WorldWideScience

Sample records for doca-salt treatment enhances

  1. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Theodora Szasz

    Full Text Available Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water or febuxostat (orally, 5 mg/kg/day in salt water in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt. We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate and decrease in uric acid (XO product levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  2. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  3. ALLOPURINOL DOES NOT DECREASE BLOOD PRESSURE OR PREVENT THE DEVELOPMENT OF HYPERTENSION IN THE DOCA-SALT RAT MODEL

    Science.gov (United States)

    Szasz, Theodora; Linder, A. Elizabeth; Davis, Robert P.; Burnett, Robert; Fink, Gregory D.; Watts, Stephanie W.

    2010-01-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of hypertension, disease in which ROS levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a ROS-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on BP have yielded controversial results. We hypothesized that XO inhibition would decrease BP or attenuate the development of DOCA-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg/day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by HPLC measurements of XO metabolites in urine, serum and tissues demonstrating decrease in products, increase in substrates and detection of the active metabolite of allopurinol, oxypurinol. We monitored BP continuously via radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension, regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model. PMID:20881613

  4. Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats

    DEFF Research Database (Denmark)

    Lemkens, Pieter; Nelissen, Jelly; Meens, Merlijn J P M T

    2012-01-01

    Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hype...

  5. Physalis minima Leaves Extract Induces Re-Endothelialization in Deoxycorticosterone Acetate-Salt-Induced Endothelial Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Dian Nugrahenny

    2018-02-01

    Full Text Available The administration of deoxy-corticosterone acetate (DOCA-salt can induce oxidative stress leading to decrease the bioavailability of nitric oxide (NO, increase senescence of circulating endothelial progenitor cells (EPCs, thus contributing to endothelial dysfunction. This study was aimed to investigate the effects of Physalis minima L. leaves extract on serum NO levels, circulating EPCs number, and histopathology of tail artery endothelial cells in DOCA-salt-induced endothelial dysfunction in rats. Twenty-five male Wistar rats were randomly divided into five groups: rats without any treatment (normal, rats treated with DOCA (10 mg/kgBW s.c. twice weekly and given 0.9% NaCl to drink ad libitum for 6 weeks, and DOCA-salt-induced rats orally supplemented with P. minima leaves extract at doses of 500, 1500, or 2500 mg/kgBW for 4 weeks. Serum NO levels were measured by colorimetry. The number of circulating EPCs (CD34+/CD133+ cells was determined by flow cytometry. The tail artery sections were histologically processed with hematoxylin-eosin staining. DOCA-salt-induced rats showed significantly (p<0.05 decrease in serum NO levels and circulating EPCs number compared to the normal. There was also more detached tail artery endothelial cells in DOCA-salt-induced rats. P. minima leaves extract at a dose of 500 mg/kgBW significantly (p<0.05 increased serum NO level and circulating EPCs number, and also induced an optimal re-endothelialization in DOCA-salt-induced rats. P. minima leave extract dose-dependently increases NO bioavailability contributing to enhanced EPCs mobilization, thereby promoting re-endothelialization in DOCA-salt-induced endothelial dysfunction in rats.

  6. Peroxisome Proliferator-Activated Receptor-α Activation Decreases Mean Arterial Pressure, Plasma Interleukin-6, and COX-2 While Increasing Renal CYP4A Expression in an Acute Model of DOCA-Salt Hypertension

    Directory of Open Access Journals (Sweden)

    Dexter L. Lee

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptor-alpha (PPAR-α activation by fenofibrate reduces blood pressure and sodium retention during DOCA-salt hypertension. PPAR-α activation reduces the expression of inflammatory cytokines, such as interleukin-6 (IL-6. Fenofibrate also induces cytochrome P450 4A (CYP4A and increases 20-hydroxyeicosatetraenoic acid (20-HETE production. This study tested whether the administration of fenofibrate would reduce blood pressure by attenuating plasma IL-6 and renal expression of cyclooxygenase-2 (COX-2, while increasing expression of renal CYP4A during 7 days of DOCA-salt hypertension. We performed uni-nephrectomy on 12–14 week old male Swiss Webster mice and implanted biotelemetry devices in control, DOCA-salt (1.5 mg/g treated mice with or without fenofibrate (500 mg/kg/day in corn oil, intragastrically. Fenofibrate significantly decreased mean arterial pressure and plasma IL-6. In kidney homogenates, fenofibrate increased CYP4A and decreased COX-2 expression. There were no differences in renal cytochrome P450, family 2, subfamily c, polypeptide 23 (CYP2C23 and soluble expoxide hydrolase (sEH expression between the groups. Our results suggest that the blood pressure lowering effect of PPAR-α activation by fenofibrate involves the reduction of plasma IL-6 and COX-2, while increasing CYP4A expression during DOCA-salt hypertension. Our results may also suggest that PPAR-α activation protects the kidney against renal injury via decreased COX-2 expression.

  7. The influence of DOCA-salt hypertension and chronic administration of the FAAH inhibitor URB597 on KCa2.3/KCa3.1-EDH-type relaxation in rat small mesenteric arteries.

    Science.gov (United States)

    Kloza, Monika; Baranowska-Kuczko, Marta; Malinowska, Barbara; Karpińska, Olga; Harasim-Symbor, Ewa; Kasacka, Irena; Kozłowska, Hanna

    2017-12-01

    The aim of this study was to examine the influence of deoxycorticosterone acetate-salt (DOCA-salt) hypertension and chronic treatment with the fatty acid amide hydrolase inhibitor, URB597, on small and intermediate conductance calcium-activated potassium channels and endothelium-dependent hyperpolarization (K Ca 2.3/K Ca 3.1-EDH) in rat small mesenteric arteries (sMAs). The EDH-type response was investigated, in endothelium-intact sMAs using a wire myograph, by examining acetylcholine-evoked vasorelaxation in the presence of N ω -nitro-L-arginine methyl ester and indomethacin (inhibitors of nitric oxide synthase and cyclooxygenase, respectively). In normo- and hypertension the efficacy of EDH-type relaxation was similar and inhibition of K Ca 2.3 and K Ca 3.1 by UCL1684 and TRAM-34, respectively, given alone or in combination, attenuated EDH-mediated vasorelaxation. K Ca 3.1 expression and NS309 (K Ca 2.3/K Ca 3.1 activator)-induced relaxation was reduced in sMAs of DOCA-salt rats. Endothelium denudation and incubation with UCL1684 and TRAM-34 attenuated the maximal NS309-evoked vasorelaxation in both groups. URB597 had no effect in functional studies, but increased the expression of K Ca 3.1 in the sMAs. K Ca 2.3/K Ca 3.1-EDH-mediated relaxation was maintained in the sMAs of DOCA-salt rats despite endothelial dysfunction and down-regulation of K Ca 3.1. Furthermore, K Ca 3.1 played a key role in the EDH-type dilator response of sMAs in normo- and hypertension. The hypotensive effect of URB597 is independent of K Ca 2.3/K Ca 3.1-EDH-type relaxation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luis R. Cassinotti

    2018-02-01

    Full Text Available Overactivity of the sympathetic nervous system and central endothelins (ETs are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Following brain ET receptor type A (ETA blockade by BQ610 (selective antagonist, transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  9. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    Science.gov (United States)

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  10. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  11. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  12. (−-Epicatechin Reduces Blood Pressure and Improves Left Ventricular Function and Compliance in Deoxycorticosterone Acetate-Salt Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Douglas Jackson

    2018-06-01

    Full Text Available (−-Epicatechin (E is a flavanol found in green tea and cocoa and has been shown to attenuate tumour necrosis factor alpha (TNF-α-mediated inflammation, improve nitric oxide levels, promote endothelial nitric oxide synthase (eNOS activation and inhibit NADPH oxidase. This study investigated the effect of 28 days of low epicatechin dosing (1 mg/kg/day on the cardiovascular function of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Wistar rats (n = 120, 8 weeks of age underwent uninephrectomy and were randomised into four groups (uninephrectomy (UNX, UNX + E, DOCA, DOCA + E. DOCA and DOCA + E rats received 1% NaCl drinking water along with subcutaneous injections of 25 mg deoxycorticosterone-acetate (in 0.4 mL of dimethylformamide every fourth day. UNX + E and DOCA + E rats received 1 mg/kg/day of epicatechin by oral gavage. Single-cell micro-electrode electrophysiology, Langendorff isolated-heart assessment and isolated aorta and mesenteric organ baths were used to assess cardiovascular parameters. Serum malondialdehyde concentration was used as a marker of oxidative stress. Myocardial stiffness was increased and left ventricular compliance significantly diminished in the DOCA control group, and these changes were attenuated by epicatechin treatment (p < 0.05. Additionally, the DOCA + E rats showed significantly reduced blood pressure and malondialdehyde concentrations; however, there was no improvement in left ventricular hypertrophy, electrophysiology or vascular function. This study demonstrates the ability of epicatechin to reduce blood pressure, prevent myocardial stiffening and preserve cardiac compliance in hypertrophied DOCA-salt rat hearts.

  13. Central Infusion of Angiotensin II Type 2 Receptor Agonist Compound 21 Attenuates DOCA/NaCl-Induced Hypertension in Female Rats

    Directory of Open Access Journals (Sweden)

    Shu-Yan Dai

    2016-01-01

    Full Text Available The present study investigated whether central activation of angiotensin II type 2 receptor (AT2-R attenuates deoxycorticosterone acetate (DOCA/NaCl-induced hypertension in intact and ovariectomized (OVX female rats and whether female sex hormone status has influence on the effects of AT2-R activation. DOCA/NaCl elicited a greater increase in blood pressure in OVX females than that in intact females. Central infusion of compound 21, a specific AT2-R agonist, abolished DOCA/NaCl pressor effect in intact females, whereas same treatment in OVX females produced an inhibitory effect. Real-time RT-PCR analysis revealed that DOCA/NaCl enhanced the mRNA expression of hypertensive components including AT1-R, ACE-1, and TNF-α in the paraventricular nucleus of hypothalamus in both intact and OVX females. However, the mRNA expressions of antihypertensive components such as AT2-R, ACE-2, and IL-10 were increased only in intact females. Central AT2-R agonist reversed the changes in the hypertensive components in all females, while this agonist further upregulated the expression of ACE2 and IL-10 in intact females, but only IL-10 in OVX females. These results indicate that brain AT2-R activation plays an inhibitory role in the development of DOCA/NaCl-induced hypertension in females. This beneficial effect of AT2-R activation involves regulation of renin-angiotensin system and proinflammatory cytokines.

  14. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  15. Allopurinol does not decrease blood pressure or prevent the development of hypertension in the deoxycorticosterone acetate-salt rat model.

    Science.gov (United States)

    Szasz, Theodora; Linder, A Elizabeth; Davis, Robert P; Burnett, Robert; Fink, Gregory D; Watts, Stephanie W

    2010-12-01

    Reactive oxygen species play an important role in the pathogenesis of hypertension, disease in which reactive oxygen species levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a reactive oxygen species-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on blood pressure have yielded controversial results. We hypothesized that XO inhibition would decrease blood pressure or attenuate the development of deoxycorticosterone acetate (DOCA)-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg per day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by high-performance liquid chromatography measurements of XO metabolites in urine, serum, and tissues demonstrating a decrease in products, increase in substrates, and detection of the active metabolite of allopurinol, oxypurinol. We monitored blood pressure continuously through radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model.

  16. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    OpenAIRE

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats...

  17. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. © 2014 American Heart Association, Inc.

  18. Uric acid does not affect the acetylcholine-induced relaxation of aorta from normotensive and deoxycorticosterone acetate-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Watts, Stephanie W

    2010-06-01

    Uric acid (UA) results from xanthine oxidase (XO) catabolism of xanthine and is the final product of purine catabolism in humans. In this species, hyperuricemia is associated with gout, nephropathy, and increased cardiovascular disease risk. Although the effects of hyperuricemia in vascular biology are overall controversial, UA has been described as an antioxidant and as potentially improving endothelial function. Hypertension is associated with endothelial dysfunction. We hypothesized that UA improves the endothelial function of aorta from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. UA (100 microM) in the presence of the uricase inhibitor oxonic acid (10 microM) did not modify relaxation to acetylcholine (ACh) (1 nM-10 microM) in the aorta from nontreated, sham normotensive, and DOCA-salt hypertensive rats [response to 10 microM ACh for UA versus vehicle, respectively: nontreated = 37 +/- 7 versus 48 +/- 7%, sham = 53 +/- 15 versus 57 +/- 20%, DOCA = 81 +/- 4 versus 85 +/- 2% from 20 microM prostaglandin 2alpha (PGF(2alpha))-induced contraction]. Allopurinol (100 microM), a XO inhibitor, did not significantly alter the ACh-induced relaxation of sham and DOCA aortic rings (response to 10 microM ACh for allopurinol versus vehicle, respectively: sham = 61 +/- 5 versus 68 +/- 9%, DOCA = 87 +/- 6 versus 88 +/- 3% from 20 microM PGF(2alpha)-induced contraction). Uricemia, ranging from unmeasurable to 547 microM in sham and to 506 microM in DOCA rats, was not significantly different between these two groups. The expression and activity of XO, as well as the expression of uricase, were not different between sham and DOCA rat aorta. We conclude that, at least in vitro, UA does not affect the ACh-induced relaxation of normotensive and DOCA-salt hypertensive rats.

  19. Effects of Lactobacillus plantarum TWK10-Fermented Soymilk on Deoxycorticosterone Acetate-Salt-Induced Hypertension and Associated Dementia in Rats

    Directory of Open Access Journals (Sweden)

    Te-Hua Liu

    2016-05-01

    Full Text Available Oxidative stress resulting from excessive production of reactive oxygen species is the major mediator of neuronal cell degeneration observed in neurodegenerative diseases, such as Alzheimer’s disease (AD and vascular dementia (VaD. Additionally, hypertension has been shown to be a positive risk factor for VaD. Therefore, the objective of this study was to investigate the effects of Lactobacillus plantarum strain TWK10 (TWK10-fermented soymilk on the protection of PC-12 cells in H2O2-, oxygen-glucose deprivation (OGD- and deoxycorticosterone acetate (DOCA-salt-induced rat models of VaD. Notably, the viabilities of H2O2-treated PC-12 cells and OGD model were significantly increased by treatment with TWK10-fermented soymilk ethanol extract (p < 0.05. In addition, oral administration of TWK10-fermented soymilk extract in DOCA-salt hypertension-induced VaD rats resulted in a significant decrease in blood pressure (p < 0.05, which was regulated by inhibiting ACE activity and promoting NO production, in addition to decreased escape latency and increased target crossing (p < 0.05. In conclusion, these results demonstrated that TWK10-fermented soymilk extract could improve learning and memory in DOCA-salt hypertension-induced VaD rats by acting as a blood pressure-lowering and neuroprotective agent.

  20. Role of Acetyl Salicylic Acid in Controlling the DOCA-Salt Induced Hypertension in Rats by Stimulating the Synthesis of r-Cortexin in the Kidney.

    Science.gov (United States)

    Maji, Uttam Kumar; Jana, Pradipta; Chatterjee, Mitali; Karmakar, Sanmay; Saha, Arup; Ghosh, Tamal Kanti

    2018-03-01

    Hypertension is a metabolic disease which is caused by vasoconstriction and that results into elevated blood pressure. A chronic hypertensive condition affects and even damages to various systems in the body. Presence of renal cortexin (r-cortexin), an antihypertensive protein, which is released from the kidney cortex controls the blood pressure. The effect of r-cortexin was mediated through nitric oxide (NO), a universal vasodilating agent. In our study, acetyl salicylic acid (aspirin), a well-known activator of the endothelial nitric oxide synthase (eNOS) induced r-cortexin synthesis. The hypertensive rat model was prepared by injecting deoxy corticosterone acetate (DOCA). Synthesis of r-cortexin was measured by the anti-r-cortexin antibody which was raised in adult white Wister albino rat model. NO level was determined by using methemoglobin method and later confirmed by chemiluminescence method. Change in blood pressure was determined indirectly by using NIBP monitoring system. Aspirin increased the r-cortexin expression from 64.36 ± 12.6 nM to 216.7 ± 21.31 nM in DOCA induced hypertensive rats. The mechanism was proved with the findings of increased level of NO from 0.4 to 1.9 µM. The DOCA induced blood pressure was also decreased from 139.39 ± 7.36 mm of Hg to 116.57 ± 6.89 mm of Hg in case of systolic blood pressure and in case of diastolic pressure from 110.41 ± 7 mm of Hg to 86.4 ± 2.76 mm of Hg that are quite approximate. So, from this study it has been found that aspirin induces the r-cortexin synthesis in kidney cortex through the activation of eNOS in DOCA induced hypertensive rats.

  1. Tx2-6 toxin of the Phoneutria nigriventer spider potentiates rat erectile function☆

    Science.gov (United States)

    Nunes, K.P.; Costa-Gonçalves, A.; Lanza, L.F.; Cortes, S.F.; Cordeiro, M.N.; Richardson, M.; Pimenta, A.M.C.; Webb, R.C.; Leite, R.; De Lima, M.E.

    2011-01-01

    The venom of the spider Phoneutria nigriventer contains several toxins that have bioactivity in mammals and insects. Accidents involving humans are characterized by various symptoms including penile erection. Here we investigated the action of Tx2-6, a toxin purified from the P. nigriventer spider venom that causes priapism in rats and mice. Erectile function was evaluated through changes in intracavernosal pressure/mean arterial pressure ratio (ICP/MAP) during electrical stimulation of the major pelvic ganglion (MPG) of normotensive and deoxycorticosterone-acetate (DOCA)-salt hypertensive rats. Nitric oxide (NO) release was detected in cavernosum slices with fluorescent dye (DAF-FM) and confocal microscopy. The effect of Tx2-6 was also characterized after intracavernosal injection of a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME. Subcutaneous or intravenous injection of Tx2-6 potentiated the elevation of ICP/MAP induced by ganglionic stimulation. L-NAME inhibited penile erection and treatment with Tx2-6 was unable to reverse this inhibition. Tx2-6 treatment induced a significant increase of NO release in cavernosum tissue. Attenuated erectile function of DOCA-salt hypertensive rats was fully restored after toxin injection. Tx2-6 enhanced erectile function in normotensive and DOCA-salt hypertensive rats, via the NO pathway. Our studies suggest that Tx2-6 could be important for development of new pharmacological agents for treatment of erectile dysfunction. PMID:18397797

  2. Curative effect of sesame oil in a rat model of chronic kidney disease.

    Science.gov (United States)

    Liu, Chuan-Teng; Chien, Se-Ping; Hsu, Dur-Zong; Periasamy, Srinivasan; Liu, Ming-Yie

    2015-12-01

    Chronic kidney disease causes a progressive and irreversible loss of renal function. We investigated the curative effect of sesame oil, a natural, nutrient-rich, potent antioxidant, in a rat model of chronic kidney disease. Chronic kidney disease was induced by subcutaneously injecting uni-nephrectomized rats with deoxycorticosterone acetate (DOCA) and 1% NaCl [DOCA/salt] in drinking water. Four weeks later, the rats were gavaged with sesame oil (0.5 or 1 mL/kg per day) for 7 days. Renal injury, histopathological changes, hydroxyl radical, peroxynitrite, lipid peroxidation, Nrf2, osteopontin expression, and collagen were assessed 24 h after the last dose of sesame oil. Blood urea nitrogen, creatinine, urine volume, and albuminuria were significantly higher in the DOCA/salt treated rats than in control rats. Sesame oil significantly decreased these four tested parameters in DOCA/salt treated rats. In addition, creatinine clearance rate and nuclear Nrf2 expression were significantly decreased in the DOCA/salt treated rats compared to control rats. Sesame oil significantly decreased hydroxyl radical, peroxynitrite level, lipid peroxidation, osteopontin, and renal collagen deposition, but increased creatinine clearance rate and nuclear Nrf2 expression in DOCA/salt treated rats. We conclude that supplementation of sesame oil mitigates DOCA/salt induced chronic kidney disease in rats by activating Nrf2 and attenuating osteopontin expression and inhibiting renal fibrosis in rats. © 2015 Asian Pacific Society of Nephrology.

  3. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  4. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    Science.gov (United States)

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. O impacto de um sistema de agendamento antecipado de docas para carga e descarga na gestão da cadeia de suprimentos

    Directory of Open Access Journals (Sweden)

    Fabrício Mello Mulato

    2006-03-01

    Full Text Available O agendamento antecipado de docas para recebimento e expedição de veículos pode gerar grandes benefícios para todos os envolvidos na cadeia de suprimentos, por meio de melhorias na eficiência, na utilização dos recursos, no fluxo de cargas e na visibilidade. Tempos de espera ao redor das docas têm como conseqüência a perda de receitas, custos extras, insatisfação de motoristas e alta rotatividade de funcionários para as transportadoras. Este artigo procura mostrar porque alguns aspectos relacionados ao agendamento e programação de docas não podem ser subestimados e como esse conceito pode trazer efeitos positivos que se transformam em vantagem competitiva. Para ilustrar os benefícios dessa prática, foram realizados estudos de casos em empresas que implantaram um sistema informatizado para este tipo de problema. Nos estudos de casos, observou-se que a ferramenta implementada trouxe melhorias nas variáveis analisadas: a distribuição mais uniforme dos carregamentos ao longo do mês e a redução do tempo médio de permanência dos veículos.     Palavras-chaves: Agendamento de docas, Cadeia de Suprimentos, Logística.

  6. Proteinuria in mice expressing PKB/SGK-resistant GSK3.

    Science.gov (United States)

    Boini, Krishna M; Amann, Kerstin; Kempe, Daniela; Alessi, Dario R; Lang, Florian

    2009-01-01

    SGK1 is critically important for mineralocorticoid/salt-induced glomerular injury. SGK1 inactivates GSK3, which downregulates Snail, a DNA-binding molecule repressing the transcription of nephrin, a protein critically important for the integrity of the glomerular slit membrane. PKB/SGK-dependent GSK regulation is disrupted in mice carrying a mutation, in which the serine in the SGK/PKB-phosphorylation consensus sequence is replaced by alanine. The present study explored whether PKB/SGK-dependent GSK3 regulation influences glomerular proteinuria. Gene-targeted knockin mice with mutated and thus PKB/SGK-resistant GSK3alpha,beta (gsk3(KI)) were compared with their wild-type littermates (gsk3(WT)). gsk3(KI) and gsk3(WT) mice were implanted with DOCA release pellets and offered 1% saline as drinking water for 21 days. Under standard diet, tap water intake and absence of DOCA, urinary flow rate, glomerular filtration rate, and urinary albumin excretion were significantly larger and blood pressure was significantly higher in gsk3(KI) than in gsk3(WT) mice. Within 18 days, DOCA/salt treatment significantly increased fluid intake and urinary flow rate, urinary protein and albumin excretion, and blood pressure in both genotypes but the respective values were significantly higher in gsk3(KI) than in gsk3(WT) mice. Plasma albumin concentration was significantly lower in gsk3(KI) than in gsk3(WT) mice. Proteinuria was abrogated by lowering of blood pressure with alpha(1)-blocker prazosin (1 microg/g body wt) in 8-mo-old mice. According to immunofluorescence, nephrin at 3 and 8 mo and podocin expression at 3 mo were significantly lower in gsk3(KI) than in gsk3(WT) mice. After 18 days, DOCA/salt treatment renal glomerular sclerosis and tubulointerstitial damage were significantly more pronounced in gsk3(KI) than in gsk3(WT) mice. The observations reveal that disruption of PKB/SGK-dependent regulation of GSK3 leads to glomerular injury with proteinuria, which may at least

  7. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    Science.gov (United States)

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    -epitaxy). These calcite biominerals are more resistant to chemical weathering by salt-enhanced dissolution, apparently due to the incorporation of organics (bacterial exopolymeric substances, EPS). Conversely, on silicate substrates, non-oriented vaterite forms, leading to limited protection. These preliminary results indicate that bacterial treatments have a significant potential to protect the stone built cultural heritage. [1] De Muynck et al. (2010) Ecol. Eng. 36, 118-136. [2] Jimenez-Lopez et al. (2007) Chemosphere 68, 1929-1936.

  9. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  10. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  11. Vascular reactivity of mesenteric arteries and veins to endothelin-1 in a murine model of high blood pressure.

    Science.gov (United States)

    Pérez-Rivera, Alex A; Fink, Gregory D; Galligan, James J

    2005-06-01

    We characterized vascular reactivity to endothelin-1 (ET-1) in mesenteric vessels from DOCA-salt hypertensive and SHAM control mice and assessed the effect that endothelial-derived vasodilators have on ET-1-induced vasoconstriction. Changes in the diameter of unpressurized small mesenteric arteries and veins (100- to 300-microm outside diameter) were measured in vitro using computer-assisted video microscopy. Veins were more sensitive than arteries to the contractile effects of ET-1. There was a decrease in arterial maximal responses (E(max)) compared to veins, this effect was larger in DOCA-salt arteries. The selective ET(B) receptor agonist, sarafotoxin 6c (S6c), contracted DOCA-salt and SHAM veins but did not contract arteries. The ET(B) receptor antagonist, BQ-788 (100 nM), but not the ET(A) receptor antagonist, BQ-610 (100 nM), blocked S6c responses. BQ-610 partially inhibited responses to ET-1 in mesenteric veins from DOCA-salt and SHAM mice while BQ-788 did not affect responses to ET-1. Co-administration of both antagonists inhibited responses to ET-1 to a greater extent than BQ-610 alone suggesting a possible functional interaction between ET(A) and ET(B) receptors. Responses to ET-1 in mesenteric arteries were completely inhibited by BQ-610 while BQ-788 did not affect arterial responses. Nitric oxide synthase inhibition potentiated ET-1 responses in veins from SHAM but not DOCA-salt mice. There was a prominent role for ET-mediated nitric oxide release in DOCA-salt but not SHAM arteries. In summary, these studies showed a differential regulation of ET-1 contractile mechanisms between murine mesenteric arteries and veins.

  12. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  13. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    International Nuclear Information System (INIS)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-01-01

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value

  14. Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N.; Zhang, Sheng; Worker, Caleb J.; Xiong, Zhenggang; Speth, Robert C.; Feng, Yumei

    2016-01-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT1 receptor–dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. PMID:25421983

  15. Enhancement in seed germinability of rice (oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress

    International Nuclear Information System (INIS)

    Habib, N.; Ashraf, M.; Ahmad, M.S.

    2010-01-01

    The seeds of two fine-rice (Shaheen and PB-95) and two coarse rice (IRRI-6 and KS-282) cultivars were soaked in varying levels of nitric oxide (NO) (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 mM) and then exposed to 80 mM NaCl in sand culture. Application of salt stress significantly reduced seed germinability parameters of all four rice cultivars in terms of percent seed germinated, germination index and seedling fresh and dry weights. The toxic effects of salt stress in reducing seed germinability were greater in fine rice cultivars (Shaheen and PB-95) as compared to those in coarse ones (IRRI-6 and KS-282). Although, the application of lower levels of nitric oxide (0.05, 0.1 and 0.2 mM) as pre-sowing seed treatment showed a significant improvement, 0.1 and 0.2 mM NO were found to be the most effective in improving seed germinability under salt stress. With a further increase in NO concentration (0.3 mM) as pre-sowing seed treatment, the seed germinability parameters differed non-significantly from those of control plants, while the highest levels (0.4 and 0.5 mM) showed significant inhibitory effects on seed germination and early seedling growth. It was concluded that lower levels of NO (0.1 and 0.2 mM) could be used to effectively enhance seed germination of rice plants under salt stress. (author)

  16. Enhanced antioxidative responses of a salt-resistant wheat cultivar ...

    African Journals Online (AJOL)

    Enhanced antioxidative responses of a salt-resistant wheat cultivar facilitate its adaptation to salt stress. L Chen, H Yin, J Xu, X Liu. Abstract. Wheat cultivars capable of accumulating minerals under salt stress are of considerable interest for their potential to improve crop productivity and crop quality. This study addressed the ...

  17. Changes in Sea Salt Emissions Enhance ENSO Variability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Russell, Lynn M.; Lou, Sijia; Lamjiri, Maryam A.; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2016-11-15

    Two 150-year pre-industrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 W m-2 (-0.4 W m-2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase, of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Due to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day-1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day-1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.

