management for the Federal Facility Compliance Act

    International Nuclear Information System (INIS)

    Isbell, D.; Tolbert-Smith, M.; MacDonell, M.; Peterson, J.

    1994-01-01

    The Federal Facility Compliance Act required the US Department of Energy (DOE) to prepare an inventory report that presents comprehensive information on mixed wastes. Additional documents, such as site treatment plans, were also required of facilities with mixed waste. For a number of reasons, not all DOE mixed waste sites are able to provide detailed characterization and planning data at this time. Thus, an effort is currently under way to develop a reporting format that will permit mixed waste information across the DOE complex to be tracked as it becomes available

  18. Role of disposal in developing Federal Facility Compliance Act mixed waste treatment plans

    International Nuclear Information System (INIS)

    Case, J.T.; Rhoderick, J.

    1994-01-01

    The Federal Facilities Compliance Act (FFCA) was enacted on October 6, 1992. This act amends the Solid Waste Disposal Act, which was previously amended by the Resource Conservation and Recovery Act (RCRA). The FFCA set in place a process for managing the Department of Energy's (DOE) mixed low-level radioactive wastes (MLLW), wastes that contain both hazardous and low-level radioactive constituents, with full participation of the affected states. The FFCA provides the framework for the development of treatment capacity for DOE's mixed waste. Disposal of the treatment residues is not addressed by the FFCA. DOE has initiated efforts in concert with the states in the development of a disposal strategy for the treated mixed wastes. This paper outlines DOE efforts in development of a mixed waste disposal strategy which is integrated with the FFCA Site Treatment Planning process

  19. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  20. A Development of Domestic Food Chain Model Data for Chronic Effect Estimation of Off-site Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seok-Jung; KEUM, Dong-Kwon; Jang, Seung-Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The FCM includes complex transport phenomena of radiation materials on a biokinetic system of contaminated environments. An estimation of chronic health effects is a key part of the level 3 PSA (Probabilistic Safety Assessment), which depends on the FCM estimation from contaminated foods ingestion. A cultural ingestion habit of a local region and agricultural productions are different to the general features over worldwide scale or case by case. This is a reason to develop a domestic FCM data for the level 3 PSA. However, a generation of the specific FCM data is a complex process and under a large degree of uncertainty due to inherent biokinetic models. As a preliminary study, the present study focuses on an infrastructure development to generation of a specific FCM data. During this process, the features of FCM data to generate a domestic FCM data were investigated. Based on the insights obtained from this process, a specific domestic FCM data was developed. The present study was developed a domestic FCM data to estimate the chronic health effects of off-site consequence analysis. From this study, an insight was obtained, that a domestic FCM data is roughly 20 times higher than the MACCS2 defaults data. Based on this observation, it is clear that the specific chronic health effects of a domestic plant site should be considered in the off-site consequence analysis.

  1. A Development of Domestic Food Chain Model Data for Chronic Effect Estimation of Off-site Consequence Analysis

    International Nuclear Information System (INIS)

    Han, Seok-Jung; KEUM, Dong-Kwon; Jang, Seung-Cheol

    2015-01-01

    The FCM includes complex transport phenomena of radiation materials on a biokinetic system of contaminated environments. An estimation of chronic health effects is a key part of the level 3 PSA (Probabilistic Safety Assessment), which depends on the FCM estimation from contaminated foods ingestion. A cultural ingestion habit of a local region and agricultural productions are different to the general features over worldwide scale or case by case. This is a reason to develop a domestic FCM data for the level 3 PSA. However, a generation of the specific FCM data is a complex process and under a large degree of uncertainty due to inherent biokinetic models. As a preliminary study, the present study focuses on an infrastructure development to generation of a specific FCM data. During this process, the features of FCM data to generate a domestic FCM data were investigated. Based on the insights obtained from this process, a specific domestic FCM data was developed. The present study was developed a domestic FCM data to estimate the chronic health effects of off-site consequence analysis. From this study, an insight was obtained, that a domestic FCM data is roughly 20 times higher than the MACCS2 defaults data. Based on this observation, it is clear that the specific chronic health effects of a domestic plant site should be considered in the off-site consequence analysis

  2. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States

    Directory of Open Access Journals (Sweden)

    Min-Uk Kim

    2018-05-01

    Full Text Available We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA tools. We used OCA tools Korea Offsite Risk Assessment (KORA and Areal Location of Hazardous Atmospheres (ALOHA in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH3, 35% hydrogen chloride (HCl, 50% hydrofluoric acid (HF, and 69% nitric acid (HNO3. The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  3. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States.

    Science.gov (United States)

    Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon

    2018-05-18

    We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  4. Effluent Information System (EIS) / Onsite Discharge Information System (ODIS): 1986 executive summary

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-09-01

    Department of Energy (DOE) data base systems aid DOE-Headquarters and Field Offices in managing the radioactive air and liquid effluents from DOE facilities. Data on effluents released offsite are entered into effluent information system (EIS) and data on effluents discharged onsite and retained onsite are entered into Onsite Discharge Information System (ODIS). This document is a summary of information obtained from the CY 1986 effluent data received from all DOE and DOE contractor facilities and entered in the data bases. Data from previous years are also included. The summary consists of information for effluents released offsite, and information for effluents retained onsite

  5. New method for presenting off-site radiological monitoring data during emergency preparedness exercises

    International Nuclear Information System (INIS)

    Moeller, M.P.; Martin, G.F.; Hickey, E.E.; Jamison, J.D.

    1987-01-01

    As scenarios for exercises become more complicated and flexible to challenge emergency response personnel, improved means of presenting data must be developed to meet this need. To provide maximum realism and free play during an exercise, staff at the Pacific Northwest Laboratory (PNL) have recently devised a simple method of presenting realistic radiological field monitoring information for a range of possible releases. The method utilizes only two pieces of paper. The first is a map of the offsite area showing the shape of the plume for the duration of the exercise. The second is a semi-log graph containing curves relating exposure rate and iodine concentration to downwind distance and time. Several techniques are used to maximize the information on the graph

  6. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  7. Improved Safety Margin Characterization of Risk from Loss of Offsite Power

    International Nuclear Information System (INIS)

    Nelson, Paul

    2017-01-01

    Original intent: The original intent of this task was ''support of the Risk-Informed Safety Margin Characteristic (RISMC) methodology in order'' ''to address ... efficiency of computation so that more accurate and cost-effective techniques can be used to address safety margin characterizations'' (S. M. Hess et al., ''Risk-Informed Safety Margin Characterization,'' Procs. ICONE17, Brussels, July 2009, CD format). It was intended that ''in Task 1 itself this improvement will be directed toward upon the very important issue of Loss of Offsite Power (LOOP) events,'' more specifically toward the challenge of efficient computation of the multidimensional nonrecovery integral that has been discussed by many previous contributors to the theory of nuclear safety. It was further envisioned that ''three different computational approaches will be explored,'' corresponding to the three subtasks listed below; deliverables were tied to the individual subtasks.

  8. German offsite accident consequence model for nuclear facilities: further development and application

    International Nuclear Information System (INIS)

    Bayer, A.

    1985-01-01

    The German Offsite Accident Consequence Model - first applied in the German Risk Study for nuclear power plants with light water reactors - has been further developed with the improvement of several important submodels in the areas of atmospheric dispersion, shielding effects of houses, and the foodchains. To aid interpretation, the presentation of results has been extended with special emphasis on the presentation of the loss of life expectancy. The accident consequence model has been further developed for application to risk assessments for other nuclear facilities, e.g., the liquid metal fast breeder reactor (SNR-300) and the high temperature gas cooled reactor. Moreover the model have been further developed in the area of optimal countermeasure strategies (sheltering, evacuation, etc.) in the case of the Central European conditions. Preliminary considerations has been performed in connection with safety goals on the basis of doses

  9. Challenging the unipolar-bipolar division: does mixed depression bridge the gap?

    Science.gov (United States)

    Benazzi, Franco

    2007-01-30

    Mixed states, i.e., opposite polarity symptoms in the same mood episode, question the categorical splitting of mood disorders in bipolar disorders and unipolar depressive disorders, and may support a continuum between these disorders. Study aim was to find if there were a continuum between hypomania (defining BP-II) and depression (defining MDD), by testing mixed depression as a 'bridge' linking these two disorders. A correlation between intradepressive hypomanic symptoms and depressive symptoms could support such a continuum, but other explanations of a correlation are possible. Consecutive 389 BP-II and 261 MDD major depressive episode (MDE) outpatients were interviewed, cross-sectionally, with the Structured Clinical Interview for DSM-IV, the Hypomania Interview Guide (to assess intradepressive hypomanic symptoms) and the Family History Screen, by a mood disorders specialist psychiatrist in a private practice. Patients presented voluntarily for treatment of depression when interviewed drug-free and had many subsequent follow-ups after treatment start. Mixed depression (depressive mixed state) was defined as the combination of MDE (depression) and three or more DSM-IV intradepressive hypomanic symptoms (elevated mood and increased self-esteem were always absent by definition), a definition validated by Akiskal and Benazzi. BP-II, versus MDD, had significantly lower age at onset, more recurrences, atypical and mixed depressions, bipolar family history, MDE symptoms and intradepressive hypomanic symptoms. Mixed depression was present in 64.5% of BP-II and in 32.1% of MDD (p=0.000). There was a significant correlation between number of MDE symptoms and number of intradepressive hypomanic symptoms. A dose-response relationship between frequency of mixed depression and number of MDE symptoms was also found. Differences on classic diagnostic validators could support a division between BP-II and MDD. Presence of intradepressive hypomanic symptoms by itself, and

  10. Nevada test site annual site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  11. The need for mixed waste treatment options within the US Department of Energy

    International Nuclear Information System (INIS)

    McCulla, W.H.; French, D.M.

    1992-01-01

    The United States Department of Energy (DOE) has generated and stored significant amounts of low-level mixed wastes consisting of radioactive materials mixed with hazardous chemical substances in various forms. The DOE is in the process of beginning a cleanup of these mixed wastes at many of its facilities. Many of these waste streams had been previously disposed of by methods acceptable at the time but with the passage of very stringent laws affecting migration of hazardous components, now the disposal areas constitute remediation sites. Disposal of low level radioactive waste potentially containing hazardous materials have also fallen under land disposal restrictions and currently no mixed waste is going to low level disposal facilities. The paper will address why the DOE is just now starting to comply with environmental laws, why there is a need to find more effective and less expensive means of cleaning up wastes, how the DOE is organizing to accomplish this cleanup, and several plasma technology development efforts in the DOE Complex that show promise of meeting these needs

  12. The need for mixed waste treatment options within the US Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    McCulla, W.H.; French, D.M.

    1992-12-31

    The United States Department of Energy (DOE) has generated and stored significant amounts of low-level mixed wastes consisting of radioactive materials mixed with hazardous chemical substances in various forms. The DOE is in the process of beginning a cleanup of these mixed wastes at many of its facilities. Many of these waste streams had been previously disposed of by methods acceptable at the time but with the passage of very stringent laws affecting migration of hazardous components, now the disposal areas constitute remediation sites. Disposal of low level radioactive waste potentially containing hazardous materials have also fallen under land disposal restrictions and currently no mixed waste is going to low level disposal facilities. The paper will address why the DOE is just now starting to comply with environmental laws, why there is a need to find more effective and less expensive means of cleaning up wastes, how the DOE is organizing to accomplish this cleanup, and several plasma technology development efforts in the DOE Complex that show promise of meeting these needs.

  13. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    International Nuclear Information System (INIS)

    Kriikku, E.M.

    1994-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control

  14. Status of vitrification for DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Jantzen, C.M.; Plodinec, M.J.

    1993-04-01

    Vitrification is being considered by the Department of Energy for solidification of many low-level mixed waste streams. Some of the advantages, requirements, and potential problem areas are described. Recommendations for future efforts are presented

  15. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    International Nuclear Information System (INIS)

    Lombardi, D.A.; Socolof, M.L.

    1996-01-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of 14 C are about six orders of magnitude more restrictive than perks of 3 H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, 14 C disposal concentrations were limited by the atmospheric pathway for most arid sites; for 3 H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities

  16. Verification of job mix formula for Alaskan HMA.

    Science.gov (United States)

    2014-08-01

    Some asphalt pavement does not last as long as it should. Every year, a significant amount of money is spent by the state on : repairing and maintaining pavement, which raises the question: Are we getting the mix design we need? Since hot mix asphalt...

  17. Preliminary results on food consumption rates for off-site dose calculation of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Gab Bock; Chung, Yang Geun; Bang, Sun Young; Kang, Duk Won

    2005-01-01

    The Internal dose by food consumption mostly account for radiological dose of public around nuclear power plants(NPP). But, food consumption rate applied to off-site dose calculation in Korea which is the result of field investigation around Kori NPP by the KAERI in 1988. is not reflected of the latest dietary characteristics. The Ministry of Health and Welfare Affairs has investigated the food and nutrition of nations every 3 years based on the Law of National Health Improvement. To update the food consumption rates of the maximum individual, the analysis of the national food investigation results and field surveys around nuclear power plant sites have been carried out

  18. Off-site interaction effect in the Extended Hubbard Model with the SCRPA method

    International Nuclear Information System (INIS)

    Harir, S; Bennai, M; Boughaleb, Y

    2007-01-01

    The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion

  19. CEC workshop on methods for assessing the offsite radiological consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Luykx, F.; Sinnaeve, J.

    1986-01-01

    On Apr 15-19, 1985, in Luxembourg, the Commission of the European Communities (CEC), in collaboration with the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, and the National Radiological Protection Board (NRPB), United Kingdom, presented a workshop on methods for assessing the offsite radiological consequences of nuclear accidents. The program consisted of eight sessions. The main conclusions, which were presented in the Round Table Session by the individual Session Chairmen, are summarized. Session topics are as follows: Session I: international developments in the field of accident consequence assessment (ACA); Session II: atmospheric dispersion; Session III: food chain models; Session IV: urban contamination; Session V: demographic and land use data; Session VI: dosimetry, health effects, economic and counter measure models; Session VII: uncertainty analysis; and Session VIII: application of probabilistic consequence models as decision aids

  20. Application of DOE prescribed guides to the evaluation of Hanford's Mixed Low Level Solid Waste Treatment Options

    International Nuclear Information System (INIS)

    Campbell, B.F.; Nash, C.R.

    1994-10-01

    A recent Westinghouse Hanford Company report (WHC-SD-W100-ES-008, February, 1994), compared a Vitrification process to the WRAP-2A Grout/PE process for the treatment of Mixed Low Level Waste (MLLW). This comparison applied a limited scope numerical evaluation to compare technology complexity of the two processes, but focused primarily on capital and operating costs. The work reported here is supplementary to WHC-SD-Wl00-ES-008. It provides a record of the application of the more formal DOE-prescribed criteria (Treatment Selection Guides for Federal Facility Compliance Act Draft Site Treatment Plans) to the Vitrification and Grout/PE processes previously evaluated. Results of the evaluation favored the Grout/PE process by a weighted score of 83 to 78 over the Plasma arc vitrification process

  1. The Mixed Waste Focus Area: Status and accomplishments

    International Nuclear Information System (INIS)

    Conner, J.E.

    1997-01-01

    The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA's mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997

  2. THE EVALUATION OF SOIL EROSION OFF-SITES EFFECTS IN LARGE BASINS: THE STUDYCASE OF LERMA-CHAPALA WATERSHED, MEXICO

    OpenAIRE

    Helena Cotler A.; Susana Gutierrez D.; Carlos Enriquez G.; Arturo Garrido P.

    2005-01-01

    One of the primary global concerns during the new millennium is the assessment of the impact of accelerated soil erosion on the economy and the environment (Pimentel et al. 1995; Lal, 1995). Erosion damages the site on which it occurs and also has undesirable effects off-site in the larger environment. Erosion moves sediments and nutrients out of the land, creating the two most widespread water pollution problems in the rivers, lakes and dams. The nutrients impact water quality largely throug...

  3. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  4. The proposed combustion standards and DOE thermal treatment systems

    International Nuclear Information System (INIS)

    McFee, J.; Hinman, M.B.; Eaton, D.; NcNeel, K.

    1997-01-01

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems

  5. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  6. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  7. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1980

    International Nuclear Information System (INIS)

    Smith, D.D.; Grossman, R.F.; Corkern, W.D.; Thome, D.J.; Patzer, R.G.; Hopper, J.L.

    1981-06-01

    The US Environmental Protection Agency's (EPA) Environmental Monitoring Systems Laboratory in Las Vegas (EMSL-LV) continued its Offsite Radiological Safety Program for the Nevada Test Site (NTS) and other sites of past underground nuclear tests. For each test, the Laboratory provided airborne meteorological measurements, ground and airborne radiation monitoring teams, and special briefings to the Test Controller's Advisory Panel. Test-related radioactivity from the NTS was detected offsite following the Riola Test conducted on September 25, 1980. This consisted of xenon-133 (3.4 x 10 -11 μCi/m1) and xenon-135 (3.6 x 10 -10 μCi/m1) in a compressed air sample collected at Lathrop Wells, Nevada. The estimated dose equivalent to the whole body of a hypothetical receptor at Lathrop Wells from exposure to the radioxenon was 0.011 mrem, which is 0.006 percent of the radiation protection guide for a suitable sample of the general population. Whole-body counts of individuals residing in the environs of the NTS showed no manmade radionuclides attributable to the testing program. The only radioactivity from non-NTS sites of past underground nuclear tests was due to tritium in water samples collected from the Project Dribble Site near Hattiesburg, Mississippi, and the Project Long Shot Site on Amchitka Island, Alaska. The maximum concentrations measured at these locations were 1 and 0.1 percent of the Concentration Guide for drinking water, respectively. A small amount of airborne radioactivity originating from nuclear tests carried out by the People's Republic of China was detected during 1980 at some stations scattered throughout the Air Surveillance Network. The Laboratory's Animal Investigation Program sampled tissues from wildlife and domestic animals on and around the NTS. Data from analysis of these tissues are published separately in an annual report

  8. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  9. Challenging the conventional wisdom -- The case for off-site water treatment

    International Nuclear Information System (INIS)

    Gidumal, R.H.

    1994-01-01

    Two recent remediation projects have demonstrated off-site water treatment as economically beneficial to on-site treatment. The project cost showed that significantly reduced capital costs and O and M costs were obtained by sending the material to a commercial waste water treatment plant vs. depending on on-site treatment. This paper will detail the line item capital costs as well as the expected annual operation and maintenance charges. The first project involved a major oil refinery needed to remediate a 2.1 MM gallon lagoon. The lagoon was used to dispose of primary oil/water/solids/separation sludge and currently comprised of 7% solid material. The second project is a remediation project with a pump and treat system. The water contains heavy metal (Pb, As) and VOC (ppm TCE, PCE, etc.) contamination. The Record of Decision (ROD) specified installation of groundwater/leachate extraction and injection wells within the existing landfill for dewatering and flushing of the system. The treatment choice for the leachate (40--60 GPM) was on-site pretreatment and discharge to the local POTW

  10. Does the Distribution of Efficiency Scores Depend on the Input Mix?

    DEFF Research Database (Denmark)

    Asmild, Mette; Leth Hougaard, Jens; Kronborg, Dorte

    for evaluating the test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, as shown here, is applicable for models with multiple inputs and one output......In this paper we examine the possibility of using the standard Kruskal-Wallis rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix. Recently, a general data generating process (DGP......) suiting the DEA methodology has been formulated and some asymptotic properties of the DEA estimators have been established. In line with this generally accepted DGP, we formulate a conditional test for the assumption of mix independence. Since the DEA frontier is estimated, many standardl assumptions...

  11. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    International Nuclear Information System (INIS)

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-01-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given

  12. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  13. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  14. US Department of Energy Nevada Operations Office annual site environmental report: 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Glines, W.M.; Townsend, Y.E. [eds.

    1994-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by DOE contractors and NTS user organizations during 1993 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE guidelines, i.e., the dose the maximally exposed offsite individual could have received was less than 0.04 percent of the 10 mrem per year guide for air exposure. No nuclear tests were conducted due to the moratorium. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. Using the CAP88-PC model and NTS radionuclide emissions data, the calculated effective dose equivalent to the maximally exposed individual offsite would have been 0.004 mrem. Any person receiving this dose would also have received 97 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act is being achieved and, where mandated, permits for air and water discharges and waste management have been obtained from the appropriate agencies. Support facilities at off-NTS locations compiled with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  15. US Department of Energy Nevada Operations Office annual site environmental report: 1993. Volume 1

    International Nuclear Information System (INIS)

    Black, S.C.; Glines, W.M.; Townsend, Y.E.

    1994-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by DOE contractors and NTS user organizations during 1993 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE guidelines, i.e., the dose the maximally exposed offsite individual could have received was less than 0.04 percent of the 10 mrem per year guide for air exposure. No nuclear tests were conducted due to the moratorium. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. Using the CAP88-PC model and NTS radionuclide emissions data, the calculated effective dose equivalent to the maximally exposed individual offsite would have been 0.004 mrem. Any person receiving this dose would also have received 97 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act is being achieved and, where mandated, permits for air and water discharges and waste management have been obtained from the appropriate agencies. Support facilities at off-NTS locations compiled with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits

  16. Effect of mixing on properties of SCC

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune

    2007-01-01

    agglomerates will remain. The paper focuses on the effect of mixing schedule on self-compacting concrete properties. Workability and micro structure of a typical Danish self-compacting concrete mixed at varying intensity and with addition of superplasticizer in either one or two batches are described....... The observations indicate that the most homogeneous concrete does not necessarily exhibit the lowest rheological properties....

  17. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  18. Off-site protective action selection for nuclear reactor accidents

    International Nuclear Information System (INIS)

    Weerakkody, S.D.

    1986-01-01

    A computer program based upon a model using a rational theoretical basis was developed to select appropriate off-site protective actions during nuclear reactor accidents. The special features of this program include (a) introduction of a precursor concept that uses the history of the accident progression to determine the spectrum of potential accident scenarios and estimates of the likelihoods of each accident scenario; (b) use of statistical decision theory and the concept of entropy of a spectrum to select the appropriate protective actions using either the minimax principle or the Bayes action method; and (c) introduction of methods to quantify evacuation travel risks. In order to illustrate the usefulness of the computer program, it was applied at three stages of the Three Mile Island accident scenario. Quantified non-radiological risks of evaluation have been used to establish dose thresholds below which evacuations are not justified. Using the Poisson analysis for evacuation risks and the absolute L-L BEIR model for radiation risk suggests 330 mrems as a reasonable value for this threshold. The usefulness of the program in developing a technical basis to select the size of the plume exposure pathway emergency planning zone (EPZ) is discussed. Quantified evacuation risks, cost, and the current rationale upon which the EPZ is based, justify an EPZ between 5-10 miles for WASH-1400 source-terms

  19. Using GIS to develop socio-economic profiles of areas adjacent to DOE facilities

    International Nuclear Information System (INIS)

    Stewart, J.C.; Saraswatula, S.

    1994-01-01

    The objective of the research addressed in this paper is to identify and analyze the offsite effects of DOE activities at the Savannah River Site. The paper presents the socio-economic conditions of the areas surrounding the site in order to evaluate the possible effects of DOE activities. The study employed a geographic information system (GIS) in order to evaluate spatial relationships between otherwise unrelated factors. Socio-economic data used in the study are publicly available and were obtained mainly from the Bureau of the Census. The Department of Energy (DOE), currently dealing with the environmental management of a large number of sites throughout the United States, must consider the effects of its activities on surrounding populations and ensure compliance with the various federal regulations, such as the executive order on environmental justice. Environmental justice is the process of studying and achieving equal distribution of the effects of environmental pollution on populations across social and economic lines. An executive order signed by the President has directed federal agencies, including the Department of Energy, to make achieving environmental justice a part of the agency's mission by identifying and addressing disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations

  20. Mixed waste focus area technical baseline report. Volume 2

    International Nuclear Information System (INIS)

    1997-04-01

    As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1

  1. Mixed Waste Focus Area program management plan

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal

  2. Utilities and offsites design baseline. Outside Battery Limits Facility 6000 tpd SRC-I Demonstration Plant. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-05-25

    As part of the overall Solvent Refined Coal (SRC-1) project baseline being prepared by International Coal Refining Company (ICRC), the RUST Engineering Company is providing necessary input for the Outside Battery Limits (OSBL) Facilities. The project baseline is comprised of: design baseline - technical definition of work; schedule baseline - detailed and management level 1 schedules; and cost baseline - estimates and cost/manpower plan. The design baseline (technical definition) for the OSBL Facilities has been completed and is presented in Volumes I, II, III, IV, V and VI. The OSBL technical definition is based on, and compatible with, the ICRC defined statement of work, design basis memorandum, master project procedures, process and mechanical design criteria, and baseline guidance documents. The design basis memorandum is included in Paragraph 1.3 of Volume I. The baseline design data is presented in 6 volumes. Volume I contains the introduction section and utility systems data through steam and feedwater. Volume II continues with utility systems data through fuel system, and contains the interconnecting systems and utility system integration information. Volume III contains the offsites data through water and waste treatment. Volume IV continues with offsites data, including site development and buildings, and contains raw materials and product handling and storage information. Volume V contains wastewater treatment and solid wastes landfill systems developed by Catalytic, Inc. to supplement the information contained in Volume III. Volume VI contains proprietary information of Resources Conservation Company related to the evaporator/crystallizer system of the wastewater treatment area.

  3. Waste-clearance strategy for DOE waste processed at commercial facilities

    International Nuclear Information System (INIS)

    Chen, S.Y.; Pfingston, M.; LePoire, D.

    1996-01-01

    In May 1991, a moratorium was issued on shipping potentially mixed waste from DOE facilities nationwide to commercial treatment, storage, and disposal facilities. A potential waste-clearance strategy was developed to address the DOE mixed-waste moratorium issues, which had resulted from a lack of exisitng volume contamination regulations. This strategy also has important potential applications for establishing site clearance limits that ensure worker and public risks remain well below regulatory limits

  4. On-site and off-site emergency planning at Cekmece Nuclear Research and Training Centre

    International Nuclear Information System (INIS)

    Soyberk, O.A.