  18. Omethoate treatment mitigates high salt stress inhibited maize seed germination.

    Science.gov (United States)

    Yang, Kejun; Zhang, Yifei; Zhu, Lianhua; Li, Zuotong; Deng, Benliang

    2018-01-01

    Omethoate (OM) is a highly toxic organophophate insecticide, which is resistant to biodegradation in the environment and is widely used for pest control in agriculture. The effect of OM on maize seed germination was evaluated under salt stress. Salt (800mM) greatly reduced germination of maize seed and this could be reversed by OM. Additionally, H 2 O 2 treatment further improved the effect of OM on seed germination. Higher H 2 O 2 content was measured in OM treated seed compared to those with salt stress alone. Dimethylthiourea (DTMU), a specific scavenger of reactive oxygen species (ROS), inhibited the effect of OM on seed germination, as did IMZ (imidazole), an inhibitor of NADPH oxidase. Abscisic acid (ABA) inhibited the effect of OM on seed germination, whereas fluridone, a specific inhibitor of ABA biosynthesis, enhanced the effect of OM. Taken together, these findings suggest a role of ROS and ABA in the promotion of maize seed germination by OM under salt stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  20. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  1. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  2. Model based population PK-PD analysis of furosemide for BP lowering effect: A comparative study in primary and secondary hypertension.

    Science.gov (United States)

    Shukla, Mahendra; Ibrahim, Moustafa M A; Jain, Moon; Jaiswal, Swati; Sharma, Abhisheak; Hanif, Kashif; Lal, Jawahar

    2017-11-15

    Though numerous reports have demonstrated multiple mechanisms by which furosemide can exert its anti-hypertensive response. However, lack of studies describing PK-PD relationship for furosemide featuring its anti-hypertensive property has limited its usage as a blood pressure (BP) lowering agent. Serum concentrations and mean arterial BP were monitored following 40 and 80mgkg -1 multiple oral dose of furosemide in spontaneously hypertensive rats (SHR) and DOCA-salt induced hypertensive (DOCA-salt) rats. A simultaneous population PK-PD relationship using E max model with effect compartment was developed to compare the anti-hypertensive efficacy of furosemide in these rat models. A two-compartment PK model with Weibull-type absorption and first-order elimination best described the serum concentration-time profile of furosemide. In the present study, post dose serum concentrations of furosemide were found to be lower than the EC 50 . The EC 50 predicted in DOCA-salt rats was found to be lower (4.5-fold), whereas the tolerance development was higher than that in SHR model. The PK-PD parameter estimates, particularly lower values of EC 50 , K e and Q in DOCA-salt rats as compared to SHR, pinpointed the higher BP lowering efficacy of furosemide in volume overload induced hypertensive conditions. Insignificantly altered serum creatinine and electrolyte levels indicated a favorable side effect profile of furosemide. In conclusion, the final PK-PD model described the data well and provides detailed insights into the use of furosemide as an anti-hypertensive agent. Copyright © 2017. Published by Elsevier B.V.

  3. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-07-01

    Full Text Available The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the

  4. Ascorbate peroxidase gene from Brassica napus enhances salt and ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... enhances salt and drought tolerances in Arabidopsis ... Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, .... CCTTCGCAAGACCCTTCCTC-3′) and the reverse primer annealed.

  5. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    OpenAIRE

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chlorid...

  6. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses

    International Nuclear Information System (INIS)

    Ahmad, R.; Hussain, J.

    2014-01-01

    Abiotic stresses are the most important contributors towards low productivity of major food crops. Various attempts have been made to enhance abiotic stress tolerance of crop plants by classical breeding and genetic transformation. Genetic transformation with glycinebetaine (GB) synthesizing enzymes' gene(s) in naturally non accumulating plants has resulted in enhanced tolerance against variety of abiotic stresses. Present study was aimed to evaluate the performance of GB synthesizing transgenic potato plants against salt and cold stresses. Transgenic potato plants were challenged against salt and cold stresses at whole plant level. Transgenic lines were characterized to determine the transgene copy number. Different parameters like integrity, chlorophyll contents, tuber yield and vegetative biomass were studied to monitor the stress tolerance of transgenic potato plants. The results were compared with Non-transgenic (NT) plants and statistically analyzed to evaluate significant differences. Multi-copy insertion of expression cassette was found in both transgenic lines. Upon salt stress, transgenic plants maintained better growth as compared to NT plants. The tuber yield of transgenic plants was significantly greater than NT plants in salt stress. Transgenic plants showed improved membrane integrity against cold stress by depicting appreciably reduced ion leakage as compared to NT plants. Moreover, transgenic plants showed significantly less chlorophyll bleaching than NT plants upon cold stress. In addition, NT plants accumulated significantly less biomass, and yielded fewer tubers as compared to transgenic plants after cold stress treatment. The study will be a committed step for field evaluation of transgenic plants with the aim of commercialization. (author)

  7. Influência de vasoconstritores associados a anestésicos locais sobre a pressão arterial de ratos hipertensos e normotensos Influence of vasoconstrictors associated with local anesthetics on the arterial pressure of hypertensive and normotensive rats

    Directory of Open Access Journals (Sweden)

    Apparecido Neri Daniel

    1999-07-01

    Full Text Available A utilização de anestésicos locais associados a vasoconstritores em pacientes hipertensos é controversa. Neste estudo, verificamos a influência desta associação sobre a pressão arterial caudal (PA em ratos hipertensos DOCA-sal. Após ligeira anestesia com éter, os anestésicos GRUPO I - lidocaína 2% sem vasoconstritor, GRUPO II - lidocaína com fenilefrina, GRUPO III - lidocaína a 2% com noradrenalina, GRUPO IV - prilocaína 3% com felipressina, GRUPO V - mepivacaína 2% com adrenalina e GRUPO VI - mepivacaína com noradrenalina foram injetados na submucosa da boca (anestesia infiltrativa, em ratos DOCA-sal e controles. A PA foi determinada 5 e 15 minutos após a primeira dose do anestésico e também 5 e 15 minutos após a segunda dose. Os dados obtidos indicaram que: a a PA dos ratos DOCA-sal (193,05 ± 4,25 mmHg; n = 43 foi significativamente superior àquela observada nos animais controles (115,64 ± 2,47 mmHg; n = 43 e, b não houve variação significativa nas PA observadas em animais DOCA-sal e controles pela administração dos anestésicos locais testados. Assim, nossos dados experimentais sugerem que a presença de agentes vasoconstritores associados à lidocaína 2%, à prilocaína 3% e à mepivacaína 2% não interferem na PA desses animais, neste modelo experimental de hipertensão.The utilization of local anesthetics associated with vasoconstrictors in hypertensive patients is controversial. The purpose of this investigation was to verify the influence of this association on the arterial pressure (AP in DOCA-salt hypertensive rats. After light ether anesthesia, the anesthetics (Group I - lidocaine 2% without vasoconstrictor; Group II - lidocaine 2% with phenylephrine, Group III - lidocaine 2% with noradrenaline- Group IV - prylocaine 3% with felypressin; Group V - mepivacaine 2% with epinephrine, and Group VI - mepivacaine 2% with norepinephrine were injected into mucobuccal fold (infiltration anesthesia, in DOCA-salt

  8. Enhanced integrated nonthermal treatment system study

    International Nuclear Information System (INIS)

    Biagi, C.; Schwinkendorf, B.; Teheranian, B.

    1997-02-01

    The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer

  9. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.

    Science.gov (United States)

    Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin

    2017-01-01

    Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role

  10. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall

  11. Beta-adrenoceptor changes in hypertension: cause or consequence of the elevation in blood pressure?

    NARCIS (Netherlands)

    Kanczik, R.; Khamssi, M.; Michel, M. C.; Brodde, O. E.

    1988-01-01

    Cardiac, pulmonary and renal beta-adrenoceptor density and subtype distribution were measured by radioligand binding in three rat models of acquired hypertension. Dahl salt-sensitive (DS) rats on a high-sodium diet, renal hypertensive rats and DOCA-salt rats. The results were compared with

  12. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Wenli Wu

    2017-06-01

    Full Text Available Brassinosteroids (BR regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR's impact on salt stress tolerance in perennial ryegrass (Lolium perenne L. The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl. The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL, malondialdehyde (MDA, and reduced photosynthetic rate (Pn. Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs. The EBR applications also alleviated decline of superoxide dismutase (SOD and catalase (CAT and ascorbate peroxidase (APX activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA and gibberellin A4 (GA4 content but reduced indole-3-acetic acid (IAA, zeatin riboside (ZR, isopentenyl adenosine (iPA, and salicylic acid (SA. Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+ content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+ in perennial ryegrass.

  13. Ascorbate peroxidase gene from Brassica napus enhances salt and ...

    African Journals Online (AJOL)

    Moreover, under the drought stress, BnAPX transgenic seeds displayed higher germination rate and the seedlings showed reduced wither and apoptosis phenomena. Therefore, our studies revealed that BnAPX was able to enhance the environmental tolerance of Arabidopsis to salt and drought stresses. In addition ...

  14. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  15. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    International Nuclear Information System (INIS)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  16. Reduction of salt content of fish sauce by ethanol treatment.

    Science.gov (United States)

    Liu, Yu; Xu, Ying; He, Xiaoxia; Wang, Dongfeng; Hu, Shiwei; Li, Shijie; Jiang, Wei

    2017-08-01

    Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.

  17. The effect of salt replacers and flavor enhancer on the processing characteristics and consumer acceptance of turkey sausages.

    Science.gov (United States)

    Pietrasik, Zeb; Gaudette, Nicole J

    2015-07-01

    Producing high-quality processed meats that contain reduced amounts of sodium chloride is a major challenge facing industry owing to the importance of sodium chloride toward the functional, microbial stability and sensory properties of these products. In order to create reduced sodium alternatives, a number of commercial salt replacers and flavor enhancers have entered the market; however, their ability to be applied in processed meats requires investigation. In this study, two salt replacers (Ocean's Flavor - OF45, OF60) and one flavor enhancer (Fonterra™ Savoury Powder - SP) were evaluated for their ability to effectively reduce sodium while maintaining the functional and sensory properties of turkey sausages. Functionality via instrumental measures (yield, purge loss, pH, expressible moisture, proximate composition, sodium content, color, texture), safety (microbiological assessment) and consumer acceptability were obtained on all samples. All non-control treatments resulted in products with sodium chloride contents below Canada's Health Check™ Program target for processed meats. There was no detrimental effect on water binding and texture in treatments when NaCl was substituted with OF60 sea salt replacers. Sodium reduction had no negative effect on the shelf life of the turkey sausages with up to 60 days of refrigerated storage. Consumer acceptability for all attributes did not differ significantly, except for aftertaste, which scored lowest for OF45 compared with the control (regular NaCl content). This work demonstrated that salt replacers could potentially substitute for NaCl in smoked turkey sausages; however, further flavor optimization may be required to suppress undesirable levels of bitterness elicited by some of these ingredients. © 2014 Society of Chemical Industry.

  18. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  19. Enhancing consumer liking of low salt tomato soup over repeated exposure by herb and spice seasonings.

    Science.gov (United States)

    Ghawi, Sameer Khalil; Rowland, Ian; Methven, Lisa

    2014-10-01

    There is strong evidence for the link between high dietary sodium and increased risk of cardiovascular disease which drives the need to reduce salt content in foods. In this study, herb and spice blends were used to enhance consumer acceptability of a low salt tomato soup (0.26% w/w). Subjects (n = 148) scored their liking of tomato soup samples over 5 consecutive days. The first and last days were pre-and post-exposure visits where all participants rated three tomato soup samples; standard, low salt and low salt with added herbs and spices. The middle 3 days were the repeated exposure phase where participants were divided into three balanced groups; consuming the standard soup, the low salt soup, or the low salt soup with added herbs and spices. Reducing salt in the tomato soup led to a significant decline in consumer acceptability, and incorporating herbs and spices did not lead to an immediate enhancement in liking. However, inclusion of herbs and spices enhanced the perception of the salty taste of the low salt soup to the same level as the standard. Repeated exposure to the herbs and spice-modified soup led to a significant increase in the overall liking and liking of flavour, texture and aftertaste of the soup, whereas no changes in liking were observed for the standard and low salt tomato soups over repeated exposure. Moreover, a positive trend in increasing the post-exposure liking of the herbs and spices soup was observed. The findings suggest that the use of herbs and spices is a useful approach to reduce salt content in foods; however, herbs and spices should be chosen carefully to complement the food as large contrasts in flavour can polarise consumer liking. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    Directory of Open Access Journals (Sweden)

    Peipei Wei

    2016-07-01

    Full Text Available The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-, on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl, enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress.

  1. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Ding, Jing; Yu, Tao; Shen, Xiangyang

    2015-01-01

    The enhanced heat transfer performances of solar receiver with spirally grooved pipe were theoretically investigated. The physical model of heat absorption process was proposed using the general heat transfer correlation of molten salt in smooth and spirally grooved pipe. According to the calculation results, the convective heat transfer inside the receiver can remarkably enhance the heat absorption process, and the absorption efficiency increased with the flow velocity and groove height, while the wall temperature dropped. As the groove height increased, the heat losses of convection and radiation dropped with the decrease of wall temperature, and the average absorption efficiency of the heat receiver can be increased. Compared with the heat receiver with smooth pipe, the heat absorption efficiency of heat receiver with spirally grooved pipe e/d = 0.0475 can rise for 0.7%, and the maximum bulk fluid temperature can be increased for 31.1 °C. As a conclusion, spirally grooved pipe can be a very effective way for heat absorption enhancement of solar receiver, and it can also increase the operating temperature of molten salt. - Highlights: • Spirally grooved tube is a very effective way for solar receiver enhancement. • Heat absorption model of receiver is proposed with general heat transfer correlation. • Spirally groove tube increases absorption efficiency and reduces wall temperature. • Operating temperature of molten salt remarkably increases with groove height. • Heat absorption performance is promoted for first and second thermodynamics laws

  2. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  3. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  4. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  5. Hydrometallurgical treatment of plutonium. Bearing salt baths waste

    International Nuclear Information System (INIS)

    Bros, P.; Gozlan, J.P.; Lecomte, M.; Bourges, J.

    1993-01-01

    The salt flux issuing from the electrorefining of plutonium metal alloy in salt baths (KCI + NaCI) poses a difficult problem of the back-end alpha waste management. An alternative to the salt process promoted by Los Alamos Laboratory is to develop a hydrometallurgical treatment. A new process based on the electrochemistry technique in aqueous solution has been defined and tested successfully in the CEA. The diagram of the process exhibits two principal steps: in the head-end, a dissolution in HNO 3 medium accompanied with an electrolytic dechlorination leading to a quantitative elimination of chloride as CI 2 gas followed by its trapping one soda lime cartridge, a complete oxidative dissolution of the refractory Pu residues by electrogenerated Ag(II), in the back-end: the Pu and Am recoveries by chromatographic extractions. (authors). 10 figs., 9 refs

  6. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  7. Enhanced Performance of Thin Film Composite Forward Osmosis Membrane by Chemical Post-Treatment

    Science.gov (United States)

    Liu, Zheng; Chen, Jiangrong; Cao, Zhen; Wang, Jian; Guo, Chungang

    2018-01-01

    Forward osmosis is an attractive technique in water purification and desalination fields. Enhancement of the forward osmosis membrane performance is essential to the application of this technique. In this study, an optimized chemical post-treatment approach which was used to improve RO membrane performance was employed for enhancing water flux of thin film composite forward osmosis membrane. Home-made polysulfide-based forward osmosis membrane was prepared and nitric acid, sulfuric acid, ethanol, 2-propanol were employed as post-treatment solutions. After a short-term treatment, all the membrane samples manifested water flux enhancement compared with their untreated counterparts. Over 50% increase of water flux had been obtained by ethanol solution treatment. The swelling, changes of hydrophobicity and solvency in both active layer and substrate were verified as the major causes for the enhancement of the water flux. It is noted that the treatment time and solution concentration should be controlled to get both appropriate water flux and reverse salt flux. The results obtained in this study will be useful for further FO membrane development and application.

  8. A review of salt transport in porous media : assessment methods and salt reduction treatments

    NARCIS (Netherlands)

    Sawdy - Heritage, A.M.; Heritage, A.; Pel, L.

    2008-01-01

    It is an unpalatable fact that while objects can deteriorate through lack of care and attention, they can also deteriorate as a result of inappropriate and misguided interventions. This is particularly the case with regard to salt-related deterioration problems. A successful treatment outcome using

  9. Calcium channel blockers, more than diuretics, enhance vascular protective effects of angiotensin receptor blockers in salt-loaded hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Eiichiro Yamamoto

    Full Text Available The combination therapy of an angiotensin receptor blocker (ARB with a calcium channel blocker (CCB or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP were divided into 6 groups, and they were orally administered (1 vehicle, (2 olmesartan, an ARB, (3 azelnidipine, a CCB, (4 hydrochlorothiazide, a diuretic, (5 olmesartan combined with azelnidipine, or (6 olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB.

  10. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  11. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  12. Association between salt substitutes/enhancers and changes in sodium levels in fast-food restaurants: a cross-sectional analysis.

    Science.gov (United States)

    Scourboutakos, Mary J; Murphy, Sarah A; L'Abbé, Mary R

    2018-03-07

    Restaurant foods have high sodium levels, and efforts have been made to promote reductions. The objective of this study was to understand if salt substitutes and enhancers are associated with changes in sodium levels in fast-food restaurants. A longitudinal database (MENU-FLIP) containing nutrition information for Canadian chain restaurants with 20 or more locations nationally was created in 2010 and updated in 2013 and 2016. In 2016, when available, ingredient lists were collected from restaurant websites and searched for the presence of salt substitutes/enhancers. Changes in sodium levels (per serving) and the prevalence of salt substitutes/enhancers in 222 foods from 12 of the leading fast-food restaurant chains were compared across 3 time points. Sixty-nine percent of foods contained a salt substitute/enhancer. Substitutes/enhancers were found in every restaurant chain ( n = 12) for which ingredient data were available. The most common substitutes/enhancers were yeast extracts (in 30% of foods), calcium chloride (28%), monosodium glutamate (14%) and potassium chloride (12%). Sodium levels in foods that contained substitutes/enhancers decreased significantly more (190 ± 42 mg/serving) over the study period than those in foods that did not contain a substitute/enhancer (40 ± 17 mg/serving, p restaurant foods and are one means by which restaurants may be lowering sodium levels in their foods. At this time, the potential consequences of these findings, if any, are uncertain. Copyright 2018, Joule Inc. or its licensors.

  13. Hanford Supplemental Treatment: Literature and Modeling Review of SRS HLW Salt Dissolution and Fractional Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S.; Flach, G. P.; Martino, C. J.; Zamecnik, J. R.; Harris, M. K.; Wilmarth, W. R.; Calloway, T. B.

    2005-03-23

    In order to accelerate waste treatment and disposal of Hanford tank waste by 2028, the Department of Energy (DOE) and CH2M Hill Hanford Group (CHG), Inc. are evaluating alternative technologies which will be used in conjunction with the Waste Treatment Plant (WTP) to safely pretreat and immobilize the tank waste. Several technologies (Bulk Vitrification and Steam Reforming) are currently being evaluated for immobilizing the pretreated waste. Since the WTP does not have sufficient capacity to pretreat all the waste going to supplemental treatment by the 2028 milestone, two technologies (Selective Dissolution and Fractional Crystallization) are being considered for pretreatment of salt waste. The scope of this task was to: (1) evaluate the recent Savannah River Site (SRS) Tank 41 dissolution campaign and other literature to provide a more complete understanding of selective dissolution, (2) provide an update on the progress of salt dissolution and modeling activities at SRS, (3) investigate SRS experience and outside literature sources on industrial equipment and experimental results of previous fractional crystallization processes, and (4) evaluate recent Hanford AP104 boildown experiments and modeling results and recommend enhancements to the Environmental Simulation Program (ESP) to improve its predictive capabilities. This report provides a summary of this work and suggested recommendations.

  14. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  15. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  16. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  17. Tension cost correlates with mechanical and biochemical parameters in different myocardial contractility conditions

    Directory of Open Access Journals (Sweden)

    Cleci M. Moreira

    2012-01-01

    Full Text Available OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1 streptozotocin-induced diabetic and control Wistar rats; (2 N-nitro-L-arginine methyl ester (L-NAME hypertensive and untreated Wistar rats; (3 deoxycorticosterone acetate (DOCA salt-treated, nephrectomized and salt- and DOCA-treated rats; (4 spontaneous hypertensive rats (SHR and Wistar Kyoto (WKY rats; (5 rats with myocardial infarction and shamoperated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes, a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better

  18. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  19. Enhancement of Jahani (Firouzabad salt dome lithological units, using principal components analysis

    Directory of Open Access Journals (Sweden)

    Houshang Pourcaseb

    2016-04-01

    Full Text Available In this study, principal components analysis was used to investigate lithological characteristics of Jahani salt dome, Firouzabad. The spectral curves of rocks in the study area show that the evaporate rocks have the highest reflectance at specified wavelengths. The highest reflection has been seen in gypsum and white salt, while minimal reflection can be observed in the igneous rocks from the region. The results show that PCs have significantly low information. It is clear that PC1 shows more information in the highest variance while PC2 has less information. Regional geological map and field controls show compatibility between the enhanced zones and outcrops in the field.

  20. Arbuscular Mycorrhizal Fungi Enhance Basil Tolerance to Salt Stress through Improved Physiological and Nutritional Status

    International Nuclear Information System (INIS)

    Salwa, A.; Abeer, H.; Alqarawi, A. A.; Abdullah, E.F.; Egamberdieva, D.

    2016-01-01

    Pot experiments were conducted to evaluate the influence of salinity on some physio-biochemical traits in sweet basil (Ocimum basilicum L.) cultivars with contrasting salt stress tolerance and to determine the role of arbuscular mycorrhizal fungi (AMF) in ameliorating the salt stress in plant. Salt stress (250 mM NaCl) reduced the colonization potential of AMF and inhibited photosynthetic pigments, chlorophyll and carotenoids in plant tissue. AMF inoculated plants contained higher level of chlorophyll pigments. Salt stressed plants showed increased lipid peroxidation, antioxidant enzyme activities like superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). Plants inoculated with AMF showed lower lipid peroxidation and enhanced antioxidant enzyme activities. Moreover, the content of lipids, proline, and soluble sugars in basil plants was improved with AMF inoculation. AMF inoculation reduced accumulation of Na+ and improved nutrient acquisition. In conclusion, AMF were capable to reduce oxidative stress via supporting of the antioxidant system. Salt tolerant cultivar showed higher antioxidant enzyme activity and accumulation of osmolytes. (author)

  1. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔC(p in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔC(p of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔC(p by 0.8-1.0 kJ mol⁻¹ K⁻¹. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔC(p, leading to the up-shifting and broadening of the protein stability curves.

  2. Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Frydenvang, Karla Andrea; Liljefors, Tommy

    2005-01-01

    as their iodide salts. Chloride, mesylate, formate, acetate, glycolate, and tosylate salts were obtained by anion exchange of the N-methyl-bupivacaine derivative. N-Alkylation and salt formation afforded quaternary ammonium salts possessing pH-independent aqueous solubilities far exceeding that of the parent......Quaternary prodrug types of poorly water-soluble tertiary amines have been shown to exhibit significantly enhanced solubilities as compared to the parent amine. In the present study the combined effect of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines have been...

  3. Enhanced proline synthesis may determine resistance to salt stress in tomato cultivars

    International Nuclear Information System (INIS)

    Ali, S.; Khan, N.U.

    2011-01-01

    The physiological and biochemical responses of tomato cultivars were studied at Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan during 2005-2006 for salt tolerance. Tomato cultivars were Roma Rio Super, Roma V.F., Chinese 87-5, Rio Grand and Super Blocky and subjected to salt stress (75 mM NaCl). Fresh weight, dry weight, and ions sodium and potassium accumulation, Na/sup +/K sup +/ ratio and proline content were determined after imposing the tomato cultivars to NaCl salt for 80 days. Salt stress significantly decreased the fresh and dry weight in Roma Rio Super, Roma V.F, Chinese 87-5 and Rio Grand, however, in Super Blocky the fresh and dry weight were enhanced under stress conditions. Salinity stress increased sodium uptake from 191.828 to 436.170 mu mg/sup -1/ D wt while potassium accumulation decreased from 1033.12 to 926.80 mu mg/sup -1/ D wt resulting in higher Na/sup +/ ratio in stressed (0.48 g) as compared to unstressed control (0.19). The mean proline contents also increased from 28.95 to 40.96 mu M Proline g/sup -1/ F. wt with the maximum increase (57.378%) in Super Blocky followed by Rio Grand (49.325%). (author)

  4. Biochemically enhanced oil recovery and oil treatment

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  5. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    Science.gov (United States)

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Teixeira, Catarina; Almeida, C. Marisa R.; Nunes da Silva, Marta; Bordalo, Adriano A.; Mucha, Ana P.

    2014-01-01

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  7. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  8. Study on application of molten salt oxidation technology (MSO) for PVC wastes treatment

    International Nuclear Information System (INIS)

    Tran Thu Ha; Nguyen Hong Quy; Pham Quoc Ky; Nguyen Quang Long; Vuong Thu Bac; Dang Duc Nhan

    2007-01-01

    The project 'Study on application of molten salt oxidation (MSO) for PVC plastic wastes treatment' aims at three followings: 1) Installation of lab-scale MSO unit with essential compositions builds up foundation for the 2) estimation of waste destruction efficiency of the technology. 3) Based on the results of testing PVC - the chlorinated organic wastes on the lab-scale unit, the ability of the technology application at pilot-scale level will be primary estimated. The adjustment and correction of some compositions in the lab-scale unit theoretically designed during experiment overcame the shortages by design and fabrication such as heat distribution regime, feeding wastes and draining spent salt. These solutions adapt to the technical requirement of operation as well as scientific requirement of the research on MSO process. PVC waste treatment was tested on the MSO lab-scale unit in different conditions of operation temperature, superficial air velocity related to air/oxygen feeding rate, waste feeding rate. The testing results showed that destruction efficiency of chlorine in MSO technology was almost absolute. HCl and Cl 2 emission were insignificant in different operation conditions. HCl and Cl 2 emission depend on resident time and nature of molten salt. However, with inherent attributes of MSO technology emission of CO is not avoided in processing waste treatment. Therefore, finding active solutions for reduction CO emission is essential to complete the technology. The experiments also were carried in conditions of single molten salt (Na 2 CO 3 ) and molten (Na 2 CO 3 - K 2 CO 3 ) eutectic. The comparison of efficiency of these tests gives idea of using molten salt eutectic to reduce operation cost in MSO technology. Based on operation parameters and scientific verification results during experiments, the introductory procedure of waste treatment by MSO process was built up. Thereby, primary estimation of development of the technology in pilot-scale is given

  9. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    Science.gov (United States)

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    International Nuclear Information System (INIS)

    Eibling, R

    2008-01-01

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble

  11. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi

    2013-10-01

    GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment. L Wang, HL Wang, CH Yin, CY Tian. Abstract. Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. Experiments were conducted to test the hypothesis that cold ...

  13. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. LEVERAGING TREATMENT OF SALT ATTACK AND RISING DAMP IN HERITAGE BUILDINGS IN PENANG, MALAYSIA

    Directory of Open Access Journals (Sweden)

    Haris Fadzilah Abdul Rahman

    2010-06-01

    Full Text Available Of the common building defects that occur in heritage buildings in Penang, Malaysia, salt attack and rising damp are considered the most challenging, particularly for building conservation. The problem of salt attack is closely associated with rising damp. Moisture from the rising damp makes the building’s existing salts soluble, or ground water that contains salt finds its way through the building wall. This moisture then evaporates on or just below the wall’s surface, leaving salt residue behind. High salt concentrations in masonry walls cause extensive fretting and crumbling of the lower parts of walls. These formations gradually contribute to building dilapidation and reduce the building’s aesthetic value. Sodium chloride and calcium sulphate are commonly found in masonry walls, apart from other forms of salts. The sources of these salts may be natural or manmade. This paper is based on research into the problems of salt attack and rising damp in heritage masonry buildings in Penang, Malaysia. Based on a case study of five buildings in Penang, the research findings showed that these buildings faced several common building defects, including salt attack and rising damp. Treatment guidelines for salt attack and rising damp are proposed within the Malaysian context of architectural heritage and climatic conditions.

  15. Enhancing and accelarating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes

    NARCIS (Netherlands)

    Sluis, van der C.; Tramper, J.; Wijffels, R.H.