    1986-01-01

    An emergency plan was prepared for minimizing the consequences of any unforeseen radiation accident in Cekmece Nuclear Research and Training Centre (CNAEM) in Istanbul, Turkey. CNAEM is situated near Kucukcekmece Lake, which is about 30 km to the west of Istanbul. It includes two pool-type research reactors of 1 MW(th) and 5 MW(th). The population in the nearest inhabited areas varies from 1000 to 50,000. Accidents are classified, according to their severity, into three categories at CNAEM: (a) local emergency, (b) on-site emergency, (c) off-site emergency. During local emergency situations evacuation is not necessary. An on-site emergency situation requires the evacuation of personnel from the plant. Personnel hearing the emergency alarm should move directly to the preselected place as soon as possible. An off-site emergency is any accident that leads to widespread contamination outside the boundary. In this situation the Turkish Atomic Energy Authority and governmental authorities are notified immediately. The emergency organization group consists of: (a) Plant Superintendent, (b) Emergency Director, (c) Reactor Supervisor, (d) Senior Health Physicist, (e) Reactor Shift Operator, (f) Health Physicists. The administration building will be used as the Emergency Control Centre. The emergency teams working under the direction of the Emergency Director consist of: (a) Health Physics, (b) Fire and Rescue, (c) First Aid and Decontamination, (d) Transportation, (e) Security and Patrol. The emergency situation is evaluated in three phases at CNAEM. The first phase is the first few hours after the beginning of the accident. The second phase is between 8-10 hours or more following the first phase. The third phase is the recovery phase. The integrated doses over periods of two hours and two days are calculated according to the situation of the core, i.e. total or partial melting, and weather conditions. The results of the calculated parameters can be adapted to possible

  5. The Retrieval Knowledge Center Evaluation Of Low Tank Level Mixing Technologies For DOE High Level Waste Tank Retrieval 10516

    International Nuclear Information System (INIS)

    Fellinger, A.

    2009-01-01

    technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

  6. Effects of secondary containment air cleanup system leakage on the accident offsite dose as determined during preop tests of the Sequoyah Nuclear Plant

    International Nuclear Information System (INIS)

    Klaes, L.J.; Nass, S.A.; Proctor, L.D.

    1981-01-01

    The Sequoyah Nuclear Plant has two secondary containments. One is the annular region between the primary containment and the shield building surrounding the primary containment. The second is the auxiliary building secondary containment enclosure which is potentially subject to direct airborne radioactivity. Two air cleanup systems are provided to serve these areas. The emergency gas treatment system (EGTS) serves the annulus between the primary containment and the shield building, and the auxiliary building gas treatment system (ABGTS) serves the area inside of the auxiliary building secondary containment enclosure. The major function served by these air cleanup systems is that of controlling and processing airborne contamination released in these areas during any accident up to a design basis accident. This is accomplished by (1) creating a negative pressure in the areas served to ensure that no unprocessed air is released to the atmosphere, (2) providing filtration units to process all air exhausted from the secondary containment spaces, and (3) providing a low-leakage enclosure to limit exhaust flows. Offsite dose effects due to secondary containment release rates, bypass leakage, and duct and damper leakages are presented and parameter variations are considered. For the EGTS, a recirculation system, the most important parameter is the total inleakage of the system which causes an increase in both whole body (gamma) and thyroid (iodine) doses. For the ABGTS, a once-through system, the most important paramter is the inleakage which bypasses the filters resulting in an increase in the thyroid dose only. Actual preoperational test data are utilized. Problems encountered during the preop test are summarized. Solutions incorporated to bring the EGTS and ABGTS air cleanup systems within the test acceptance criteria required to meet offsite dose limitations are discussed and the resultant calculated offsite dose is presented

  7. DOE's Phytoremediation Program

    International Nuclear Information System (INIS)

    Levine, R.S.

    1996-01-01

    This presentation contains an outline of the US DOE's phytoremediation program. A brief overview of the goals, infrastructure, and results of the program is presented. Environmental contaminants addressed include chlorinated hydrocarbons, metals, radionuclides, inorganic wastes, and mixed hazardous and radioactive wastes. Studies of soil remediation using phytoextraction and water remediation using rhizofiltration are briefly described

  8. A report on anti-earthquake countermeasures of the switchyard etc. with a view to securing reliability of offsite power supply for Nuclear Power Stations etc. (Attachment)

    International Nuclear Information System (INIS)

    2011-01-01

    Submission of a report on anti-earthquake countermeasures of the switchyard etc. with a view to securing reliability of offsite power supply for Nuclear Power Stations etc. to Nuclear and Industrial Safety Agency of Ministry of Economy, Trade and Industry

  9. The real-time on-line decision support system RODOS for off-site emergency management

    International Nuclear Information System (INIS)

    Benz, G.; Ehrhardt, J.; Faude, D.; Fischer, F.; Paesler-Sauer, J.; Rafat, M.; Schichtel, T.; Schuele, O.; Steinhauer, C.

    1994-01-01

    The project RODOS aims at the development of an integrated and comprehensive real-time on-line decision support system for off-site emergency management of nuclear accidents in Europe, applicable to the vicinity of the accident and its early phase up to far distant areas and later stages. As a joint venture of 18 institutions in the European Union, in close cooperation with institutions in Russia, Belarus, Ukraine and east-central Europe, the project is to provide the methodological basis, develop models, collect data, and install the hardware and software framework of the RODOS system. The paper describes the project status, the overall design of the system and its present software structure, and gives a brief overview of important research and development tasks for the next project phases. (orig.) [de

  10. DOE complex buried waste characterization assessment

    International Nuclear Information System (INIS)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m 3 of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993)

  11. Significant Radionuclides Determination

    Energy Technology Data Exchange (ETDEWEB)

    Jo A. Ziegler

    2001-07-31

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  12. Weldon Spring storage site environmental-monitoring report for 1979 and 1980

    International Nuclear Information System (INIS)

    Weidner, R.B.; Boback, M.W.

    1982-01-01

    The US Department of Energy (DOE) Weldon Spring Site consists of two separate radioactive waste storage properties: a 52-acre site which is a remnant of the Weldon Spring Feed Materials Plant; and a 9-acre abandoned rock quarry. The larger property has four pits which contain settled sludge from uranium and thorium processing operations. At the quarry, part of the excavation contains contaminated building rubble, scrap, and various residues. During 1979 and 1980 these storage locations were managed by NLO, Inc., contract operator of the DOE Feed Materials Production Center. Air and water samples were collected to provide information about the transfer of radionuclides in the offsite environment. Monitoring results show that uranium and radium concentrations in offsite surface and well water were within DOE Guide values for uncontrolled areas. At offsite locations, radon-222 concentrations in air were well within the Guide value

  13. The knowledge-based off-site emergency response system for a nuclear power plant

    International Nuclear Information System (INIS)

    Ho, L.W.; Loa, W.W.; Wang, C.L.

    1987-01-01

    A knowledge-based expert system for a nuclear power plant off-site emergency response system is described. The system incorporates the knowledge about the nuclear power plant behaviours, site environment and site geographic factors, etc. The system is developed using Chinshan nuclear power station of Taipower Company, Taiwan, ROC as a representative model. The objectives of developing this system are to provide an automated intelligent system with functions of accident simulation, prediction and with learning capabilities to supplement the actions of the emergency planners and accident managers in order to protect the plant personnel and the surrounding population, and prevent or mitigate property damages resulting from the plant accident. The system is capable of providing local and national authorities with rapid retrieval data from the site characteristics and accident progression. The system can also provide the framework for allocation of available resources and can handle the uncertainties in data and models

  14. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  15. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  16. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    International Nuclear Information System (INIS)

    1996-04-01

    The Department of Energy's (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site's original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site's new mission of environmental restoration and deactivation, decontamination and decommissioning (D ampersand D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed

  17. Approved Site Treatment Plan, Volumes 1 and 2. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.H.; Molen, G.; Noller, D.

    1996-03-22

    The US Department of Energy, Savannah River Operations Office (DOE-SR), has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume 1. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore, pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021. Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW. The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information.

  18. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  19. Summaries of FY 1980 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included

  20. Sulfur polymer cement for macroencapsulation of mixed waste debris

    International Nuclear Information System (INIS)

    Mattus, C.H.

    1998-01-01

    In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory

  1. Presidential Rapid Commercialization Initiative for mixed waste solvent extraction

    International Nuclear Information System (INIS)

    Honigford, L.; Dilday, D.; Cook, D.

    1997-01-01

    Recently, the Fernald Environmental Management Project (FEMP) has made some major steps in mixed waste treatment which have taken it closer to meeting final remediation goals. However, one major hurdle remains for the FEMP mixed waste treatment program, and that hurdle is tri-mixed waste. Tri-mixed is a term coined to describe low-level waste containing RCRA hazardous constituents along with polychlorinated biphenyls (PCB). The prescribed method for disposal of PCBs is incineration. In mixed waste treatment plans developed by the FEMP with public input, the FEMP committed to pursue non-thermal treatment methods and avoid the use of incineration. Through the SITE Program, the FEMP identified a non-thermal treatment technology which uses solvents to extract PCBs. The technology belongs to a small company called Terra-Kleen Response Group, Inc. A question arose as to how can this new and innovative technology be implemented by a small company at a Department of Energy (DOE) facility. The answer came in the form of the Rapid Commercialization Initiative (RCI) and the Mixed Waste Focus Area (MWFA). RCI is a program sponsored by the Department of commerce (DOC), DOE, Department of Defense (DOD), US EPA and various state agencies to aid companies to market new and innovative technologies

  2. Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in the DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.

  3. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  4. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  5. Comparison of alternative treatment systems for DOE mixed low-level waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R ampersand D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350 degrees C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS copyright for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc

  6. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  7. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    International Nuclear Information System (INIS)

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE's Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP's charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program

  8. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  9. Summaries of FY 1980 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  10. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Tomoyuki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Yonehara, Hidenori [National Inst. of Radiological Sciences, Chiba (Japan)] [eds.

    2000-12-01

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  11. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    International Nuclear Information System (INIS)

    Homma, Toshimitsu

    2000-12-01

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  12. National procurement of private-sector treatment for U.S. Department of Energy mixed low-level wastes

    International Nuclear Information System (INIS)

    Berry, J.B.; Jones, D.W.; Seeker, W.R.; Alex, L.J.

    1995-01-01

    The cost of bringing DOE into compliance with the Federal Facilities Compliance Act may be dramatically reduced if the private sector treats DOE mixed low level waste. If the DOE clearly defines this market by using national procurement contracts, the private sector will be able to decide if investing in DOE waste treatment contracts is good business. DOE can structure the mixed waste treatment market to influence the profitability of the contracts and to influence the quality of private sector responses. National procurement contracts will incorporate advice from the private sector so that issues of concern to industry are adequately incorporated

  13. National procurement of private-sector treatment for U.S. Department of Energy mixed low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Seeker, W.R. [Energy and Environmental Research Corp., Irvine, CA (United States); Alex, L.J. [Committee for Environmental Management, Washington (United States)

    1995-12-31

    The cost of bringing DOE into compliance with the Federal Facilities Compliance Act may be dramatically reduced if the private sector treats DOE mixed low level waste. If the DOE clearly defines this market by using national procurement contracts, the private sector will be able to decide if investing in DOE waste treatment contracts is good business. DOE can structure the mixed waste treatment market to influence the profitability of the contracts and to influence the quality of private sector responses. National procurement contracts will incorporate advice from the private sector so that issues of concern to industry are adequately incorporated.

  14. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Directory of Open Access Journals (Sweden)

    Jens T Stevens

    Full Text Available Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA program reflects the timing of historical high-severity (i.e. stand-replacing fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1 the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2 recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  15. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Science.gov (United States)

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  16. Improvement of Off-site Dose Assessment Code for Operating Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul; Shin, Kwangyoung [FNC Technology Co. Ltd., Yongin (Korea, Republic of); You, Songjae; Moon, Jongyi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    XOQDOQ code which calculates atmospheric Dispersion factor was included into INDAC also. A research on the improvement of off-site dose assessment system for an operating nuclear power plant was performed by KINS in 2011. As a result, following improvements were derived: - Separation of dose assessment for new and existing facilities - Update of food ingestion data - Consideration of multi-unit operation and so on In order to reflect the results, INDAC is under modification. INDAC is an integrated dose assessment code for an operating nuclear power plant and consists of three main modules: XOQDOQ, GASDOS and LIQDOS. The modules are under modification in order to improve the accuracy of assessment and usability. Assessment points for multi-unit release can be calculated through the improved code and the method on dose assessment for multi-unit release has been modified, so that the dose assessment result of multi-unit site becomes more realistic by relieving excessive conservatism. Finally, as the accuracy of calculation modules has been improved, the reliability of dose assessment result has been strengthened.

  17. Offsite dose calculation manual guidance: Standard radiological effluent controls for pressurized water reactors

    International Nuclear Information System (INIS)

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-01, which allows Radiological Effect Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft from (NUREG-0471 and -0473) for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. Also included for completeness are: (1) radiological environmental monitoring program guidance previously which had been available as a Branch Technical Position (Rev. 1, November 1979); (2) existing ODCM guidance; and (3) a reproduction of generic Letter 89-01

  18. An off-site screening process for the public in radiation emergencies and disasters

    International Nuclear Information System (INIS)

    Yoon, Seok Won; Ho, Ha Wi; Jin, Young Woo

    2016-01-01

    A contamination screening process for the local population in radiation emergencies is discussed. We present an overview of the relevant Korean governmental regulations that underpin the development of an effective response system. Moreover, case studies of foreign countries responding to mass casualties are presented, and indicate that responses should be able to handle a large demand for contamination screening of the local public as well as screening of the immediate victims of the incident. We propose operating procedures for an off-site contamination screening post operated by the local government for members of the public who have not been directly harmed in the accident. In order to devise screening categories, sorting strategies assessing contamination and exposure are discussed, as well as a psychological response system. This study will lead to the effective operation of contamination screening clinics if an accident occurs. Furthermore, the role of contamination screening clinics in the overall context of the radiation emergency treatment system should be clearly established

  19. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  20. APR1400 Electrical Power System Conformance to SECY-91-078

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Kim, Yun-Ho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the APR1400 electric power system for NRC-DC was described. In addition, the conformance to SECY 91-078 was evaluated. Enclosure 1 of the SECY provides an overview of the issue and states that the staff concludes that feeding the safety buses from the offsite power sources through non-safety buses or from a common transformer winding with non-safety loads is not the most reliable configuration. Such an arrangement increases the difficulty in properly regulating voltage at the safety buses, subjects the safety loads to transients caused by the non-safety loads, and adds additional failure points between the offsite power sources and safety loads. Therefore, it is the staff’s position that at least one offsite circuit to each redundant safety division should be supplied directly from one of the offsite power sources with no intervening non-safety buses, in such a manner that the offsite source can power the safety buses upon a failure of any non-safety bus. The APR1400 does not have an intervening nonsafety bus in the current offsite to onsite electrical configuration; however, the design does include nonsafety and safety buses coming from the same secondary side 4.16 kV transformer winding. Nevertheless, the APR1400 has designed the electrical interface system between offsite and onsite power with enhanced reliability measures to ensure that the nonsafety system will not impact the safety loads. The design complies with GDC 17 and also conforms to SECY-91-078.

  1. Scaling up kangaroo mother care in South Africa: 'on-site' versus 'off-site' educational facilitation

    Directory of Open Access Journals (Sweden)

    van Rooyen Elise

    2008-07-01

    Full Text Available Abstract Background Scaling up the implementation of new health care interventions can be challenging and demand intensive training or retraining of health workers. This paper reports on the results of testing the effectiveness of two different kinds of face-to-face facilitation used in conjunction with a well-designed educational package in the scaling up of kangaroo mother care. Methods Thirty-six hospitals in the Provinces of Gauteng and Mpumalanga in South Africa were targeted to implement kangaroo mother care and participated in the trial. The hospitals were paired with respect to their geographical location and annual number of births. One hospital in each pair was randomly allocated to receive either 'on-site' facilitation (Group A or 'off-site' facilitation (Group B. Hospitals in Group A received two on-site visits, whereas delegates from hospitals in Group B attended one off-site, 'hands-on' workshop at a training hospital. All hospitals were evaluated during a site visit six to eight months after attending an introductory workshop and were scored by means of an existing progress-monitoring tool with a scoring scale of 0–30. Successful implementation was regarded as demonstrating evidence of practice (score >10 during the site visit. Results There was no significant difference between the scores of Groups A and B (p = 0.633. Fifteen hospitals in Group A and 16 in Group B demonstrated evidence of practice. The median score for Group A was 16.52 (range 00.00–23.79 and that for Group B 14.76 (range 07.50–23.29. Conclusion A previous trial illustrated that the implementation of a new health care intervention could be scaled up by using a carefully designed educational package, combined with face-to-face facilitation by respected resource persons. This study demonstrated that the site of facilitation, either on site or at a centre of excellence, did not influence the ability of a hospital to implement KMC. The choice of outreach

  2. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  3. Does Assisted Living Capacity Influence Case Mix at Nursing Homes?

    Science.gov (United States)

    Clement, Jan P; Khushalani, Jaya

    2015-01-01

    Assisted living facilities (ALFs) have grown over the past few decades. If they attract residents with lower care needs away from nursing homes (NHs), NHs may be left with higher case mix residents. We study the relationship between ALF bed market capacity and NH case mix in a state (Virginia) where ALF bed capacity stabilized after a period of growth. Similarly, NH capacity and use had been stable. While it is interesting to study markets in flux, for planning purposes, it is also important to examine what happens after periods of turbulence and adaptation. Our findings show some substitution of ALF for NH care, but the relationship is not linear with ALF market capacity. Communities need to consider the interplay of ALFs and NHs in planning for long-term care services and supports. Policies supporting ALFs may enable care needs to be met in a lower cost setting than the NH.

  4. The importance of using the mixed neutron flux in activation analysis of D-3He fueled reactors

    International Nuclear Information System (INIS)

    Khater, H.Y.; Sawan, M.E.

    1992-01-01

    This paper reports on the D-D and D-T secondary reactions in D- 3 He reactors which provide the neutron source term for most of the radioactivity produced in the structure of the reactor. radionuclides are produced as a result of neutron interactions with their parent nuclides. The amount of activity produced by any radionuclide depends on the number of its parent atoms present at any given time. One approach to account for the activity induced by both neutron sources in any activation analysis is to add their individual contributions. Performing two separate calculations for the D-D and D-T neutron flux components and adding their contributions yields conservative results due to underestimating the destruction of the parent atoms. The overestimation is more pronounced for short and intermediate lived nuclides, long operation time, large neutron flux and large destruction cross section for the parent atoms. In the steel first wall of a typical d- 3 He reactor, adding the individual contributions of the tow neutron sources results in overestimating the activities produced by most of the radioactive isotopes of Ag, Lu, Ta, W and Re. After 30 years of reactor operation, the activity of 187 W, which is a major source of safety concern in case of an accident, is more than an order of magnitude higher than its value if the mixed neutron flux is used. The activity of 188 Re, which is an important source of offsite does in case of accidental release, is overestimated by more than a factor of two

  5. National Institutes of Health: Mixed waste stream analysis

    International Nuclear Information System (INIS)

    Kirner, N.P.; Faison, G.P.; Johnson, D.R.

    1994-08-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 requires that the US Department of Energy (DOE) provide technical assistance to host States, compact regions, and unaffiliated States to fulfill their responsibilities under the Act. The National Low-Level Waste Management Program (NLLWMP) operated for DOE by EG ampersand G Idaho, Inc. provides technical assistance in the development of new commercial low-level radioactive waste disposal capacity. The NLLWMP has been requested by the Appalachian Compact to help the biomedical community become better acquainted with its mixed waste streams, to help minimize the mixed waste streams generated by the biomedical community, and to provide applicable treatment technologies to those particular mixed waste streams. Mixed waste is waste that satisfies the definition of low-level radioactive waste (LLW) in the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) and contains hazardous waste that either (a) is listed as a hazardous waste in Subpart D of 40 CFR 261, or (b) causes the LLW to exhibit any of the hazardous waste characteristics identified in 40 CFR 261. The purpose of this report is to clearly define and characterize the mixed waste streams generated by the biomedical community so that an identification can be made of the waste streams that can and cannot be minimized and treated by current options. An understanding of the processes and complexities of generation of mixed waste in the biomedical community may encourage more treatment and storage options to become available

  6. Universality class of non-Fermi liquid behaviour in mixed valence systems

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Lu Yu

    1995-11-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper-oxides. Using the abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed valence quantum critical point separating two different Fermi liquid phases, i.e. the Kondo phase and the empty orbital phase. In the mixed valence quantum critical regime, the local moment is only partially quenched and X-ray edge singularities are generated. Around the quantum critical point, a new type of non-Fermi liquid behaviour is predicted with an extra specific heat C imp ∼ T 1/4 and a singular spin-susceptibility χ imp ∼ T -3/4 . At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in U Pd x Cu 5-x (x=1, 1.5) alloys, which show single-impurity critical behaviour consistent with our predictions. (author). 30 refs

  7. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    Science.gov (United States)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  8. Approved Site Treatment Plan, Volumes 1 and 2. Revision 4

    International Nuclear Information System (INIS)

    Helmich, E.H.; Molen, G.; Noller, D.

    1996-01-01

    The US Department of Energy, Savannah River Operations Office (DOE-SR), has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume 1. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore, pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE's requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021. Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW. The Compliance Plan Volume (Volume 1) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume 2) and is provided for information

  9. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update (U)

    International Nuclear Information System (INIS)

    Lawrence, B.; Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE's requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information

  10. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  11. Improved mixing and sampling systems for vitrification melter feeds

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    This report summarizes the methods used and results obtained during the progress of the study of waste slurry mixing and sampling systems during fiscal year 1977 (FY97) at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The objective of this work is to determine optimal mixing configurations and operating conditions as well as improved sampling technology for defense waste processing facility (DWPF) waste melter feeds at US Department of Energy (DOE) sites. Most of the research on this project was performed experimentally by using a tank mixing configuration with different rotating impellers. The slurry simulants for the experiments were prepared in-house based on the properties of the DOE sites' typical waste slurries. A sampling system was designed to withdraw slurry from the mixing tank. To obtain insight into the waste mixing process, the slurry flow in the mixing tank was also simulated numerically by applying computational fluid dynamics (CFD) methods. The major parameters investigated in both the experimental and numerical studies included power consumption of mixer, mixing time to reach slurry uniformity, slurry type, solids concentration, impeller type, impeller size, impeller rotating speed, sampling tube size, and sampling velocities. Application of the results to the DWPF melter feed preparation process will enhance and modify the technical base for designing slurry transportation equipment and pipeline systems. These results will also serve as an important reference for improving waste slurry mixing performance and melter operating conditions. These factors will contribute to an increase in the capability of the vitrification process and the quality of the waste glass

  12. Assessment of LANL solid low-level mixed waste documentation

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  13. Does Assisted Living Capacity Influence Case Mix at Nursing Homes?

    Directory of Open Access Journals (Sweden)

    Jan P. Clement PhD

    2015-05-01

    Full Text Available Assisted living facilities (ALFs have grown over the past few decades. If they attract residents with lower care needs away from nursing homes (NHs, NHs may be left with higher case mix residents. We study the relationship between ALF bed market capacity and NH case mix in a state (Virginia where ALF bed capacity stabilized after a period of growth. Similarly, NH capacity and use had been stable. While it is interesting to study markets in flux, for planning purposes, it is also important to examine what happens after periods of turbulence and adaptation. Our findings show some substitution of ALF for NH care, but the relationship is not linear with ALF market capacity. Communities need to consider the interplay of ALFs and NHs in planning for long-term care services and supports. Policies supporting ALFs may enable care needs to be met in a lower cost setting than the NH.

  14. Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors' spent fuel

    International Nuclear Information System (INIS)

    1994-01-01

    One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE's Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE's efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE's activities in taking back spent fuel

  15. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy's Mound Plant, Miamisburg, Ohio

    International Nuclear Information System (INIS)

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement

  16. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  17. Cost Effectiveness of On-site versus Off-site Depression Collaborative Care in Rural Federally Qualified Health Centers

    Science.gov (United States)

    Pyne, Jeffrey M.; Fortney, John C.; Mouden, Sip; Lu, Liya; Hudson, Teresa J; Mittal, Dinesh

    2018-01-01

    Objective Collaborative care for depression is effective and cost-effective in primary care settings. However, there is minimal evidence to inform the choice of on-site versus off-site models. This study examined the cost-effectiveness of on-site practice-based collaborative care (PBCC) versus off-site telemedicine-based collaborative care (TBCC) for depression in Federally Qualified Health Centers (FQHCs). Methods Multi-site randomized pragmatic comparative cost-effectiveness trial. 19,285 patients were screened for depression, 14.8% (n=2,863) screened positive (PHQ9 ≥10) and 364 were enrolled. Telephone interview data were collected at baseline, 6-, 12-, and 18-months. Base case analysis used Arkansas FQHC healthcare costs and secondary analysis used national cost estimates. Effectiveness measures were depression-free days and quality-adjusted life years (QALYs) derived from depression-free days, Medical Outcomes Study SF-12, and Quality of Well Being scale (QWB). Nonparametric bootstrap with replacement methods were used to generate an empirical joint distribution of incremental costs and QALYs and acceptability curves. Results Mean base case FQHC incremental cost-effectiveness ratio (ICER) using depression-free days was $10.78/depression-free day. Mean base case ICERs using QALYs ranged from $14,754/QALY (depression-free day QALY) to $37,261/QALY (QWB QALY). Mean secondary national ICER using depression-free days was $8.43/depression-free day and using QALYs ranged from $11,532/QALY (depression-free day QALY) to $29,234/QALY (QWB QALY). Conclusions These results support the cost-effectiveness of the TBCC intervention in medically underserved primary care settings. Results can inform the decision about whether to insource (make) or outsource (buy) depression care management in the FQHC setting within the current context of Patient-Centered Medical Home, value-based purchasing, and potential bundled payments for depression care. The www.clinicaltrials.gov # for

  18. Mixed Waste Focus Area - Waste form initiative

    International Nuclear Information System (INIS)

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-01-01

    The mission of the US Department of Energy's (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI

  19. Land Disposal Restrictions Treatment Standards: Compliance Strategies for Four Types of Mixed Wastes

    International Nuclear Information System (INIS)

    Fortune, W.B.; Ranek, N.L.