    2001-01-01

    In soy-sauce processes salt-tolerant yeasts are very important for the flavour formation. This flavour formation is, however, slow and poorly understood. In the last decades, a concerted research effort has increased the understanding and resulted in the derivation of mutants with an enhanced

  16. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  17. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.

    Science.gov (United States)

    Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping

    2018-06-01

    Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  19. Hypoxia treatment on germinating faba bean (Vicia faba L. seeds enhances GABA-related protection against salt stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available The γ-aminobutyric acid (GABA is a non-protein amino acid with some functional properties for human health. Its content is usually lower in plant seeds. Hypoxia or salt (NaCl stress is an effective way for accumulating GABA during seed germination. However, NaCl stress on GABA accumulation under hypoxia is currently infrequent. The effect of NaCl on GABA accumulation in germinating faba bean (Vicia faba L. under hypoxia was therefore investigated in this study. Faba bean seeds were steeped in citric acid buffer (pH 3.5 containing NaCl with a final O2 concentration of 5.5 mg L-1 and germinated for 5 d. Results showed that 60 mmol L-1 NaCl was the optimum concentration for GABA accumulation in germinating faba beans under hypoxia. Germination for 5 d under hypoxia-NaCl stress was less beneficial for GABA accumulation than only hypoxia (control. Polyamine degradation pathway played a more important role for accumulating GABA in germinating faba bean as an adaptive response to NaCl stress. Removing NaCl significantly increased GABA content, while it decreased glutamate decarboxylase (GAD activity. Simultaneously, polyamine was accumulated, which might be related to the enhancement of physiological activity after recovery. When treated with aminoguanidine (AG for 3 d, GABA content decreased by 29.82%. These results indicated that the tolerance ability of GABA shunt to NaCl stress was weaker than that of polyamine degradation pathway. The NaCl treatment for 3 d under hypoxia could raise the contribution ratio of polyamine degradation pathway for GABA accumulation. The contribution ratio of polyamine degradation pathway for GABA formation was 29.82% when treated for at least 3 d

  20. Evaluation of the Influence of Salt Treatment on the Structure of ...

    African Journals Online (AJOL)

    Evaluation of the Influence of Salt Treatment on the Structure of Pyrolyzed ... Studies to characterize the activated carbon were conducted at ambient conditions. ... as iodine number and porosity; and minimum values for parameters like pH and ...

  1. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  2. Mineral resource of the month: salt

    Science.gov (United States)

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  3. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  4. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    International Nuclear Information System (INIS)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-01-01

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na + content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na + homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  5. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  6. Development of a vacuum distillation process for Pu pyro-chemistry spent salts treatment

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Baudrot, C.; Pescayre, L.; Thiebaut, C.

    2004-01-01

    The pyrochemical purification of plutonium has generated spent salts, which are disposed in nuclear facility. To reduce stored quantities, the development of a pyrochemical treatment is in progress. The feed salt, typically composed of various Pu and Am species spread into monovalent or divalent chloride matrix, is first oxidized to convert the actinides into oxides. Then the chlorides are separated from the actinide oxides by vacuum distillation. Temperatures higher than 750 deg C for mono-chloride salts mixture NaCl/KCl and higher than 1100 deg C for divalent CaCl 2 base salts, are required to produce an industrial flow of vaporization. Inactive qualification of the process for NaCl/KCl base salt has been carried with lanthanide surrogates. Then, a pilot equipment, called Distillator has been designed and built for production-scale distillation of NaCl/KCl and CaCl 2 oxidized plutonium salts. Industrial flows of vaporization have been obtained with this pilot equipment: about 4 g/cm 2 /h for NaCl/KCl at 800 - 900 deg C and 1 Pa, and more than 1.5 g/cm 2 /h for CaCl 2 base salts between 1000 - 1200 deg C at 0.1 Pa. The last step will be the integration of the Distillator into a glove box. (authors)

  7. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.

    Science.gov (United States)

    Li, Jie; Xie, Yanan; Wang, Rui; Fang, Zemin; Fang, Wei; Zhang, Xuecheng; Xiao, Yazhong

    2018-04-01

    Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.

  8. The role of chloride in deoxycorticosterone hypertension: selective sodium loading by diet or drinking fluid

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Zicha, Josef; Jelínek, Jiří

    2004-01-01

    Roč. 53, č. 2 (2004), s. 149-154 ISSN 0862-8408 R&D Projects: GA ČR GA305/03/0769; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : sodium * chloride * DOCA-salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.140, year: 2004

  9. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao; Zhao, Huayan; Cui, Peng; Albesher, Nour H.; Xiong, Liming

    2017-01-01

    stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression

  10. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Wang, Feibing; Zhu, Hong; Kong, Weili; Peng, Rihe; Liu, Qingchang; Yao, Quanhong

    2016-07-01

    A basic helix-loop-helix (bHLH) transcription factor gene from Antirrhinum, AmDEL , increases flavonoids accumulation and enhances salt and drought tolerance via up-regulating flavonoid biosynthesis, proline biosynthesis and ROS scavenging genes in transgenic Arabidopsis. In plants, transcriptional regulation is the most important tools for increasing flavonoid biosynthesis. The AmDEL gene, as a basic helix-loop-helix transcription factor gene from Antirrhinum, has been shown to increase flavonoids accumulation in tomato. However, its role in tolerance to abiotic stresses has not yet been investigated. In this study, the codon-optimized AmDEL gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AmDEL protein was localized to the nucleus. Expression analysis in yeast showed that the full length of AmDEL exhibited transcriptional activation. Overexpression of AmDEL significantly increased flavonoids accumulation and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR analysis showed that overexpression of AmDEL resulted in the up-regulation of genes involved in flavonoid biosynthesis, proline biosynthesis and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol reductase, pyrroline-5-carboxylate synthase, superoxide dismutase and peroxidase were also increased. Further components analyses indicated that the significant increase of proline and relative water content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. These findings imply functions of AmDEL in accumulation of flavonoids and tolerance to salt and drought stresses. The AmDEL gene has the potential to be used to increase

  12. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  13. Enhancement of surfactant efficacy during the cleanup of engine oil contaminated soil using salt and multi-walled carbon nanotubes.

    Science.gov (United States)

    Bonal, Niteesh Singh; Paramkusam, Bala Ramudu; Basudhar, Prabir Kumar

    2018-06-05

    The study aims to enhance the efficacy of surfactants using salt and multi-walled carbon nanotubes (MWCNT) for washing used engine oil (UEO) contaminated soil and compare the geotechnical properties of contaminated soil before and after washing (batch washing and soil washing). From batch washing of the contaminated soil the efficacy of the cleaning process is established. Contamination of soil with hydrocarbons present in UEO significantly affects its' engineering properties manifesting in no plasticity and low specific gravity; the corresponding optimum moisture content value is 6.42% while maximum dry density is 1.770 g/cc, which are considerably lower than those of the uncontaminated soil. The result also showed decrease in the values of cohesion intercept and increase in the friction angle values. The adopted soil washing technique resulted increase in specific gravity from 1.85 to 2.13 and cohesion from 0.443 to 1.04 kg/cm 2 and substantial decrease in the friction angle from 31.16° to 17.14° when washed with most efficient combination of SDS surfactant along with sodium meta-silicate (salt) and MWCNT. Effectiveness of the washing of contaminated soil by batch processing and soil washing techniques has been established qualitatively. The efficiency of surfactant treatment has been observed to be increased significantly by the addition of salt and MWCNT. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effect of subsurface drainage on salt movement and distribution in salt-affected soils

    International Nuclear Information System (INIS)

    Moustafa, A.T.A.; Seliem, M.H.; Bakhati, H.K.

    1983-01-01

    This study was carried out to evaluate different subsurface drainage treatments (combinations of depth and spacing) on salt movement and distribution. The soil is clay and the drainage was designed according to the steady-state condition (Hooghoudt's equation). Three spacings and two depths resulted in six drainage treatments. Soil samples represented the initial state of every treatment and after 14 months they (cotton followed by wheat) were analysed. The data show that drain depth has its effective role in salt leaching, while drain spacing has its effect on salt distribution in the soil profile. The leaching rate of each specific ion is also affected by the different drainage treatments. In general, the salt movement and distribution should be taken into consideration when evaluating the design of drainage systems. (author)

  15. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    Science.gov (United States)

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of salting treatment on the physicochemical properties, textural properties, and microstructures of duck eggs

    Science.gov (United States)

    Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying

    2017-01-01

    In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences. PMID:28797071

  17. Biological Effect of Gas Plasma Treatment on CO2 Gas Foaming/Salt Leaching Fabricated Porous Polycaprolactone Scaffolds in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tae-Yeong Bak

    2014-01-01

    Full Text Available Porous polycaprolactone (PCL scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering.

  18. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  19. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  20. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  1. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-11-04

    NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and

  2. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  3. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  4. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  5. Salinity stress effects on [14C-1]- and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat

    International Nuclear Information System (INIS)

    Krishnaraj, S.; Thorpe, T.A.

    1996-01-01

    The effect of salt (sodium sulfate) on carbohydrate metabolism was studied in a salt-tolerant (Kharchia-65) variety and a salt-susceptible (Fielder) variety of wheat (Triticum aestivum L.) by comparing their responses under control and stress conditions. Leaf segments of Kharchia-65 showed increased activity through both the pentose phosphate pathway (PPP) and the glycolytic pathway of glucose oxidation, with the former being comparatively more active in response to salt. In Fielder, there was an increase in PPP activity at the expense of glycolytic pathway activity. Label from glucose was found in the lipid, neutral sugar, amino acid, organic acid, and phosphate ester fractions in all treatments. On the basis of the label distribution patterns, it appears that Fielder leaves incubated with [ 14 C-6]-glucose were not able to utilize glucose efficiently under saline conditions. This finding was further supported by decreased label incorporation into all the fractions, especially the amino acid and organic acid fractions. Adenosine phosphate and reduced pyridine nucleotide concentrations were consistent with these observations. We conclude therefore that the salt-tolerant variety had an enhanced metabolic activity compared with the salt-susceptible variety, which contributed to its ability to overcome the adverse effects of salt. (author)

  6. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  7. Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances

    Directory of Open Access Journals (Sweden)

    Yujing Cheng

    2014-12-01

    Full Text Available Salt stress is one of the severest growth limited-factors to agriculture production. To gain in-depth knowledge of salt-stress response mechanisms, the proteomics analysis from two maize (Zea mays L. inbred lines was carried out using two-dimensional gel electrophoresis (2-DGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS. There were 57 salt-regulated proteins identified, 21 and 36 proteins were differentially regulated in inbred lines 'Nongda 1145' (salt-resistant and 'D340' (salt-sensitive, respectively. The identified proteins were distributed in 11 biological processes and seven molecular functions. Under salt stress, proteins related to antioxidation and lignin synthesis were increased in both inbred lines. The relative abundance of proteins involved in translation initiation, elongation, and protein proteolysis increased in 'Nongda 1145' and decreased in 'D340'. In addition, the abundance of proteins involved in carbohydrate metabolism, protein refolding, ATP synthase and transcription differed between the two inbred lines. Our results suggest that the enhanced ability of salt-tolerant inbred line 'Nongda 1145' to combat salt stress occurs via regulation of transcription factors promoting increased antioxidation and lignin biosynthesis, enhanced energy production, and acceleration of protein translation and protein proteolysis.

  8. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress.

  9. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  10. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    Science.gov (United States)

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?

    Science.gov (United States)

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2017-02-01

    Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  13. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  14. Inducing salt tolerance in sweet corn by magnetic priming

    Directory of Open Access Journals (Sweden)

    Soheil Karimi

    2017-01-01

    Full Text Available This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM, after exposing the seeds to weak (15 mT or strong (150 mT magnetic fields (MF for different durations (0, 6, 12, and 24 hours. Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H2O2 accumulation and membrane thermostability (MTI was found after MF treatments, which revealed that MF primed the plant for salinity by H2O2 signaling. However, over-accumulation of H2O2 after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.

  15. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    Science.gov (United States)

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  16. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    Science.gov (United States)

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  17. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao

    2017-09-09

    Long non-coding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis thaliana lncRNA, Drought induced RNA (DRIR), as a novel positive regulator of plant response to drought and salt stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression of the DRIR gene than the wild type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates plant response to abiotic stress by modulating the expression of a series of genes involved in stress response.

  18. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.

    Science.gov (United States)

    Medina, A; Roldán, A; Azcón, R

    2010-12-01

    Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply. Copyright © 2010 Elsevier Ltd. All rights

  19. Free radical scavenging reverses fructose-induced salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Zenner ZP

    2017-12-01

    Full Text Available Zachary P Zenner, Kevin L Gordish, William H Beierwaltes Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4% for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system. Keywords: reactive oxygen species, tempol, sodium, renin, oxidative stress

  20. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    International Nuclear Information System (INIS)

    1999-01-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  1. Evaluation of potential for MSRE spent fuel and flush salt storage and treatment at the INEL

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ostby, P.A.; Nebeker, R.L.

    1996-09-01

    The potential for interim storage as well as for treatment of the Molten Salt Reactor Experiment spent fuel at INEL has been evaluated. Provided that some minimal packaging and chemical stabilization prerequisites are satisfied, safe interim storage of the spent fuel at the INEL can be achieved in a number of existing or planned facilities. Treatment by calcination in the New Waste Calcining Facility at the INEL can also be a safe, effective, and economical alternative to treatment that would require the construction of a dedicated facility. If storage at the INEL is chosen for the Molten Salt Reactor Experiment (MSRE) spent fuel salts, their transformation to the more stable calcine solid would still be desirable as it would result in a lowering of risks. Treatment in the proposed INEL Remote-Handled Immobilization Facility (RHIF) would result in a waste form that would probably be acceptable for disposal at one of the proposed national repositories. The cost increment imputable to the treatment of the MSRE salts would be a small fraction of the overall capital and operating costs of the facility or the cost of building and operating a dedicated facility. Institutional and legal issues regarding shipments of fuel and waste to the INEL are summarized. The transfer of MSRE spent fuel for interim storage or treatment at the INEL is allowed under existing agreements between the State of idaho and the Department of energy and other agencies of the Federal Government. In contrast, current agreements preclude the transfer into Idaho of any radioactive wastes for storage or disposal within the State of Idaho. This implies that wastes and residues produced from treating the MSRE spent fuel at locations outside Idaho would not be acceptable for storage in Idaho. Present agreements require that all fuel and high-level wastes stored at the INEL, including MSRE spent fuel if received at the INEL, must be moved to a location outside Idaho by the year 2035

  2. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum.

    Science.gov (United States)

    Liang, Qian-Yu; Wu, Yin-Huan; Wang, Ke; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Zhang, Lei; Jiang, Bei-Bei

    2017-07-06

    WRKY transcription factors play important roles in plant growth development, resistance and substance metabolism regulation. However, the exact function of the response to salt stress in plants with specific WRKY transcription factors remains unclear. In this research, we isolated a new WRKY transcription factor DgWRKY5 from chrysanthemum. DgWRKY5 contains two WRKY domains of WKKYGQK and two C 2 H 2 zinc fingers. The expression of DgWRKY5 in chrysanthemum was up-regulated under various treatments. Meanwhile, we observed higher expression levels in the leaves contrasted with other tissues. Under salt stress, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) enzymes in transgenic chrysanthemum were significantly higher than those in WT, whereas the accumulation of H 2 O 2 , O 2 - and malondialdehyde (MDA) was reduced in transgenic chrysanthemum. Several parameters including root length, root length, fresh weight, chlorophyll content and leaf gas exchange parameters in transgenic chrysanthemum were much better compared with WT under salt stress. Moreover, the expression of stress-related genes DgAPX, DgCAT, DgNCED3A, DgNCED3B, DgCuZnSOD, DgP5CS, DgCSD1 and DgCSD2 was up-regulated in DgWRKY5 transgenic chrysanthemum compared with that in WT. These results suggested that DgWRKY5 could function as a positive regulator of salt stress in chrysanthemum.

  3. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  4. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  5. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    Science.gov (United States)

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  6. Treatment of waste salts by oxygen sparging and vacuum distillation

    International Nuclear Information System (INIS)

    Cho, Y.J.; Yang, H.C.; Kim, E.H.; Kin, I.T.; Eun, H.C.

    2007-01-01

    Full text of publication follows. During the electrorefining process of the oxide spent fuel from LWR, amounts of waste salts containing some metal chloride species such as rare earths and actinide chlorides are generated, where the reuse of the waste salts is very important from the standpoint of an economical as well as an environmental aspect. In order to reuse the waste salts, a salt vacuum distillation method can be used. For the best separation by a vacuum distillation, the metal chloride species involved in the waste salts must be converted into their oxide(or oxychloride) forms due to the their low volatility compared to that of LiCl-KCl. In this study, an oxygen sparging process was adopted for the oxidation (or precipitation) of rare earth chlorides. The effects of oxygen flow rate and molten salt temperature on the conversion of rare earth chlorides to the precipitate phase (i.e. oxide or oxychloride) were investigated. In addition, distillation characteristics of LiCl-KCl molten salt with system pressure and temperature were studied. (authors)

  7. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    International Nuclear Information System (INIS)

    Copuroglu, O.; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-01-01

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack

  8. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  9. Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering.

    Science.gov (United States)

    Salvadori, Barbara; Pinna, Daniela; Porcinai, Simone

    2014-02-01

    Salt crystallization is a major damage factor in stone weathering, and the application of inappropriate protective products may amplify its effects. This research focuses on the evaluation of two protective products' performance (organic polydimethylsiloxane and inorganic ammonium oxalate (NH4)2(COO)2·H2O) in the case of a salt load from behind. Experimental laboratory simulations based on salt crystallization cycles and natural weathering in an urban area were carried out. The effects were monitored over time, applying different methods: weight loss evaluation, colorimetric and water absorption by capillarity measurements, stereomicroscope observations, FTIR and SEM-EDS analyses. The results showed minor impact exerted on the short term on stones, particularly those treated with the water repellent, by atmospheric agents compared to salt crystallization. Lithotypes with low salt load (Gioia marble) underwent minor changes than the heavily salt-laden limestones (Lecce and Ançã stones), which were dramatically damaged when treated with polysiloxane. The results suggest that the ammonium oxalate treatment should be preferred to polysiloxane in the presence of soluble salts, even after desalination procedures which might not completely remove them. In addition, the neo-formed calcium oxalate seemed to effectively protect the stone, improving its resistance against salt crystallization without occluding the pores and limiting the superficial erosion caused by atmospheric agents.

  10. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  11. Variation Analysis of Physiological Traits in Betula platyphylla Overexpressing TaLEA-ThbZIP Gene under Salt Stress.

    Directory of Open Access Journals (Sweden)

    Xiyang Zhao

    Full Text Available The aim of this study was to determine whether transgenic birch (Betula platyphylla ectopic overexpressing a late embryogenesis abundant (LEA gene and a basic leucine zipper (bZIP gene from the salt-tolerant genus Tamarix (salt cedar show increased tolerance to salt (NaCl stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8 and wild type (WT. In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees.

  12. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  13. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  14. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  15. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.

    Science.gov (United States)

    Rust, Petra; Ekmekcioglu, Cem

    2017-01-01

    Excessive dietary salt (sodium chloride) intake is associated with an increased risk for hypertension, which in turn is especially a major risk factor for stroke and other cardiovascular pathologies, but also kidney diseases. Besides, high salt intake or preference for salty food is discussed to be positive associated with stomach cancer, and according to recent studies probably also obesity risk. On the other hand a reduction of dietary salt intake leads to a considerable reduction in blood pressure, especially in hypertensive patients but to a lesser extent also in normotensives as several meta-analyses of interventional studies have shown. Various mechanisms for salt-dependent hypertension have been put forward including volume expansion, modified renal functions and disorders in sodium balance, impaired reaction of the renin-angiotensin-aldosterone-system and the associated receptors, central stimulation of the activity of the sympathetic nervous system, and possibly also inflammatory processes.Not every person reacts to changes in dietary salt intake with alterations in blood pressure, dividing people in salt sensitive and insensitive groups. It is estimated that about 50-60 % of hypertensives are salt sensitive. In addition to genetic polymorphisms, salt sensitivity is increased in aging, in black people, and in persons with metabolic syndrome or obesity. However, although mechanisms of salt-dependent hypertensive effects are increasingly known, more research on measurement, storage and kinetics of sodium, on physiological properties, and genetic determinants of salt sensitivity are necessary to harden the basis for salt reduction recommendations.Currently estimated dietary intake of salt is about 9-12 g per day in most countries of the world. These amounts are significantly above the WHO recommended level of less than 5 g salt per day. According to recent research results a moderate reduction of daily salt intake from current intakes to 5-6 g can reduce

  16. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice.

    Science.gov (United States)

    Xiang, Dian-Jun; Man, Li-Li; Zhang, Chun-Lan; Peng-Liu; Li, Zhi-Gang; Zheng, Gen-Chang

    2018-02-07

    Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these

  17. R and D activities on the management of waste chloride salts in KAERI

    International Nuclear Information System (INIS)

    In-Tae, Kim; Hwan-Seo, Park; Jeong-Gook, Kim; Hee-Chul, Yang; Yong-Joon, Cho; Eung-Ho Kim

    2007-01-01

    Full text of publication follows. Electrochemical treatment of spent oxide fuels has been intensively studied in KAERI to reduce the volume, heat load and radiotoxicity of high-level wastes. It consists of an electrolytic reduction process to convert the oxide fuel into a metallic form and an electro-refining process to separate TRU elements from the electro-reduced metal ingot. Two types of waste salts are expected to generate from the electrochemical pyro-processes, that is, LiCl salt from the reduction process and LiCl+KCl eutectic salt form the refining process. The R and D strategy of the waste salt management in KAERI can be categorized into two parts: 1) enhancement of safety by the stabilisation/solidification of waste salt that is to be finally disposed of and 2) reduction of the waste generation by the regeneration/recycle of the spent salt after removal of radionuclides in it. A sol-gel technique and a zeolite occlusion technique are under development to stabilize the waste salt. The LiCl salt is stabilised by a low-temperature sol-gel process and then the gel product is solidified into a ceramic-like waste form with an addition of glass frit. Another method uses Zeolite-4A to occlude the LiCl salt into its cage and adsorption site to immobilize the radionuclides. The product, salt-occluded zeolite, is fabricated into another type of a ceramic waste form. For the regeneration and recycle of the spent salt, the radionuclides in the salt are removed by a zeolite process for the LiCl salt and by an oxidation/distillation process for the eutectic salt. The target nuclides to be removed in each process are Cs/Sr and rare earth (RE) elements, respectively. In the oxidation/ distillation process, the rare earth chloride nuclides are oxidised by an oxygen sparging method, and the products are precipitated in the form of oxide or oxychloride REs. After separation of the RE elements from the precipitates by distillation, the refined spent salt with a low content

  18. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis.

    Science.gov (United States)

    Lu, Pu; Magwanga, Richard Odongo; Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang

    2018-04-12

    Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 ( TOM1 ), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum , 9 in Gossypium arboreum , and 11 in Gossypium raimondii . The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton

  19. A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pu Lu

    2018-04-01

    Full Text Available Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1, a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H2O2. The low malondialdehyde (MDA level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress

  20. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems.

    Directory of Open Access Journals (Sweden)

    Tingting Li

    Full Text Available BACKGROUND: Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC, chlorophyll content, net photosynthesis (Pn, gas exchange parameters, relative leakage conductivity (REC, malondialdehyde (MDA content, and activities of superoxide dismutase (SOD and peroxidase (POD of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA. METHODOLOGY/PRINCIPAL FINDINGS: The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b content, RWC, net CO2 assimilation rates (Pn, and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants. CONCLUSIONS: SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future.

  1. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  2. Atrial natriuretic peptide in the locus coeruleus and its possible role in the regulation of arterial blood pressure, fluid and electrolyte homeostasis

    International Nuclear Information System (INIS)

    Geiger, H.; Sterzel, R.B.; Bahner, U.; Heidland, A.; Palkovits, M.

    1991-01-01

    Atrial natriuretic factor (ANP) is present in neuronal cells of the locus coeruleus and its vicinity in the pontine tegmentum and moderate amount of ANP is detectable in this area by radioimmunoassay. The ANP is known as a neuropeptide which may influence the body salt and water homeostasis and blood pressure by targeting both central and peripheral regulatory mechanisms. Whether this pontine ANP cell group is involved in any of these regulatory mechanisms, the effect of various types of hypertension and experimental alterations in the salt and water balance on ANP levels was measured by radioimmunoassay in the locus coeruleus of rats. Adrenalectomy, as well as aldosterone and dexamethasone treatments failed to alter ANP levels in the locus coeruleus. Reduced ANP levels were measured in spontaneously hypertensive rats, and in diabetes insipidus rats with vasopressin replacement. In contrast to these situations, elevated ANP levels were found in rats with DOCA-salt or 1-Kidney-1-clip hypertension. These data suggest a link between ANP levels in the locus coeruleus and fluid volume homeostasis. Whether this link is causal and connected with the major activity of locus coeruleus neurons needs further information

  3. Electrochemical treatment of organic wastewater with high salt content. Ko enbun yuki haisui no denkai shori

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hideo; Kitamura, Takao; Kato, Shunsaku; Oyashiki, Satoru (Goverment Industrial Research Inst. Shikoku, Takamatsu, (Japan) Toyo Engineering Work Ltd., Tokyo, (Japan))

    1990-01-31

    Wastewater containing organic pollutants is generally treated by the biological methods like the activated sludge process, etc. But these biological methods are not necessarily applied to the wastewater with high salt content generated at pickles making plants, etc.. In this report, with the objective of application of the electrolytic oxidation treatment to the organic wastewater with high salt content of pickles making plants, the effects of such conditions as pH, temperature and current, etc. on the treatment rate and treatment efficiency were examined, furthermore, the treatment process was simulated on the basis of a simple reaction model, and its simulation results were compared for study with the experimental results. The results are shown below: No effect of pH was observed, hence no pH control is required; The higher temperature of the wastewater accelerates the treatment rate; It was considered that in high temperature, a loss due to autolysis of hypochlorous acid increases, but the current efficiency of generating hypochlorous acid increases too and since the latter effect is bigger, the above phenomenon occurs. The current has a small effect on the treatment efficiency. With the simple reaction model, the change of residual chlorine concentration, etc. with time can be reproduced semiquantitatively. 7 refs., 6 figs.

  4. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    Science.gov (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  6. Successful full-scale deployments of advanced PGPR enhanced phytoremediation systems (PEPS) for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Yu, X.M.; Liddycoat, S.; Lu, X.; Nykamp, J.; McCallum, B.; MacNeill, G.; Mosley, P.; Gurska, J.; Knezevich, N.; Zhong, H.; Gerwing, P. [Waterloo Univ., ON (Canada)

    2010-07-01

    This PowerPoint presentation described a phytoremediation system designed to remediate salt and petroleum contaminated sites. Phytoremediation techniques are cheaper than traditional methods of remediating soils. The phytoremediation process is comprised of volatilization, phytodegradation, and chelation processes. Plants uptake contaminants via a rhizodegradation process. The plants provide biomass for rapid remediation with a restoration time frame of between 2 to 3 years. PGPR enhanced phytoremediation systems (PEPS) have been studied over a 10 year period and successfully applied at polycyclic hydrocarbon (PHC) contaminated sites, gas stations, and salt-contaminated sites throughout Canada. Soils are tilled in order to expose contaminants to sunlight. hydrocarbon-degrading bacteria are then applied, followed by the application of a plant growth promoting rhizobacteria (PGPR) phytoremediation system that is typically applied to grass species prior to planting. Case studies of full-scale sites used to prove the concept for both salt and hydrocarbon contaminated soils were presented. tabs., figs.

  7. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann

    2016-01-01

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  8. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options, ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.