    2006-01-01

    This paper describes the unique challenges involved in achieving compliance with the Resource Conservation and Recovery Act (Public Law 94-580) Land Disposal Restrictions (LDR) treatment standards for four types of mixed wastes generated throughout the U.S. Department of Energy (DOE) complex: (1) radioactively contaminated lead acid batteries; (2) radioactively contaminated cadmium-, mercury-, and silver-containing batteries; (3) mercury-bearing mixed wastes; and (4) radioactive lead solids. For each of these mixed waste types, the paper identifies the strategy pursued by DOE's Office of Pollution Prevention and Resource Conservation Policy and Guidance (EH-43) in coordination with other DOE elements and the U.S. Environmental Protection Agency (EPA) to meet the compliance challenge. Specifically, a regulatory interpretation was obtained from EPA agreeing that the LDR treatment standard for wastes in the D008 'Radioactive Lead Solids' sub-category applies to radioactively contaminated lead acid batteries. For cadmium-, mercury-, and silver-containing batteries, generically applicable treatability variances were obtained from EPA approving macro-encapsulation as the alternative LDR treatment standard for all three battery types. Joint DOE/EPA technology demonstrations were pursued for mercury-bearing mixed wastes in an effort to justify revising the LDR treatment standards, which focus on thermal recovery of mercury for reuse. Because the demonstrations failed to produce enough supporting data for a rulemaking, however, EPA has recommended site-specific treatability variances for particular mercury-bearing mixed waste streams. Finally, DOE has filed an application for a determination of equivalent treatment requesting approval of container-based macro-encapsulation technologies as an alternative LDR treatment standard for radioactive lead solids. Information is provided concerning the length of time required to implement each of these strategies, and suggestions for

  20. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  1. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  2. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-01-01

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  3. Mixed Waste Integrated Program interim evaluation report on thermal treatment technologies

    International Nuclear Information System (INIS)

    Gillins, R.L.; DeWitt, L.M.; Wollerman, A.L.

    1993-02-01

    The Mixed Waste Integrated Program (MWIP) is one of several US Department of Energy (DOE) integrated programs established to organize and coordinate throughout the DOE complex the development of technologies for treatment of specific waste categories. The goal of the MWIP is to develop and deploy appropriate technologies for -the treatment of DOE mixed low-level and alpha-contaminated wastes in order to bring all affected DOE installations and projects into compliance with environmental laws. Evaluation of treatment technologies by the MWIP will focus on meeting waste form performance requirements for disposal. Thermal treatment technologies were an early emphasis for the MWIP because thermal treatment is indicated (or mandated) for many of the hazardous constituents in DOE mixed waste and because these technologies have been widely investigated for these applications. An advisory group, the Thermal Treatment Working Group (TTWG), was formed during the program's infancy to assist the MWIP in evaluating and prioritizing thermal treatment technologies suitable for development. The results of the overall evaluation scoring indicate that the four highest-rated technologies were rotary kilns, slagging kilns, electric-arc furnaces, and plasma-arc furnaces. The four highest-rated technologies were all judged to be applicable on five of the six waste streams and are the only technologies in the evaluation with this distinction. Conclusions as to the superiority of one technology over others are not valid based on this preliminary study, although some general conclusions can be drawn

  4. Savannah River Plant Separations Department mixed waste program

    International Nuclear Information System (INIS)

    Wierzbicki, W.M.

    1988-01-01

    The Department of Energy's (DOE) Savannah River Plant (SRP) generates radioactive and mixed waste as a result of the manufacture of nuclear material for the national defense program. The radioactive portion of the mixed waste and all nonhazardous radioactive wastes would continue to be regulated by DOE under the Atomic Energy Act. The Separations Department is the largest generator of solid radioactive waste at the Savannah River Plant. Over the last three years, the Separations Department has developed and implemented a program to characterize candidate mixed-waste streams. The program consisted of facility personnel interviews, a waste-generation characterization program and waste testing to determine whether a particular waste form was hazardous. The Separations Department changed waste-handling practices and procedures to meet the requirements of the generator standards. For each Separation Department Facility, staging areas were established, inventory and reporting requirements were developed, operating procedures were revised to ensure proper waste handling, and personnel were provided hazardous waste training. To emphasize the importance of the new requirements, a newsletter was developed and issued to all Separations supervisory personnel

  5. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    International Nuclear Information System (INIS)

    Elder, J.; Graf, J.M.

    1984-01-01

    DOE Office of Nuclear Safety has sponsored preparation of a guidance document to aid field offices and contractors in their analyses of consequences of postulated major accidents. The guide addresses the requirements of DOE Orders 5480.1A, Chapter V, and 6430.1, including the general requirement that DOE nuclear facilities be sited, designed, and operated in accordance with standards, codes, and guides consistent with those applied to comparable licensed nuclear facilities. The guide includes both philosophical and technical information in the areas of: siting guidelines doses applied to an offsite reference person; consideration also given to an onsite reference person; physical parameters, models, and assumptions to be applied when calculating doses for comparison to siting criteria; and potential accident consequences other than radiological dose to a reference person which might affect siting and major design features of the facility, such as environmental contamination, population dose, and associated public health effects. Recommendations and/or clarifications are provided where this could be done without adding new requirements. In this regard, the guide is considered a valuable aid to the safety analyst, especially where requirements have been subject to inconsistent interpretation or where analysis methods are in transition, such as use of dose model (ICRP 2 or ICRP 30) or use of probabilistic methods of risk analysis in the siting and design of nuclear facilities

  6. Nevada Test Site annual site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E. [eds.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

  7. Nevada Test Site annual site environmental report for calendar year 1996

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency's (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location

  8. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  9. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  10. ROSA-III/971, BWR Rig of Safety Assessment LOCA, Loss of Offsite Power Transient

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: ROSA-III is a 1/124 scaled down test facility with electrically heated core designed to study the response of engineered safety features to loss-of-coolant accidents in in commercial BWR. It consists of the following, fully instrumented subsystems: (a) the pressure vessel with a core simulating four half-length fuel assemblies and control rod; (b) steam line and feed water line, which are independent open loops; (c) coolant recirculation system, which consists of two loops provided with a recirculation pump and two jet pumps in each loop; (d) emergency cooling system, including HPCS, LPCS, LPCI, and ADS. 2 - Description of test: Run 971 simulated a BWR LOSS of off-site power transient. The core scram was assumed to occur at 6 seconds after the transient initiated by the turbine trip. HPCS failure was assumed. After ADS started, the upper half of the core was uncovered by steam. The core was re-flooded by LPCS alone

  11. Why does self-reported emotional intelligence predict job performance? A meta-analytic investigation of mixed EI.

    Science.gov (United States)

    Joseph, Dana L; Jin, Jing; Newman, Daniel A; O'Boyle, Ernest H

    2015-03-01

    Recent empirical reviews have claimed a surprisingly strong relationship between job performance and self-reported emotional intelligence (also commonly called trait EI or mixed EI), suggesting self-reported/mixed EI is one of the best known predictors of job performance (e.g., ρ = .47; Joseph & Newman, 2010b). Results further suggest mixed EI can robustly predict job performance beyond cognitive ability and Big Five personality traits (Joseph & Newman, 2010b; O'Boyle, Humphrey, Pollack, Hawver, & Story, 2011). These criterion-related validity results are problematic, given the paucity of evidence and the questionable construct validity of mixed EI measures themselves. In the current research, we update and reevaluate existing evidence for mixed EI, in light of prior work regarding the content of mixed EI measures. Results of the current meta-analysis demonstrate that (a) the content of mixed EI measures strongly overlaps with a set of well-known psychological constructs (i.e., ability EI, self-efficacy, and self-rated performance, in addition to Conscientiousness, Emotional Stability, Extraversion, and general mental ability; multiple R = .79), (b) an updated estimate of the meta-analytic correlation between mixed EI and supervisor-rated job performance is ρ = .29, and (c) the mixed EI-job performance relationship becomes nil (β = -.02) after controlling for the set of covariates listed above. Findings help to establish the construct validity of mixed EI measures and further support an intuitive theoretical explanation for the uncommonly high association between mixed EI and job performance--mixed EI instruments assess a combination of ability EI and self-perceptions, in addition to personality and cognitive ability. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  12. Risk-oriented analysis of the German prototype fast breeder reactor SNR-300: off-site accident consequence model and results of the study

    International Nuclear Information System (INIS)

    Bayer, A.; Ehrhardt, J.

    1984-01-01

    Accident off-site consequence calculations and risk assessments performed for the ''risk oriented analysis'' of the German prototype fast breeder reactor SNR-300 were performed with a modified version of the off-site accident consequence model UFOMOD. The modifications mainly relate to the deposition and resuspension processes, the ingestion model, and the dose factors. Consequence calculations at the site of Kalkar on the Rhine River were performed for 115 weather sequences in 36 wind directions. They were based on seven release categories evaluated for the SNR-300 with two different fueling strategies: plutonium from Magnox reactors only and plutonium from light water reactors and Magnox reactors. In parallel, the corresponding frequencies of occurrence are determined. The following results are generated: 1. complementary cumulative frequency distribution functions for collective fatalities and collective doses 2. expected values of the collective fatalities and collective doses as well as distance-dependent expected values of individual fatality 3. contributions of the different exposure pathways to fatalities with respect to the various organs. For comparison with the risk of a PWR-1300, calculations for the PWR-1300 of the ''German Risk Study'' were repeated with the same modified consequence model. Comparison shows that smaller risks result for the SNR-300. However, the confidence interval bandwidths obtained for the frequencies of the release categories for the SNR-300 are larger than those of the PWR-1300

  13. Public participation in a DOE national program: The mixed waste focus area's approach

    International Nuclear Information System (INIS)

    1997-01-01

    The authors describe the Mixed Waste Focus Area's approach to involving interested Tribal and public members in the mixed waste technology development process. Evidence is provided to support the thesis that the Focus Area's systems engineering process, which provides visible and documented requirements and decision criteria, facilitates effective Tribal and public participation. Also described is a status of Tribal and public involvement at three levels of Focus Area activities

  14. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-01-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE's needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities

  15. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  16. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  17. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  18. RHF RELAP5 model and preliminary loss-of-offsite-power simulation results for LEU conversion

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Laboratory (ANL), Argonne, IL (United States). Nuclear Engineering Div.; Bergeron, A. [Argonne National Laboratory (ANL), Argonne, IL (United States). Nuclear Engineering Div.; Dionne, B. [Argonne National Laboratory (ANL), Argonne, IL (United States). Nuclear Engineering Div.; Thomas, F. [Institut Laue-Langevin (ILL), Grenoble (Switzerland). RHF Reactor Dept.

    2014-08-01

    The purpose of this document is to describe the current state of the RELAP5 model for the Institut Laue-Langevin High Flux Reactor (RHF) located in Grenoble, France, and provide an update to the key information required to complete, for example, simulations for a loss of offsite power (LOOP) accident. A previous status report identified a list of 22 items to be resolved in order to complete the RELAP5 model. Most of these items have been resolved by ANL and the RHF team. Enough information was available to perform preliminary safety analyses and define the key items that are still required. Section 2 of this document describes the RELAP5 model of RHF. The final part of this section briefly summarizes previous model issues and resolutions. Section 3 of this document describes preliminary LOOP simulations for both HEU and LEU fuel at beginning of cycle conditions.

  19. Off-site emergency response plans in case of technological catastrophes: the case Angra dos Reis

    International Nuclear Information System (INIS)

    Souza Junior, M.D. de.

    1990-04-01

    In the first part of the thesis a discussion of the technical, operational and methodological features of the current practices for emergency planning in case of a nuclear fallout. Based on this general reference is possible to evaluate the features in the natural and social environment of Angra dos Reis that probably will obstruct the application of the protective countermeasures to the public. These critical points are enhanced to permit the discussion of a methodological approach that is supposed to be suitable to the reality of Angra dos Reis. The approach was developed specifically to this region and was introduced as a part of the general emergency off-site plan to the Central Nuclear Almirante Alvaro Alberto (CNAAA). Starting from this experience will be possible to enlarge this approach in a further research, in order to study this potential hazards of other industrial plants. (author)

  20. Basic research needs for management and disposal of DOE wastes

    International Nuclear Information System (INIS)

    Grazis, B.M.; Schulz, W.W.

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs

  1. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  2. Preference of rabbit does among different nest materials

    Directory of Open Access Journals (Sweden)

    T.P. Farkas

    2018-03-01

    Full Text Available Nest quality is important for the survival of new-born rabbits. Nesting material in rabbit farms generally consists of wood shavings, which is completely different from the dry grass used by the European wild rabbit (Oryctolagus cuniculus. The aim of the experiments was to examine which nest materials are preferred by rabbit does when building their nest. In experiment 1, the choice of multiparous rabbit does (n=37 among nest boxes bedded with different nesting materials was monitored. In each pen (1.0×1.83 m 1 doe and 4 nest boxes (0.37×0.23×0.31 m with different nest materials (meadow hay [H], wheat straw [S], fine fibre material [Lignocel®, L] or wood shavings [W] were placed 3 days before the expected parturition (gestation length is about 31 d in the Pannon White breed. Some 48.6% of the does kindled in nest boxes that contained pure materials (L: 40.5%, S: 5.4%, H: 2.7%, and 51.3% of the does kindled in nest boxes where the nest materials of different nest boxes were mixed by the does (S with L: 21.5%, S with L and H: 5.4%, W with L: 8.1%, L with H and S: 5.4%. Does preferred kindling in the nest box bedded with L, and most of them refused the nest box with W. In experiment 2/a (n=32 does and 2/b (n=25 does, each pen (1×0.91 m was equipped with 3 and 2 hay racks and filled with H, S or L, and H or S, respectively. The experiments lasted from the 27th day of pregnancy until the day of parturition and 24-h video recordings (10 does/experiment were evaluated throughout the experiment. The events of carrying the nest materials from the hay racks were registered. In experiment 2/a, the frequency of nest material carrying was highest on the day of parturition. The preferred nest material was L (compared to H and S on each experimental day except day 30 of pregnancy. At the day of kindling, 87.5, 6.3 and 6.3% of the nests contained pure L, mixed L-H and L-S, respectively. In experiment 2/b, the frequency of nest material carrying (mostly S

  3. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  4. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    International Nuclear Information System (INIS)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-01-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow's milk are considerably less . Detailed

  5. Developments in modelling the economic impact of Off-site accident consequences

    International Nuclear Information System (INIS)

    Haywood, S.M.; Robinson, C.A.; Faude, D.

    1991-01-01

    Models for assessing the economic consequences of accidental releases of radioactivity have application both in accident consequence codes and in decision aiding computer systems for use in emergency response. Such models may be applied in emergency planning, and studies in connection with the siting, design and licensing of nuclear facilities. Several models for predicting economic impact have been developed, in Europe and the US, and these are reviewed. A new model, called COCO-1 (Cost of Consequences Off-site), has been developed under the CEC MARIA programme and the features of the model are summarised. The costs calculated are a measure of the benefit foregone as a result of the accident, and in addition to tangible monetary costs the model attempts to include costs arising from the effect of the accident on individuals, for instance the disruption caused by the loss of homes. COCO-1 includes the cost of countermeasures, namely evacuation, relocation, sheltering, food restrictions and decontamination, and also the cost of health effects in the exposed population. The primary quantity used in COCO-1 to measure the economic value of land subject to restrictions on usage is Gross Domestic Product (GDP). Examples of default data included in the model are presented, as are the results of an illustrative application. The limitations of COCO-1 are discussed, and areas where further data are needed are identified

  6. Simulation-based multiprofessional obstetric anaesthesia training conducted in situ versus off-site leads to similar individual and team outcomes

    DEFF Research Database (Denmark)

    Sørensen, Jette Led; van der Vleuten, Cees; Rosthøj, Susanne

    2015-01-01

    choice question test. EXPLORATORY OUTCOMES: Individual outcomes: scores on the Safety Attitudes Questionnaire, stress measurements (State-Trait Anxiety Inventory, cognitive appraisal and salivary cortisol), Intrinsic Motivation Inventory and perceptions of simulations. Team outcome: video assessment......OBJECTIVE: To investigate the effect of in situ simulation (ISS) versus off-site simulation (OSS) on knowledge, patient safety attitude, stress, motivation, perceptions of simulation, team performance and organisational impact. DESIGN: Investigator-initiated single-centre randomised superiority...... educational trial. SETTING: Obstetrics and anaesthesiology departments, Rigshospitalet, University of Copenhagen, Denmark. PARTICIPANTS: 100 participants in teams of 10, comprising midwives, specialised midwives, auxiliary nurses, nurse anaesthetists, operating theatre nurses, and consultant doctors...

  7. Losses of off-site power at U.S. nuclear power plants - all years through 1985. Final report, May 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides a database describing losses of all off-site power at U.S. nuclear plants. It includes all years through 1985. During 1985 there were 2 losses lasting longer than 30 minutes for 0.031 losses per site year and 4 shorter losses for 0.063 losses per site year, giving a total of 0.094 losses per site year. This is in line with the 1984 total of 0.089 losses per site year, and with the comparable numbers for all years through 1985 of 0.038 losses per site year of longer than 30 minutes, 0.045 for shorter losses and a total of 0.083. (author)

  8. DOE's environmental restoration program for the Clinch River and Watts Bar Reservoir

    International Nuclear Information System (INIS)

    Kimmel, B.

    1992-01-01

    Operations and waste disposal activities at the Y-12 Plant, the K-25 Site,and the Oak Ridge National Laboratory (ORNL) on the U.S. Department of Energy's Oak Ridge Reservation (ORR) have introduced a variety of contaminants (radionuclides, metals, and organic compounds) into off-site surface waters since the early 1940s, The Clinch River and Watts Bar Reservoir are located downstream from the ORR. A comprehensive remedial investigation (the Clinch River Remedial Investigation) of off-site surface water contamination at Oak Ridge is now being conducted in compliance with the Resource Conservation and Recovery Act and Comprehensive Environmental Response, Compensation, and Liability Act requirements. The objectives of the Clinch River Remedial Investigation (CRRI) are to: (1) define the nature and extent of off-site surface water contamination, (2) quantify the potential risks to human health and the environment associated with off-site contamination, and (3) identify and preliminarily evaluate potential remediation alternatives. The CRRI is being conducted in three phases: (1) scoping studies, in which preassessment studies based on existing data and limited sampling were conducted to preliminarily estimate the nature and extent of the problem; (2) Phase 1, in which limited sampling and risk analyses are conducted to define specifically the distributions of the contaminants of concern and the environmental and human health risks associated with the contamination. These phases allow a progressive focusing of assessment efforts on specific contaminants, pathways, and sites contributing to risk and on the evaluation of potential remediation alternatives. A brief overview of the Clinch River RI is presented, followed by a description of on going efforts to achieve control of contaminated sediments located in the White Oak Creek Embayment

  9. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  10. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    Energy Technology Data Exchange (ETDEWEB)

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-07-07

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

  11. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMS) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2006

  12. Developing Off-site Emergency Preparedness and Response Model (OEPRM) for Severe Accident of NPP in a Densely Populated Country Using System Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Hossena, Muhammed Mufazzal; Kang, Kyoung Ho; Song, Jin Ho [KAERI, Deajeon (Korea, Republic of)

    2016-05-15

    The main objectives of this study are to find the influencing factors of systems and sub-systems of OEPRM, to find the interdependency among the influencing factors, and to develop a conceptual qualitative OEPRM for densely populated NPP country in case of SA using system dynamics (SD). NPP accidents are classified as nuclear accidents and incidents depending on the severity. Severe accident (SA) is certain low probability accident that are beyond design basis accident which may arise due to multiple failures of safety systems leading to significant core degradation and jeopardize the integrity of many or all of the barriers to the release of radioactive material. The weakness to the off-site emergency response in the time of Fukushima accident was observed. So, it is crucial to develop an off-site emergency preparedness and responses model (OEPRM) for radiological emergency in densely populated country from the Fukushima emergency response lesson. In this study, an OEPRM is developed for densely populated NPP country to mitigate radiological effects in case of SA using SD approach. Besides, this study focuses the weakness of emergency response in Fukushima accident and proposed solution approach. The development of OEPRM in case of SA of NPP is very complex because of the involvement of various organization and it requires highly specialized agencies and technical experts. Moreover, if the country is agriculture based, it will make completely sophisticated.

  13. Developing Off-site Emergency Preparedness and Response Model (OEPRM) for Severe Accident of NPP in a Densely Populated Country Using System Dynamics Approach

    International Nuclear Information System (INIS)

    Hossena, Muhammed Mufazzal; Kang, Kyoung Ho; Song, Jin Ho

    2016-01-01

    The main objectives of this study are to find the influencing factors of systems and sub-systems of OEPRM, to find the interdependency among the influencing factors, and to develop a conceptual qualitative OEPRM for densely populated NPP country in case of SA using system dynamics (SD). NPP accidents are classified as nuclear accidents and incidents depending on the severity. Severe accident (SA) is certain low probability accident that are beyond design basis accident which may arise due to multiple failures of safety systems leading to significant core degradation and jeopardize the integrity of many or all of the barriers to the release of radioactive material. The weakness to the off-site emergency response in the time of Fukushima accident was observed. So, it is crucial to develop an off-site emergency preparedness and responses model (OEPRM) for radiological emergency in densely populated country from the Fukushima emergency response lesson. In this study, an OEPRM is developed for densely populated NPP country to mitigate radiological effects in case of SA using SD approach. Besides, this study focuses the weakness of emergency response in Fukushima accident and proposed solution approach. The development of OEPRM in case of SA of NPP is very complex because of the involvement of various organization and it requires highly specialized agencies and technical experts. Moreover, if the country is agriculture based, it will make completely sophisticated

  14. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  15. Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE's mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies

  16. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  17. Environmental guidance regulatory bulletin

    International Nuclear Information System (INIS)

    1994-12-01

    On September 22,1993, the Environmental Protection Agency (EPA) published [58 Federal Register (FR) 492001 the final OffSite Rule, which defines criteria for approving facilities for receiving waste from response actions taken under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The off-site requirements apply to the off-site management of hazardous substances, pollutants, and contaminants, as defined under CERCLA, that are generated from remedial and removal actions funded or authorized, at least in part, by CERCLA. CERCLA-authorized cleanups include those taken under lead-agency authority, Section 106 Consent Orders, Consent Agreements, Consent Degrees, and Records of Decision (RODs). EPA requires that remedial actions at Federal facilities taken under Sections 104, 106, or 120 of CERCLA comply with the Off-Site Rule for all cleanups enacted through DOE's lead-agency authority

  18. Does case-mix based reimbursement stimulate the development of process-oriented care delivery?

    Science.gov (United States)

    Vos, Leti; Dückers, Michel L A; Wagner, Cordula; van Merode, Godefridus G

    2010-11-01

    Reimbursement based on the total care of a patient during an acute episode of illness is believed to stimulate management and clinicians to reduce quality problems like waiting times and poor coordination of care delivery. Although many studies already show that this kind of case-mix based reimbursement leads to more efficiency, it remains unclear whether care coordination improved as well. This study aims to explore whether case-mix based reimbursement stimulates development of care coordination by the use of care programmes, and a process-oriented way of working. Data for this study were gathered during the winter of 2007/2008 in a survey involving all Dutch hospitals. Descriptive and structural equation modelling (SEM) analyses were conducted. SEM reveals that adoption of the case-mix reimbursement within hospitals' budgeting processes stimulates hospitals to establish care programmes by the use of process-oriented performance measures. However, the implementation of care programmes is not (yet) accompanied by a change in focus from function (the delivery of independent care activities) to process (the delivery of care activities as being connected to a chain of interdependent care activities). This study demonstrates that hospital management can stimulate the development of care programmes by the adoption of case-mix reimbursement within hospitals' budgeting processes. Future research is recommended to confirm this finding and to determine whether the establishment of care programmes will in time indeed lead to a more process-oriented view of professionals. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Off-site radiation exposure review project: computer-aided surface interpolation and graphical display

    International Nuclear Information System (INIS)

    Foley, T.A. Jr.