  9. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands

    Science.gov (United States)

    Jia, Jia; Huang, Chen; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wen, Xiaojun

    2018-02-01

    The pot experiment was carried out in the Yellow River Delta to investigate the effects of drought and salt stresses on growth characteristics of Suaeda salsa, and to reveal the role of nitrogen (N) application in alleviation effects of drought and salt stresses on Suaeda salsa in coastal wetlands. In this study, plants were exposed to two water contents treatments (i.e., 14% and 26% water content), four salinity treatments (i.e., 2 g/kg, 4 g/kg, 6 g/kg, and 8 g/kg NaCl) and two N application treatments (i.e., 0 and 200 N mg/kg) in field conditions. Growth characteristics of Suaeda salsa were assessed as fresh weight, dry weight, height, total nitrogen (TN) and total carbon (TC). Our results showed that fresh weight, dry weight and height of Suaeda salsa promoted at lower salinity treatments but reduced at higher salinity treatments, while TN and TC contents kept stable with increasing salinity levels. Drought stress diminished the fresh weight, dry weight and height of Suaeda salsa, whereas enhanced TN contents. Under the interactive stresses of drought and salt, fresh weight and dry weight showed slight increases at lower salinity treatments, whereas decreases at higher salinity treatments. N application promoted the fresh weight, dry weight and TN contents other than the height and TC contents of Suaeda salsa. The interaction between N application and salt stress exhibited a significant influence on the fresh weight and dry weight of Suaeda salsa, whereas no significant interaction between N application and drought stress was observed. These findings of this study suggested that higher salinity, drought and the interaction of drought and higher salinity would retard the growth of Suaeda salsa, whereas N application could only mitigate the deleterious effects of salt stress on Suaeda salsa.

  10. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    Science.gov (United States)

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  11. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  12. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis

    2017-07-13

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.

  13. Effect of Heat Treatment and Salt Concentration on Free Amino Acids Composition of Sudanese Braided (Muddaffara Cheese during Storage

    Directory of Open Access Journals (Sweden)

    Mohamed O. E. Altahir

    2014-07-01

    Full Text Available The aim of this study was to assess the effect of heat treatment and salt concentrations (0, 5, and 10% on the free amino acids (FAA composition of Sudanese braided cheese (BC ripened for up to 3 months at 5±2°C. Heat and salt concentration significantly affected the FAA of braided cheese. The free amino acids concentrations of BC ripened in 0%, 5%, and 10% salted whey (SW were significantly fluctuated. Under ripening conditions tested (salt level + time, braided cheese made from pasteurized milk (BCPM had consistently lower values of FAA than braided cheese made from raw milk (BCRM. In fresh cheese, the major FAA in BCRM were Glu (36.12 nmol/ml, Leu (26.77nmol/ml and Lys (14.51 nmol/ml while the major ones in BCPM were Lys (2.94 nmol/ml and Ala (2.45 nmol/ml. BCPM stored in 10% SW had shorter quality life compared to that stored in 5% salted whey.

  14. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  15. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  16. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    Science.gov (United States)

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  17. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  18. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  19. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  20. Comparative Effects of Gibberellin and Paclobutrazol on Na and K Content, Phenolic Compounds and the Activity of Some Enzymesin its Biosynthesis Pathway in Sweet Sorghum (Sorghum bicolor under Salt Stress

    Directory of Open Access Journals (Sweden)

    Amir Hosein Fhrghani

    2017-08-01

    salt–stricken plants. PBZ treatment decreased negative effects of salinity and increased potassium (K+ content in roots and its transfer from root to shoot. Whereas, translocation factor of sodium was increased about 39% by GA treatment at the presence of 150mM salt. PBZ enhanced phenol content in shoots by increasing PAL activity. Therefore, GA and PBZ improved salt tolerance by transferring some ions toward shoot and root respectively. It seemed that, PBZ has an effective role in salt resistance by increasing of root growth, phenol content and maintaining the ionic balance

  1. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Astrit Balliu

    2015-12-01

    Full Text Available The study aimed to investigate the effects of commercially available AMF inoculate (Glomus sp. mixture on the growth and the nutrient acquisition in tomato (Solanumlycopersicum L. plants directly after transplanting and under different levels of salinity. Inoculated (AMF+ and non-inoculated (AMF− tomato plants were subjected to three levels of NaCl salinity (0, 50, and 100 mM·NaCl. Seven days after transplanting, plants were analyzed for dry matter and RGR of whole plants and root systems. Leaf tissue was analyzed for mineral concentration before and after transplanting; leaf nutrient content and relative uptake rates (RUR were calculated. AMF inoculation did not affect plant dry matter or RGR under fresh water-irrigation. The growth rate of AMF−plants did significantly decline under both moderate (77% and severe (61% salt stress compared to the fresh water-irrigated controls, while the decline was much less (88% and 75%,respectivelyand statistically non-significant in salt-stressed AMF+ plants. Interestingly, root system dry matter of AMF+ plants (0.098 g plant–1 remained significantly greater under severe soil salinity compared to non-inoculated seedlings (0.082 g plant–1. The relative uptake rates of N, P, Mg, Ca, Mn, and Fe were enhanced in inoculated tomato seedlings and remained higher under (moderate salt stress compared to AMF− plants This study suggests that inoculation with commercial AMF during nursery establishment contributes to alleviation of salt stress by maintaining a favorable nutrient profile. Therefore, nursery inoculation seems to be a viable solution to attenuate the effects of increasing soil salinity levels, especially in greenhouses with low natural abundance of AMF spores.

  2. Effect of iso-osmotic salt and water stress in relation to adjustment on mutant sugarcane (Saccharum officinarum L.) plant lines

    International Nuclear Information System (INIS)

    Ahuja, Akash V.; Kalwade, Sachin B.; Nikam, Ashok A.; Devarumath, R.M.; Chauvan, Viraj S.; Kanse, Sangram S.

    2014-01-01

    Gamma radiation induced mutagenesis followed by in vitro selection was employed for salt tolerance in popular sugarcane (Saccharum officinarum L.) cv.CoM0265. Assimilated regenerated mutant plantlets were planted on control as well as salt affected soil. Mutants which showed relatively good response with respect to its quantitative and qualitative parameters were selected for priming experiment. Nine mutants and its respective control and parent control which are known to vary in salt tolerance under field conditions were studied. In order to discriminate between the ionic and osmotic components of salt stress, mutant plants were treated with NaCl salt (100 mM) or polyethylene glycol-PEG 8000 solutions (20%) for 10 days. Both NaCI and PEG treatment significantly reduced leaf width, number of green leaves and chlorophyll stability index. Osmotic adjustment indicated that the NaCI and PEG stress lead to accumulation of osmolytes, however sugar level changes non significantly. The ion concentration was drastically affected upon NaCI treatment, whereas PEG stress accumulated relatively less amount of Na + ions in comparison to NaCl. However, there was an increase in K + concentration upon PEG treatment, whereas NaCI stress accumulated less K + concentration with respect to PEG and control. The NaCI and PEG treated mutant plants showed increased activities of superoxide dismutase (SOD) and Catalase (CAT) in comparison to its control and parent control. Among the mutant selected gamma rays irradiation in corporation with enhanced tolerance to abiotic stress is one of the important goals for the biotechnological improvement of crop plants. Enhanced salinity tolerance may prove beneficial to improve the competitiveness of the popular sugarcane cultivars and their commercial cultivation in saline areas. (author)

  3. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress.

  4. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  5. Effect of La surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Merino, S.; Viejo, F.; Coy, A.E.

    2006-01-01

    The influence of the SiC p proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC p . The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC p reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive

  6. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice

    Directory of Open Access Journals (Sweden)

    D. Jini

    2017-03-01

    Full Text Available Soil salinity is one of the most important problems of crop production in estuarine and coastal zones. Improvement in salt tolerance of major food crops is an important way for the economic utilization of coastal zones. This study proved that the application of salicylic acid (SA improved the growth and yield under salt stress conditions and investigated its physiological mechanisms for salt tolerance. The investigation on the effect of SA for salt tolerance during germination showed that the decreased rates of germination and growth (in terms of shoot and root lengths by the salt stress were significantly increased by the SA application (SA + NaCl. The treatment of SA to the high and low saline soils enhanced the growth, yield and nutrient values of rice. The effects of SA on Na+, K+ and Cl– ionic accumulation were traced under salt stress condition by inductively coupled plasma optical emission spectrometry and ion chromatography. It was revealed that the increased accumulation of Na+ and Clˉ ions by the salt stress were reduced by SA application. An increased concentration of endogenous SA level was detected from the SA-treated rice varieties (ASD16 and BR26 by liquid chromatography electrospray Ionization-tandem mass spectrometry. The activities of antioxidant enzymes such as superoxide dismutase, catalase and peroxidase were increased by salt stress whereas decreased by the SA application. The study proved that the application of SA could alleviate the adverse effects of salt stress by the regulation of physiological mechanism in rice plants. In spite of salt stress, it can be applied to the coastal and estuarine regions to increase the rice production.

  7. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  8. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  9. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  10. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions.

    Science.gov (United States)

    Abdelaziz, Mohamed E; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V; Al-Babili, Salim

    2017-10-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na + /K + ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K + channels KAT1 and KAT2, which play key roles in regulating Na + and K + homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na + /K + ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na + and K + ion channels, which allows establishing a balanced ion homeostasis of Na + /K + under salt stress conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Expedited demonstration of molten salt mixed waste treatment technology. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas

  12. Salted, dried and smoked fish

    International Nuclear Information System (INIS)

    Lamprecht, E.; Riley, F.R.; Vermaak, K.; Venn, C.

    1986-01-01

    Heat resistance tests were carried out using a heat resistant strain of red halophiles isolated from a commercial salt and comparing this with three known species, i.e. Halobacterium halobium, H. salinarum and H. antirubrum. These four halophic strains were used to prepare artificially infected salts which were then subjected to three different forms of heat treatment: heat-treatment in oil bath, microwave heating and gamma radiation. The conclusion was made that gamma radiation appears to be less effective than microwave heating at the levels tested

  13. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  14. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  15. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  16. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    Science.gov (United States)

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment.

    Science.gov (United States)

    Chong, Ganggang; Di, Junhua; Ma, Cuiluan; Wang, Dajing; Wang, Chu; Wang, Lingling; Zhang, Pengqi; Zhu, Jun; He, Yucai

    2018-08-01

    In this study, biomass-hydrolysate was used for enhancing the bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE). Firstly, dilute alkalic salt pretreatment was attempted to pretreat bamboo shoot shell (BSS). It was found that enzymatic in situ hydrolysis of 20-50 g/L BSS pretreated with dilute alkalic salts (0.4% Na 2 CO 3 , 0.032% Na 2 S) at 7.5% sulfidity by autoclaving at 110 °C for 40 min gave sugar yields at 59.9%-73.5%. Moreover, linear relationships were corrected on solid recovery-total delignification-sugar yield. In BSS-hydrolysates, xylose and glucose could promote the reductase activity of recombinant E. coli CCZU-A13. Compared with glucose, hydrolysate could increase the reductase activity by 1.35-folds. Furthermore, the cyclohexane-hydrolysate (10:90, v/v) biphasic media containing ethylene diamine tetraacetic acid (EDTA, 40 mM) and l-glutamine (150 mM) was built for the effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (94.6% yield) from 500 mM COBE. In conclusion, this strategy has high potential for the effective biosynthesis of (R)-CHBE (>99% e.e.). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ripening of Sudanese Braided (Muddaffara Cheese Manufactured from Raw or Pasteurized Milk: Effect of Heat Treatment and Salt Concentration on the Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Mohamed O. E. Altahir

    2014-01-01

    Full Text Available The objective of the study was to investigate the interactive effect of heat treatment (raw or pasteurized milk, ripening in salted whey (SW and storage period for up to 3 months on the physicochemical properties of Sudanese braided cheese (SBC. Braided cheeses were manufactured from raw (BCRM and pasteurized (BCPM milk and ripened in SW (0%, 5%, and 10% salt for up to 90 days. All the treatments significantly (P≤0.05 affected the physicochemical characteristics of SBC. The total solid, protein, and fat contents of BCRM or BCPM decreased (P≤0.05, whereas their TA, SN, and salt contents increased significantly (P≤0.05 as storage period and the salt level of the whey were elevated. Both FRI and SRI of BCRM and BCPM increased with the increase in storage period and the salt level of the whey. For SN, FRI, SRI, pH, and moisture contents the magnitude of the change was more pronounced in BCRM than in BCPM, while for protein, fat, salt, and TS contents, the opposite was true; that is, the magnitude of the change was more pronounced in BCPM than in BCRM. Further studies are required to standardize muddaffara cheese manufacturing procedure particularly in rural areas.

  19. Ripening of Sudanese Braided (Muddaffara) Cheese Manufactured from Raw or Pasteurized Milk: Effect of Heat Treatment and Salt Concentration on the Physicochemical Properties.

    Science.gov (United States)

    Altahir, Mohamed O E; Elgasim, Elgasim A; Mohamed Ahmed, Isam A

    2014-01-01

    The objective of the study was to investigate the interactive effect of heat treatment (raw or pasteurized milk), ripening in salted whey (SW) and storage period for up to 3 months on the physicochemical properties of Sudanese braided cheese (SBC). Braided cheeses were manufactured from raw (BCRM) and pasteurized (BCPM) milk and ripened in SW (0%, 5%, and 10% salt) for up to 90 days. All the treatments significantly (P ≤ 0.05) affected the physicochemical characteristics of SBC. The total solid, protein, and fat contents of BCRM or BCPM decreased (P ≤ 0.05), whereas their TA, SN, and salt contents increased significantly (P ≤ 0.05) as storage period and the salt level of the whey were elevated. Both FRI and SRI of BCRM and BCPM increased with the increase in storage period and the salt level of the whey. For SN, FRI, SRI, pH, and moisture contents the magnitude of the change was more pronounced in BCRM than in BCPM, while for protein, fat, salt, and TS contents, the opposite was true; that is, the magnitude of the change was more pronounced in BCPM than in BCRM. Further studies are required to standardize muddaffara cheese manufacturing procedure particularly in rural areas.

  20. Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot

    Directory of Open Access Journals (Sweden)

    Matthew F. Pye

    2018-04-01

    Full Text Available Salt stress predisposes plants to Phytophthora root and crown rot in an abscisic acid (ABA-dependent manner. We used the tomato–Phytophthora capsici interaction to examine zoospore chemoattraction and assessed expression of pathogenesis-related (PR genes regulated by salicylic acid (SA and jasmonic acid (JA following a salt-stress episode. Although salt treatment enhances chemoattraction of tomato roots to zoospores, exudates from salt-stressed roots of ABA-deficient mutants, which do not display the predisposition phenotype, have a similar chemoattraction as exudates from salt-stressed, wild-type roots. This suggests that ABA action during predisposing stress enhances disease through effects on plant responses occurring after initial contact and during ingress by the pathogen. The expression of NCED1 (ABA synthesis and TAS14 (ABA response in roots generally corresponded to previously reported changes in root ABA levels during salt stress onset and recovery in a pattern that was not altered by infection by P. capsici. The PR genes, P4 and PI-2, hallmarks in tomato for SA and JA action, respectively, were induced in non-stressed roots during infection and strongly suppressed in infected roots exposed to salt-stress prior to inoculation. However, there was a similar proportional increase in pathogen colonization observed in salt-stressed plants relative to non-stressed plants in both wild-type and a SA-deficient nahG line. Unlike the other tomato cultivars used in this study that showed a strong predisposition phenotype, the processing tomato cv. ‘Castlemart’ and its JA mutants were not predisposed by salt. Salt stress predisposition to crown and root rot caused by P. capsici appears to be strongly conditioned by ABA-driven mechanisms in tomato, with the stress compromising SA-and JA-mediated defense-related gene expression during P. capsici infection.

  1. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  2. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  3. Consolidating and water repellent treatments applied to wet and salt contaminated granite

    Directory of Open Access Journals (Sweden)

    Silva, B.

    2000-03-01

    Full Text Available A comparison was made of the efficacy of two consolidants and two water repellents applied to samples of granite under optimum conditions, with the efficacy of the same products applied to the granite in the presence of soluble salts or water. The amount of product absorbed and the amount of dry polymer remaining after treatment were compared. The results show that the presence of water and soluble salts in the stone significantly modifies the consumption of the products (in particular the water repellents and also the level of dry polymer retained. The water repellents were found to be much less effective when the substrate contained salts, whereas the presence of water did not appear to influence their efficacy. The lack of correlation between uptake, active dry polymer, and efficacy led to the conclusion that the presence of salts or water markedly changes the kinetics of the polymerization of the products.

    Se analiza la eficacia de dos consolidantes y dos hidrofugantes aplicados a rocas graníticas en condiciones óptimas comparativamente a la eficacia de los mismos productos aplicados sobre los mismos sustratos conteniendo cierta cantidad de sales solubles o de agua. Se compara la cantidad de producto absorbido y la cantidad de materia seca presente tras el curado. Los resultados indican que la presencia de agua y de sales solubles en la piedra modifica significativamente el consumo de los productos, sobre todo el de los hidrofugantes, así como la cantidad de materia seca. Se observa, asimismo, un fuerte detrimento en la eficacia de los hidrofugantes cuando el sustrato contiene sales mientras que, al contrario, la presencia de agua no parece infiuir en dicha eficacia. La falta de correlación entre el consumo, materia seca activa y eficacia lleva a concluir que la presencia de sales o agua modifica sensiblemente la cinética de la polimeración de los productos.

  4. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.

    Science.gov (United States)

    Yu, Yanwen; Wang, Juan; Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang; Huang, Rongfeng

    2016-04-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Partial Restoration Of Skeletal Strength In Ovariectomized Rats By Treatment With Strontium Salts

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Pernille/Høegh; Christgau, Stephan

    AIM Ovariectomy of female rats induces significant bone-loss by depriving endogenous estrogen production. We assessed whether administration of strontium salts had a therapeutic benefit in this animal model of postmenopausal osteoporosis. INTRODUCTION In most women after menopause, the rate of bone...... loss exceeds the rate of bone formation, resulting in a net decrease in bone mass and ultimately in development of osteoporosis and elevated risk of sustaining fragility fracture. Most approved osteoporosis treatments work by decreasing the rate of bone resorption, however, these treatments also......-M and S-G respectively compared to 671 mg/cm3 in vehicle treated OVX and 750 mg/cm3 SHAM rats). Bone strength analysis revealed a significant increase (p...

  6. Large-scale downy brome treatments alter plant-soil relationships and promote perennial grasses in salt desert shrublands

    Science.gov (United States)

    The interrelationship between invasive annual grass abundance and soil resource availability varies spatially and temporally within ecosystems and may be altered by land treatments. We evaluated these relationships in two salt desert landscapes where the local abundance of Bromus tectorum L. (downy...

  7. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China); Yang, Z. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Department of Pathology, Xi' an, China, Department of Pathology, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Yuan, Z.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China)

    2014-03-03

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13{sup BN} rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  8. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    International Nuclear Information System (INIS)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y.; Yang, Z.; Yuan, Z.Y.

    2014-01-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13 BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure

  9. Comparative leaf proteomic profiling of salt-treated natural variants of Imperata cylindrica

    Directory of Open Access Journals (Sweden)

    Yun-Jhih Shih

    2018-06-01

    Full Text Available Cogon grass (Imperata cylindrica (L. Beauv. var. major (Nees Hubb. is one of the top-ten weeds worldwide. It is also a C4 medicinal plant. In particular, an ecotype from Chuwei (CW mangrove forest was found to be salt tolerant. Comparative proteomic analysis using two-dimensional (2D-difference in gel electrophoresis coupled with liquid chromatography-mass spectrometry (LC-MS was carried out to identify responsive leaf proteins in the CW ecotype and salt-intolerant Sarlun (SL population following three days of 150 mM sodium chloride salt stress treatment. We identified five photosynthesis proteins including Rubisco small subunit, uncharacterized protein LOC100194054, Cyt b6-f, oxygen-evolving enhancer 2, and photosystem I reaction center subunit IV which were significantly up- or down-regulated by salt stress in CW ecotype but not SL population. Gene ontology enrichment analysis showed that photosynthesis was over-represented. The mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD008482. Taken together, our proteomic study identified differentially accumulated proteins which provide additional evidence of ecophysiological variation in two natural variants of I. cylindrica.

  10. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    Science.gov (United States)

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers' participatory varietal selection (FPVS) resulted in the identification of a short duration (110-115 days), high yielding and disease resistant salt-tolerant rice genotype 'CSR-89IR-8', which was later released as 'CSR43' in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill -1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha -1  N, and the lowest was US$ 0.4 at 150 kg ha -1  N. Above 150 kg ha -1 , the additional net gain became negative, indicating decreasing returns from additional N. Hence, 150

  11. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  12. Anti-fibrotic effect of Aliskiren in rats with deoxycorticosterone induced myocardial fibrosis and its potential mechanism

    Directory of Open Access Journals (Sweden)

    Likun Ma

    2012-05-01

    Full Text Available The objective of our study was to investigate the effect of Aliskiren, a renin inhibitor, on the deoxycorticosterone (DOCA induced myocardial fibrosis in a rat model and its underlying mechanism. A total of 45 Sprague-Dawley (SD rats underwent right nephrectomy and were randomly assigned into 3 groups: control group (CON group: silicone tube was embedded subcutaneously; DOCA treated group (DOC group: 200 mg of DOCA was subcutaneously administered; DOCA and Aliskiren (ALI treated group (ALI group: 200 mg of DOCA and 50 mg/kg/d ALI were subcutaneously and intragastrically given, respectively. Treatment was done for 4 weeks. Sirius red staining was employed to detect the expression of myocardial collagen, and the myocardial collagen volume fraction (CVF and perivascular collagen volume area (PVCA were calculated. Radioimmunoassay was carried out to measure the renin activity (RA and content of angiotensin II (Ang II in the plasma and ventricle. Western blot assay was done to detect the expressions of extracellular signal-regulated kinase 1/2 (ERK1/2, phosphorylated ERK1/2 (PERK1/2 and matrix metalloproteinase 9 (MMP-9. In the DOC group and ALI group, the CVF and PVCA were significantly increased; the RA and Ang II levels in the plasma and ventricle were remarkably lowered when compared with the CON group. The RA and Ang II levels in the ventricle of the ALI group were significantly lower than those in the DOC group. Moreover, the expressions of ERK1/2, PERK1/2 and MMP9 were the lowest in the CON group, but those in the ALI group were significantly reduced as compared to the DOC group. ALI can inhibit the DOCA induced myocardial fibrosis independent of its pressure-lowing effect, which may be related to the suppression of RA and Ang II production, inhibition of ERK1/2 phosphorylation and MMP9 expression in the heart.

  13. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  14. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lee

    Full Text Available Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K generated a melting temperature increase of 15.7°C. Thus, this study

  15. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  16. Effects of combination treatments of radiation and salt on the shelf life extension of hilsha fish (Hilsa ilisha) at low temperature

    International Nuclear Information System (INIS)

    Hossain, M.M.; Alam, M.Z.; Karim, A.; Rashid, H.; Khan, A.H.

    1991-01-01

    Investigations were made on the application of combination treatments of radiation with common salt at the doses of 50, 100 and 150 krad on the shelflife extension of hilsha fish slices at 5 deg. C. Quality assessments were made by chemical, bacteriological and sensory evaluations. The storage life of control samples of the same storage temperature was about 3 weeks, whereas salted samples treated with 100 Krad were acceptable up to 9 weeks. Results of bacteriological tests agreed well with sensory panel evaluations but chemical parameters such as TVB and TMA were not suitable index for quality assessment of irradiated salted fish samples

  17. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  18. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  19. Influence of freezing and thawing on the hydration characteristics, quality, and consumer acceptance of whole muscle beef injected with solutions of salt and phosphate.

    Science.gov (United States)

    Pietrasik, Z; Janz, J A M

    2009-03-01

    Effects of salt/phosphate injection level (112% or 125% pump), salt level (0.5% or 1.5% salt), and freezing/thawing on hydration characteristics, quality, and consumer acceptance of beef semitendinosus were investigated. All enhancement treatments decreased shear force by 25-35%, but negatively affected colour. Increased salt concentration yielded lower purge and cooking losses, and higher water holding capacity. The higher injection level reduced water binding properties, however, the loss in functionality with higher water addition was overcome with increased salt content. Freezing and subsequent thawing was generally detrimental to colour and water binding properties and tended to increase shear force. Freezing and subsequent thawing did not affect fluid release in steaks held for 1 day before analysis, but resulted in decreased water retention in samples held for 7 days. Holding vacuum packaged steaks for 7 days generally increased package purge and negatively affected colour parameters, although water binding characteristics were improved. Consumer panel results demonstrated a negative effect on juiciness and tenderness where meat subject to low salt/high injection was frozen then thawed - the low salt level was insufficient to maintain any positive effect of injection treatment. In general, salt/phosphate injection improved product acceptability and increased willingness to purchase.

  20. Exogenous ascorbic acid increases resistance to salt of Silybum ...

    African Journals Online (AJOL)

    However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, ...

  1. Behavioral Therapy, Incentives Enhance Addiction Treatment

    Science.gov (United States)

    ... Research News From NIH Behavioral Therapy, Incentives Enhance Addiction Treatment Past Issues / Summer 2006 Table of Contents ... that people who are trying to end their addiction to marijuana can benefit from a treatment program ...

  2. Enhanced antioxidative responses of a salt-resistant wheat cultivar ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... prove its tolerance to salt stress, at the same time, signifi- cant increases in .... Reverse Transcription System Kit (Promega, USA) using oligo-dT-primers. ..... salinity and extreme temperatures: towards genetic engineering for.

  3. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    Science.gov (United States)

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins. Copyright 2009 Elsevier GmbH. All rights reserved.

  4. Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions

    International Nuclear Information System (INIS)

    Shahzad, S.; Zahir, Z. A.; Asghar, H. N.; Chaudhry, U. K.

    2017-01-01

    Salinity is one of the most crucial problems for sustainable agriculture which is severely affecting crop growth and decreasing the food production. On another hand, burgeoning population in the world demands to produce more food. So, there is a need of hours to increase agricultural production particularly cereals from salt affected soils by adopting cost effective and environment friendly approaches. Use of bio-inoculants with salt tolerant plant growth promoting rhizobacteria (PGPR) could be a promising option to enhance the production of cereals in salt affected soils. Therefore, a field experiment was conducted to evaluate different carriers compost, peat, biogas slurry and press mud along with PGPR to enhance wheat production under salinity stress. Consortium containing equal proportion of three PGPR strains (Bacillus cereus strain Y5, Bacillus sp. Y14 and Bacillus subtilis strain Y16) was used with different carriers for seed coating. Finely ground and sterilized carriers were mixed in broth and coated on the surface of wheat seeds with different carriers. Coated seeds were sown in saline field with salinity range of 10-13 dS m/sup -1/. Results revealed that multi-strain bacterial inoculation improved the gas exchange, ionic, biochemical, growth and yield attributes of wheat crop under salinity stress. However, use of different carriers further improved the efficacy of multi-strain inoculation and significantly increased growth, yield and physiological parameters of wheat. The results of compost, peat and biogas slurry as carrier for bio-inoculants were statistically similar. (author)

  5. Blanching, salting and sun drying of different pumpkin fruit slices.

    Science.gov (United States)

    Workneh, T S; Zinash, A; Woldetsadik, K

    2014-11-01

    The study was aimed at assessing the quality of pumpkin (Cucuribita Spp.) slices that were subjected to pre-drying treatments and drying using two drying methods (uncontrolled sun and oven) fruit accessions. Pre-drying had significant (P ≤ 0.05) effect on the quality of dried pumpkin slices. 10 % salt solution dipped pumpkin fruit slices had good chemical quality. The two-way interaction between drying methods and pre-drying treatments had significant (P ≤ 0.05) effect on chemical qualities. Pumpkin subjected to salt solution dipping treatment and oven dried had higher chemical concentrations. Among the pumpkin fruit accessions, pumpkin accession 8007 had the superior TSS, total sugar and sugar to acid ratio after drying. Among the three pre-drying treatment, salt solution dipping treatment had significant (P ≤ 0.05) effect and the most efficient pre-drying treatment to retain the quality of dried pumpkin fruits without significant chemical quality deterioration. Salt dipping treatment combined with low temperature (60 °C) oven air circulation drying is recommended to maintain quality of dried pumpkin slices. However, since direct sun drying needs extended drying time due to fluctuation in temperature, it is recommended to develop or select best successful solar dryer for use in combination with pre-drying salt dipping or blanching treatments.

  6. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinsheng; Wu, Yinghai; Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed. (author)

  8. Reactions of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} and formation of sodium carbonate sulfate double salts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinsheng [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)]. E-mail: jiwang@nrcan.gc.ca; Wu Yinghai [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada); Anthony, Edward J. [CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Dr., Ottawa, Ontario K1A 1M1 (Canada)

    2007-07-01

    High-temperature chemical reactions in mixtures of solid CaSO{sub 4} and Na{sub 2}CO{sub 3} were investigated in order to explore the mechanisms of enhanced sulfur capture by limestones doped with Na{sub 2}CO{sub 3} in fluidized bed combustion. Drastic weight loss of the mixtures was observed in a thermogravimetric analyzer near the melting temperature of Na{sub 2}CO{sub 3}, indicating chemical reaction. X-ray diffraction analysis for a mixture of the solids following a heat treatment at 850 deg. C revealed the existence of two sodium carbonate sulfate double salts that have not been reported before for the present system. The formation of Na{sub 2}SO{sub 4} in the melt of Na{sub 2}CO{sub 3} appears to precede the formation of the double salts. The two double salts are believed to have high porosity and specific surface area similar to those of a better-known double salt, burkeite. The implications of these findings for the enhancement of limestone sulfation by Na{sub 2}CO{sub 3} are also discussed.

  9. Physical principles and efficiency of salt extraction by poulticing

    NARCIS (Netherlands)

    Pel, L.; Sawdy - Heritage, A.M.; Voronina, V.

    2010-01-01

    The crystallization of soluble salts plays a significant role in the deterioration of porous cultural property. A common response to salt damage problems is to undertake treatments aimed at reducing the salt content of the affected object, most typically through the application of poultices. The

  10. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  11. Interactions of PPAR α and GLUT4 in DOCA/salt-induced renal ...

    African Journals Online (AJOL)

    olayemitoyin

    1Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Nigeria. ... MATERIALS AND METHODS ... used as 25mg slow release pellets prepared in our ... volume (UV) was determined by gravimetrically.

  12. Effect of La surface treatments on corrosion resistance of A3xx.x/SiC{sub p} composites in salt fog

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2006-02-15

    The influence of the SiC{sub p} proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC{sub p}. The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC{sub p} reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive.

  13. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Meena

    2015-09-01

    Full Text Available Calcium signaling plays an important role in adaptation and developmental processes in plants and animals. A class of calcium sensors, known as Calcineurin B-like (CBL proteins sense specific temporal changes in cytosolic Ca2+ concentration and regulate activities of a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs. Although a number of CIPKs have been shown to play crucial roles in the regulation of stress signaling, no study on the function of CIPK25 or its orthologues has been reported so far. In the present study, an orthologue of Arabidopsis CIPK25 was cloned from chickpea (Cicer arietinum. CaCIPK25 gene expression in chickpea increased upon salt, dehydration, and different hormonal treatments. CaCIPK25 gene showed differential tissue-specific expression. 5'-upstream activation sequence (5'-UAS of the gene and its different truncated versions were fused to a reporter gene and studied in Arabidopsis to identify promoter regions directing its tissue-specific expression. Replacement of a conserved threonine residue with an aspartic acid at its catalytic site increased the kinase activity of CaCIPK25 by 2.5-fold. Transgenic tobacco plants overexpressing full-length and the high active versions of CaCIPK25 displayed a differential germination period and longer root length in comparison to the control plants. Expression of CaCIPK25 and its high active form differentially increased salt and water-deficit tolerance demonstrated by improved growth and reduced leaf chlorosis suggesting that the kinase activity of CaCIPK25 was required for these functions. Expressions of the abiotic stress marker genes were enhanced in the CaCIPK25-expressing tobacco plants. Our results suggested that CaCIPK25 functions in root development and abiotic stress tolerance.

  14. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  15. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  16. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  17. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  18. Salt extraction by poulticing : an NMR study

    NARCIS (Netherlands)

    Voronina, V.

    2011-01-01

    The crystallization of salts is widely recognized as one of the most significant causes of damage to many cultural objects consisting of porous materials, such as monuments, sculptures, historic buildings, wall paintings, etc. A common response to salt damage problems are treatments aimed at

  19. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing.

    Science.gov (United States)

    Inguglia, Elena S; Zhang, Zhihang; Burgess, Catherine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-02-01

    The present study investigated the effect of geometric parameters of the ultrasound instrument during meat salting in order to enhance salt diffusion and salt distribution in pork meat on a lab scale. The effects of probe size (∅2.5 and 1.3cm) and of different distances between the transducer and the meat sample (0.3, 0.5, and 0.8cm) on NaCl diffusion were investigated. Changes in the moisture content and NaCl gain were used to evaluate salt distribution and diffusion in the samples, parallel and perpendicular to ultrasound propagation direction. Results showed that 0.3cm was the most efficient distance between the probe and the sample to ensure a higher salt diffusion rate. A distance of 0.5cm was however considered as a trade-off distance to ensure salt diffusion and maintenance of meat quality parameters. The enhancement of salt diffusion by ultrasound was observed to decrease with increased horizontal distance from the probe. This study is of valuable importance for meat processing industries willing to apply new technologies on a larger scale and with defined operational standards. The data suggest that the geometric parameters of ultrasound systems can have strong influence on the efficiency of ultrasonic enhancement of NaCl uptake in meat and can be a crucial element in determining salt uptake during meat processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Study of the incidence and etiology of congenital hypothyroidism in an endemic goiter area after treatment with iodine enriched salt

    International Nuclear Information System (INIS)

    Liu Shizhen

    1992-01-01

    A screening program for congenital hypothyroidism (CH) was performed in a severe endemic goiter area, Chengde district including 7 counties, after treatment with Iodine enriched salt, and Beijing city as a control area. From May 1985 to Sep. 1991, 26570 newborns in Beijing city and 16227 in Chengde were screened. The incidence of primary hypothyroidism in Beijing city was 1/8800 and that in Chengde 1/8100. Of all the 5 Ch detected, 3 from Beijing city and 2 from Chengde, were thyroid dysgenesis. Not a single case of endemic goiter cretinism (including both myxedematous and neurological cretinism) was found in our study. We conclude that Iodine deficiency is the only cause of endemic cretinism and this problem can be solved by Iodine enriched salt treatment

  1. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  2. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  3. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    International Nuclear Information System (INIS)

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-01-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given

  4. Response of Tomato Genotypes to Induced Salt Stress | Agong ...

    African Journals Online (AJOL)

    Thirteen tomato (Lycopersicon esculentum L.) genotypes were subjected to salt treatment under hydroponics and their responses monitored in a set of two experiments with the objective of advancing them as potential salt tolerant tomato scion and/or rootstocks. Salt applications ranged from 0 to 2% NaCl, with the resultant ...

  5. Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol--a novel approach for enhanced biohydrogen production from the biodiesel industry waste.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; Soccol, Carlos Ricardo

    2014-01-01

    Owing to its inhibitory effect on microbial growth, soap present in crude glycerol (CG) is a concern in biological valorization of the biodiesel manufacturing waste. By salting out strategy, up to 42% of the soap has been removed and the approach has beneficial effect on H2 production; however, removal of more than 7% of the soap was found to be inhibitory. Actually, soap is utilized as a co-substrate and due to removal; the carbon-nitrogen ratio of the medium might have decreased to reduce the production. Alternatively, without changing the carbon-nitrogen ratio of CG, MgSO4 treatment can convert the soap to its inactive form (scum). The approach was found to increase the H2 production rate (33.82%), cumulative H2 production (34.70%) as well as glycerol utilization (nearly 2.5-folds). Additionally, the treatment can increase the Mg (a nutrient) content of the medium from 0.57 ppm to 201.92 ppm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  7. Effects of hot boning and moisture enhancement on the eating quality of cull cow beef.

    Science.gov (United States)

    Pivotto, L M; Campbell, C P; Swanson, K; Mandell, I B

    2014-01-01

    The effects of chilling method and moisture enhancement were examined for improving eating quality of semimembranosus (SM) and longissimus lumborum (LL) from 62 cull beef cows. Chilling method included hot boning muscles after 45 to 60 min postmortem or conventional chilling for 24 h. Moisture enhancement included 1) a non-injected control (CONT) or injection processing (10% of product weight) using 2) Sodium Tripolyphosphate/salt (Na/STP), 3) Sodium Citrate (NaCIT), 4) Calcium Ascorbate (CaASC), or 5) Citrus Juices (CITRUS). Chilling method by moisture enhancement treatment interactions (Pboned vs. conventionally chilled product (SM and LL) for CaASC vs. other moisture enhancement treatments. Chilling method by moisture enhancement treatment interactions (Pboned LL using CaASC vs. Na/STP. Moisture enhancement can improve tenderness of cull cow beef depending on combinations of chilling method and moisture enhancement treatments used. © 2013.

  8. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    Science.gov (United States)

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.

  9. Remediation of 137Cs contaminated concrete using electrokinetic phenomena and ionic salt washes in nuclear energy contexts.

    Science.gov (United States)

    Parker, Andrew J; Joyce, Malcolm J; Boxall, Colin

    2017-10-15

    This work describes the first known the use of electrokinetic treatments and ionic salt washes to remediate concrete contaminated with 137 Cs. A series of experiments were performed on concrete samples, contaminated with K + and 137 Cs, using a bespoke migration cell and an applied electric field (60V potential gradient and current limit of 35mA). Additionally, two samples were treated with an ionic salt wash (≤400molm -3 of KCl) alongside the electrokinetic treatment. The results show that the combined treatment produces removal efficiencies three times higher (>60%) than the electrokinetic treatment alone and that the decontamination efficiency appears to be proportional to the initial degree of contamination. Furthermore, the decontamination efficiencies are equivalent to previous electrokinetic studies that utilised hazardous chemical enhancement agents demonstrating the potential of the technique for use on nuclear licensed site. The results highlight the relationship between the initial contamination concentration within the concrete and achievable removal efficiency of electrokinetic treatment and other treatments. This information would be useful when selecting the most appropriate decontamination techniques for particular contamination scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chronic hypertension alters the expression of Cx43 in cardiovascular muscle cells

    Directory of Open Access Journals (Sweden)

    Haefliger J.-A.

    2000-01-01

    Full Text Available Connexin43 (Cx43, the predominant gap junction protein of muscle cells in vessels and heart, is involved in the control of cell-to-cell communication and is thought to modulate the contractility of the vascular wall and the electrical coupling of cardiac myocytes. We have investigated the effects of arterial hypertension on the expression of Cx43 in aorta and heart in three different models of experimental hypertension. Rats were made hypertensive either by clipping one renal artery (two kidney, one-clip renal (2K,1C model by administration of deoxycorticosterone and salt (DOCA-salt model or by inhibiting nitric oxide synthase with NG-nitro-L-arginine methyl ester (L-NAME model. After 4 weeks, rats of the three models showed a similar increase in intra-arterial mean blood pressure and in the thickness of the walls of both aorta and heart. Analysis of heart mRNA demonstrated no change in Cx43 expression in the three models compared to their respective controls. The same 2K,1C and DOCA-salt hypertensive animals expressed twice more Cx43 in aorta, and the 2K,1C rats showed an increase in arterial distensibility. In contrast, the aortae of L-NAME hypertensive rats were characterized by a 50% decrease in Cx43 and the carotid arteries did not show increased distensibility. Western blot analysis indicated that Cx43 was more phosphorylated in the aortae of 2K,1C rats than in those of L-NAME or control rats, indicating a differential regulation of aortic Cx43 in different models of hypertension. The data suggest that localized mechanical forces induced by hypertension affect Cx43 expression and that the cell-to-cell communication mediated by Cx43 channels may contribute to regulating the elasticity of the vascular wall.

  11. Effect of Salt Forms of Chitosan on In Vitro Permeability ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of chitosan (CS) salt forms and pH condition on the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer for enhanced permeability. Methods: Solutions (2 %w/v) of four different salt forms of CS-aspartate (CS-A), CS-ethylene diamine tetraacetate (CS-EDTA), ...

  12. [Food processing industry--the salt shock to the consumers].

    Science.gov (United States)

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  13. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  14. High salt intake does not exacerbate murine autoimmune thyroiditis

    Science.gov (United States)

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  15. South Bay Salt Pond Mercury Studies Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Determination of iodate in iodized salt and water samples by shell-isolated nanoparticle-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Kaige; Liang, Lizhen; Huang, Meiying; Hu, Yuling; Li, Gongke

    2014-01-01

    We have developed a simple, rapid, and sensitive method for the determination of iodate in iodized salt and water samples. The method is making use of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and is based on the oxidation of hydroxylammonium chloride by iodate to produce nitrite which then is used to diazotize with p-nitroaniline. The resulting diazonium ion is then coupled to N-(1-naphthyl) ethylenediamine dihydrochloride to form an azo dye whose concentration is determined by SHINERS. The active substrate used in SHINERS is composed of gold nanoparticles coated with an ultrathin silica shell possessing pinholes on their surface. Various factors that influence the chemical reaction and the intensity of SHINERS were investigated. Under the optimal conditions, the Raman intensity is linearly related to the concentration of iodate in the 7.5–130.0 μg L−1 range, with a correlation coefficient of 0.9920. The limit of detection is 2.0 μg L−1, and the relative standard deviation is 7.5 % (for n = 5) at 1,138 cm−1 without additional sample pre-concentration. The method was successfully applied to the determination of iodate in iodized salt and water samples. The accuracy was assessed through recovery tests and independent analysis by a conventional titrimetric method. (author)

  17. Salt, Blood Pressure and Cardiovascular Changes in Human and ...

    African Journals Online (AJOL)

    Salt, Blood Pressure and Cardiovascular Changes in Human and Experimental Studies – A Review. ... Some of the pathophysiological changes include cardiac hypertrophy and enhanced cardiac contractility, enhanced contraction of blood vessels and veins in response to constrictor agonists and diminished relaxation of ...

  18. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  19. Sphingomyelin exhibits greatly enhanced protection compared with egg yolk phosphatidylcholine against detergent bile salts

    NARCIS (Netherlands)

    Moschetta, A.; vanBerge-Henegouwen, G. P.; Portincasa, P.; Palasciano, G.; Groen, A. K.; van Erpecum, K. J.

    2000-01-01

    Inclusion of phosphatidylcholine within bile salt micelles protects against bile salt-induced cytotoxicity. In addition to phosphatidylcholine, bile may contain significant amounts of sphingomyelin, particularly under cholestatic conditions. We compared protective effects of egg yolk

  20. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  1. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates

    Directory of Open Access Journals (Sweden)

    Xuemeng Dong

    2010-01-01

    Full Text Available Novel amphiphilic biopolymers were synthesized using hyaluronic acid (HA as a hydrophilic segment and deoxycholic acid (DOCA as a hydrophobic segment by a 1-ethyl-3-(3-dimethylaminopropyl carbodiimide mediated coupling reaction. The structural characteristics of the HA-DOCA conjugates were investigated using H1 NMR. Self-assembled nanoparticles were prepared based on HA-DOCA conjugates, and its characteristics were investigated using dynamic laser light scattering, transmission electron microscopy (TEM, and fluorescence spectroscopy. The mean diameter was about 293.5 nm with unimodal size distribution in distilled water. The TEM images revealed that the shape of HA-DOCA self-aggregates was spherical. The critical aggregation concentration (CAC was in the range of 0.025–0.056 mg/mL. The partition equilibrium constant (Kv of pyrene in self-aggregates solution was from 1.45×104 to 3.64×104. The aggregation number of DOCA groups per hydrophobic microdomain, estimated by the fluorescence quenching method using cetylpyridinium chloride, increased with increasing degree of substitution.

  2. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  3. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  4. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  5. Characterization of sodium bentonites: effect of treatment with ammonium salt- free organic surfactant; Caracterizacao de bentonitas sodicas: efeito do tratamento com surfactante organico livre de sal de amonio

    Energy Technology Data Exchange (ETDEWEB)

    Morita, R. Y.; Barbosa, R. V.; Kloss, J.R., E-mail: julianaweber@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Dartamento de Quimica e Biologia

    2015-07-15

    Bentonite, which the main clay mineral is montmorillonite, are commercially attractive because of its abundance in nature. The clays can be modified by ion exchange reactions of ions contained in the interlayer region with cationic surfactants that include ammonium or phosphonium salts. The clays origin and the type of surfactants (modifiers) are the main factors in the alteration of physical and chemical properties of these materials. This study aims to characterize and compare the results of natural bentonite commercially available and the effect of treatments with quaternary ammonium salt and an organic compound free of ammonium salt. The FTIR and XRD results indicate the process of organophilization of clays after treatment with the surfactants. These treatments have altered the average particle size, suggesting the formation of agglomerates, which was showed in the SEM images. The results of surface area and particle size data indicated the presence of larger particles. Although the two surfactants have shown similarities in the investigated properties, the organoclays free of ammonium salt are more promising in terms of its use as well as for their preparation and solubility. (author)

  6. Salt bridge as a gatekeeper against partial unfolding.

    Science.gov (United States)

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  7. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  8. Preliminary assessment of the healing of fractures in salt

    International Nuclear Information System (INIS)

    1983-07-01

    Natural fractures in salt are not common but have been observed. An assessment is made of whether and under what conditions such fractures regain cohesion (heal). Evidence comes from observations in mines, commercial processing, and laboratory testing of both fractured and granular salt. Healing can take the form of chemical precipitation, ductile injection, and creep closure. Of these, creep closure is of principal interest. Healing is measured in terms of recovered strength and reduced permeability. It is found to increase with increased confining pressure and is greatly enhanced when the salt is in contact with brine. Research at Sandia National Laboratories has demonstrated salt fracture healing in relatively short time periods under conditions consistent with the environment of a geologic repository. 45 references

  9. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  10. Modification of a Brazilian smectite clay with different quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Maria Flávia Delbem

    2010-01-01

    Full Text Available In this work, a smectite clay from the State of Paraiba, Brazil, was treated with six different types of ammonium salts, which is an usual method to enhance the affinity between the clay and polymer for the preparation of nanocomposites. The clays, before and after modification, were characterized by X ray diffraction. The conformation of the salts within the platelets of the clay depended on the number of long alkyl chains of the salt. The thermal stability of the clays was also studied. The ammonium salts thermal decomposition was explained in light of their position within the organoclays.

  11. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  12. New therapeutic approaches for equine protozoal myeloencephalitis: pharmacokinetics of diclazuril sodium salts in horses.

    Science.gov (United States)

    Dirikolu, Levent; Karpiesiuk, Wojciech; Lehner, Andreas F; Hughes, Charlie; Woods, William E; Harkins, John D; Boyles, Jeff; Atkinson, Alfonza; Granstrom, David E; Tobin, Thomas

    2006-01-01

    Diclazuril is a triazine-based antiprotozoal agent which may have clinical application in the treatment of equine protozoal myeloencephalomyelitis (EPM). In this study, the use of the sodium salt diclazuril to increase the apparent bioavailability of diclazuril for the treatment and prophylaxis of EPM and various other Apicomplexan mediated diseases is described. In this study, diclazuril sodium salt was synthesized and administered to horses as diclazuril sodium salt formulations. The absorption, distribution, and clearance of diclazuril sodium salt in the horse are described. Diclazuril was rapidly absorbed, with peak plasma concentrations occurring at 8-24 hours following an oral mucosal administration of diclazuril sodium salt. The mean oral bioavailability of diclazuril as Clinacox was 9.5% relative to oral mucosal administration of diclazuril sodium salt. Additionally, diclazuril in DMSO administered orally was 50% less bioavailable than diclazuril sodium salt following an oral mucosal administration. It was also shown that diclazuril sodium salt has the potential to be used as a feed additive for the treatment and prophylaxis of EPM and various other Apicomplexan mediated diseases.

  13. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eun, H.C., E-mail: ehc2004@kaeri.re.kr; Choi, J.H.; Kim, N.Y.; Lee, T.K.; Han, S.Y.; Lee, K.R.; Park, H.S.; Ahn, D.H.

    2016-11-15

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl{sub 3}). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K{sub 2}CO{sub 3}) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, Pr{sub 2}O{sub 3}) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  14. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    Science.gov (United States)

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  15. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  17. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  18. Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative

    OpenAIRE

    Brayden, David J.; Walsh, Edwin

    2014-01-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to t...

  19. The Addition of White Turmeric (Curcuma zedoaria Concentrated Base on Quality Antioxidant Activity, Total Phenol, Protein Content and Salt Content of Salted Egg

    Directory of Open Access Journals (Sweden)

    Mu’addimah Mu’addimah

    2017-03-01

    Full Text Available The purposes of this research was to determine the effect of Curcuma zedoaria concentrated addition on quality antioxidant activity, total phenols, protein content and salt content of salted egg. The materials were duck’s egg, water, salt, and essence of white turmeric. The method was experiment using Complete Randomized Design (CRD with five treatments and three for replications. The Curcuma zedoaria juice research were divided into P0 (0%, P1 (10%, P2 (20%, P3 (30% and P4 (40%. Data was analyzed using Analysis of Variance (ANOVA and then continued by Duncan’s Multiple Range Test (DMRT, if it was found significant effect among treatmeants. The result showed that the addition of Curcuma zedoaria juice indicated highly significant different effect (P<0.01 on antioxidant activity, protein content and salt content, but significantly effect (P<0.05 on total phenol. The best treatment was the addition of Curcuma zedoaria juice 40% were indicated of antioxidant activity, total phenol, protein content and the salt content was 99.80 mg/g, 0.16%, 9.96%, 2.43% respectively.

  20. Expected Impact of Agricultural Nonpoint Sources Special Land Treatment (AgNPS-SALT) Projects

    OpenAIRE

    Anonymous

    2006-01-01

    This set of reports describes the computer based evaluation of 6 AgNPS-SALT Projects in Missouri and assesses the use of SWAT as an evaluation tool. The analyses estimates nutrient, sediment, and pesticide loading reductions for each project. Titles include: Final Report, Computer Based Evaluation of the AgNPS-SALT Project (19-06); Long Branch Lake Watershed, Computer Based Evaluation of the AgNPS-SALT Project (20-06); Upper and Lower Big Maries River Watersheds Computer Based Evaluation of t...

  1. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    Science.gov (United States)

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  2. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    Science.gov (United States)

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (Pmeat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  3. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    Science.gov (United States)

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance. © 2015 John Wiley & Sons Ltd.

  4. GRS/ISTec strategy for the treatment of gas-related issues for repositories located in rock salt

    International Nuclear Information System (INIS)

    Muller-Lyda, I.; Javeri, V.; Muller, W.

    2001-01-01

    The treatment of gas-related issues for repositories located in rock salt by GRS and ISTec has followed a strategy which has been developed with increasing complexity and degree of detail in the past. The strategy today clearly indicates the direction to establish a comprehensive safety case and the work that remains to be done. For gas generation mainly long-term aspects are an issue to increase accuracy of predictions. Physical modelling especially for HLW is still incomplete with regard to the coupling of fluid flow with geomechanics, solution/precipitation effects and geochemistry. The appropriate tools to transform the physical models into numerical solutions are at hand in principle but have to be further developed collaterally to the physical modelling. The first full-scale demonstration of safety regarding gas issues in rock salt will have to be provided for the licensing of the Morsleben repository shut-down in the near future. (authors)

  5. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  6. Metronomic chemotherapy using orally active carboplatin/deoxycholate complex to maintain drug concentration within a tolerable range for effective cancer management.

    Science.gov (United States)

    Mahmud, Foyez; Chung, Seung Woo; Alam, Farzana; Choi, Jeong Uk; Kim, Seong Who; Kim, In-San; Kim, Sang Yoon; Lee, Dong Soo; Byun, Youngro

    2017-03-10

    Metronomic chemotherapy has translated into favorable toxicity profile and capable of delaying tumor progression. Despite its promise, conventional injectable chemotherapeutics are not meaningful to use as metronomic due to the necessity of frequent administration for personalized therapy in long-term cancer treatments. This study aims to exploit the benefits of the oral application of carboplatin as metronomic therapy for non-small cell lung cancer (NSCLC). We developed an orally active carboplatin by physical complexation with a deoxycholic acid (DOCA). The X-ray diffraction (XRD) patterns showed the disappearance of crystalline peaks from carboplatin by forming the complex with DOCA. In vivo pharmacokinetic (PK) study confirmed the oral absorption of carboplatin/DOCA complex. The oral bioavailability of carboplatin/DOCA complex and native carboplatin were calculated as 24.33% and 1.16%, respectively, when a single 50mg/kg oral dose was administered. Further findings of oral bioavailability during a low-dose daily administration of the complex (10mg/kg) for 3weeks were showed 19.17% at day-0, 30.27% at day-7, 26.77% at day-14, and 22.48% at day-21, demonstrating its potential for metronomic chemotherapy. The dose dependent antitumor effects of oral carboplatin were evaluated in SCC7 and A549 tumor xenograft mice. It was found that the oral carboplatin complex exhibited potent anti-tumor activity at 10mg/kg (74.09% vs. control, Peffective and safe oral formulation of carboplatin as a metronomic chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  8. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress.

    Science.gov (United States)

    Li, JianJian; Ma, Jingjing; Guo, Hailin; Zong, Junqin; Chen, Jingbo; Wang, Yi; Li, Dandan; Li, Ling; Wang, Jingjing; Liu, Jianxiu

    2018-05-01

    Salinity is one of the major abiotic environmental stress factors affecting plant growth and development. Centipedegrass (Eremochloa ophiuroides [Munro)] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements, but is sensitive to salinity stress. To explore salt tolerant germplasms in centipedegrass and better understand the growth and physiological responses of centipedegrass to salinity, we conducted anatomic observation and phytochemical quantification, examined growth parameters, and investigated photosynthetic machinery and antioxidant system in two phenotypically distinct centipedegrass accessions under NaCl salt stress. The morphophenotypical difference of the stems in the two accessions mainly depends on whether or not a thickened epidermal horny layer with purple colour was formed, which was caused by anthocyanin accumulation in the tissue. Successive salinity treatment was found to result in an inhibition of leaf growth, a marked decrease in photosynthesis, chlorophyll contents, and the maximal photochemical efficiency of PSII (Fv/Fm). Under the same treatment, purple-stem accession (E092) showed a lower degree of inhibition or decrease than green-stem one (E092-1). With the exception of malondialdehyde level, both proline content and antioxidant enzymes were upregulated to a greater extent in E092 following exposure to salinity condition. Meanwhile, significant enhancements of anthocyanin accumulation and total protein synthesis were detected in E092 after salt treatment, but not in E092-1. These results demonstrated that E092 favor better accumulation of anthocyanins under salinity condition, which contribute to salt tolerance by adjusting physiological functions and osmotic balance, and better maintenance of high turf quality. Hence, genetic phenotype can be utilized as a key indicator in E. ophiuroides breeding for salt-tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  9. Impact of solid second phases on deformation mechanisms of naturally deformed salt rocks (Kuh-e-Namak, Dashti, Iran) and rheological stratification of the Hormuz Salt Formation

    Science.gov (United States)

    Závada, P.; Desbois, G.; Urai, J. L.; Schulmann, K.; Rahmati, M.; Lexa, O.; Wollenberg, U.

    2015-05-01

    Viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' second phase bearing rock salt and 'strong' pure rock salt types are studied for deformation mechanisms using detailed quantitative microstructural study. While the solid inclusions rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although the flow in both, the recrystallized "dirty" and "clean" salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS), transgranular microcracking and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts observed in the field outcrops are explained by: 1) enhanced ductility of "dirty" salts due to increased diffusion rates along the solid inclusion-halite contacts than along halite-halite contacts, and 2) slow rates of intergranular diffusion due to dissolved iron and inhibited dislocation creep due to hematite inclusions for "clean" salt types Rheological contrasts inferred by microstructural analysis between both salt rock classes apply in general for the "dirty" salt forming Lower Hormuz and the "clean" salt forming the Upper Hormuz of the Hormuz Formation and imply strain rate gradients or decoupling along horizons of mobilized salt types of different composition and microstructure.

  10. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment.

    Science.gov (United States)

    Zhang, Wenjin; Xie, Zhicai; Wang, Lianhong; Li, Ming; Lang, Duoyong; Zhang, Xinhui

    2017-05-01

    This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

  11. The impact of high-salt exposure on cardiovascular development in the early chick embryo.

    Science.gov (United States)

    Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Jin, Yi-Mei; Zhang, Shi-Yao; Cheng, Xin; Ma, Zheng-Lai; Zhao, Shu-Zhu; Chen, You-Peng; Chuai, Manli; Hocher, Berthold; Yang, Xuesong

    2015-11-01

    In this study, we show that high-salt exposure dramatically increases chick mortality during embryo development. As embryonic mortality at early stages mainly results from defects in cardiovascular development, we focused on heart formation and angiogenesis. We found that high-salt exposure enhanced the risk of abnormal heart tube looping and blood congestion in the heart chamber. In the presence of high salt, both ventricular cell proliferation and apoptosis increased. The high osmolarity induced by high salt in the ventricular cardiomyocytes resulted in incomplete differentiation, which might be due to reduced expression of Nkx2.5 and GATA4. Blood vessel density and diameter were suppressed by exposure to high salt in both the yolk sac membrane (YSM) and chorioallantoic membrane models. In addition, high-salt-induced suppression of angiogenesis occurred even at the vasculogenesis stage, as blood island formation was also inhibited by high-salt exposure. At the same time, cell proliferation was repressed and cell apoptosis was enhanced by high-salt exposure in YSM tissue. Moreover, the reduction in expression of HIF2 and FGF2 genes might cause high-salt-suppressed angiogenesis. Interestingly, we show that high-salt exposure causes excess generation of reactive oxygen species (ROS) in the heart and YSM tissues, which could be partially rescued through the addition of antioxidants. In total, our study suggests that excess generation of ROS might play an important role in high-salt-induced defects in heart and angiogenesis. © 2015. Published by The Company of Biologists Ltd.

  12. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Michael J. Van Oosten

    2017-07-01

    Full Text Available Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP, a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl, respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching, protection of the photosynthetic system (improving quantum yield of photosystem II and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots. To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions.Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  13. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  14. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  16. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    Directory of Open Access Journals (Sweden)

    Sarkkinen Essi S

    2011-09-01

    Full Text Available Abstract Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP. Substituting potassium and/or magnesium salts for sodium chloride (NaCl may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%, magnesium ammonium potassium chloride, hydrate (25%] (Smart Salt. Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45 with systolic (SBP 130-159 mmHg and/or diastolic (DBP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na, potassium (dU-K and magnesium (dU-Mg. Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012 and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016. SBP increased (+3.8 mmHg, p = 0.072 slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816

  17. Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments.

    Science.gov (United States)

    Schur, Rebecca M; Sheng, Li; Sahu, Bhubanananda; Yu, Guanping; Gao, Songqi; Yu, Xin; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-07-01

    Apply manganese-enhanced magnetic resonance imaging (MEMRI) to assess ion channel activity and structure of retinas from mice subject to light-induced retinal degeneration treated with prophylactic agents. Abca4(-/-)Rdh8(-/-) double knockout mice with and without prophylactic retinylamine (Ret-NH2) treatment were illuminated with strong light. Manganese-enhanced MRI was used to image the retina 2 hours after intravitreous injection of MnCl2 into one eye. Contrast-enhanced MRIs of the retina and vitreous humor in each experimental group were assessed and correlated with the treatment. Findings were compared with standard structural and functional assessments of the retina by optical coherence tomography (OCT), histology, and electroretinography (ERG). Manganese-enhanced MRI contrast in the retina was high in nonilluminated and illuminated Ret-NH2-treated mice, whereas no enhancement was evident in the retina of the light-illuminated mice without Ret-NH2 treatment (P treatment based on the measurement of ion channel activity. This approach could be used as a complementary tool in preclinical development of new prophylactic therapies for retinopathies.

  18. Toltrazuril sulfone sodium salt: synthesis, analytical detection, and pharmacokinetics in the horse.

    Science.gov (United States)

    Dirikolu, L; Karpiesiuk, W; Lehner, A F; Tobin, T

    2012-06-01

    Toltrazuril sulfone (ponazuril) is a triazine-based antiprotozoal agent with clinical application in the treatment of equine protozoal myeloencephalomyelitis (EPM). In this study, we synthesized and determined the bioavailability of a sodium salt formulation of toltrazuril sulfone that can be used for the treatment and prophylaxis of EPM in horses. Toltrazuril sulfone sodium salt was rapidly absorbed, with a mean peak plasma concentration of 2400 ± 169 (SEM) ng/mL occurring at 8 h after oral-mucosal dosing and was about 56% bioavailable compared with the i.v. administration of toltrazuril sulfone in dimethylsulfoxide (DMSO). The relative bioavailability of toltrazuril sulfone suspended in water compared with toltrazuril sulfone sodium salt was 46%, indicating approximately 54% less oral bioavailability of this compound suspended in water. In this study, we also investigated whether this salt formulation of toltrazuril sulfone can be used as a feed additive formulation without significant reduction in oral bioavailability. Our results indicated that toltrazuril sulfone sodium salt is relatively well absorbed when administered with feed with a mean oral bioavailability of 52%. Based on these data, repeated oral administration of toltrazuril sulfone sodium salt with or without feed will yield effective plasma and cerebrospinal fluid (CSF) concentrations of toltrazuril sulfone for the treatment and prophylaxis of EPM and other protozoal diseases of horses and other species. As such, toltrazuril sulfone sodium salt has the potential to be used as feed additive formulations for both the treatment and prophylaxis of EPM and various other apicomplexan diseases. © 2011 Blackwell Publishing Ltd.

  19. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. High salt loading induces urinary storage dysfunction via upregulation of epithelial sodium channel alpha in the bladder epithelium in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Seiji Yamamoto

    2017-11-01

    Full Text Available We aimed to investigate whether high salt intake affects bladder function via epithelial sodium channel (ENaC by using Dahl salt-resistant (DR and salt-sensitive (DS rats. Bladder weight of DR + high-salt diet (HS, 8% NaCl and DS + HS groups were significantly higher than those of DR + normal-salt diet (NS, 0.3% NaCl and DS + NS groups after one week treatment. We thereafter used only DR + HS and DS + HS group. Systolic and diastolic blood pressures were significantly higher in DS + HS group than in DR + HS group after the treatment period. Cystometrogram showed the intercontraction intervals (ICI were significantly shorter in DS + HS group than in DR + HS group during infusion of saline. Subsequent infusion of amiloride significantly prolonged ICI in DS + HS group, while no intra-group difference in ICI was observed in DR + HS group. No intra- or inter-group differences in maximum intravesical pressure were observed. Protein expression levels of ENaCα in the bladder were significantly higher in DS + HS group than in DR + HS group. ENaCα protein was localized at bladder epithelium in both groups. In conclusion, high salt intake is considered to cause urinary storage dysfunction via upregulation of ENaC in the bladder epithelium with salt-sensitive hypertension, suggesting that ENaC might be a candidate for therapeutic target for urinary storage dysfunction.

  1. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  2. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  3. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  4. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  5. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  6. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  7. Review on sugar beet salt stress studies in Iran

    Science.gov (United States)

    Khayamim, S.; Noshad, H.; Jahadakbar, M. R.; Fotuhi, K.

    2017-07-01

    Increase of saline lands in most regions of the world and Iran, limit of production increase based on land enhancement and also threat of saline water and soils for crop production make related researches and production of salt tolerant variety to be more serious. There have been many researches about salt stress in Sugar Beet Seed Institute of Iran (SBSI) during several years. Accordingly, the new screening methods for stress tolerance to be continued based on these researches. Previous researches in SBSI were reviewed and results concluded to this study which is presented in this article in three categories including: Agronomy, Breeding and Biotechnology. In agronomy researches, suitable planting medium, EC, growth stage and traits for salinity tolerance screening were determined and agronomic technique such as planting date, planting method and suitable nutrition for sugar beet under salt stress were introduced. Sand was salinizied by saline treatments two times more than Perlit so large sized Perlit is suitable medium for saline studies. Sugar beet genotypes screening for salt tolerance and should be conducted at EC=20 in laboratory and EC= 16 dS/M in greenhouse. Although sugar beet seed germination has been known as more susceptible stage to salinity, it seems establishment is more susceptible than germination in which salinity will cause 70-80% decrease in plant establishment. Measurements of leaves Na, K and total carbohydrate at establishment stage would be useful for faster screening of genotypes, based on high and significant correlation of these traits at establishment with yield at harvest time. In breeding section, SBSI genotypes with drought tolerance background would be useful for salinity stress studies and finally there is a need for more research in the field of biotechnology in Iran.

  8. Salt intake and eating habits of school-aged children.

    Science.gov (United States)

    Ohta, Yuko; Iwayama, Keiko; Suzuki, Hirotoshi; Sakata, Satoko; Hayashi, Shinichiro; Iwashima, Yoshio; Takata, Akira; Kawano, Yuhei

    2016-11-01

    Salt restriction is important for the prevention and treatment of hypertension; however, salt consumption is still high in Japan. Improvements in dietary habits, including salt reduction in childhood, may contribute to the prevention of hypertension. The aim of the present study was to investigate the salt intake of school-aged children and the relationship between their diet diary and actual salt intake. The subjects comprised 580 schoolchildren (471 elementary school pupils and 109 junior high school pupils) who wanted to evaluate their salt intake in Kuji, a northeast coastal area in Japan. We estimated salt intake using spot urine samples and a formula. Lifestyle was assessed using a questionnaire. We also evaluated the salt intake and the lifestyles of 440 parents. The estimated salt intakes of elementary school pupils, junior high school pupils and their parents were 7.1±1.5, 7.6±1.5 and 8.0±1.7 g per day, respectively. The proportion of lower-grade children who achieved the recommended salt intake was low. In the multivariate analysis, the estimated salt intake of school-aged children correlated with their age, estimated salt intake of their parents and the menu priorities of the household. The estimated salt intake of the parents was associated with female gender, obesity, age and the habitual consumption of bread and noodles. In conclusion, the estimated salt intake of school-aged children positively correlated with the estimated salt intake of their parents, and the proportion of lower-grade children who achieved the recommended salt intake was low. Guidance on salt restriction for children and their parents may reduce the salt intake of school-aged children.

  9. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  10. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  11. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  12. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Toczek, Marek [Department of Experimental Physiology and Pathophysiology Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok (Poland); Bielawska, Katarzyna [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Skrzydlewska, Elżbieta, E-mail: elzbieta.skrzydlewska@umb.edu.pl [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland)

    2016-06-15

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB{sub 1} receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB{sub 1} receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the

  13. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    International Nuclear Information System (INIS)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka; Toczek, Marek; Bielawska, Katarzyna; Skrzydlewska, Elżbieta

    2016-01-01

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB 1 receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB 1 receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the liver of

  14. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  15. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate

    Directory of Open Access Journals (Sweden)

    Sharvari Vijaykumar Gaidhani

    2014-01-01

    Full Text Available Background & objectives: Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Methods: Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Results: Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32 - 4000 and 4 - 256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10 5 -10 6 cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. Interpretation & conclusions: The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  16. The ontogeny of salt hunger in the rat.

    Science.gov (United States)

    Leshem, M

    1999-05-01

    Salt hunger is the behaviour of an animal suffering sodium deficiency. It is characterised by an increased motivation to seek and ingest sodium, and the ability to distinguish between sodium and other salts. Here I review the development of salt hunger in the rat. Salt hunger develops rapidly between birth and weaning. It can first be demonstrated 72 h postnatally when an intracerebroventricular injection of renin elicits greater swallowing of NaCl solution than water and greater mouthing of solid fragments of NaCl than of an artificial sweetener. However, sodium deficit per se cannot arouse the hunger at this age, and first elicits increased intake of NaCl only at 12 days-of-age. The next landmark is at 17 days-of-age when the hormonal synergy of aldosterone and central angiotensin II first elicits salt hunger, as it does in the adult. The specificity of the hunger for the sodium ion also develops postnatally: the 72 h-old sodium-hungry neonate does not distinguish between NaCl and other mono- and di-valent chloride salts but, increasingly during development, the sodium hungry pup distinguishes salts and by weaning age NaCl is clearly preferred to other salts almost as it is in adults. Early development may also be a sensitive period for determining lifelong preferences, and indeed, acute perinatal sodium depletion induces a lifelong enhancement of salt intake. Taken together, these findings demonstrate how a behaviour develops precociously and how, when the behaviour becomes important at weaning, the rat pup is competent to meet its sodium requirements, and may be adapted to anticipate sodium deficit.

  17. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  18. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  19. Treatment of waste salt from the advanced spent fuel conditioning process (II) : optimum immobilization condition

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    Since zeolite is known to be stable at a high temperature, it has been reported as a promising immobilization matrix for waste salt. The crystal structure of dehydrated zeolite A breaks down above 1060 K, resulting in the formation of an amorphous solid and re-crystallization to beta-Cristobalite. This structural degradation depends on the existence of chlorides. When contacted to HCl, zeolite 4A is not stable even at 473 K. The optimum consolidation condition for LiCl salt waste from the oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) has been studied using zeolite A since 2001. Actually the constituents of waste salt are water-soluble. And, alkali halides are known to be readily radiolyzed to yield interstitial halogens and metal colloids. For disposal in a geological repository, the waste salt must meet the acceptance criteria. For a waste form containing chloride salt, two of the more important criteria are leach resistance and waste form durability. In this work, we prepared some samples with different mixing ratios of LiCl salt to zeolite A, and then compared some characteristics such as thermal stability, salt occlusion, free chloride content, leach resistance, mixing effect, etc

  20. The Path to Nitrate Salt Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    The topic is presented in a series of slides arranged according to the following outline: LANL nitrate salt incident as thermal runaway (thermally sensitive surrogates, full-scale tests), temperature control for processing, treatment options and down selection, assessment of engineering options, anticipated control set for treatment, and summary of the overall steps for RNS.

  1. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  2. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  3. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-06-01

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here, we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na + and Li + stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. © 2017 John Wiley & Sons Ltd.

  4. Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-Fluorouracil Antitumor Activity In Vitro and In Vivo.

    Science.gov (United States)

    Di Paolo, Antonello; Orlandi, Paola; Di Desidero, Teresa; Danesi, Romano; Bocci, Guido

    2017-08-07

    The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV), or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72 h. TYMS and SLC19A1 gene expression was performed with real-time PCR. In vivo experiments were performed in xenografted nude mice, which were treated with 5-FU escalating doses and CaLV or NaLV alone or in simultaneous and sequential combination. The simultaneous combination of folinate salts and 5-FU was synergistic (NaLV) or additive (CaLV) in a 24-h treatment in both cell lines. In contrast, the sequential combination of both folinate salts and 5-FU was antagonistic at 24 and 72 h. The simultaneous combination of 5-FU and NaLV or CaLV inhibited TYMS gene expression at 24 h, whereas the sequential combination reduced SLC19A1 gene expression. In vivo experiments confirmed the enhanced antitumor activity of the 5-FU + NaLV simultaneous combination with a good toxicity profile, whereas the sequential combination with CaLV failed to potentiate 5-FU activity. In conclusion, only the simultaneous, but not the consecutive, in vitro and in vivo combination of 5-FU and both folinate salt formulations potentiated the antiproliferative effects of the drugs.

  5. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  6. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    International Nuclear Information System (INIS)

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-01-01

    Highlights: ► AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. ► AtPP2CG1 up-regulates the expression of marker genes in different pathways. ► AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2–3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter–GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  7. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  8. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  9. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  10. Salt sensitivity: a review with a focus on non-Hispanic blacks and Hispanics

    Science.gov (United States)

    Richardson, Safiya I.; Freedman, Barry I.; Ellison, David H.; Rodriguez, Carlos J.

    2015-01-01

    The purpose of this review is to summarize the available information regarding salt sensitivity particularly as it relates to non-Hispanic blacks and Hispanics and to clarify possible etiologies, especially those that might shed light on potential treatment options. In non-Hispanic blacks, there is evidence that endothelial dysfunction, reduced potassium intake, decreased urinary kallikrein excretion, upregulation of sodium channel activity, dysfunction in atrial natriuretic peptide (ANP) production, and APOL1 gene nephropathy risk variants may cause or contribute to salt sensitivity. Supported treatment avenues include diets high in potassium and soybean protein, the components of which stimulate nitric oxide production. Racial heterogeneity complicates the study of salt sensitivity in Hispanic populations. Caribbean Hispanics, who have a higher proportion of African ancestry, may respond to commonly prescribed anti-hypertensive agents in a way that is characteristic of non-Hispanic black hypertensives. The low-renin hypertensive phenotype commonly seen in non-Hispanic blacks has been linked to salt sensitivity and may indicate an increased risk for salt sensitivity in a portion of the Hispanic population. In conclusion, increased morbidity and mortality associated with salt sensitivity mandates further studies evaluating the efficacy of tailored dietary and pharmacologic treatment in non-Hispanic blacks and determining the prevalence of low renin hypertension and salt sensitivity within the various subgroups of Hispanic Americans. PMID:23428408

  11. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  12. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    Science.gov (United States)

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  13. Effect of alternative salt use on broiler breast meat yields, tenderness, flavor, and sodium concentration.

    Science.gov (United States)

    Broadway, P R; Behrends, J M; Schilling, M W

    2011-12-01

    Fresh chicken breast fillets were marinated with gourmet-style salts: Himalayan pink salt, Sonoma gourmet salt, sel gus de Guerande, and Bolivian rose salt to evaluate their effects on marination and cook loss yields, tenderness, sensory attributes, and sodium concentration. Fresh chicken breast fillets (48-h postmortem) were vacuum tumbled (137 kPa at 20 rpm for 17 min) in a solution of water, salt, and sodium tripolyphosphate at a level of 20% of the meat weights. Instrumental analyses showed no significant difference (P > 0.05) in meat quality with respect to marination yield, cook yield, or shear-force value. There were also no significant differences (P > 0.05) in sensory descriptors between salt treatments. However, Sonoma gourmet salt showed a tendency (P = 0.0693) to score increased savory note values from panelists, whereas Bolivian rose salt received the lowest score. There were no significant differences (P > 0.05) in sodium concentrations between salt treatments, but numerically, sel gus de Guerande had the lowest sodium concentration, which could be important in producing reduced sodium products. Understanding different salts and sodium concentrations allows the poultry industry to use gourmet salts in products and maintain overall meat quality and flavor.

  14. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  15. Biological treatment of waste waters of high salt content; Depuracion biologica de efluentes con alto contenido salino

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.I.; Goytia, M.; Muguruza, I.; Blanco, F. [GAIKER, Zamudio (Spain)

    1996-09-01

    The fish canning industry, a national industrial sector of economical significance, generates high volumes of wastewater containing a high organic load and salt concentration. In addition to other problems presented for the aerobic biological treatment of these effluents, the presence of a high chloride concentration produces an inhibitory effect on the growth of aerobic microorganisms. In this work the inhibitory effect of chloride has been analyzed by means of a biokinetic study carried out using the electrolytic respirometry techniques and tuna boiling water as wastewater. This kind of study is highly appropriated for the search of solutions to specific problems created during the treatment of different industrial sectors wastewater. (Author) 10 refs.

  16. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Volatility of atmospherically relevant alkylaminium carboxylate salts.

    Science.gov (United States)

    Lavi, Avi; Segre, Enrico; Gomez-Hernandez, Mario; Zhang, Renyi; Rudich, Yinon

    2015-05-14

    Heterogeneous neutralization reactions of ammonia and alkylamines with sulfuric acid play an important role in aerosol formation and particle growth. However, little is known about the physical and chemical properties of alkylaminium salts of organic acids. In this work we studied the thermal stability and volatility of alkylaminium carboxylate salts of short aliphatic alkylamines with monocarboxylic and dicarboxylic acids. The enthalpy of vaporization and saturation vapor pressure at 298 K were derived using the kinetic model of evaporation and the Clausius-Clapeyron relation. The vapor pressure of alkylaminium dicarboxylate salts is ∼10(-6) Pa, and the vaporization enthalpy ranges from 73 to 134 kJ mol(-1). Alkylaminium monocarboxylate salts show high thermal stability, and their thermograms do not follow our evaporation model. Hence, we inferred their vapor pressure from their thermograms as comparable to that of ammonium sulfate (∼10(-9) Pa). Further characterization showed that alkylaminium monocarboxylates are room temperature protic ionic liquids (RTPILs) that are more hygroscopic than ammonium sulfate (AS). We suggest that the irregular thermograms result from an incomplete neutralization reaction leading to a mixture of ionic and nonionic compounds. We conclude that these salts are expected to contribute to new particle formation and particle growth under ambient conditions and can significantly enhance the CCN activity of mixed particles in areas where SO2 emissions are regulated.

  18. Physiological and Biochemical Responses of a Medicinal Halophyte Limonium Bicolor (Bag.) Kuntze to Salt-Stress

    International Nuclear Information System (INIS)

    Wang, L.; Li, W.; Yang, H.; Wu, W.; Ma, L.; Huang, T.; Wang, X.

    2016-01-01

    Limonium bicolor (Bag.) Kuntze is a perennial herb belonging to the Plumbaginaceae family. It is a typical recretohalophyte as well as a medicinal plant, distributing at saline soil areas in coastal areas and grasslands. In this paper,physiological mechanisms of L. bicolor to defend salt stress and effects of salinity on medicinal ingredients were investigated. The effects of different NaCl concentrations on the number of salt glands, Na/sup +/ content, dry weight and water content in tissues, gas exchange parameters involving net CO/sub 2/ assimilation rate, stomatal conductance, intercellular CO/sub 2/ concentration and transpiration rate, malondialdehyde content and electrolyte leakage, activities of superoxide dismutase, peroxidase and catalase and accumulations of secondary metabolites such as total phenolic, total flavonoid, gallic acid and myricetrin of leaves were determined. The results show that 100 and 200 mM NaCl induced facilitated effects in L. bicolor reflected in the increase in dry weight, tissue water content, net CO/sub 2/ assimilation rate, the number of salt glands, activity of superoxide dismutase, and content of gallic acid and myricetrin. The 300 mM NaCl treatment resulted in obviously decline in gas exchange parameters, and significant increases in Na/sup +/ levels, malondialdehyde level and electrolyte leakage. It was suggested that increased salt tolerance of L. bicolor was due to the corresponding resistance mechanisms involving an increased number of salt glands, enhanced activities of antioxidant enzymes, and an accelerated accumulation of secondary metabolites. What's more, the results on effects of salinity on medicinal ingredients in L. bicolor under different salt concentrations could provide theoretical basis for the standardization cultivation technique of L. bicolor. (author)

  19. Optimizing the extraction of Soluble salts from porous materials by poultices

    NARCIS (Netherlands)

    Sawdy, A.; Lubelli, B.; Voronina, V.; Pel, L

    2010-01-01

    Poultices are often used to extract salts from salt-deteriorated objects, but the results achieved can be highly variable. Currently, poulticing materials and methodologies are selected empirically, but many variables affect the treatment outcome, so achieving the 'best fit' between available

  20. South Bay Salt Pond Restoration, Phase II at Ravenswood

    Science.gov (United States)

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  1. Screening of diverse local germplasm of guar (cyamposis tetragonoloba (l.) taub.) for salt tolerance: A possible approach to utilize salt - affected soils

    International Nuclear Information System (INIS)

    Rasheed, M. J. Z.; Ahmad, K.; Qurainy, F. A.; Khan, S.; Athar, H. U. R.

    2015-01-01

    Lack of good quality water and soil salinity reduces crop productivity world-over. The development of salt stress tolerant cultivars/lines by screening and selection is of considerable value to enhance crop growth and yield. Though a number of breeding programs are underway to develop salt tolerant cultivars in wheat, barley, maize, and even grasses, a low amount of work done for improving salt tolerance in a potential leguminous forage crop guar widely grown in subcontinent due to rapid increase in its demand for its commercial use. Thus, the present study was focused on efforts to develop salt tolerant cultivars of guar. The growth responses of 31 accessions/lines/cultivars of a potential leguminous crop (Cyamopsis tetragonoloba) to salt stress were assessed at the vegetative growth stage. A considerable variation in salinity tolerance was found in a set of lines/cultivars of guar using agronomic traits. Under saline conditions, Khanewal Local2, Chiniot White, 27340, 24323, BWP-5589 produced the lowest shoot fresh and dry biomass in relative terms, while genotypes/lines 5597, 24288, Br 99, Khushab white, Sillanwali white and Mardan white had greater fresh and dry biomass. Klorkot white and 24323 had maximum plant height under non-saline conditions, whereas genotypes/line 5597 and 24288 was maximal in plant height under salt stress conditions. Moreover, genotypes/lines Khanewal Local2 followed by Chiniot White and 27340 were the lowest in plant height. Growth attributes and relative salt tolerance of guar genotypes were used to group genotypes/lines as salt tolerant, moderately tolerant and salt sensitive using Hierarchical Cluster method following squared Euclidean distance. It was found that genotypes/lines 41671, Khaushab White, 5597, 24320, 24288, Sillanwali White, 24321, Mardan White were the most salt tolerant, while Chiniot White, BWP-5589, Kalorkot White, Khanewal Local 2, 24323 were the most salt sensitive. The availability of considerable amount of

  2. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  3. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  4. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    Science.gov (United States)

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Influence of the salting time on volatile compounds during the manufacture of dry-cured pork shoulder "lacón".

    Science.gov (United States)

    Purriños, Laura; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2012-12-01

    The effect of the length of salting time on volatile compounds throughout the manufacture of dry-cured "lacón" was studied using a purge-and-trap extraction and GC/MS analysis. For this study, six treatments of "lacón" were salted with different amounts of salt (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)). The total area of volatile compounds increased significantly (Psalting time increased. Significant differences were found for the total area of all aldehydes for each salting time at the end of process. Hexanal presented the most relative abundance, showing highest content in HS treatments while LS treatments showed the lowest one at the end of salting, post-salting and drying-ripening stage. The influence of salting time on the content of 3-Octen-2-one was significant on salting stage (Psalting time affected (Psalting and at the end of drying-ripening stage. The salting time affected significantly (Psalt level (P>0.05) was detected on total hydrocarbons and total furans at the end of process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  7. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  8. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  9. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  10. High Pressure Processing Treatment of Fresh-Cut Carrots: Effect of Presoaking in Calcium Salts on Quality Parameters

    Directory of Open Access Journals (Sweden)

    Yong Yu

    2018-01-01

    Full Text Available Effect of high pressure (HP treatment (200–600 MPa; 0–20 min on quality of fresh-cut carrot slices was evaluated after presoaking in selected calcium salt solutions (1% calcium chloride, 1% calcium lactate, 1% calcium gluconate, and distilled water as control for one hour. Results showed that calcium chloride (CaCl2 solution pretreatment was most effective for preserving the hardness of carrot slices at 400 and 600 MPa and this treatment also resulted in the least amount of color change in carrots, followed by calcium lactate, gluconate, and control pretreatments. The average sensory evaluation scores during 9 days of refrigerated storage at 4°C in control, CaCl2, calcium lactate, and calcium gluconate presoaking treatments followed by HP treatment were 6.4 ± 0.5, 8.0 ± 0.5, 7.8 ± 0.4, and 7.6 ± 0.3, respectively, on a zero to 9 scale for quality.

  11. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  13. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  14. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  15. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    Science.gov (United States)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  17. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic Acid in lettuce seeds exposed to salinity stress.

    Science.gov (United States)

    Khan, A A; Huang, X L

    1988-08-01

    Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.

  18. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  19. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  20. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen

    2018-06-01

    Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.

  1. Effects of salicylic acid on wheat salt sensitivity | Erdal | African ...

    African Journals Online (AJOL)

    In this study, investigations on the effects of foliar-applied SA on salt sensitivity, hydrogen peroxide (H2O2) generation and activities of antioxidant enzymes like peroxidase (POX) and catalase (CAT) in plant tissues under salt stress was performed. SA treatment significantly increased the fresh and dry weights in both root ...

  2. Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice.

    Science.gov (United States)

    Fuentes, Isabel; Andrio, Andreu; Teixidor, Francesc; Viñas, Clara; Compañ, Vicente

    2017-06-14

    The development of new types of ion conducting materials is one of the most important challenges in the field of energy. Lithium salt polymer electrolytes have been the most convenient, and thus the most widely used in the design of the new generation of batteries. However, in this work, we have observed that Na + ions provide a higher conductivity, or at least a comparable conductivity to that of Li + ions in the same basic material. This provides an excellent possibility to use Na + ions in the design of a new generation of batteries, instead of lithium, to enhance conductivity and ensure wide supply. Our results indicate that the dc-conductivity is larger when the anion is [Co(C 2 B 9 H 11 ) 2 ] - , [COSANE] - , compared to tetraphenylborate, [TPB] - . Our data also prove that the dc-conductivity behavior of Li + and Na + salts is opposite with the two anions. At 40 °C, the conductivity values change from 1.05 × 10 -2 S cm -1 (Li[COSANE]) and 1.75 × 10 -2 S cm -1 (Na[COSANE]) to 2.8 × 10 -3 S cm -1 (Li[TPB]) and 1.5 × 10 -3 S cm -1 (Na[TPB]). These findings indicate that metallacarboranes can be useful components of mixed matrix membranes (MMMs), providing excellent conductivity when the medium contains sufficient amounts of ionic components and a certain degree of humidity.

  3. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  4. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  5. Characterization and environmental management of stormwater runoff from road-salt storage facilities.

    Science.gov (United States)

    2004-01-01

    The objectives of this study were to assess the quantity and quality of salt-contaminated water generated from stormwater runoff at VDOT's salt storage facilities and to evaluate management/treatment alternatives to reduce costs and better protect th...

  6. 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl on pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Ibn Maaouia-Houimli Samira

    2012-04-01

    Full Text Available The present study investigates the role of 24-epibrassinolide (EBL in inducing plant tolerance to salinity. Seedlings of pepper (Capsicum annuum L. were grown in the presence of 70 mM NaCl and were sprayed with 10-6 M EBL at 7 days after transplantation and were sampled at 28 day. The plants exposed to NaCl exhibited a significant decline in relative growth rate, net CO2 assimilation, stomatal conductance, transpiration and water use efficiency. However, the follow up treatment with EBL significantly improved the above parameters. EBL treated plants had greater relative growth rate compared to untreated plants when exposed to salt stress. Application of EBL increased photosynthesis by increasing stomatal conductance in both control and salt stressed plants and may have contributed to the enhanced growth. The water use efficiency was improved because CO2 assimilation is more important than the transpiration.

  7. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  8. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode

    International Nuclear Information System (INIS)

    Lan, Yandi; Coetsier, Clémence; Causserand, Christel; Groenen Serrano, Karine

    2017-01-01

    Refractory pharmaceuticals remain in biologically treated wastewater and are continuously discharged into aquatic systems due to their limited biodegradability. Electrochemical oxidation is promising for the treatment of such refractory compounds, in particular using a boron doped diamond (BDD) anode. This study investigates the role of salts, such as sulfates and chlorides in the electrochemical treatment of wastewater. The presence of sulfates accelerated the removal of ciprofloxacin and sulfamethoxazole, but had no effect on the oxidation of salbutamol. This comparison highlights the selectivity of the reaction between organics and sulfate radicals. The addition of chlorides into the solution led to a remarkably-faster degradation of ciprofloxacin. However, incomplete mineralization was observed at high current densities due to the significant formation of halogenated organic compounds (AOX). The formation of refractory and toxic compounds such as ClO_4"− and AOX can be limited under the control of (i) applied current intensity and (ii) duration of electrolysis. Electrochemical oxidation of concentrated biologically-treated hospital wastewater investigated the excellent removal of biorefractory pharmaceuticals and confirmed the acceleration effect of salts on pharmaceutical degradation.

  9. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  10. Thallium (III) salts utilization in organic synthesis. Part II

    International Nuclear Information System (INIS)

    Ferraz, H.M.C.

    1989-01-01

    The utilizations of thallium (III) salts in organic synthesis with carbonylic and acitylenic substrates are presented. The reactions of carbonylic substra3ts with kitones and the oxidation reactions of acetylenic substrates are shown. Others reactions including thallium (III) salts and non aromatic unsatured substracts, as cleasage of ethers and epoxide using thallium trinitrate, hydrazones treatments with thallium triacetates, etc, are also mentioned. (C.G.C.) [pt

  11. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  12. Ability of salt marsh plants for TBT remediation in sediments

    OpenAIRE

    Carvalho, P. N.; Basto, M. C.; Moreira da Silva, M.; Machado, A.; Bordalo, A.; Vasconcelos, M. T.

    2010-01-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.

  13. Comparison of efficacy of ferrous and iron polymaltose salts in the treatment of childhood iron deficiency anemia

    International Nuclear Information System (INIS)

    Marwat, I.U.; Hassan, K.A.; Javed, T.; Chishti, A.L.

    2013-01-01

    Iron deficiency of anemia (IDA) is defined as reduced number of red blood cells, and / or reduced concentration hemoglobin (Hb) due to deficiency of iron. Treatment involves dietary modifications and inorganic iron salt supplements like ferrous sulfate (FS) or Iron polymaltose complex (IPC). The decision to select either drug rests on therapeutic efficacy, untoward side effects; cost of complete course, patient's compliance and discretion of physician. Both drugs can be prescribed in oral form. This study aimed at comparing the efficacy of two iron preparations (ferrous sulphate and iron polymaltose complex salts) in childhood iron deficiency anemia. Objective: To compare the efficacy of Ferrous Sulphate and Iron Polymaltose Complex salts in the treatment of childhood Iron Deficiency Anemia. Methodology: This randomized controlled trial was conducted at Department of Pediatric Medicine Unit-II Mayo Hospital, Lahore, for a period of 6 months. One hundred and fifty children aged 6 months to 5 years suffering from iron deficiency anemia were selected and randomly divided into two groups of 75 each (Group A and B prescribed FS and IPC respectively). Results were analyzed in terms of rise in Hb from the baseline after three months. Increase in Hb level 2 gm/dl after three months of treatment was considered as effective. Results were analyzed by SPSS version 17. Efficacy of both the drugs, was compared by chi square test. P value 0.05 was accepted as significant. Results: There were 34 cases (22.7%) in 6-12 months age, 77 cases (51.3%) between 1-3 years age and 39 cases (26%) between 3-5 years age. The number of male and female children was 82 (54.7%) and 68 (45.3%) respectively. The baseline hemoglobin of all study cases was 6.64+-1.08 gm/dl (6.59+-1.13 gm/dl in Group A and 6.69+-1.04 gm/dl in Group B). At completion of therapy, the mean hemoglobin of all study cases was 9.15+-1.21 gm/dl (9.20+9-1.17 gm/dl in Group A and 9.11+-1.25 gm/dl in Group B). The difference

  14. First-line antituberculosis drug, pyrazinamide, its pharmaceutically relevant cocrystals and a salt.

    Science.gov (United States)

    Sarmah, Kashyap Kumar; Rajbongshi, Trishna; Bhowmick, Sourav; Thakuria, Ranjit

    2017-10-01

    A few pyrazinamide (Pyz) cocrystals involving hydroxybenzoic/cinnamic acid derivatives [2,4-dihydroxybenzoic acid (24DHBA); 2,6-dihydroxybenzoic acid (26DHBA); 3,5-dihydroxybenzoic acid (35DHBA) and nutraceutical molecule ferulic acid (FRA)] and the first example of a molecular salt with p-toluenesulfonic acid (pTSA) have been prepared and characterized using various solid-state techniques. A high-temperature cocrystal polymorph of Pyz·FRA has been characterized from the endothermic peaks observed using differential scanning calorimetry. The presence of substituent groups carrying hydrogen bond donors or acceptors and their influence on supramolecular synthon formation has been investigated using a Cambridge Structural Database search. Equilibrium solubility of all the binary complexes of Pyz follows the order of their coformer solubility, i.e. Pyz + ·pTSA - > Pyz·35DHBA > Pyz > Pyz·26DHBA > Pyz·24DHBA > Pyz·FRA. A twofold enhancement in solubility of Pyz + ·pTSA - molecular salt compared with the parent drug suggests a potential drug formulation for the treatment of tuberculosis.

  15. The Port Isabel Fold Belt: Salt enhanced Neogene Gravitational Spreading in the East Breaks, Western Gulf of Mexico

    Science.gov (United States)

    Lebit, Hermann; Clavaud, Marie; Whitehead, Sam; Opdyke, Scott; Luneburg, Catalina

    2017-04-01

    The Port Isabel fold belt is situated at the northwestern corner of the deep water Gulf of Mexico where the regional E-W trending Texas-Louisiana shelf bends into the NNE-SSW trend of the East Mexico Shelf. The fold belt forms an allochthonous wedge that ramps up from West to East with its front occupied by shallow salt complexes (local canopies). It is assumed that the belt predominantly comprises Oligocene siliciclastic sequences which reveal eastward facing folds and thrusts with a NE-SW regional trend. The structural architecture of the fold belt is very well imaged on recently processed 3D seismic volumes. Crystal III is a wide-azimuth survey acquired in 2011 and reprocessed in 2016 leveraging newly developed state-of-the-art technology. 3D deghosting, directional designature and multi-model 3D SRME resulted in broader frequency spectrum. The new image benefits from unique implementation of FWI, combined with classic tomographic updates. Seismically transparent zones indicating over-pressured shales are limited to the core of anticlines or to the footwall of internal thrust. Mobile shales associated with diapirs are absent in the study area. In contrast, salt is mobile and apparently forms the major decollement of the PIFB as indicated by remnant salt preferentially located in triangles along the major thrusts and fault intersections or at the core of anticlines. Shallow salt diapirs seam to root in the fold belt, while lacking evidence for salt feeders being connected to the deep salt underlying the Mesozoic to Paleogene substratum of the fold belt. Towards the WNW the fold belt is transient into a extensional regime, characterized by roll-over structures associated with deep reaching normal faults which form ultra-deep mini basins filled with Neogene deposits. Kinematic restorations confirm the simultaneous evolution of the deep mini basins and the outboard fold belt. This resembles a gravitational spreading system with the extensional tectonics of the deep

  16. Utilisation of OSL from table salt in retrospective dosimetry

    International Nuclear Information System (INIS)

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    Common salt (NaCl) has previously been suggested for use in dose estimation in accident dosimetry. In this study, we investigated the optically stimulated luminescence (OSL) and violet thermoluminescence (VTL) characteristics of 'Aji-Shio' (Ajinomoto), a Japanese commercial salt. A comparison of OSL and TL signals allowed identification of common source traps. The initial OSL signal contained a dominant thermally unstable component, which necessitated prior heat treatment. Based on these luminescence characteristics, a single-aliquot regenerative-dose (SAR) OSL protocol was modified and tested. The protocol worked very well for six types of salt, but not for four other types of salt. A minimum detection limit of ∼15 mGy was estimated using the OSL protocol; this is lower than the value obtained from other forms of OSL retrospective dosimetry and lower than that obtained using electron spin resonance (ESR) dosimetry. It was concluded that the OSL from Japanese commercial salt could be used successfully to derive precise estimates of accident dose. (author)

  17. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive).

    Science.gov (United States)

    Rossi, Lorenzo; Borghi, Monica; Francini, Alessandra; Lin, Xiuli; Xie, De-Yu; Sebastiani, Luca

    2016-10-01

    Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na + exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  19. Inhibition of Mammalian Target of Rapamycin Complex 1 Attenuates Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Kumar, Vikash; Wollner, Clayton; Kurth, Theresa; Bukowy, John D; Cowley, Allen W

    2017-10-01

    The goal of the present study was to explore the protective effects of mTORC1 (mammalian target of rapamycin complex 1) inhibition by rapamycin on salt-induced hypertension and kidney injury in Dahl salt-sensitive (SS) rats. We have previously demonstrated that H 2 O 2 is elevated in the kidneys of SS rats. The present study showed a significant upregulation of renal mTORC1 activity in the SS rats fed a 4.0% NaCl for 3 days. In addition, renal interstitial infusion of H 2 O 2 into salt-resistant Sprague Dawley rats for 3 days was also found to stimulate mTORC1 activity independent of a rise of arterial blood pressure. Together, these data indicate that the salt-induced increases of renal H 2 O 2 in SS rats activated the mTORC1 pathway. Daily administration of rapamycin (IP, 1.5 mg/kg per day) for 21 days reduced salt-induced hypertension from 176.0±9.0 to 153.0±12.0 mm Hg in SS rats but had no effect on blood pressure salt sensitivity in Sprague Dawley treated rats. Compared with vehicle, rapamycin reduced albumin excretion rate in SS rats from 190.0±35.0 to 37.0±5.0 mg/d and reduced the renal infiltration of T lymphocytes (CD3 + ) and macrophages (ED1 + ) in the cortex and medulla. Renal hypertrophy and cell proliferation were also reduced in rapamycin-treated SS rats. We conclude that enhancement of intrarenal H 2 O 2 with a 4.0% NaCl diet stimulates the mTORC1 pathway that is necessary for the full development of the salt-induced hypertension and kidney injury in the SS rat. © 2017 American Heart Association, Inc.

  20. Influence of salt on lipid oxidation in meat and seafood products: A review.

    Science.gov (United States)

    Mariutti, Lilian R B; Bragagnolo, Neura

    2017-04-01

    Sodium chloride, commonly known as salt, is a widely used additive in food industry due to its preservation and antimicrobial properties provided by its ability to reduce water activity. Moreover, the addition of salt to meat and seafood aims at improving water retention capacity and enhancing flavor due to its influence on the activity of some enzymes responsible for flavor development. On the other hand, salt added in meat and seafood can favor lipid oxidation, which is one of the main responsibles for quality losses in the food industry. In this review, the main mechanisms of fatty acids and cholesterol oxidation are described as well as the influence of salt on lipid oxidation in meat and seafood. Besides, the possible mechanisms of the pro-oxidant action of sodium chloride are presented and potential solutions to inhibit the salt action in lipid oxidation and decrease the salt content in food are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review

    Directory of Open Access Journals (Sweden)

    Rianne A. de Kleine

    2013-10-01

    Full Text Available There is a good amount of evidence that exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD. Notwithstanding its efficacy, there is room for improvement, since a large proportion of patients does not benefit from treatment. Recently, an interesting new direction in the improvement of exposure therapy efficacy for PTSD emerged. Basic research found evidence of the pharmacological enhancement of the underlying learning and memory processes of exposure therapy. The current review aims to give an overview of clinical studies on pharmacological enhancement of exposure-based treatment for PTSD. The working mechanisms, efficacy studies in PTSD patients, and clinical utility of four different pharmacological enhancers will be discussed: D-cycloserine, MDMA, hydrocortisone, and propranolol.

  2. Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review.

    Science.gov (United States)

    de Kleine, Rianne A; Rothbaum, Barbara O; van Minnen, Agnes

    2013-10-17

    There is a good amount of evidence that exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD). Notwithstanding its efficacy, there is room for improvement, since a large proportion of patients does not benefit from treatment. Recently, an interesting new direction in the improvement of exposure therapy efficacy for PTSD emerged. Basic research found evidence of the pharmacological enhancement of the underlying learning and memory processes of exposure therapy. The current review aims to give an overview of clinical studies on pharmacological enhancement of exposure-based treatment for PTSD. The working mechanisms, efficacy studies in PTSD patients, and clinical utility of four different pharmacological enhancers will be discussed: d-cycloserine, MDMA, hydrocortisone, and propranolol.

  3. Study on salt bath nitrocarburizing of 17-4PH stainless steel

    International Nuclear Information System (INIS)

    Wang Jun; Xiong Ji; Fan Hongyuan; Peng Qian; Wang Ying; Li Guijiang; Shen Baoluo

    2009-01-01

    The effect of the salt bathing nitriding under different temperature on the microstructure of Martensite stainless steel and the change of hardness and wear ability under different treatment temperature are comparatively studied. The study results show that when 17-4PH stainless steel was subjected to the salt bathing nitriding, the main items in the nitrided layer are the expanded (nitride contended) martensite (α'), Fe 2-3 (N, C), CrN, Fe 4 N and Fe 3 O 4 . The amount of Fe 3 O 4 and CrN was increased with the treatment temperature going up. The lattice constant of expanded martensite has the similar change. The activation energy of nitriding in this salt bath was 190.9 kJ/mol. The depth of the nitrided layer was increased with the treatment temperature increasing. After the alloy nitriding at 580 degree C, the mass loss in the slide wear test was reduced from 21.1 mg for H 1100 condition to 1.0 mg. (authors)

  4. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  5. Sugar and Salt in a Young Child’s Diet: Effect on Health

    Directory of Open Access Journals (Sweden)

    Vera A. Skvortsova

    2016-01-01

    Full Text Available Salt and sugar are traditional components of a daily diet for both adults and children. These flavor additives have been used by human for centuries. Sugar and salt not only enhance the taste of food, but also play an important role in metabolic processes. We have already accumulated some data on long-term adverse effects related to excessive consumption of salt and sugar. However, the need for sodium and sucrose has not been finally established yet. We anticipate the reduction in sugar consumption rates. Daily intake of salt and sugar can be optimized by forming proper eating habits in early childhood, with a particular focus on complementary foods free of nutritional supplements, which is necessary for an adequate development of taste.

  6. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  8. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Mediastinal lymphoma: quantitative changes in gadolinium enhancement at MR imaging after treatment.

    Science.gov (United States)

    Rahmouni, A; Divine, M; Lepage, E; Jazaerli, N; Belhadj, K; Gaulard, P; Golli, M; Reyes, F; Vasile, N

    2001-06-01

    To compare changes in gadolinium enhancement at magnetic resonance (MR) imaging with outcome in mediastinal lymphoma after treatment. Thirty-one patients with bulky mediastinal lymphoma (17 with Hodgkin disease, 14 with non-Hodgkin lymphoma) underwent serial MR imaging before and up to 50 months after treatment, with routine follow-up (including computed tomography). Signal intensity ratios between masses and muscle were calculated on T1-weighted, T2-weighted, and contrast material-enhanced T1-weighted spin-echo MR images. The percentage enhancement and signal intensity ratios of mediastinal masses on T2-weighted MR images were calculated at diagnosis and during and after treatment. Twenty-one patients with persistent complete remission had a mean percentage enhancement of residual masses (4%; range, -26% to 40%) that was significantly lower than that of initial masses (78%; range, 41%-124%). Although the mean signal intensity ratio of residual masses on T2-weighted images was significantly lower than that of initial masses, an increase in this ratio was observed in four patients after treatment. In seven patients with relapse, the percentage enhancement value of the residual mass was as high as that of the initial mass. Gadolinium enhancement of lymphomatous masses of the mediastinum decreased markedly after treatment in patients in continuous complete remission but not in patients with relapse.

  10. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  11. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation.

    Science.gov (United States)

    Chin, Koo B; Go, Mi Y; Xiong, Youling L

    2009-03-01

    Functional properties of heat-induced gels prepared from microbial transglutaminase (TG)-treated porcine myofibrillar protein (MP) containing sodium caseinate with or without konjac flour (KF) under various salt concentrations (0.1, 0.3 and 0.6MNaCl) were evaluated. The mixed MP gels with KF exhibited improved cooking yields at all salt concentrations. TG treatment greatly enhanced gel strength and elasticity (storage modulus, G') at 0.6M NaCl, but not at lower salt concentrations. The combination of KF and TG improved the gel strength at 0.1 and 0.3M NaCl and G' at all salt concentrations, when compared with non-TG controls. Incubation of MP suspensions (sols) with TG promoted the disappearance of myosin heavy chain and the production of polymers. The TG-treated MP mixed gels had a compact structure, compared to those without TG, and the KF incorporation modified the gel matrix and increased its water-holding capacity. Results from differential scanning calorimetry suggested possible interactions of MP with KF, which may explain the changes in the microstructure of the heat-induced gels.

  12. Enhancing saltiness in emulsion based foods

    Directory of Open Access Journals (Sweden)

    Lad Mita

    2012-07-01

    Full Text Available Abstract Background The concept of enhancing saltiness perception in emulsions and a liquid food formulated with the emulsions (ambient vegetable soup through increasing salt concentration in the continuous phase while retaining the fat content of the (aqueous continuous product was evaluated. This was accomplished by increasing the droplet phase volume using duplex emulsion technology. Viscosity and droplet size distribution was measured. Saltiness evaluation was based on simple paired comparison testing (2-Alternate Forced Choice tests, BS ISO 5495:2007. Results Single and duplex emulsions and emulsion-based products had comparable mean oil droplet diameters (25 to 30 μm; however, viscosity of the duplex emulsion systems was considerably higher. Sensory assessment of saltiness of emulsion pairs (2AFC indicated duplex technology enhanced saltiness perception compared to a single emulsion product at the same salt content (6.3 g/100 g in both simple emulsions and the formulated food product (P = 0.0596 and 0.0004 respectively although assessors noted the increased viscosity of the duplex systems. The formulated food product also contained pea starch particles which may have aided product mixing with saliva and thus accelerated tastant transport to the taste buds. Lowering salt content in the duplex systems (to levels of aqueous phase salt concentration similar to the level in the single systems resulted in duplex systems being perceived as less salty than the single system. It appears that the higher viscosity of the duplex systems could not be “overruled” by enhanced mixing through increased droplet phase volume at lowered salt content. Conclusions The results showed that salt reduction may be possible despite the added technology of duplex systems increasing the overall measured viscosity of the product. The changes in viscosity behavior impact mouthfeel, which may be exploitable in addition to the contribution towards salt

  13. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical

  14. Technically enhanced naturally occurring radioactive materials; identification, characterization and treatment

    International Nuclear Information System (INIS)

    Aly, H.F.

    2001-01-01

    Radioactive materials (TENORM) is produced in a relatively large amount with relatively small radioactivity, however in many instances the radioactivity levels exceeds that permissible. In this presentation, the different industries where enhanced levels of natural radioactivity is identified and characterized will be given. The different approaches for treatment of this enhanced radioactivity will be addressed. Finally, our research and development activities in characterization and treatment of TENORM produced from the oil fields in Egypt will be presented. (authors)

  15. Aneurysmal wall enhancement and perianeurysmal edema after endovascular treatment of unruptured cerebral aneurysms

    International Nuclear Information System (INIS)

    Su, I. Chang; Willinsky, Robert A.; Agid, Ronit; Fanning, Noel F.

    2014-01-01

    Perianeurysmal edema and aneurysm wall enhancement are previously described phenomenon after coil embolization attributed to inflammatory reaction. We aimed to demonstrate the prevalence and natural course of these phenomena in unruptured aneurysms after endovascular treatment and to identify factors that contributed to their development. We performed a retrospective analysis of consecutively treated unruptured aneurysms between January 2000 and December 2011. The presence and evolution of wall enhancement and perianeurysmal edema on MRI after endovascular treatment were analyzed. Variable factors were compared among aneurysms with and without edema. One hundred thirty-two unruptured aneurysms in 124 patients underwent endovascular treatment. Eighty-five (64.4 %) aneurysms had wall enhancement, and 9 (6.8 %) aneurysms had perianeurysmal brain edema. Wall enhancement tends to persist for years with two patterns identified. Larger aneurysms and brain-embedded aneurysms were significantly associated with wall enhancement. In all edema cases, the aneurysms were embedded within the brain and had wall enhancement. Progressive thickening of wall enhancement was significantly associated with edema. Edema can be symptomatic when in eloquent brain and stabilizes or resolves over the years. Our study demonstrates the prevalence and some appreciation of the natural history of aneurysmal wall enhancement and perianeurysmal brain edema following endovascular treatment of unruptured aneurysms. Aneurysmal wall enhancement is a common phenomenon while perianeurysmal edema is rare. These phenomena are likely related to the presence of inflammatory reaction near the aneurysmal wall. Both phenomena are usually asymptomatic and self-limited, and prophylactic treatment is not recommended. (orig.)

  16. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  17. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.

    Science.gov (United States)

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-09-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.

  18. Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses

    Directory of Open Access Journals (Sweden)

    Liping Xing

    2017-11-01

    Full Text Available The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14, a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.

  19. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  20. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.; Bastola, D.R.; Deutch, C.E.; Pethe, V.V.; Petrusa, L.

    2001-01-01

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  1. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; García-Ramírez, Liliana; Pantoja, Omar

    2005-11-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.

  2. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    International Nuclear Information System (INIS)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1995-01-01

    The Oak Ridge National Laboratory (ORNL) is participating in a program to apply a molten salt oxidation (MSO) process to treatment of mixed (radioactive and RCRA) wastes. The salt residues from the MSO treatment will require further separations or other processing to prepare them for final disposal. A bench-scale MSO apparatus is being installed at ORNL and will be operated on real Oak Ridge wastes. The treatment concepts to be tested and demonstrated on the salt residues from real wastes are described

  3. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  4. Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach.

    Science.gov (United States)

    Haneef, Jamshed; Chadha, Renu

    2017-08-01

    The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.

  5. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  6. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  7. Molten salt oxidation as a technique for decommissioning: selection of low melting point salt mixtures

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Garcia, Vitor F.; Benvegnu, Guilherme

    2013-01-01

    During the 70 and 80 years, IPEN built several facilities in pilot scale, destined to the technological domain of the Nuclear Fuel Cycle. In the nineties, radical changes in the Brazilian nuclear policy determined the interruption of the activities and the shut-down of pilot plants. Nowadays, IPEN has been facing the problem of the dismantling and decommissioning of its Nuclear Fuel Cycle old facilities. The facility CELESTE-I of the IPEN is a laboratory where reprocessing studies were accomplished during the decade of 80 and in the beginning of the 90s. The last operations occurred in 92-93. The research activities generated radioactive wastes in the form of organic and aqueous solutions of different compositions and concentrations. For the treatment of these liquid wastes it was proposed a study of waste thermal decomposition based on the molten salt oxidation process.Decomposition tests of different organic wastes have been performed in laboratory equipment developed at IPEN, in the range of temperatures of 900 to 1020 deg C, demonstrating the complete oxidation of the compounds. The reduction of the process temperatures would be of crucial importance. Besides this, the selection of lower melting point salt mixtures would have an important impact in the reduction of equipment costs. Several experiments were performed to determine the most suitable salt mixtures, optimizing costs and melting temperatures as low as possible. This paper describes the main characteristics of the molten salt oxidation process, besides the selection of salt mixtures of binary and ternary compositions, respectively Na 2 CO 3 - NaOH and Na 2 CO 3 - K 2 CO 3 -Li 2 CO 3 . (author)

  8. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  9. Effects of Glasswort (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters

    Science.gov (United States)

    Choi, Yun-Sang

    2015-01-01

    This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters. PMID:26877638

  10. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3–LiF salt mixture

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2017-05-01

    Full Text Available Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3–LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6 and eutectic binary (DyF3–LiF salt (25 mol% DyF3 – 75 mol% LiF was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%, electrical resistivity of the die-upset magnet was enhanced to over 400 μΩ.cm compared to 190 μΩ.cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3–LiF salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3–LiF salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3–LiF salt mixture was as good as those of the DyF3-doped magnet.

  11. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  12. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  13. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Farnaz Fekri

    Full Text Available Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR, and distinct mechanism(s that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may

  14. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  15. Cooking without salt

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000760.htm Cooking without salt To use the sharing features on ... other dishes to add zest. Try Salt-free Cooking Explore cooking with salt substitutes. Add a splash ...

  16. Influence of electrical and chemical factors on transdermal iontophoretic delivery of three diclofenac salts.

    Science.gov (United States)

    Fang, J Y; Wang, R J; Huang, Y B; Wu, P C; Tsai, Y H

    2001-04-01

    The aim of this present study was to investigate the in vitro transdermal iontophoretic delivery of three diclofenac salts--diclofenac sodium (DFS), diclofenac potassium (DFP), and diclofenac diethylammonium (DFD). A series of physicochemical and electrical variables which might affect iontophoretic permeation of diclofenac salts was studied. Application of 0.3 mA/cm2 current density significantly increased the transdermal flux of diclofenac salts as compared to passive transport. The iontophoretic enhancement increased in the order of DFS>DFP>DFD. The permeability coefficient of diclofenac salts all decreased with increasing donor concentration during iontophoresis. The addition of buffer ions and salt ions such as NaCl, KCl, and C4H12ClN reduced the permeation of diclofenac salts due to competition. However, this effect was lesser for DFD than for DFS and DFP. Comparing the various application modes of iontophoresis, the discontinuous on/off mode showed lower but more constant flux than the continuous mode.

  17. Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg.

    Science.gov (United States)

    Ganesan, P; Kaewmanee, T; Benjakul, S; Baharin, B S

    2014-01-01

    Pidan and salted duck eggs are of nutritional rich alternative duck egg products which are predominantly consumed in China, Thailand, South Korea and other Chinese migrated countries. Both eggs are rich in proteins, lipids, unsaturated fatty acids and minerals. A Pidan whole egg contains 13.1% of protein, 10.7% of fat, 2.25% of carbohydrate and 2.3% of ash, whereas the salted duck egg contains 14% of protein, 16.6% of fat, 4.1% of carbohydrate and 7.5% of ash. The fresh duck egg contains a range of 9.30-11.80% of protein, 11.40-13.52% of fat, 1.50-1.74% of sugar and 1.10-1.17% of ash. Proteins, lipids, and ash contents are found to be greatly enhanced during the pickling and salting process of pidan and salted duck eggs. However, the alkaline induced aggregation of pidan leads to degradation and subsequent generation of free peptides and amino acids. Very few amino acids are found to be lost during the pickling and storage. However, no such losses of amino acids are reported in salted duck eggs during the salting process of 14 d. Phospholipids and cholesterol contents are lower in pidan oil and salted duck egg yolk oil. Thus, the pidan and salted duck eggs are nutritionally rich alternatives of duck egg products which will benefit the human health during consumption.

  18. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  19. Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane

    DEFF Research Database (Denmark)

    Wang, C. H.; Ge, Y.; Mortensen, J.

    2011-01-01

    Many recent reports have discussed specific effects of anions on the properties of lipid membranes and possible roles of such effects within biochemistry. One key parameter in both theoretical and experimental treatments of membrane-salt interactions is the net affinity, that is, the free energy...... salts by dialysis equilibrium measurements. This method provides model free thermodynamic data and allows investigations in the dilute concentration range where solution nonideality and perturbation of membrane structure is limited. The transfer free energy of DMPC from water to salt solutions, Delta mu...

  20. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.

    Directory of Open Access Journals (Sweden)

    Fazelian Nasrin

    2012-08-01

    Full Text Available Salt stress is an important environmental stress that produces reactive oxygen species in plants and causes oxidative injuries. In this investigation, salt stress reduced the shoot and root length, while increased the content of malondealdehyde, Hydrogen peroxide, and the activity of Ascorbate peroxidase andguaiacol peroxidase. Pretreatment of chamomile plants under salt stress with sodium nitroprussideand Spermidin caused enhancement of growth parameters and reduction of malondealdehyde and Hydrogen peroxide content. Pretreatment of plants with sodium nitroprusside remarkably increased Ascorbate peroxidase activity, while Spermidin pre-treatment significantly increased guaiacol peroxidase activity. Application of sodium nitroprusside or Spermidin with Methylene blue which is known to block cyclic guanosine monophosphate signaling pathway, reduced the protective effects of sodium nitroprussideand Spermidin in plants under salinity condition. The result of this study indicated that Methylene blue could partially and entirely abolish the protective effect of Nitric oxide on some physiological parameter. Methylene blue also has could reduce the alleviation effect of Spermidin on some of parameters in chamomile plant under salt stress, so with comparing the results of this study it seems that Spermidin probably acts through Nitric oxide pathway, but the use of 2-4- carboxyphenyl- 4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide is better to prove.

  1. Habitat recovery in a crude oil-contaminated saltmarsh following biorestoration treatments

    International Nuclear Information System (INIS)

    Lee, K.; Cobanli, S.; Wohlgeschaffen, G.; Venosa, A.D.; Suidan, M.T.; Gauthier, J.; Tremblay, G.H.; Doe, K.

    2002-01-01

    A controlled experiment was performed in a Spartina alterniflora dominated salt marsh in Atlantic Canada in which crude oil was intentionally released. The objective was to assess the feasibility of in situ biostimulation strategies to enhance habitat recovery and to determine the nutrient enrichment in enhancing wetland restoration in the presence and absence of wetland plants. The following four experimental treatments were evaluated: (1) natural attenuation, (2) ammonium nitrate addition with intact plants, (3) ammonium nitrate addition with plants cut back to suppress plant activity, and (4) ammonium nitrate addition with intact plants and with tilling to enrich oxygen penetration. In addition, two unoiled treatments were performed, with and without nutrients. The success of the remedial actions was quantified by determining the rates of oil loss, the recovery of wetland plants and the reduction in interstitial water and sediment toxicity. Results indicated that biodegradation of alkanes and PAHs occurred, but the rates were not greatly enhanced by any of the evaluated treatments. There were other measures of habitat recovery besides the level of residual oil loss. These included alternative methods such as plant recovery, amphipod survival and growth, bacterial activity and physiology. The results were used to determine the total benefit of nutrient enrichment, till and phytoremediation as biorestoration strategies for wetlands impacted by an oil spill. It was concluded that natural attenuation is a feasible spill response option in north-temperate salt marsh environments. 22 refs., 7 figs

  2. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  3. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  4. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings.

    Science.gov (United States)

    Liu, Junhua; Xia, Jiangbao; Fang, Yanming; Li, Tian; Liu, Jingtao

    2014-01-01

    The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  5. Effects of Salt-Drought Stress on Growth and Physiobiochemical Characteristics of Tamarix chinensis Seedlings

    Directory of Open Access Journals (Sweden)

    Junhua Liu

    2014-01-01

    Full Text Available The present study was designed to clarify the effects of salinity and water intercross stresses on the growth and physiobiochemical characteristics of Tamarix chinensis seedlings by pots culture under the artificial simulated conditions. The growth, activities of SOD, POD, and contents of MDA and osmotic adjusting substances of three years old seedlings of T. chinensis were studied under different salt-drought intercross stress. Results showed that the influence of salt stress on growth was greater than drought stress, the oxidation resistance of SOD and POD weakened gradually with salt and drought stresses intensified, and the content of MDA was higher under severe drought and mild and moderate salt stresses. The proline contents increased with the stress intensified but only significantly higher than control under the intercross stresses of severe salt-severe drought. It implied that T. chinensis could improve its stress resistance by adjusted self-growth and physiobiochemical characteristics, and the intercross compatibility of T. chinensis to salt and drought stresses can enhance the salt resistance under appropriate drought stress, but the dominant factors influencing the physiological biochemical characteristics of T. chinensis were various with the changing of salt-drought intercross stresses gradients.

  6. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  7. Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei.

    Science.gov (United States)

    Wang, Guohong; Yin, Sheng; An, Haoran; Chen, Shangwu; Hao, Yanling

    2011-08-01

    Lactic acid bacteria (LAB) encounter various types of stress during industrial processes and gastrointestinal transit. Catalase (CAT) and bile salt hydrolase (BSH) can protect bacteria from oxidative stress or damage caused by bile salts by decomposing hydrogen peroxide (H(2)O(2)) or deconjugating the bile salts, respectively. Lactobacillus casei is a valuable probiotic strain and is often deficient in both CAT and BSH. In order to improve the resistance of L. casei to both oxidative and bile salts stress, the catalase gene katA from L. sakei and the bile salt hydrolase gene bsh1 from L. plantarum were coexpressed in L. casei HX01. The enzyme activities of CAT and BSH were 2.41 μmol H(2)O(2)/min/10(8) colony-forming units (CFU) and 2.11 μmol glycine/min/ml in the recombinant L. casei CB, respectively. After incubation with 8 mM H(2)O(2), survival ratio of L. casei CB was 40-fold higher than that of L. casei CK. Treatment of L. casei CB with various concentrations of sodium glycodeoxycholate (GDCA) showed that ~10(5) CFU/ml cells survived after incubation with 0.5% GDCA, whereas almost all the L. casei CK cells were killed when treaded with 0.4% GDCA. These results indicate that the coexpression of CAT and BSH confers high-level resistance to both oxidative and bile salts stress conditions in L. casei HX01.

  8. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves.

    Directory of Open Access Journals (Sweden)

    Jikai Li

    Full Text Available Salt stress is becoming an increasing threat to global agriculture. In this study, physiological and proteomics analysis were performed using a salt-tolerant grass species, Leymus chinensis (L. chinensis. The aim of this study is to understand the potential mechanism of salt tolerance in L. chinensis that used for crop molecular breeding. A series of short-term (<48 h NaCl treatments (0 ~ 700 mM were conducted. Physiological data indicated that the root and leaves growth were inhibited, chlorophyll contents decreased, while hydraulic conductivity, proline, sugar and sucrose were accumulated under salt stress. For proteomic analysis, we obtained 274 differentially expressed proteins in response to NaCl treatments. GO analysis revealed that 44 out of 274 proteins are involved in the biosynthesis of amino acids and carbon metabolism. Our findings suggested that L. chinensis copes with salt stress by stimulating the activities of POD, SOD and CAT enzymes, speeding up the reactions of later steps of citrate cycle, and synthesis of proline and sugar. In agreement with our physiological data, proteomic analysis also showed that salt stress depress the expression of photosystem relevant proteins, Calvin cycle, and chloroplast biosynthesis.

  9. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  10. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  11. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  12. Enduring perceptions: Place naming and the perception of Louisiana’s salt dome islands

    Directory of Open Access Journals (Sweden)

    Philip Hayward

    2016-11-01

    Full Text Available Salt domes are geological features that occur when areas of salt deposits are pressured into layers above them, causing dome shaped distortions in horizontal strata. In some instances, the distortions protrude above flat areas of land or else appear underwater as seamounts. In the case of the five Louisiana salt dome hills considered in this article, their distinct elevation above the swampy bayous and flatlands surrounding them has led to their characterisation as islands by indigenous Atakapa-Ishak peoples and by subsequent Francophone and Anglophone settlers. The article considers the ways in which the five salt domes’ islandness has been perceived, enhanced and/or undermined by various local inhabitants and/or the commercial operations that have operated on them. Discussion of these aspects involves consideration of the manner in which the salt dome islands’ islandness is mutable and complex, particularly with regard to human impacts. This mutability is discussed with regard to both individual island placenames and the islands’ overall designations.

  13. Enhancement of the Electrocatalytic Activity of Gold Nanoparticles via Anodic Treatment and the Decrease of the Enhanced Activity with Aging

    International Nuclear Information System (INIS)

    Jo, Kyung Min; Kang, Hyun Ju; Yang, Hae Sik

    2011-01-01

    We have recently shown that the electrocatalytic activity of Au nanoparticles (AuNPs) can be enhanced via NaBH 4 treatment and cathodic treatment and that the enhanced activity slowly decreases with aging. We have also demonstrated that the electrocatalytic activity of the AuNPs freshly prepared by electrochemical or chemical reduction slowly decreases with aging in both air and solution. Likewise, the electrocatalytic activity of anodically treated Au electrodes or AuNPs might change with aging. Herein, we report that the electrocatalytic activity of long-aged AuNPs can be enhanced via anodic treatment and that the enhanced electrocatalytic activity decreases with aging in air. The change in the electrocatalytic activity of AuNPs was evaluated by comparing cyclic voltammograms for the electrooxi-dation of hydrogen peroxide (H 2 O 2 ) and formic acid

  14. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  15. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. ... Key words: Cold stratification, salt stress, seedling emergence, ... methods used to cope with salinity, seed pre-sowing.

  16. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  17. Protonation of inorganic 5-Fluorocytosine salts

    Science.gov (United States)

    Souza, Matheus S.; da Silva, Cecília C. P.; Almeida, Leonardo R.; Diniz, Luan F.; Andrade, Marcelo B.; Ellena, Javier

    2018-06-01

    5-Fluorocytosine (5-FC) has been widely used for the treatment of fungal infections and recently was found to exert an extraordinary antineoplastic activity in gene directed prodrug therapy. However, despite of its intense use, 5-FC exhibits tabletability issues due its physical instability in humid environments, leading to transition from the anhydrous to monohydrate phase. By considering that salt formation is an interesting strategy to overcome this problem, in this paper crystal engineering approach was applied to the supramolecular synthesis of new 5-FC salts with sulfuric, hydrobromic and methanesulfonic inorganic acids. A total of four structures were obtained, namely 5-FC sulfate monohydrate (1:1:1), 5-FC hydrogen sulfate (1:1), 5-FC mesylate (1:1) and 5-FC hydrobromide (1:1), the last one being a polymorphic form of a structure already reported in the literature. These novel salts were structurally characterized by single crystal X-ray diffraction and its supramolecular organization were analyses by Hirshfeld surface analysis. The vibrational behavior was evaluated by Raman spectroscopy and it was found to be consistent with the crystal structures.

  18. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Gard, L.M. Jr.

    1976-01-01

    The geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt are discussed. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after Miocene regional uplift had caused downcutting streams to breach the salt core resulting in further collapse. The axis of the anticline is a narrow generally flat-floored valley containing a few hills composed of downdropped Mesozoic rocks foundered in thecaprock. The caprock, which underlies thin alluvium in the valley, is composed of contorted gypsum, shale, sandstone, and limestone--the insoluble residue of the Paradox salt

  19. Passive and iontophoretic delivery of three diclofenac salts across various skin types.

    Science.gov (United States)

    Fang, J; Wang, R; Huang, Y; Wu, P C; Tsai, Y

    2000-11-01

    The in vitro permeation of three diclofenac salts--diclofenac sodium (DFS), diclofenac potassium (DFP) and diclofenac diethylammonium (DFD)-across skin by both passive and iontophoretic transport were investigated. Various skin types were used as the barriers to elucidate the mechanism controlling transdermal delivery of diclofenac salts. The importance of the intercellular (paracellular) route for both DFS and DFP in passive permeation was elucidated. The transfollicular route constitutes an important permeation pathway for DFS but not for DFP. The route and mechanism for transdermal iontophoresis of DFD across the skin was somewhat different to that of the other salts. Hair follicles may be a more important pathway for DFD than for DFS and DFP under iontophoresis, while the intercellular lipid pathway showed the opposite result. Combination of iontophoresis and a penetration enhancer, cardamom oil, did not show a synergistic effect on diclofenac salt permeation. The results of this investigation suggest that the transdermal mechanism and the route of diclofenac salt uptake via passive and iontophoretic transport can be affected by their counterions.

  20. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  1. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  2. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  3. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  4. Enhanced thermophysical properties via PAO superstructure

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-01-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  5. Enhanced thermophysical properties via PAO superstructure.

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-12-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  6. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    Science.gov (United States)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    demonstrated by conducibility tests on the juxtaposed Japanese paper. In addition, after the conventional treatment, a considerable amount of soluble salts was further extracted demonstrating that traditional wraps operate just a shallow cleaning, and soluble salts are liable to emerge later as efflorescence affecting the conservation after restoration. The optimum cleaning was obtained by finishing the innovative extraction with sepiolite/cellulose wraps. As a whole, the novel method and apparatus enhance the time for restoration and the final quality before consolidation and protection. [1] "Apparatus and method for treating porous materials" - M. Ferretti, L. Gaggero, G. Torrielli, PCT/IB2015/055129 (2015)

  7. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  8. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  9. Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2016-11-01

    Full Text Available Elucidating the mechanisms of abiotic stress tolerance in different species will help to develop more resistant plant varieties, contributing to improve agricultural production in a climate change scenario. Basic responses to salt stress, dependent on osmolyte accumulation and activation of antioxidant systems, have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one-month treatments with quite high NaCl concentrations, up to 800 mM, indicating the the species is relatively resistant to salt stress, in addition to drought. Levels of proline, glycine betaine and soluble sugars increased only slightly in the presence of salt; however, soluble sugar absolute contents were much higher than those of the other osmolytes, suggesting a functional role of these compounds in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic and non-enzymatic, are generally activated in response to salt stress; in oleander, they do not seem to include total phenolics or flavonoids, antioxidant compounds which did not accumulate significantly in salt-trated plants

  10. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  11. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  12. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  13. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  14. A Wheat R2R3-type MYB Transcription Factor TaODORANT1 Positively Regulates Drought and Salt Stress Responses in Transgenic Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Qiuhui Wei

    2017-08-01

    Full Text Available MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.. TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.

  15. Molecular and physiological responses of sunflower (helianthus annuus l.) to pgpr and sa under salt stress

    International Nuclear Information System (INIS)

    Naz, R.

    2015-01-01

    This paper presents the efficacy of PGPR (Azospirillum and Pseudomonas) and its modulation by salicylic acid. Two hybrids of sunflower (Hysun and Parsun) were inoculated with Azospirillum spp. and Pseudomonas spp. prior to sowing. Salt stress (20 dSm-1) was applied 28 d after sowing followed by foliar spray of salicylic acid (100 micro M) after 4 h of salt treatment. Azospirillum and Pseudomonas inoculation alone and in combination with salicylic acid alleviated the effects of salt stress on both the sunflower hybrids. The salt tolerance in these treatments was mediated by an increase in relative water content, carotenoids, proline, ABA, induction of new polypeptide bands and yield of sunflower hybrids. In response to salt stress four new polypeptide bands were synthesized in both Hysun, whereas, a group of six polypeptide bands were observed in Parsun. Application of salicylic acid alone and in combination with Azospirillum found to induce four new polypeptide bands in Hysun and Parsun. It is inferred that synthesis of new proteins in response to the combined application of salicylic acid and Azospirillum under salt stress, may play an important role as stress proteins in tolerance of sunflower hybrids to salt stress. (author)

  16. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  17. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Science.gov (United States)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  18. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Louis Goffe

    Full Text Available To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving.Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes, amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty, time spent shaking (3s, 5s or 10s, and individual serving.Controlled, laboratory, conditions.A quota-based convenience sample of 10 participants (five women aged 18-59 years.Amount of salt delivered by salt shakers.Across all trials, the 17 holed shaker delivered a mean (SD of 7.86g (4.54 per trial, whilst the five holed shaker delivered 2.65g (1.22. The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001. This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers' salt intake with takeaway food and on total dietary salt intake.

  19. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse

    Directory of Open Access Journals (Sweden)

    Cattarin eTheerawitaya

    2015-08-01

    Full Text Available Acacia ampliceps (salt wattle, a leguminous shrub, has been introduced in salt-affected areas in northeast of Thailand for remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200 to 600 mM NaCl. Seedlings of A. ampliceps (252 cm in plant height raised from seeds were treated with 200 mM (mild stress, 400 and 600 mM (extreme stress of salt treatment (NaCl under greenhouse conditions. Na+ and Ca2+ contents in the leaf tissues increased significantly under salt treatment, whereas K+ content declined in salt-stressed plants. Free proline and soluble sugar contents in plant grown under extreme salt stress (600 mM NaCl for 9 days significantly increased by 28.7 (53.33 mol g1 FW and 3.2 (42.11 mg g1 DW folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na+ enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll degradation (R2=0.72. Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl. However, these declined under high level of salinity (400-600 mM NaCl, consequently resulting in reduced net photosynthetic rate (R2=0.81 and plant dry weight (R2= 0.91. The study concludes that A. ampliceps has an osmotic adjustment and Na+ compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

  20. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  1. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2017-01-01

    Full Text Available The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste perception established that a decrease in a salt crystal size to 20 µm enabled reducing an amount of added table salt due to an increase in the salty taste intensity in food products. Investigation of the compatibility of different taste directions is also interesting as one of the approaches to a sodium chloride reduction in food products. The use of water-in-oil-in-water (w/o/w double emulsions allows controlling a release of encapsulated ingredients (salt, which enables enhancement of salty taste. The other alternative method of technological processing of meat raw material for reducing salt in meat products is the use of high pressure processing. This method has several advantages and allows not only an increase in the salty taste intensity, but also formation of a stable emulsion, an increase in water binding capacity of minced meat and extension of shelf-life.

  2. Genetic study on salt tolerance involving mutants of barley

    International Nuclear Information System (INIS)

    Patil, S.S.; Sharma, R.P.

    1990-01-01

    Full text: Cultivar 'R-16' was subjected to mutagenesis through gamma irradiation, EMS and their combination treatments. M 6 lines differing in salt tolerance were utilised along with untreated control to generate 8x3 diallel crosses. The magnitude of combining ability variances indicated a relatively prominent role of SCA variance (non additive). The values of GCA effects indicate high breeding value of the mutant M-3 for salt tolerance based on measuring shoot length and root length of 10 day old seedlings. (author)

  3. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  4. Alleviation of adverse impact of salt in Phaseolus vulgaris L. by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Allah, E.F.; Alqarawi, A.A.

    2015-01-01

    The present study was undertaken to evaluate the possible role of arbuscular mycorrhizal fungi (AMF) in enhancing the salt (0, 0.15; 0.25 M NaCl) tolerance in Phaselous vulgaris. The impact of AMF in presence and absence of salt stress was studied on growth, nodulation, and attributes of systemic acquired resistance in P. vulgaris. The results suggested that salinity caused significant decrease in growth performance, nodulation, pigment system, tissue water content, and membrane stability index. Also, salt stress caused significant decrease in phytohormones , polyamines, membrane stability index and tissue water content of P. vulgaris. On the other hand, lipid peroxidation (malondialdehyde), total phenol content and antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase) increases as salt concentration increases. The accumulations of sodium, chlorine were significantly increased by salt stress, however the concentration of potassium, phosphorous and calcium decreased. Overall, the results indicate that AMF alleviate the adverse impact of salinity on the plant growth, anabolic physiological attributes and nutrient uptake by reducing the oxidative damage of salt through strengthening and modulation the systemic acquired resistance. (author)

  5. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  6. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  7. The Importance of G Protein-Coupled Receptor Kinase 4 (GRK4 in Pathogenesis of Salt Sensitivity, Salt Sensitive Hypertension and Response to Antihypertensive Treatment

    Directory of Open Access Journals (Sweden)

    Brian Rayner

    2015-03-01

    Full Text Available Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP. This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs was emphasised in the African American Study of Kidney Disease (AASK where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in

  8. Genetic engineering to develop salt tolerance in potato: a need of the present time scenario(abstract)

    International Nuclear Information System (INIS)

    Ikram ul Haq; Dahot, M.U.

    2005-01-01

    Of environmental stresses, salinity has negative impacts on agricultural yield throughout the world; affected production is 1% as compared to 3%. Soil salinity affects plant growth and development by way of osmotic stress, injurious effects of toxic Na/sup +/ and Cl/sup -/ ions and to some extent Cl/sup -/ and SO/sub 4//sup 2-/ of Mg//sup 2+/. The plant response to salinity consists of numerous processes that must function in coordination to alleviate both cellular hyper osmolarity and ion disequilibrium. However, cell biology and molecular genetics research is providing new insight into the plant response to salinity and is identifying genetic determinants involved in the salt tolerance. Recent confirmation (Arabidopsis thaliana) to salt tolerance determinants is that mediate cellular ion homeostasis. The transport systems facilitate cellular capacity to utilize Na/sup +/ for osmotic adjustment and growth and the role of the Salt-Overly-Sensitive (SOS) signal transduction pathway in the regulation of ion homeostasis and salt tolerance. The SOS signaling pathway regulates Na/sup +/ and K/sup +/ homeostasis, after Ca/sup 2+/ activation. Furthermore, overexpression of AtNHX1 enhances plant salt tolerance, presumably by increasing vacuolar Na/sup +//H/sup +/ compartmentalization that minimizes the toxic I. accumulation of the ion in the cytosol. The activation of SOS1 (Na/sup +/ efflux) and/or AtNHX1 (Na/sup +/ efflux) so by expression of such transporters enhances salt tolerance in plants. (author)

  9. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  10. Salt og forbrugervalg

    DEFF Research Database (Denmark)

    Mørk, Trine; Grunert, Klaus G

    af saltreducerede fødevarer og deres købsintention af disse. Dette blev undersøgt ved at måle forbrugerens viden om salt, anvendelse af salt, ønske om reduktion af salt og købsintention af saltreducerede fødevarer i en web-baseret undersøgelse. Efter den web-baserede undersøgelse, blev de samme mål...... undersøgt, men i et supermarked, hvor deltagerne blev inddelt i fire grupper for at undersøge effekten af priming og saltmærkning. Desuden blev der foretaget 15 kvalitative interviews, for at studere hvem og hvad der karakteriserer de deltagere i eksperimentet, som enten ender med ingen salt......-reducerede produkter at købe eller som ender med at købe alle de salt-reducerede produkter....

  11. [Historical roles of salt].

    Science.gov (United States)

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  12. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  13. Bath Salts Abuse Leading to New-Onset Psychosis and Potential for Violence.

    Science.gov (United States)

    John, Michelle E; Thomas-Rozea, Crystal; Hahn, David

    Bath salts have recently emerged as a popular designer drug of abuse causing significant hazardous effects on mental health and physical health, resulting in public health legislation making its usage illegal in the United States. To educate mental health providers on the effects of the new designer drug bath salts, including its potential to cause psychosis and violence in patients. This is a case report on a 40-year-old male with no past psychiatric history who presented with new-onset psychosis and increased risk for violence after ingesting bath salts. In addition, a literature review was performed to summarize the documented effects of bath salts abuse and the current U.S. public health legislation on bath salts. The presented case illustrates a new-onset, substance-induced psychotic disorder related to bath salts usage. The literature review explains the sympathomimetic reaction and the potential for psychotic symptoms. To discuss the physical and psychological effects of bath salts, treatment options for bath salts abuse and U.S. legislation by Ohio state law to current U.S. federal law that bans production, sale, and possession of main substances found in bath salts. It is important for mental health providers to be aware of bath salts, understand the physical and psychiatric effects of bath salts and be familiar with current legislative policy banning its usage. Lastly, bath salts abuse should be in the differential diagnosis where psychosis is new onset or clinically incongruent with known primary presentation of a psychotic disorder.

  14. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  15. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  16. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Williams, D.F.; Peretz, F.J.

    1996-01-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions

  17. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  18. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    Science.gov (United States)

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  19. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  1. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  2. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  3. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  4. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong

    2018-05-03

    Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.

  5. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. Removal of uranium from spent salt from the moltensalt oxidation process

    International Nuclear Information System (INIS)

    Summers, L.; Hsu, P.C.; Holtz, E.V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  7. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  8. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  9. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  10. Florida's salt-marsh management issues: 1991-98.

    Science.gov (United States)

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  11. A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance.

    Directory of Open Access Journals (Sweden)

    Tian-Zuo Wang

    Full Text Available BACKGROUND: Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize genes of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic Arabidopsis seedlings expressing MtCaMP1 exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na(+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress. CONCLUSIONS/SIGNIFICANCE: The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na(+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na(+ under drought and salt stress would protect plants from water default and Na(+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.

  12. Hydrofrac characteristics of saline rock as a function of salt species, pressure, and rate of pressure increase

    International Nuclear Information System (INIS)

    Schlueter, K.

    1986-01-01

    The author investigates the conditions in which the storage of liquids in salt caverns can be assumed to be safe. Experiments on hollow salt cylinders and salt cubes were to establish conservative limiting values for the suitable storage conditions. The experiments, owing to the small size of the test specimens and to their preparatory treatment, resulted in a somewhat lower strength of the salt than would have been measured in situ. (orig./PW) [de

  13. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  14. Worth its salt?

    Science.gov (United States)

    The idea that all underground salt deposits can serve as storage sites for toxic and nuclear waste does not always hold water—literally. According to Daniel Ronen and Brian Berkowitz of Israel's Weizmann Institute of Science and Yoseph Yechieli of the Geological Survey of Israel, some buried salt layers are in fact highly conductive of liquids, suggesting that wastes buried in their confines could easily leech into groundwater and nearby soil.When drilling three wells into a 10,000-year-old salt layer near the Dead Sea, the researchers found that groundwater had seeped into the layer and had absorbed some of its salt.

  15. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    Science.gov (United States)

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  16. Textural improvement of salt-reduced Alaska pollack (Theragra chalcogramma) roe product by CaCl2.

    Science.gov (United States)

    Chen, Chaoping; Okazaki, Emiko; Osako, Kazufumi

    2016-12-15

    Salt-reduced Alaska pollack roe benefits public health by decreasing NaCl intake; however, it has a poor texture with low breaking strength. This study addresses the feasibility of NaCl reduction in salted roe products, with focusing on the improvement of breaking strength using CaCl2. Salted roe products were prepared by immersing Alaska pollack roe in either NaCl solutions (3.5, 7.0, 15.0, 20.0, and 25.0%) or 7.0% NaCl solutions with added CaCl2 (0.0, 0.5, 1.0, 2.0, and 3.0%). Breaking strength, moisture and salt contents, eggshell protein composition of the salted roe products, as well as total endogenous transglutaminase (TGase) activity in various NaCl and CaCl2 concentrations were analyzed. CaCl2 addition enhanced eggshell protein crosslinking and breaking strength of the salt-reduced roe products. An acyl transfer reaction catalyzed by calcium-dependent TGase may be responsible for the eggshell protein crosslinking and improved texture. Thus, we successfully developed a salt-reduced Alaska roe product using CaCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Bile Salt on Permeation Characteristics of the Oral Mucosal ...

    African Journals Online (AJOL)

    An attempt was made to study the effect of bile salt [sodium glycocholate (SG)] as a permeation enhancer on mucoadhesive buccal patches of diltiazem hydrochloride (anti-anginal drug) using various polymers like hydroxypropyl methyl cellulosee (HPMC), Eudragit RL100, ethyl cellulose alone and in combination with PVP.

  18. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  19. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    Science.gov (United States)

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    Science.gov (United States)

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.