    1981-08-01

    This report presents the implementation of an iterative procedure that solves the following bivariate interpolation problem: Given N distinct points in the plane (x/sub i/, y/sub i/) and N real numbers Z/sub i/, construct a function F(x,y) that satisfies F(x/sub i/, y/sub i/) = Z/sub i/, for i = 1, ..., N. This problem can be interpreted as fitting a surface through N points in three dimensional space. The application of primary concern to the Offsite Radiation Exposure Review Project is the characterization of the radionuclide activity resulting from nuclear tests. Samples of activity were measured at various locations. The location of the sample point is represented by (x/sub i/, y/sub i/), and the magnitude of the reading is represented by Z/sub i/. The method presented in this report is constructed to be efficient on large data sets, stable on the large variations of the Z/sub i/ magnitudes, and capable of smoothly filling in areas that are void of data. This globally defined icode was initiateminednitial shock but to two later eriological invaders are Staphylococcus albus, Beta-hemolytic Streptococcus e to the same general semiclassical treatment

  20. On-site and off-site atmospheric PBDEs in an electronic dismantling workshop in south China: Gas-particle partitioning and human exposure assessment

    International Nuclear Information System (INIS)

    An Taicheng; Zhang Delin; Li Guiying; Mai Bixian; Fu Jiamo

    2011-01-01

    Gas samples and total suspended particle during work and off work time were investigated on-site and off-site electronic waste dismantling workshop (I- and O-EWDW), then compared with plastic recycling workshop (PRW) and waste incineration plant (WIP). TSP concentrations and total PBDE were 0.36-2.21 mg/m 3 and 27-2975 ng/m 3 at different workshops, respectively. BDE-47, -99, and -209 were major ΣPBDE congeners at I-EWDW and WIP, while BDE-209 was only dominant congener in PRW and control sites during work time and all sites during off work time. The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for all samples, except for WIP and I-EDWD, at park during work time, and residential area during off work time. The predicted urban curve fitted well with measured φ values at O-DEWD during work time, whereas it was slightly overestimated or underestimated for others. Exposure assessment revealed the highest exposure site was I-EDWD. - Highlights: → On- and off-site atmospheric PBDEs was monitored in e-waste dismantling workshops in south China. → The gas-particle partitioning result was well correlated with the subcooled liquid vapor pressure for some samples. → Exposure assessment revealed that workers in I-EDWD were the highest exposure population. - The findings of this study may serve as a valuable reference for future risk assessment and environmental management in Guiyu, South China.

  1. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  2. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units

  3. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  4. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan

    2017-01-01

    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  5. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    Science.gov (United States)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  6. Mixing Processes in High-Level Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  7. Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-09-01

    OAK A271 Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne. This Annual Site Environmental Report (ASER) for 1999 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. This Annual Site Environmental Report provides information showing that there are no indications of any potential impact on public health and safety due to the operations conducted at the SSFL. All measures and calculations of off-site conditions demonstrate compliance with applicable regulations, which provide for protection of human health and the environment.

  8. Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne

    International Nuclear Information System (INIS)

    None

    2000-01-01

    OAK A271 Site Environmental Report for Calendar Year 1999. DOE Operations at The Boeing Company, Rocketdyne. This Annual Site Environmental Report (ASER) for 1999 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. Large-scale D and D activities of the sodium test facilities began in 1996. This Annual Site Environmental Report provides information showing that there are no indications of any potential impact on public health and safety due to the operations conducted at the SSFL. All measures and calculations of off-site conditions demonstrate compliance with applicable regulations, which provide for protection of human health and the environment

  9. Selection of analytical methods for mixed waste analysis at the Hanford Site

    International Nuclear Information System (INIS)

    Morant, P.M.

    1994-09-01

    This document describes the process that the US Department of Energy (DOE), Richland Operations Office (RL) and contractor laboratories use to select appropriate or develop new or modified analytical methods. These methods are needed to provide reliable mixed waste characterization data that meet project-specific quality assurance (QA) requirements while also meeting health and safety standards for handling radioactive materials. This process will provide the technical basis for DOE's analysis of mixed waste and support requests for regulatory approval of these new methods when they are used to satisfy the regulatory requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) (Ecology et al. 1992)

  10. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    International Nuclear Information System (INIS)

    Shuck, D.L.; Wade, J.F.

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams

  11. Development of a computer code system for selecting off-site protective action in radiological accidents based on the multiobjective optimization method

    International Nuclear Information System (INIS)

    Ishigami, Tsutomu; Oyama, Kazuo

    1989-09-01

    This report presents a new method to support selection of off-site protective action in nuclear reactor accidents, and provides a user's manual of a computer code system, PRASMA, developed using the method. The PRASMA code system gives several candidates of protective action zones of evacuation, sheltering and no action based on the multiobjective optimization method, which requires objective functions and decision variables. We have assigned population risks of fatality, injury and cost as the objective functions, and distance from a nuclear power plant characterizing the above three protective action zones as the decision variables. (author)

  12. Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal

    International Nuclear Information System (INIS)

    Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

    1998-03-01

    In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA's initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE's needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities

  13. Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30

    International Nuclear Information System (INIS)

    1998-02-01

    The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media

  14. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  15. Twice random, once mixed: applying mixed models to simultaneously analyze random effects of language and participants.

    Science.gov (United States)

    Janssen, Dirk P

    2012-03-01

    Psychologists, psycholinguists, and other researchers using language stimuli have been struggling for more than 30 years with the problem of how to analyze experimental data that contain two crossed random effects (items and participants). The classical analysis of variance does not apply; alternatives have been proposed but have failed to catch on, and a statistically unsatisfactory procedure of using two approximations (known as F(1) and F(2)) has become the standard. A simple and elegant solution using mixed model analysis has been available for 15 years, and recent improvements in statistical software have made mixed models analysis widely available. The aim of this article is to increase the use of mixed models by giving a concise practical introduction and by giving clear directions for undertaking the analysis in the most popular statistical packages. The article also introduces the DJMIXED: add-on package for SPSS, which makes entering the models and reporting their results as straightforward as possible.

  16. Superfluidity of hyperon-mixed neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo

    2002-01-01

    Superfluidity of hyperons (Y) admixed in neutron star cores is investigated by a realistic approach. It is found that hyperons such as Λ and Σ - are likely to be superfluid due mainly to their large effective masses in the medium, in addition to their 1 S 0 -pairing attraction not so different from that of nucleons. Also the existence of nucleon superfluidity at high-density is investigated under a developed Y-contamination. It is found that the density change of nucleon components due to the Y-mixing does not work for the realization of n-superfluid and makes the existence of p-superfluid more unlikely, as compared to the normal case without the Y-mixing. (author)

  17. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  18. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  19. Test procedures for polyester immobilized salt-containing surrogate mixed wastes

    International Nuclear Information System (INIS)

    Biyani, R.K.; Hendrickson, D.W.

    1997-01-01

    These test procedures are written to meet the procedural needs of the Test Plan for immobilization of salt containing surrogate mixed waste using polymer resins, HNF-SD-RE-TP-026 and to ensure adequacy of conduct and collection of samples and data. This testing will demonstrate the use of four different polyester vinyl ester resins in the solidification of surrogate liquid and dry wastes, similar to some mixed wastes generated by DOE operations

  20. Development of a mixed waste management facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dodge, R.L.; Brich, R.F.

    1988-01-01

    The U.S. Department of Energy (DOE) produces radioactive low-level wastes (LLW) which contain hazardous components as identified by 40 Code of Federal Regulations (CFR) 261. Management of those mixed wastes (MW) requires compliance with U.S.Environmental Protection Agency (EPA) regulations for hazardous wastes and DOE regulations for LLW. In 1988, DOE's Nevada Operations Office (NV) began disposing of MW at the Nevada Test Site (NTS) under interim status as authorized by the state of Nevada. MW disposal is limited to Pit 3 while operating under interim status. This paper discusses how preparations for operation of a separate mixed waste management facility (MWMF) are underway. Those preparations include revising the NTS Part B Permit application, developing a MW certification program, developing and operating a vadose zone monitoring system, preparing an Environmental Assessment (EA), developing protocols for analysis of MW, and facility design and construction

  1. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  2. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  3. Off-site transport of fungicides with runoff: A comparison of flutolanil and pentachloronitrobeneze applied to creeping bentgrass managed as a golf course fairway.

    Science.gov (United States)

    Rice, Pamela J; Horgan, Brian P; Hamlin, Jennifer L

    2018-08-15

    Flutolanil and pentachloronitrobenzene (PCNB) are fungicides used to control or suppress foliar and soil borne diseases in turf and ornamental crops. On golf courses, sports fields, sod farms and commercial lawns these fungicides are used as preventive treatments to combat snow mold, brown patch and fairy ring. Depending on the aquatic organism, flultolanil and PCNB are considered to be moderately to highly toxic. Therefore runoff or drift from treated areas may be hazardous to organisms in adjacent aquatic sites. This research compared the transport of flutolanil and PCNB with runoff from turfgrass managed as a golf course fairway. The quantity of fungicide transported with runoff and observations reported with the chemographs followed trends in agreement with the chemical properties of the compounds. Overall, we observed the rate of transport for flutolanil was greater than PCNB, which contributed to the more than 12 times larger load (µg/m 2 ) of flutolanil transported off-site at the conclusion of the simulated storm runoff. A better understanding of the off-site transport of pesticides with runoff is needed to make informed decisions on management practices to reduce potential adverse effects on non-target organisms, as well as maintain control of targeted pests in the area of application. In addition, data obtained with this research can be used in model simulations to predict nonpoint source pollution potentials beyond experimental conditions. Copyright © 2018. Published by Elsevier Inc.

  4. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the open-quotes problemclose quotes DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization

  5. Mixed and Low-Level Treatment Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  6. Mixed and Low-Level Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided

  7. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ''NEPA Compliance Program.'' The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives

  8. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  9. Carbon-enhanced metal-poor stars and thermohaline mixing

    NARCIS (Netherlands)

    Stancliffe, R.J.; Glebbeek, E.; Izzard, R.G.; Pols, O.R.

    2007-01-01

    One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until

  10. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  11. Determination of the carbon content of domestic farm produces to estimate offsite C-14 ingestion dose

    International Nuclear Information System (INIS)

    Jung, Y. G.; Kim, M. J.; Lee, G. B.

    2003-01-01

    The carbon content of grains, leafy and root vegetables, and fruits which the Koreans usually eat were calculated to use in the estimation of offsite C-14 ingestion dose. With the data of food intake per day in the Report on 1998 national health and nutrition survey- dietary intake survey, 5 age-group integrate d intake of the 4 farm produce groups were extracted for food items and the amount. Intake percentage in each food group were taken as food weighing factor for the foods. Carbon content was calculated using protein, fat, and carbohydrate content of the foods, and multiplied by the corresponding food weighing factor to derive the content of the food groups. The calculated carbon content of grains, leafy and root vegetables, and fruits were 39.%, 4.2%, 8.0%, and 5.9% respectively. Grains and fruits were not much different from ODCM for carbon content, but vegetables were higher by 0.7%∼4.5%

  12. Macroencapsulated and elemental lead mixed waste sites report

    International Nuclear Information System (INIS)

    Kalia, A.; Jacobson, R.

    1996-09-01

    The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m 3 located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges

  13. Summary of DOE threshold limits efforts

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1987-01-01

    The Department of Energy (DOE) has been developing the concept of threshold quantities for use in determining which waste materials may be disposed of as nonradioactive waste in DOE sanitary landfills. Waste above a threshold level could be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. After extensive review of a draft threshold guidance document in 1985, a second draft threshold background document was produced in March 1986. The second draft included a preliminary cost-benefit analysis and quality assurance considerations. The review of the second draft has been completed. Final changes to be incorporated include an in-depth cost-benefit analysis of two example sites and recommendations of how to further pursue (i.e. employ) the concept of threshold quantities within the DOE. 3 references

  14. Progress towards monochromatic imaging of mix at the NIF

    Science.gov (United States)

    Kyrala, G. A.; Murphy, T. J.; Bradley, P. A.; Krashenninnikova, N. S.; Tregillis, I. L.; Obrey, K.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Schmitt, M. J.; Kanzleiter, R. J.; Regan, S. P.; Barrios, M. A.

    2013-10-01

    Mix of non-hydrogenic (Z >1) material into the hydrogenic (D and T) ICF capsule fuel degrades implosion performance. The amount of degradation depends on the degree and the spatial distribution of mix. Experiments are underway at NIF to quantify the mix of shell material into fuel using directly driven capsules. CH or CD shells with various dopants, implanted at different depths in the shell are being used to change the amount of dopant mix. Spatially and spectrally resolved emission from the ionized dopants will be used to generate spatially and temporally dependent density and temperature maps of the ionized dopants that are mixed and heated in the core plasma. This information will be used to validate different mix models. This talk will describe the search for the appropriate dopant that gave a radiation spectrum that could be used to record images with the MMI diagnostic. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  15. A model for the calculation of the off-site economic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Gallego, E.; Alonso, A.

    1988-01-01

    The off-site economic cost of nuclear reactor accidents will depend on the countermeasures adopted to reduce its radiological impact. The assessment of the direct costs of emergency countermeasures (evacuation, early relocation and food disposal) as well as those of long-term protective actions (food disposal, decontamination or interdiction) is the objective of a model under development, with the sponsorship of the CEC Radiation Protection Programme, called MECA (Model for assessing the Economic Consequences of Accidents). The meteorological and socio-economical peculiarities of each site studied will be taken into account, by means of a flexible meteorological sampling scheme, which considers the geographical distribution of population and economic centers, and a data-base, compatible with the existing European grid, that contains the population distribution and the economic characteristics of the environs of the site to be studied with more detail near the reactor. The paper summarizes the particular models which will be included in MECA and shows the importance of site-specific adaptable modelling for economic risk evaluation

  16. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  17. Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956)- An Assessment of Quantities released, Off-Site Radiation Doses, and Potential Excess Risks of Thyroid Cancer, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Apostoaei, A.I.; Burns, R.E.; Hoffman, F.O.; Ijaz, T.; Lewis, C.J.; Nair, S.K.; Widner, T.E.

    1999-07-01

    In the early 1990s, concern about the Oak Ridge Reservation's past releases of contaminants to the environment prompted Tennessee's public health officials to pursue an in-depth study of potential off-site health effects at Oak Ridge. This study, the Oak Ridge dose reconstruction, was supported by an agreement between the U.S. Department of Energy (DOE) and the State of Tennessee, and was overseen by a 12-member panel appointed by Tennessee's Commissioner of Health. One of the major contaminants studied in the dose reconstruction was radioactive iodine, which was released to the air by X-10 (now called Oak Ridge National Laboratory) as it processed spent nuclear reactor fuel from 1944 through 1956. The process recovered radioactive lanthanum for use in weapons development. Iodine concentrates in the thyroid gland so health concerns include various diseases of the thyroid, such as thyroid cancer. The large report, ''Iodine-131 Releases from Radioactive Lanthanum Processing at the X-10 Site in Oak Ridge, Tennessee (1944-1956) - An Assessment of Quantities Released, Off-site Radiation Doses, and Potential Excess Risks of Thyroid Cancer,'' is in two volumes. Volume 1 is the main body of the report, and Volume 1A, which has the same title, consists of 22 supporting appendices. Together, these reports serve the following purposes: (1) describe the methodologies used to estimate the amount of iodine-131 (I-131) released; (2) evaluate I-131's pathway from air to vegetation to food to humans; (3) estimate doses received by human thyroids; (4) estimate excess risk of acquiring a thyroid cancer during ones lifetime; and (5) provide equations, examples of historical documents used, and tables of calculated values. Results indicate that females born in 1952 who consumed milk from a goat pastured a few miles east of X-10 received the highest doses from I-131 and would have had the highest risks of contracting thyroid cancer. Doses from cow

  18. Mixed-waste treatment -- What about the residuals?

    International Nuclear Information System (INIS)

    Carlson, T.; Carpenter, C.; Cummins, L.; Haas, P.; MacInnis, J.; Maxwell, C.

    1993-01-01

    Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ''derived-from'' residuals. Major findings include that final disposal options are more significantly impacted by the type of waste treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals

  19. Cover and liner system designs for mixed-waste disposal

    International Nuclear Information System (INIS)

    MacGregor, A.

    1994-01-01

    Land disposal of mixed waste is subject to a variety of regulations and requirements. Landfills will continue to be a part of waste management plans at virtually all facilities. New landfills are planned to serve the ongoing needs of the national laboratories and US Department of Energy (DOE) facilities, and environmental restoration wastes will ultimately need to be disposed in these landfills. This paper reviews the basic objectives of mixed-waste disposal and summarizes key constraints facing planners and designers of these facilities. Possible objectives of cover systems include infiltration reduction; maximization of evapotranspiration; use of capillary barriers or low-permeability layers (or combinations of all these); lateral drainage transmission; plant, animal, and/or human intrusion control; vapor/gas control; and wind and water erosion control. Liner system objectives will be presented, and will be compared to the US Environmental Protection Agency-US Nuclear Regulatory Commission guidance for mixed-waste landfills. The measures to accomplish each objective will be reviewed. Then, the design of several existing or planned mixed-waste facilities (DOE and commercial) will be reviewed to illustrate the application of the various functional objectives. Key issues will include design life and performance period as compared/contrasted to postclosure care periods, the use (or avoidance) of geosynthetics or clays, intermediate or interim cover systems, and soil erosion protection in contrast to vegetative enhancement. Possible monitoring approaches to cover systems and landfill installations will be summarized as well

  20. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  1. Treatment of M-area mixed wastes at the Savannah River Site

    International Nuclear Information System (INIS)

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact

  2. Comparison of mixing height parameterizations with profiles measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaquier, A.; Stuebi, R.; Tercier, P. [Swiss Meteorological Inst., SMI - MeteoSwiss, Payerne (Switzerland)

    1997-10-01

    Different meteorological pre-processors for dispersion studies are available to derive the atmospheric boundary layer mixing height (MH). The analysis of their performances has been reviewed in the framework of the European COST Action 710. In this project, the computed mixing height values have been compared with data derived mostly from aero-logical sounding analysis and Sodar measurements. Since then, a new analysis of a low-tropospheric wind profiler (WP) data has been performed taking advantage of its high data sampling ({delta}t {approx} 30 sec.). The comparison between these recent results and aero-logical sounding, Sodar data, as well as to meteorological pre-processors calculations are reported for three periods of several days corresponding to different meteorological situations. In convective conditions, the pre-processors give reasonable level, the mixing height growing rate is in fair agreement with the measured one. In stable cloudy daytime conditions, the modeled mixing height does not correspond to any measured height. (LN)

  3. Monoclinic mixed crystals of halogenomethanes CBr4-nCln (n = 0, ..., 4)

    International Nuclear Information System (INIS)

    Negrier, Philippe; Tamarit, Josep Ll.; Barrio, Maria; Pardo, Luis C.; Mondieig, Denise

    2007-01-01

    On the basis of the isostructural relationship between the low-temperature monoclinic (C2/c, Z = 32) phases of the halogenomethane CBr 4-n Cl n (n = 0, ..., 4), a set of mixed crystals has been analysed by means of high-resolution X-ray powder diffraction. It is shown that the monoclinic structure of pure and mixed crystals does not depend of the particularities of the dipolar (or dipole induced) interactions of the pure compound, neither on the composition of the mixed crystal, but on the relative content of the halogen atoms which controls the size of the molecule or the average molecule for the case of mixed crystals

  4. US Department of Energy Mixed Waste Integrated Program performance systems analysis

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Berry, J.B.

    1994-01-01

    The primary goal of this project is to support decision making for the U.S. Department of Energy (DOE)/EM-50 Mixed Waste Integrated Program (MWIP) and the Mixed Low-Level Waste Program. A systems approach to the assessment of enhanced waste form(s) production will be employed including, coordination and configuration management of activities in specific technology development tasks. The purpose of this paper is to describe the development and application of a methodology for implementing a performance systems analysis on mixed waste treatment process technologies. The second section describes a conventional approach to process systems analysis followed by a methodology to estimate uncertainties when analyzing innovative technologies. Principles from these methodologies have been used to develop a performance systems analysis for MWIP. The third section describes the systems analysis tools. The fourth section explains how the performance systems analysis will be used to analyze MWIP process alternatives. The fifth and sixth sections summarize this paper and describe future work for this project. Baseline treatment process technologies (i.e., commercially available technologies) and waste management strategies are evaluated systematically using the ASPEN PLUS program applications developed by the DOE Mixed Waste Treatment Project (MWTP). Alternatives to the baseline (i.e., technologies developed by DOE's Office of Technology Development) are analyzed using FLOW, a user-friendly program developed at Oak Ridge National Laboratory (ORNL). Currently, this program is capable of calculating rough order-of-magnitude mass and energy balances to assess the performance of the alternative technologies as compared to the baseline process. In the future, FLOW will be capable of communicating information to the ASPEN PLUS program

  5. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    International Nuclear Information System (INIS)

    BARCOT, R.A.

    2000-01-01

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available

  6. Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins

    International Nuclear Information System (INIS)

    Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

    1997-01-01

    Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE's mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies

  7. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  8. Upfront Delisting of F006 Mixed Waste

    International Nuclear Information System (INIS)

    Poulos, D.G.; Pickett, J.B.; Jantzen, C.M.

    1995-01-01

    The US DOE at the Savannah River Site will petition the US EPA to upfront delist treatment residues generated from the vitrification of approximately 650,000 gallons of a regulated mixed (hazardous and radioactive) waste. The upfront petition, based on bench-scale treatability studies and pilot-scale system data, will exclude the vitrified wasteform from hazardous waste management regulations. The EPA encourages the use of the upfront delisting method as it allows applicants prior knowledge of waste specific treatment standards, which when met will render the waste non-hazardous, before generating the final wasteform. To meet the EPA performance based treatment standards, the waste must be stabilized to control the leaching of hazardous and radioactive constituents from the final wasteform. SRS has contracted a vendor to stabilize the mixed waste in a temporary Vitrification Treatment Facility (VTF). The EPA has declared vitrification as the Best Demonstrated Available Technology for high level radioactive wastes and the DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest degree possible to ensure that the resulting wasteform meets both current and future regulatory specifications. Treatability studies conducted on a VTF pilot-scale system unit indicates that the mixed waste can be converted into a highly durable glass form, which exceeds the projected EPA performance based criteria. Upfront petitions can be processed by the EPA concurrently during facility construction or permitting activities; therefore, the SRS VTF will be capable of producing wastes which are considered non-hazardous sooner than otherwise expected. At the same time, EPA imposed conditional testing requirements to verify that the delisting levels are achieved by the fully operational VTF, ensures that only non-hazardous wastes are removed from hazardous waste management regulations. Vitrification of the (Abstract Truncated)

  9. Major issues associated with DOE commercial recycling initiatives

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.; Rast, D.M.

    1994-01-01

    Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products

  10. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m 3 to 187 m 3 , depending on assumptions and treatments applied to the wastes

  11. Defense In-Depth Accident Analysis Evaluation of Tritium Facility Bldgs. 232-H, 233-H, and 234-H

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    'The primary purpose of this report is to document a Defense-in-Depth (DID) accident analysis evaluation for Department of Energy (DOE) Savannah River Site (SRS) Tritium Facility Buildings 232-H, 233-H, and 234-H. The purpose of a DID evaluation is to provide a more realistic view of facility radiological risks to the offsite public than the bounding deterministic analysis documented in the Safety Analysis Report, which credits only Safety Class items in the offsite dose evaluation.'

  12. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  13. Guidance on offsite emergency radiation measurement systems. Phase 2: The milk pathway

    International Nuclear Information System (INIS)

    1984-04-01

    This document provides guidance to State and local governments and to Federal agencies on offsite emergency measurement of radionuclides after an accident involving a light-water nuclear power plant; in particular, this document provides guidance on determining the dose commitment from the milk pathway. Protective action levels proposed by the Food and Drug Administration (FDA) for milk are used as the basis for monitoring requirements. Measurement of radionuclides in milk should be made at the earliest practical point in the production chain: dairy farms, receiving and transfer stations, processing plants or marketing facilities. Early monitoring will provide data to keep significantly contaminated milk out of distribution and will provide the basis for the most timely emergency response action. Radioiodine plus four other radionuclides, cesium-134, cesium-137, strontium-89, and strontium-90, contribute significantly to dose via the milk pathway; of the most severe potential accident, the short-term dose via the milk pathway from radioiodine is significantly greater than that of cesium or strontium. There is no emergency field monitoring instrumentation available for accurately monitoring cesium and strontium, particularly in the presence of radioiodine. Radioiodine can be a potential contamination problem in liquid milk, whereas radiocesium and radiostrontium can be a contamination problem in processed milk products. Monitoring for the long half-life nuclides such as cesium and strontium requires sophisticated equipment or chemistry procedures which are only available in a laboratory. 2 references, 21 figures, 21 tables

  14. 10 years and 20,000 sources: the GTRI offsite source recovery project

    International Nuclear Information System (INIS)

    Whitworth, Julia; Streeper, Charles; Cuthbertson, Abigail

    2009-01-01

    Full text: The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 ( 239 Pu) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their design life or fall out of regular use. Sealed source recovery was initially considered a waste management activity, but after the terrorist attacks of 2001, the interagency community began to recognize the threat posed by excess and unwanted radiological materials, particularly those that could not be disposed at the end of their useful life. After being transferred to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might constitute a 'national security consideration'. This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed

  15. The 1996 meeting of the national technical workgroup on mixed waste thermal treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues

  16. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  17. Mix It Up! Six Ways To Rethink Tired Summer Reading Programs.

    Science.gov (United States)

    Barstow, Barbara; Markey, Penny

    1997-01-01

    Presents six ideas to improve public libraries' summer reading programs. Highlights include creating Web sites; marketing directly to parents rather than to schools through direct mail and collaborative promotion; statewide cooperative programs; the use of teen volunteers; scratch-off game cards; and off-site programs. (LRW)

  18. RKKY interaction in mixed valence system and heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Fusui Liu; Gao Lin; Lin Zonghan

    1985-11-01

    The 1-D RKKY interaction of mixed valence system is given by using the thermodynamic perturbation theory. The numerical comparisons of 1-D and 3-D RKKY interaction between systems with localized magnetic moments of mixed valence and non-mixed valence show that the former is much stronger than the latter. From some analyses we propose that the heavy Fermion superconductivity comes from the RKKY interaction between two local f electrons which hop off the impurity site to become two continuum electrons. The source of the two impurity electrons hopping is the Coulomb interaction. It is also emphasized that the RKKY interaction does not disappear for the Kondo lattice, when the temperature is less than the Kondo temperature. (author)

  19. Radioactive Air Emmission Notice of Construction (NOC) for the Waste Receiving and Processing Facility (WRAP)

    Energy Technology Data Exchange (ETDEWEB)

    MENARD, N.M.

    2000-12-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions.

  20. Radioactive Air Emmission Notice of Construction (NOC) Application for the Waste Receiving and Processing Facility (WRAP)

    International Nuclear Information System (INIS)

    MENARD, N.M.

    2000-01-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions