WorldWideScience

Sample records for dna-dna relatedness values

  1. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparisons with Other Methods

    International Nuclear Information System (INIS)

    Wu, Liyou; Yi, T.Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-01-01

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site (Hanford Reach of the Columbia River (HRCR), 11 strains), Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  2. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  3. Identification of kin structure among Guam rail founders: a comparison of pedigrees and DNA profiles

    Science.gov (United States)

    Haig, Susan M.; Ballou, J.D.; Casna, N.J.

    1994-01-01

    Kin structure among founders can have a significant effect on subsequent population structure. Here we use the correlation between DNA profile similarity and relatedness calculated from pedigrees to test hypotheses regarding kin structure among founders to the captive Guam rail (Rallus owstoni) population. Five different pedigrees were generated under the following hypotheses: (i) founders are unrelated; (ii) founders are unrelated except for same-nest chicks; (iii) founders from the same major site are siblings; (iv) founders from the same local site are siblings; and (v) founders are related as defined by a UPGMA cluster analysis of DNA similarity data. Relatedness values from pedigrees 1, 2 and 5 had the highest correlation with DNA similarity but the correlation between relatedness and similarity were not significantly different among pedigrees. Pedigree 5 resulted in the highest correlation overall when using only relatedness values that changed as a result of different founder hypotheses. Thus, founders were assigned relatedness based on pedigree 5 because it had the highest correlations with DNA similarity, was the most conservative approach, and incorporated all field data. The analyses indicated that estimating relatedness using DNA profiles remains problematic, therefore we compared mean kinship, a measure of genetic importance, with mean DNA profile similarity to determine if genetic importance among individuals could be determined via use of DNA profiles alone. The significant correlation suggests this method may provide more information about population structure than was previously thought. Thus, DNA profiles can provide a reasonable explanation for founder relatedness and mean DNA profile similarity may be helpful in determining relative genetic importance of individuals when detailed pedigrees are absent.

  4. DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs.

    Science.gov (United States)

    Hood, D W; Dow, C S; Green, P N

    1987-03-01

    The genomic relatedness among 36 strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) was estimated by determination of DNA base composition and by DNA:DNA hybridization studies. A reproducible hybridization system was developed for the rapid analysis of multiple DNA samples. Results indicated that the PPFMs comprise four major and several minor homology groups, and that they should remain grouped in a single genus, Methylobacterium.

  5. Double positivity for HPV-DNA/p16ink4a is the biomarker with strongest diagnostic accuracy and prognostic value for human papillomavirus related oropharyngeal cancer patients.

    Science.gov (United States)

    Mena, Marisa; Taberna, Miren; Tous, Sara; Marquez, Sandra; Clavero, Omar; Quiros, Beatriz; Lloveras, Belen; Alejo, Maria; Leon, Xavier; Quer, Miquel; Bagué, Silvia; Mesia, Ricard; Nogués, Julio; Gomà, Montserrat; Aguila, Anton; Bonfill, Teresa; Blazquez, Carmen; Guix, Marta; Hijano, Rafael; Torres, Montserrat; Holzinger, Dana; Pawlita, Michael; Pavon, Miguel Angel; Bravo, Ignacio G; de Sanjosé, Silvia; Bosch, Francesc Xavier; Alemany, Laia

    2018-03-01

    The etiologic role of human papillomaviruses (HPV) in oropharyngeal cancer (OPC) is well established. Nevertheless, information on survival differences by anatomic sub-site or treatment remains scarce, and it is still unclear the HPV-relatedness definition with best diagnostic accuracy and prognostic value. We conducted a retrospective cohort study of all patients diagnosed with a primary OPC in four Catalonian hospitals from 1990 to 2013. Formalin-fixed, paraffin-embedded cancer tissues were subjected to histopathological evaluation, DNA quality control, HPV-DNA detection, and p16 INK4a /pRb/p53/Cyclin-D1 immunohistochemistry. HPV-DNA positive and a random sample of HPV-DNA negative cases were subjected to HPV-E6*I mRNA detection. Demographic, tobacco/alcohol use, clinical and follow-up data were collected. Multivariate models were used to evaluate factors associated with HPV positivity as defined by four different HPV-relatedness definitions. Proportional-hazards models were used to compare the risk of death and recurrence among HPV-related and non-related OPC. 788 patients yielded a valid HPV-DNA result. The percentage of positive cases was 10.9%, 10.2%, 8.5% and 7.4% for p16 INK4a , HPV-DNA, HPV-DNA/HPV-E6*I mRNA, and HPV-DNA/p16 INK4a , respectively. Being non-smoker or non-drinker was consistently associated across HPV-relatedness definitions with HPV positivity. A suggestion of survival differences between anatomic sub-sites and treatments was observed. Double positivity for HPV-DNA/p16 INK4a showed strongest diagnostic accuracy and prognostic value. Double positivity for HPV-DNA/p16 INK4a , a test that can be easily implemented in the clinical practice, has optimal diagnostic accuracy and prognostic value. Our results have strong clinical implications for patients' classification and handling and also suggest that not all the HPV-related OPC behave similarly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A study of the genetic relationships within and among wolf packs using DNA fingerprinting and mitochondrial DNA

    Science.gov (United States)

    Lehman, Niles; Clarkson, Peter; Mech, L. David; Meier, Thomas J.; Wayne, Robert K.

    1992-01-01

    DNA fingerprinting and mitochondrial DNA analyses have not been used in combination to study relatedness in natural populations. We present an approach that involves defining the mean fingerprint similarities among individuals thought to be unrelated because they have different mtDNA genotypes. Two classes of related individuals are identified by their distance in standard errors above this mean value. The number of standard errors is determined by analysis of the association between fingerprint similarity and relatedness in a population with a known genealogy. We apply this approach to gray wolf packs from Minnesota, Alaska, and the Northwest Territories. Our results show that: (1) wolf packs consist primarily of individuals that are closely related genetically, but some packs contain unrelated, non-reproducing individuals; (2) dispersal among packs within the same area is common; and (3) short-range dispersal appears more common for female than male wolves. The first two of these genetically-based observations are consistent with behavioral data on pack structure and dispersal in wolves, while the apparent sex bias in dispersal was not expected.

  7. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    International Nuclear Information System (INIS)

    Okamura, K; Hisada, T; Takata, K; Hiraishi, A

    2013-01-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  8. Clinical strains of acinetobacter classified by DNA-DNA hybridization

    International Nuclear Information System (INIS)

    Tjernberg, I.; Ursing, J.

    1989-01-01

    A collection of Acinetobacter strains consisting of 168 consecutive clinical strains and 30 type and reference strains was studied by DNA-DNA hybridization and a few phenotypic tests. The field strains could be allotted to 13 DNA groups. By means of reference strains ten of these could be identified with groups described by Bouvet and Grimont (1986), while three groups were new; they were given the numbers 13-15. The type strain of A. radioresistens- recently described by Nishimura et al. (1988) - was shown to be a member of DNA group 12, which comprised 31 clinical isolates. Of the 19 strains of A. junii, eight showed hemolytic acitivity on sheep and human blood agar and an additional four strains on human blood agar only. Strains of this species have previously been regarded as non-hemolytic. Reciprocal DNA pairing data for the reference strains of the DNA gropus were treated by UPGMA clustering. The reference strains for A. calcoaceticus, A. baumannii and DNA groups 3 and 13 formed a cluster with about 70% relatedness within the cluster. Other DNA groups joined at levels below 60%. (author)

  9. Clinical strains of acinetobacter classified by DNA-DNA hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Tjernberg, I; Ursing, J [Department of Medical Microbiology, University of Lund, Malmoe General Hospital, Malmoe (Sweden)

    1989-01-01

    A collection of Acinetobacter strains consisting of 168 consecutive clinical strains and 30 type and reference strains was studied by DNA-DNA hybridization and a few phenotypic tests. The field strains could be allotted to 13 DNA groups. By means of reference strains ten of these could be identified with groups described by Bouvet and Grimont (1986), while three groups were new; they were given the numbers 13-15. The type strain of A. radioresistens- recently described by Nishimura et al. (1988) - was shown to be a member of DNA group 12, which comprised 31 clinical isolates. Of the 19 strains of A. junii, eight showed hemolytic acitivity on sheep and human blood agar and an additional four strains on human blood agar only. Strains of this species have previously been regarded as non-hemolytic. Reciprocal DNA pairing data for the reference strains of the DNA gropus were treated by UPGMA clustering. The reference strains for A. calcoaceticus, A. baumannii and DNA groups 3 and 13 formed a cluster with about 70% relatedness within the cluster. Other DNA groups joined at levels below 60%. (author).

  10. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  11. DNA Profiles from Fingerprint Lifts-Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing.

    Science.gov (United States)

    Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2018-05-25

    This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.

  12. The Evidentiary Value of DNA Fingerprint as Criminal Evidence

    Directory of Open Access Journals (Sweden)

    Mussa Masoud Irhouma

    2016-12-01

    Full Text Available The subject of criminal evidence is considered to be one of the greatest challenges that face authorities concerned with fighting crime at all levels. Due to this, authorities try to benefit as much as possible from scientific evidence due to the important role it plays in revealing the identity of criminals or victims in present or past criminal cases against unknown people through the physical traces that are found at the scene of an event, which include biological traces. DNA is one of these scientific evidences which can be benefited from in the field of crime investigation. Despite the importance of DNA technology in this area of work, there is still some debate surrounding its acceptance as criminal evidence. Some experts believe it to be of great importance whereas others cast doubt on its evidentiary value. They attribute this to a number of factors including the experts who are entrusted to examine DNA samples, the laboratories in which DNA analysis takes place, as well as the fact that resorting to DNA as a criminal evidence raises some legal complexities related to the permissibility of using it and the conditions and scope of its use. This paper sheds light on DNA and its evidentiary value among the judiciary in criminal cases by answering a number of questions such as the possibility of forcing a person to undergo DNA analysis or not to do so and to what extent it is to be relied upon as criminal evidence. This paper concluded the importance of DNA and its role in the field of criminal evidence. Despite this, even if the DNA evidence is sufficient in proving the innocence of the accused, it is only an indication that must not be solely relied upon and treated as a single conclusive evidence, particularly in cases that involve prescribed Islamic or retributive punishments.

  13. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients.

    Science.gov (United States)

    Ponti, Giovanni; Maccaferri, Monia; Manfredini, Marco; Kaleci, Shaniko; Mandrioli, Mauro; Pellacani, Giovanni; Ozben, Tomris; Depenni, Roberta; Bianchi, Giampaolo; Pirola, Giacomo Maria; Tomasi, Aldo

    2018-04-01

    Circulating cell-free tumor DNA (cfDNA) is of crucial interest in oncology. cfDNA constitutes a potential prognostic and therapeutic marker for different solid tumors and can be used in the diagnostic and therapeutic management of cancer patients for which nowadays there are no valid laboratory markers. In the present study, the quality and quantity of the cfDNA were assessed by different quantification procedures, in order to identify the potential applications of these techniques in the preliminary cfDNA quantification. Qubit with single (ss) and double strand (ds) DNA assay kits, NanoDrop and quantitative Real Time PCR (qPCR), were adopted to assess the cfDNA in the blood samples of 18 melanoma patients, 67 prostate cancer patients and 15 healthy controls. The quantification by NanoDrop (average value 8.48ng/μl, 95% confidence limit (CL)=7.23-9.73), Qubit ssDNA (average value 23.08ng/μl, CL=19.88-26.28), dsDNA (average value 4.32ng/μl, CL=3.52-5.12) assay kits and qPCR (average value 0.39ng/μl, CL=0.31-0.47) revealed differences among the four procedures. Qubit 2.0 ss-DNA kit gave higher cfDNA concentration values for all the samples analyzed. In detail, Qubit ssDNA assay revealed higher sensitivity in the quantification of small amounts of pure ss-DNA and ds-DNA, while NanoDrop allowed the assessment of the purity of cfDNA samples. The NanoDrop and Qubit 2.0 measurements were analyzed in order to define their correlation with qPCR cfDNA assessment, showing good correlation values with the qPCR that should be considered the "gold standard". In our proposal, the sequential combination of NanoDrop and Qubit ssDNA methods should be adopted for a cost-effective preliminary assessment of total circulating cfDNA in melanoma and prostate cancer patients, and only discordant values should undergo qPCR assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Pitfalls of DNA Quantification Using DNA-Binding Fluorescent Dyes and Suggested Solutions.

    Science.gov (United States)

    Nakayama, Yuki; Yamaguchi, Hiromi; Einaga, Naoki; Esumi, Mariko

    2016-01-01

    The Qubit fluorometer is a DNA quantification device based on the fluorescence intensity of fluorescent dye binding to double-stranded DNA (dsDNA). Qubit is generally considered useful for checking DNA quality before next-generation sequencing because it measures intact dsDNA. To examine the most accurate and suitable methods for quantifying DNA for quality assessment, we compared three quantification methods: NanoDrop, which measures UV absorbance; Qubit; and quantitative PCR (qPCR), which measures the abundance of a target gene. For the comparison, we used three types of DNA: 1) DNA extracted from fresh frozen liver tissues (Frozen-DNA); 2) DNA extracted from formalin-fixed, paraffin-embedded liver tissues comparable to those used for Frozen-DNA (FFPE-DNA); and 3) DNA extracted from the remaining fractions after RNA extraction with Trizol reagent (Trizol-DNA). These DNAs were serially diluted with distilled water and measured using three quantification methods. For Frozen-DNA, the Qubit values were not proportional to the dilution ratio, in contrast with the NanoDrop and qPCR values. This non-proportional decrease in Qubit values was dependent on a lower salt concentration, and over 1 mM NaCl in the DNA solution was required for the Qubit measurement. For FFPE-DNA, the Qubit values were proportional to the dilution ratio and were lower than the NanoDrop values. However, electrophoresis revealed that qPCR reflected the degree of DNA fragmentation more accurately than Qubit. Thus, qPCR is superior to Qubit for checking the quality of FFPE-DNA. For Trizol-DNA, the Qubit values were proportional to the dilution ratio and were consistently lower than the NanoDrop values, similar to FFPE-DNA. However, the qPCR values were higher than the NanoDrop values. Electrophoresis with SYBR Green I and single-stranded DNA (ssDNA) quantification demonstrated that Trizol-DNA consisted mostly of non-fragmented ssDNA. Therefore, Qubit is not always the most accurate method for

  15. Hamster endogenous retrovirus (HaER) - distinct properties of structural proteins and DNA polymerase

    International Nuclear Information System (INIS)

    Goldschmied-Reouven, A.; Yaniv, A.

    1983-01-01

    The structural proteins as well as some features of the RNA-dependent DNA polymerase of the hamster endogenous retrovirus (HaER) were examined. The polypeptide pattern of this virus is substantially different from that of other known retroviruses in containing major polypeptides with molecular weights of 68000, 59000, 27000, 24000 daltons. Double antibody competitive radioimmunoassays showed that the HaER particles do not share any detectable antigenic relatedness with the murine viruses' p30, but manifest a considerable relatedness with the feline leukemia virus p27 and a slight cross-reactivity with the rat virus major protein. The RNA-dependent DNA polymerase of HaER virus has a molecular size of approximately 73000 daltons and in contrast to other mammalian retroviruses shows no significant preference for Mn 2+ over Mg 2+ . Apart from the lack of antigenic relatedness between the HaER virus proteins and the p30 protein of murine viruses, there is also no antigenic relatedness between HaER and murine viruses insofar as their DNA polymerase is concerned. (Author)

  16. Dna c-values of 20 invasive alien species and 3 native species in south china

    Directory of Open Access Journals (Sweden)

    Gong Ni

    2014-01-01

    Full Text Available Cultivated fields and forests in South China are experiencing serious damage due to invasive alien plants. We investigated the relation between DNA C-values and invasiveness. The DNA C-values of 23 species ranged from 0.39 pg to 3.37 pg. Herbs, perennials and native species had higher mean DNA C-values than shrubs, annuals and invasive alien species. DNA C-values decreased with increasing invasiveness. Paederia scandens, a harmful native species, has the lowest DNA C-value among the perennials, indicating that native species with low nuclear content may also possess an invasive potential.

  17. Dna c-values of 20 invasive alien species and 3 native species in south china

    OpenAIRE

    Gong Ni; Wang Yu-Tao; Björn Lars Olof; Li Shao-Shan

    2014-01-01

    Cultivated fields and forests in South China are experiencing serious damage due to invasive alien plants. We investigated the relation between DNA C-values and invasiveness. The DNA C-values of 23 species ranged from 0.39 pg to 3.37 pg. Herbs, perennials and native species had higher mean DNA C-values than shrubs, annuals and invasive alien species. DNA C-values decreased with increasing invasiveness. Paederia scandens, a harmful native species, has the lo...

  18. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  19. Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases.

    Science.gov (United States)

    Bodner, Martin; Irwin, Jodi A; Coble, Michael D; Parson, Walther

    2011-03-01

    Reliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and database searches, for forensic applications, for reconstructions of human migrations and for correct interpretation of mtDNA mutations in medical genetics. There is continuing effort to enhance the number of worldwide population samples in order to contribute to a better understanding of human mtDNA variation. This has often lead to the analysis of convenience samples collected for other purposes, which might not meet the quality requirement of random sampling for mtDNA data sets. Here, we introduce an additional quality control means that deals with one aspect of this limitation: by combining autosomal short tandem repeat (STR) marker with mtDNA information, it helps to avoid the bias introduced by related individuals included in the same (small) sample. By STR analysis of individuals sharing their mitochondrial haplotype, pedigree construction and subsequent software-assisted calculation of likelihood ratios based on the allele frequencies found in the population, closely maternally related individuals can be identified and excluded. We also discuss scenarios that allow related individuals in the same set. An ideal population sample would be representative for its population: this new approach represents another contribution towards this goal. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Genetic data from algae sedimentary DNA reflect the influence of environment over geography.

    Science.gov (United States)

    Stoof-Leichsenring, Kathleen R; Herzschuh, Ulrike; Pestryakova, Luidmila A; Klemm, Juliane; Epp, Laura S; Tiedemann, Ralph

    2015-08-11

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

  1. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  2. Multifragment alleles in DNA fingerprints of the parrot, Amazona ventralis

    Science.gov (United States)

    Brock, M.K.; White, B.N.

    1991-01-01

    Human DNA probes that identify variable numbers of tandem repeat loci are being used to generate DNA fingerprints in many animal and plant species. In most species the majority of the sc rable autoradiographic bands of the DNA fingerprint represent alleles from numerous unlinked loci. This study was initiated to use DNA fingerprints to determine the amount of band-sharing among captive Hispaniolan parrots (Amazona ventralis) with known genetic relationships. This would form the data base to examine DNA fingerprints of the closely related and endangered Puerto Rican parrot (A. vittata) and to estimate the degree of inbreeding in the relic population. We found by segregation analysis of the bands scored in the DNA fingerprints of the Hispaniolan parrots that there may be as few as two to five loci identified by the human 33.15 probe. Furthermore, at one locus we identified seven alleles, one of which is represented by as many as 19 cosegregating bands. It is unknown how common multiband alleles might be in natural populations, and their existence will cause problems in the assessment of relatedness by band-sharing analysis. We believe, therefore, that a pedigree analysis should be included in all DNA fingerprinting studies, where possible, in order to estimate the number of loci identified by a minisatellite DNA probe and to examine the nature of their alleles.

  3. The practical analysis of food: the development of Sakalar quantification table of DNA (SQT-DNA).

    Science.gov (United States)

    Sakalar, Ergün

    2013-11-15

    Practical and highly sensitive Sakalar quantification table of DNA (SQT-DNA) has been developed for the detection% of species-specific DNA amount in food products. Cycle threshold (Ct) data were obtained from multiple curves of real-time qPCR. The statistical analysis was done to estimate the concentration of standard dilutions. Amplicon concentrations versus each Ct value were assessed by the predictions of targets at known concentrations. SQT-DNA was prepared by using the percentage versus each Ct values. The applicability of SQT-DNA to commercial foods was proved by using sausages containing varying ratios of beef, chicken, and soybean. The results showed that SQT-DNA can be used to directly quantify food DNA by a single PCR without the need to construct a standart curve in parallel with the samples every time the experiment is performed, and also quantification by SQT-DNA is as reliable as standard curve quantification for a wide range of DNA concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cell-associated HIV DNA measured early during infection has prognostic value independent of serum HIV RNA measured concomitantly

    DEFF Research Database (Denmark)

    Katzenstein, Terese L; Oliveri, Roberto S; Benfield, Thomas

    2002-01-01

    Using data from the Danish AIDS Cohort of HIV-infected homosexual men established in the 1980s, the prognostic value of early HIV DNA loads was evaluated. In addition to DNA measurements, concomitant serum HIV RNA levels, CD4 cell counts and CCR5 genotypes were determined. The patients were divided...... into 3 groups, according to whether their cell-associated HIV DNA load was or = 2,500 DNA copies/10(6) peripheral blood mononuclear cells. Clinical progression rates differed significantly between the groups (p value independent...... of serum HIV RNA (p value. Patients heterozygous for the CCR5 delta 32 allele had significantly lower HIV DNA loads than those homozygous for the normal allele (p

  5. Cloning and Characterization of a Complex DNA Fingerprinting Probe for Candida parapsilosis

    Science.gov (United States)

    Enger, Lee; Joly, Sophie; Pujol, Claude; Simonson, Patricia; Pfaller, Michael; Soll, David R.

    2001-01-01

    Candida parapsilosis accounts for a significant number of nosocomial fungemias, but in fact, no effective and verified genetic fingerprinting method has emerged for assessing the relatedness of independent isolates for epidemiological studies. A complex 15-kb DNA fingerprinting probe, Cp3-13, was therefore isolated from a library of C. parapsilosis genomic DNA fragments. The efficacy of Cp3-13 for DNA fingerprinting was verified by a comparison of its clustering capacity with those of randomly amplified polymorphic DNA analysis and internally transcribed spacer region sequencing, by testing species specificity, and by assessing its capacity to identify microevolutionary changes both in vitro and in vivo. Southern blot hybridization of EcoRI/SalI-digested DNA with Cp3-13 provides a fingerprinting system that (i) identifies the same strain in independent isolates, (ii) discriminates between unrelated isolates, (iii) separates independent isolates into valid groups in a dendrogram, (iv) identifies microevolution in infecting populations, and (v) is amenable to automatic computer-assisted DNA fingerprint analysis. This probe is now available for epidemiological studies. PMID:11158125

  6. Technical improvement to prevent DNA degradation of Leptospira spp. in pulsed field gel electrophoresis.

    Science.gov (United States)

    Ribeiro, R L; Machry, L; Brazil, J M V; Ramos, T M V; Avelar, K E S; Pereira, M M

    2009-08-01

    Leptospirosis is a public health problem. Infection with pathogenic Leptospira occurs by exposure to many environments and is traditionally associated with occupational risk activities. Pulsed-field gel electrophoresis was used to investigate the epidemiological relatedness among Leptospira isolates. However, analysis by PFGE yielded inconclusive data as a result of extensive DNA degradation. This degradation can be significantly reduced by the inclusion of thiourea in the electrophoresis buffer, improving the analysis of DNA banding patterns.

  7. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  8. DNA-informed breeding of rosaceous crops: promises, progress and prospects

    Science.gov (United States)

    Peace, Cameron P

    2017-01-01

    Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185

  9. The value of using DNA markers for beef bull selection in the seedstock sector.

    Science.gov (United States)

    Van Eenennaam, A L; van der Werf, J H J; Goddard, M E

    2011-02-01

    The objective of this study was to estimate the value derived from using DNA information to increase the accuracy of beef sire selection in a closed seedstock herd. Breeding objectives for commercial production systems targeting 2 diverse markets were examined using multiple-trait selection indexes developed for the Australian cattle industry. Indexes included those for both maternal (self-replacing) and terminal herds targeting either a domestic market, where steers are finished on pasture, or the export market, where steers are finished on concentrate rations in feedlots and marbling has a large value. Selection index theory was used to predict the response to conventional selection based on phenotypic performance records, and this was compared with including information from 2 hypothetical marker panels. In 1 case the marker panel explained a percentage of additive genetic variance equal to the heritability for all traits in the breeding objective and selection criteria, and in the other case to one-half of this amount. Discounted gene flow methodology was used to calculate the value derived from the use of superior bulls selected using DNA test information and performance recording over that derived from conventional selection using performance recording alone. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator. The DNA testing using these hypothetical marker panels increased the selection response between 29 to 158%. The value of this improvement above that obtained using traditional performance recording ranged from $89 to 565 per commercial bull, and $5,332 to 27,910 per stud bull. Assuming that the entire bull calf crop was tested to achieve these gains, the value of the genetic gain derived from DNA testing ranged from $204 to 1,119 per test. All values assumed that the benefits derived from using superior bulls were efficiently transferred along the production chain to the seedstock producer incurring

  10. Student Perceptions and Motivation in the Classroom: Exploring Relatedness and Value

    Science.gov (United States)

    Kaufman, Annette; Dodge, Tonya

    2009-01-01

    According to Self-Determination Theory, feelings of relatedness and value of a behavior are critical factors that affect internalization and integration. The purpose of the current study was to identify factors that influence relatedness and value in an academic setting. Specifically, the study investigated the effects of autonomy, mastery goals,…

  11. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  12. The Ins and Outs of DNA Fingerprinting the Infectious Fungi

    Science.gov (United States)

    Soll, David R.

    2000-01-01

    DNA fingerprinting methods have evolved as major tools in fungal epidemiology. However, no single method has emerged as the method of choice, and some methods perform better than others at different levels of resolution. In this review, requirements for an effective DNA fingerprinting method are proposed and procedures are described for testing the efficacy of a method. In light of the proposed requirements, the most common methods now being used to DNA fingerprint the infectious fungi are described and assessed. These methods include restriction fragment length polymorphisms (RFLP), RFLP with hybridization probes, randomly amplified polymorphic DNA and other PCR-based methods, electrophoretic karyotyping, and sequencing-based methods. Procedures for computing similarity coefficients, generating phylogenetic trees, and testing the stability of clusters are then described. To facilitate the analysis of DNA fingerprinting data, computer-assisted methods are described. Finally, the problems inherent in the collection of test and control isolates are considered, and DNA fingerprinting studies of strain maintenance during persistent or recurrent infections, microevolution in infecting strains, and the origin of nosocomial infections are assessed in light of the preceding discussion of the ins and outs of DNA fingerprinting. The intent of this review is to generate an awareness of the need to verify the efficacy of each DNA fingerprinting method for the level of genetic relatedness necessary to answer the epidemiological question posed, to use quantitative methods to analyze DNA fingerprint data, to use computer-assisted DNA fingerprint analysis systems to analyze data, and to file data in a form that can be used in the future for retrospective and comparative studies. PMID:10756003

  13. The use of mitochondrial DNA (mtDNA-investigations in Forensic Sciences

    Directory of Open Access Journals (Sweden)

    S. Dawson

    1996-07-01

    Full Text Available A variety of methods was developed to characterize mtDNA. The initial aim of these techniques was to try and link diseases with specific mitochondrial defects. As a result of the maternal inheritance trait of mtDNA these techniques facilitate studies of the phylogenetic history and population structure of the human population. It has been shown that mitochondrial DNA typing can be of great value for human identification in forensic cases. The identification of victims of mass-disasters or mass-murders, where human remains can be recovered only after many years have passed, is one of the most challenging fields of forensic identification. By using automated DNA sequencing with fluorescent labels, mitochondrial DNA sequences can be generated rapidly and accurately. Computer software facilitates the rapid comparison of individual and reference sequences.

  14. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  15. Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses

    International Nuclear Information System (INIS)

    Briddon, Rob W.; Bull, Simon E.; Amin, Imran; Idris, Ali M.; Mansoor, Shahid; Bedford, Ian D.; Dhawan, Poonam; Rishi, Narayan; Siwatch, Surender S.; Abdel-Salam, Aly M.; Brown, Judith K.; Zafar, Yusuf; Markham, Peter G.

    2003-01-01

    DNA β molecules are symptom-modulating, single-stranded DNA satellites associated with monopartite begomoviruses (family Geminiviridae). Such molecules have thus far been shown to be associated with Ageratum yellow vein virus from Singapore and Cotton leaf curl Multan virus from Pakistan. Here, 26 additional DNA β molecules, associated with diverse plant species obtained from different geographical locations, were cloned and sequenced. These molecules were shown to be widespread in the Old World, where monopartite begomoviruses are known to occur. Analysis of the sequences revealed a highly conserved organization for DNA β molecules consisting of a single conserved open reading frame, an adenine-rich region, and a region of high sequence conservation [the satellite conserved region (SCR)]. The SCR contains a potential hairpin structure with the loop sequence TAA/GTATTAC; similar to the origins of replication of geminiviruses and nanoviruses. Two major groups of DNA β satellites were resolved by phylogenetic analyses. One group originated from hosts within the Malvaceae and the second from a more diverse group of plants within the Solanaceae and Compositae. Within the two clusters, DNA β molecules showed relatedness based both on host and geographic origin. These findings strongly support coadaptation of DNA β molecules with their respective helper begomoviruses

  16. Genetic relatedness of low solitary nests of Apis dorsata from Marang, Terengganu, Malaysia.

    Directory of Open Access Journals (Sweden)

    Najmeh Sahebzadeh

    Full Text Available Knowledge on the population of genetic structure and ecological behaviour of Apis dorsata from Peninsular Malaysia is needed for effective management and conservation of this species since unsustainable whole solitary low nest cutting for product harvesting is the current common practice here. The analysis of 15 single locus DNA microsatellite markers on samples from 20 solitary nests of A. dorsata showed that while these markers were polymorphic, high intracolonial relatedness existed. Furthermore, in general, slightly negative values of intercolony relatedness (R among the nests of A. dorsata were found. However, positive values of mean intercolony relatedness were observed between 54 pairs of nests out of 190 possible combinations. The R values among nest pairs 3-4 and 3-5 was higher than 0.50 showing that their queens were half siblings, whereas nest pair 19-20 showed relatedness of 0.95 indicating that the same queen was sampled. The results that we obtained could not conclusively support the hypothesis of this study that the honey hunters in Marang district of Malaysia repeatedly harvest the same nest located at a different site and at a different time during the same honey harvesting season. However, our finding of an appreciable level of intercolonial relatedness between several pairs of nests in this pioneer study indicated that a comprehensive study with a larger sample size of solitary nests found throughout the region would be necessary to provide concrete proof for this novel idea.

  17. Radiation damage to DNA in DNA-protein complexes.

    Science.gov (United States)

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  18. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  20. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA

    DEFF Research Database (Denmark)

    Christensen, H.; Angen, Øystein; Mutters, R.

    2000-01-01

    The present study was aimed at reducing the time and labour used to perform DNA-DNA hybridizations for classification of bacteria at the species level. A micro-well-format DNA hybridization method was developed and validated. DNA extractions were performed by a small-scale method and DNA...... was sheared mechanically into fragments of between 400 and 700 bases. The hybridization conditions were calibrated according to DNA similarities obtained by the spectrophotometric method using strains within the family Pasteurellaceae, Optimal conditions were obtained with 300 ng DNA added per well and bound...... by covalent attachment to NucleoLink. Hybridization was performed with 500 ng DNA, 5% (w/w) of which was labelled with photo-activatable biotin (competitive hybridization) for 2.5 h at 65 degrees C in 2 x SSC followed by stringent washing with 2 x SSC at the same temperature. The criteria for acceptance...

  1. Effects of coordination of diammineplatinum(II) with DNA on the activities of Escherichia coli DNA polymerase I

    International Nuclear Information System (INIS)

    Bernges, F.; Holler, E.

    1988-01-01

    The effects of the reaction of cis- and trans-diamminedichloroplatinum(II) with DNA have been measured with regard to DNA synthesis, 3'-5' exonuclease (proofreading), and 5'-3' exonuclease (repair) activities of Escherichia coli DNA polymerase I. Both isomers inhibit DNA synthetic activity of the polymerase through an increase in K/sub m/ values and a decrease in V/sub max/ values for platinated DNA but not for the nucleoside 5'-triphosphates as the varied substrates. The inhibition is a consequence of lowered binding affinity between platinated DNA and DNA polymerase, and of a platination-induced separation of template and primer strands. Strand separation enhances initial rates of 3'-5' excision of [ 3 H]dCMP from platinated DNA (proofreading), while total excision levels of nucleotides are decreased. In contrast to proofreading activity, the 5'-3' exonuclease activity (repair) discriminates between DNA which had reacted with cis- and with trans-diamminedichloroplatinum(II). While both initial rates and total excision are inhibited for the cis isomer, they are almost not affected for the trans isomer. This differential effect could explain why bacterial growth inhibition requires much higher concentrations of trans- than cis-diamminedichloroplatinum(II)

  2. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  3. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  4. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  5. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  6. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  7. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  8. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer.

    Science.gov (United States)

    Kim, Ye-Hwan; Yan, Chunri; Lee, Il-Seok; Piao, Xuan-Mei; Byun, Young Joon; Jeong, Pildu; Kim, Won Tae; Yun, Seok-Joong; Kim, Wun-Jae

    2016-03-01

    Topoisomerase-II alpha (TopoIIA ), a DNA gyrase isoform that plays an important role in the cell cycle, is present in normal tissues and various human cancers, and can show altered expression in both. The aim of the current study was to examine the value of urinary TopoIIA cell-free DNA as a noninvasive diagnosis of bladder cancer (BC). Two patient cohorts were examined. Cohort 1 (73 BC patients and seven controls) provided bladder tissue samples, whereas cohort 2 (83 BC patients, 54 nonmalignant hematuric patients, and 61 normal controls) provided urine samples. Real-time quantitative polymerase chain reaction was used to measure expression of TopoIIA mRNA in tissues and TopoIIA cell-free DNA in urine samples. The results showed that expression of TopoIIA mRNA in BC tissues was significantly higher than that in noncancer control tissues (pbladder cancer (MIBC) when compared with nonmuscle invasive bladder cancer (NMIBC) (p=0.002). Receiver operating characteristics (ROC) curve analysis was performed to examine the sensitivity/specificity of urinary TopoIIA cell-free DNA for diagnosing BC, NMIBC, and MIBC. The areas under the ROC curve for BC, NMIBC, and MIBC were 0.741, 0.701, and 0.838, respectively. In summary, the results of this study provide evidence that cell-free TopoIIA DNA may be a potential biomarker for BC.

  9. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor.

    Science.gov (United States)

    Rauf, Sakandar; Nawaz, Haq; Akhtar, Kalsoom; Ghauri, Muhammad A; Khalid, Ahmad M

    2007-05-15

    The interaction of sildenafil citrate (Viagra) with DNA was studied by using an electrochemical DNA biosensor. The binding mechanism of sildenafil citrate was elucidated by using constant current potentiometry and differential pulse voltammetry at DNA-modified glassy carbon electrode. The decrease in the guanine oxidation peak area or peak current was used as an indicator for the interaction in 0.2M acetate buffer (pH 5). The binding constant (K) values obtained were 2.01+/-0.05 x 10(5) and 1.97+/-0.01 x 10(5)M(-1) with constant current potentiometry and differential pulse voltammetry, respectively. A linear dependence of the guanine peak area or peak current was observed within the range of 1-40 microM sildenafil citrate with slope=-2.74 x 10(-4)s/microM, r=0.989 and slope=-2.78 x 10(-3)microA/microM, r=0.995 by using constant current potentiometry and differential pulse voltammetry, respectively. Additionally, binding constant values for sildenafil citrate-DNA interaction were determined for the pH range of 4-8 and in biological fluids (serum and urine) at pH 5. The influence of sodium and calcium ions was also studied to elucidate the mechanism of sildenafil citrate-DNA interaction under different solution conditions. The present study may prove to be helpful in extending our understanding of the anticancer activity of sildenafil citrate from cellular to DNA level.

  10. Value of DNA tests: a decision perspective.

    Science.gov (United States)

    Taroni, Franco; Bozza, Silvia; Bernard, Magali; Champod, Christophe

    2007-01-01

    Before a Court of Law testifying in DNA-evidence cases, scientists are often challenged with the idea that the more markers (loci) the better, i.e., why does the scientist not use 16 or more markers? This paper introduces a new perspective, decision analysis, to deal with the problem of the number of markers to type in a criminal context. The decision-making process, which plays a key role in the routine work of a forensic scientist, consists of the rational choice, given personal objectives, between two or more possible outcomes when the consequences of the choice are uncertain. Simulated results support the hypothesis that analytical added value does not increase with the number of markers.

  11. The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants.

    Science.gov (United States)

    Archie, Elizabeth A; Moss, Cynthia J; Alberts, Susan C

    2006-03-07

    Many social animals live in stable groups. In contrast, African savannah elephants (Loxodonta africana) live in unusually fluid, fission-fusion societies. That is, 'core' social groups are composed of predictable sets of individuals; however, over the course of hours or days, these groups may temporarily divide and reunite, or they may fuse with other social groups to form much larger social units. Here, we test the hypothesis that genetic relatedness predicts patterns of group fission and fusion among wild, female African elephants. Our study of a single Kenyan population spans 236 individuals in 45 core social groups, genotyped at 11 microsatellite and one mitochondrial DNA (mtDNA) locus. We found that genetic relatedness predicted group fission; adult females remained with their first order maternal relatives when core groups fissioned temporarily. Relatedness also predicted temporary fusion between social groups; core groups were more likely to fuse with each other when the oldest females in each group were genetic relatives. Groups that shared mtDNA haplotypes were also significantly more likely to fuse than groups that did not share mtDNA. Our results suggest that associations between core social groups persist for decades after the original maternal kin have died. We discuss these results in the context of kin selection and its possible role in the evolution of elephant sociality.

  12. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, Mayumi [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nishiyama, Atsuya; Johmura, Yoshikazu [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Le Tallec, Benoît; Debatisse, Michelle [Institut Curie, Centre de Recherche, 26 rue d’Ulm, CNRS UMR 3244, 75248 ParisCedex 05 (France); Nakanishi, Makoto, E-mail: mkt-naka@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  13. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    International Nuclear Information System (INIS)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-01

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  14. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  15. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  16. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk

    DEFF Research Database (Denmark)

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter

    2016-01-01

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci...... muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA...... was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75-0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c...

  17. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  18. Application of Gold Nanoparticles for Electrochemical DNA Biosensor

    Directory of Open Access Journals (Sweden)

    Ahmed Mishaal Mohammed

    2014-01-01

    Full Text Available An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyltriethoxysilane (APTES as a linker molecule combined with the gold nanoparticles (GNPs on thermally oxidized SiO2 thin films. The SiO2 thin films surface was chemically modified with a mixture of APTES and GNPs for DNA detection in different time periods of 30 min, 1 hour, 2 hours, and 4 hours, respectively. The DNA immobilization and hybridization were conducted by measuring the differences of the capacitance value within the frequency range of 1 Hz to 1 MHz. The capacitance values for DNA immobilization were 160 μF, 77.8 μF, 70 μF, and 64.6 μF, respectively, with the period of time from 30 min to 4 hours. Meanwhile the capacitance values for DNA hybridization were 44 μF, 54 μF, 55 μF, and 61.5 μF, respectively. The capacitance value of bare SiO2 thin film was 0.42 μF, which was set as a base line for a reference in DNA detection. The differences of the capacitance value between the DNA immobilization and hybridization revealed that the modified SiO2 thin films using APTES and GNPs were successfully developed for DNA detection.

  19. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    Science.gov (United States)

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  20. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  1. Forensic trace DNA: A review

    NARCIS (Netherlands)

    R.A.H. van Oorschot (Roland ); K. Ballantyne (Kaye); R.J. Mitchell (R. John)

    2010-01-01

    textabstractDNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so

  2. DESIGN OF ELECTROPHORESIS DEVICE FOR OPTIMATION OF DNA VISUALIZATION AND DNA CONCENTRATION USING SOFTWARE

    Directory of Open Access Journals (Sweden)

    H.P. Kusumaningrum

    2014-07-01

    optimization of DNA visualization and measuring the concentration in the gel electrophoresis using MatLab- based software. Experiment using this software measured the concentration of DNA based on its visualization and compared it with calculation obtained from spectrophotometer UV/VIS. The research results showed that the amount of DNA analysed using a spectrophotometer tend to similar with the measurement results using the MatLab-based software although there was differences in quantitative values.

  3. DNA profiling of trace DNA recovered from bedding.

    Science.gov (United States)

    Petricevic, Susan F; Bright, Jo-Anne; Cockerton, Sarah L

    2006-05-25

    Trace DNA is often detected on handled items and worn clothing examined in forensic laboratories. In this study, the potential transfer of trace DNA to bedding by normal contact, when an individual sleeps in a bed, is examined. Volunteers slept one night on a new, lower bed sheet in their own bed and one night in a bed foreign to them. Samples from the sheets were collected and analysed by DNA profiling. The results indicate that the DNA profile of an individual can be obtained from bedding after one night of sleeping in a bed. The DNA profile of the owner of the bed could also be detected in the foreign bed experiments. Since mixed DNA profiles can be obtained from trace DNA on bedding, caution should be exercised when drawing conclusions from DNA profiling results obtained from such samples. This transfer may have important repercussions in sexual assault investigations.

  4. DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?

    Directory of Open Access Journals (Sweden)

    Elzbieta Pawłowska

    2017-07-01

    Full Text Available The human DNA2 (DNA replication helicase/nuclease 2 protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER, interacting with the replication protein A (RPA and the flap endonuclease 1 (FEN1. DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN and Bloom syndrome protein (BLM. In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.

  5. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  6. The value of cell-free DNA for molecular pathology.

    Science.gov (United States)

    Stewart, Caitlin M; Kothari, Prachi D; Mouliere, Florent; Mair, Richard; Somnay, Saira; Benayed, Ryma; Zehir, Ahmet; Weigelt, Britta; Dawson, Sarah-Jane; Arcila, Maria E; Berger, Michael F; Tsui, Dana Wy

    2018-04-01

    Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  8. Genetic and antigenic relatedness of bovine herpesvirus-1 and pseudorabies virus

    International Nuclear Information System (INIS)

    Bush, C.E.

    1985-01-01

    The DNA sequence homology between the genomes of bovine herpesvirus-1 (BHV-1) and pseudorabies virus (PRV) was examined. Reciprocal cross hybridization of viral DNA labeled by nick translation to Southern blots of Kpnl, BamH1, EcoR1, and HindIII restriction endonuclease digested DNA, detected homologous sequences dispersed throughout the genomes of the two viruses. The DNA-DNA hybrids were found to be stable under high stringency wash conditions. Sequences of a 32 P-labeled PRV DNA A fragment probe were found to hybridize only to the BHV-1 HindIII G fragment. This indicated that the sequence homology detected between these two viruses was not simply due to fortuitous hybridization of guanine plus cytosine rich sequences. The homology between BHV-1 and PRV was determined by liquid reassociation. It was found that the hybridization rates between 32 P-labeled PRV DNA and unlabeled BHV-1 DNA and 32 P-labeled BHV-1 DNA and unlabeled PRV DNA corresponded to approximately 8% reassociation. The antigenic relatedness between BHV-1 and PRV was also examined. Eighty percent plaque reduction serum neutralization tests showed that BHV-1 rabbit hyperimmune antiserum neutralized BHV-1 virus at a serum neutralization titer (SNT) of 1:256 and PRV virus at an (SNT) of 1:8. PRV rabbit hyperimmune antiserum neutralized PRV virus at an SNT of 1:4 and BHV-1 virus at an SNT of 1:2

  9. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  10. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    Science.gov (United States)

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  11. Evaluation of three methods for DNA fingerprinting of Corynebacterium pseudotuberculosis strains isolated from goats in Poland.

    Science.gov (United States)

    Stefańska, Ilona; Rzewuska, Magdalena; Binek, Marian

    2008-01-01

    Phenotypic approaches based on metabolic and biological characteristics of Corynebacterium pseudotuberculosis have been limited due to insufficient discrimination between closely related isolates. In this paper we present performance and convenience of three molecular typing methods: BOX-PCR, random amplification of polymorphic DNA (RAPD) and amplification of DNA fragments surrounding rare restriction site (ADSRRS-fingerprinting) in genome analysis of these bacteria. Among examined 61 strains there were distinguished four, eight and 10 different genotypes by BOX-PCR, RAPD and ADSRRS-fingerprinting, respectively. The value of discrimination index was the lowest for BOX-PCR (D = 0.265), much bigger for RAPD (D = 0.539) and the highest for ADSRRS-fingerprinting (D = 0.604). The good discriminatory ability and reproducibility of RAPD and ADSRRS-fingerprinting indicates that those techniques may be particularly applied for epidemiological studies of C. pseudotuberculosis isolates. We found that ADSRRS-fingerprinting is a rapid method offering good discrimination power, excellent reproducibility and may be applied for epidemiological studies of intraspecific genetic relatedness of C. pseudotuberculosis strains.

  12. [Expression and purification of a novel thermophilic bacterial single-stranded DNA-binding protein and enhancement the synthesis of DNA and cDNA].

    Science.gov (United States)

    Jia, Xiao-Wei; Zhang, Guo-Hui; Shi, Hai-Yan

    2012-12-01

    Express a novel species of single-stranded DNA-binding protein (SSB) derived from Thermococcus kodakarensis KOD1, abbreviated kod-ssb. And evaluate the effect of kod-ssb on PCR-based DNA amplification and reverse transcription. We express kod-ssb with the Transrtta (DE3), and kod-ssb was purified by affinity chromatography on a Ni2+ Sepharose column, detected by SDS-PAGE. To evaluate the effect of kod-ssb on PCR-based DNA amplification, the human beta globin gene was used as template to amplify a 5-kb, 9-kb and 13-kb. And to detect the effect of kod-ssb on reverse transcription, we used RNA from flu cell culture supernatant extraction as templates to implement qRT-PCR reaction. The plasmid pET11a-kod was transformed into Transetta (DE3) and the recombinant strain Transetta (pET11 a-kod) was obtained. The kod-ssb was highly expressed when the recombinant strain Transetta(pET11a-kod) was induced by IPTG. The specific protein was detected by SDS-PAGE. To confirm that kod-ssb can enhance target DNA synthesis and reduce PCR by-products, 5-, 9-, and 13-kb human beta globin gene fragments were used as templates for PCR. When PCR reactions did not include SSB proteins, the specific PCR product was contaminated with non-specific products. When kod -ssb was added, kod-ssb significantly enhanced amplification of the 5-, 9-and 13-kb target product and minimised the non-specific PCR products. To confirm that kod-ssb can enhance target cDNA synthesis, RNA from flu cell culture supernatant extraction was used as templates for qRT-PCR reaction. The results was that when kod-ssb was added, kod-ssb significantly enhanced the synthesis of cDNA, average Ct value is 19.42, and the average Ct value without kod-ssb is 22.15. kod-ssb may in future be used to enhance DNA and cDNA amplification.

  13. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  14. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  15. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  16. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  17. DNA Open states and DNA hydratation

    International Nuclear Information System (INIS)

    Lema-Larre, B. de; Martin-Landrove, M

    1995-01-01

    It is a very well-known fact that an protonic exchange exists among natural DNA filaments and synthetic polynucleotides with the solvent (1--2). The existence of DNA open states, that is to say states for which the interior of the DNA molecule is exposed to the external environment, it has been demonstrated by means of proton-deuterium exchange (3). This work has carried out experiments measuring the dispersion of the traverse relaxation rate (4), as a pulsation rate function in a Carr-Purcell-Meiboom-Gill (CPMG) pulses sequence rate, to determine changes in the moist layer of the DNA molecule. The experiments were carried out under different experimental conditions in order to vary the probability that open states occurs, such as temperature or the exposure to electromagnetic fields. Some theoretical models were supposed to adjust the experimental results including those related to DNA non linear dynamic [es

  18. Mitochondrial DNA single nucleotide polymorphism associated with weight estimated breeding values in Nelore cattle (Bos indicus

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Biase

    2007-01-01

    Full Text Available We sampled 119 Nelore cattle (Bos indicus, 69 harboring B. indicus mtDNA plus 50 carrying Bos taurus mtDNA, to estimate the frequencies of putative mtDNA single nucleotide polymorphisms (SNPs and investigate their association with Nelore weight and scrotal circumference estimated breeding values (EBVs. The PCR restriction fragment length polymorphism (PCR-RFLP method was used to detect polymorphisms in the mitochondrial asparagine, cysteine, glycine, leucine and proline transporter RNA (tRNA genes (tRNAasn, tRNAcys, tRNAgly, tRNAleu and tRNApro. The 50 cattle carrying B. taurus mtDNA were monomorphic for all the tRNA gene SNPs analyzed, suggesting that they are specific to mtDNA from B. indicus cattle. No tRNAcys or tRNAgly polymorphisms were detected in any of the cattle but we did detect polymorphic SNPs in the tRNAasn, tRNAleu and tRNApro genes in the cattle harboring B. indicus mtDNA, with the same allele observed in the B. taurus sequence being present in the following percentage of cattle harboring B. indicus mtDNA: 72.46% for tRNAasn, 95.23% for tRNAleu and 90.62% for tRNApro. Analyses of variance using the tRNAasn SNP as the independent variable and EBVs as the dependent variable showed that the G -> T SNP was significantly associated (p < 0.05 with maternal EBVs for weight at 120 and 210 days (p < 0.05 and animal's EBVs for weight at 210, 365 and 455 days. There was no association of the tRNAasn SNP with the scrotal circumference EBVs. These results confirm that mtDNA can affect weight and that mtDNA polymorphisms can be a source of genetic variation for quantitative traits.

  19. Evaluation of Patients with an Apparent False Positive Stool DNA Test: The Role of Repeat Stool DNA Testing.

    Science.gov (United States)

    Cooper, Gregory S; Markowitz, Sanford D; Chen, Zhengyi; Tuck, Missy; Willis, Joseph E; Berger, Barry M; Brenner, Dean E; Li, Li

    2018-03-07

    There is uncertainty as to the appropriate follow-up of patients who test positive on multimarker stool DNA (sDNA) testing and have a colonoscopy without neoplasia. To determine the prevalence of missed colonic or occult upper gastrointestinal neoplasia in patients with an apparent false positive sDNA. We prospectively identified 30 patients who tested positive with a commercially available sDNA followed by colonoscopy without neoplastic lesions. Patients were invited to undergo repeat sDNA at 11-29 months after the initial test followed by repeat colonoscopy and upper endoscopy. We determined the presence of neoplastic lesions on repeat evaluation stratified by results of repeat sDNA. Twelve patients were restudied. Seven patients had a negative second sDNA test and a normal second colonoscopy and upper endoscopy. In contrast, 5 of 12 subjects had a persistently positive second sDNA test, and 3 had positive findings, including a 3-cm sessile transverse colon adenoma with high-grade dysplasia, a 2-cm right colon sessile serrated adenoma with dysplasia, and a nonadvanced colon adenoma (p = 0.045). These corresponded to a positive predictive value of 0.60 (95% CI 0.17-1.00) and a negative predictive value of 1.00 (95% CI 1.00-1.00) for the second sDNA test. In addition, the medical records of all 30 subjects with apparent false positive testing were reviewed and no documented cases of malignant tumors were recorded. Repeat positive sDNA testing may identify a subset of patients with missed or occult colorectal neoplasia after negative colonoscopy for an initially positive sDNA. High-quality colonoscopy with careful attention to the right colon in patients with positive sDNA is critically important and may avoid false negative colonoscopy.

  20. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  1. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    International Nuclear Information System (INIS)

    Shi, Yun-bo.

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  2. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  3. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  4. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  5. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  6. [Single-molecule detection and characterization of DNA replication based on DNA origami].

    Science.gov (United States)

    Wang, Qi; Fan, Youjie; Li, Bin

    2014-08-01

    To investigate single-molecule detection and characterization of DNA replication. Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.

  7. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Assessment of DNA quality in processed tuna muscle tissues

    Directory of Open Access Journals (Sweden)

    Zora Piskatá

    2016-06-01

    Full Text Available Authentication of tuna fish products is necessary to assure consumers of accurate labelling of food products. The quality of species specific DNA crucially affects the efficiency of amplification during the subsequent PCR. The problem in DNA detection in canned products lies in the possibility of the fragmentation of DNA during the processing technologies and the use of ingredients (oil, salt, spice, that may inhibit the PCR reaction. In this study three DNA extraction methods were compared: DNeasy Blood and Tissue Kit, DNeasy mericon Food Kit and Chemagic DNA tissue 10 Kit. The quantity and quality of DNA were evaluated by measuring DNA concentration and ratios A260/A280. Several parameters were estimated: the effect of whole and mechanically treated muscle, sterilization procedure used in canned process (high temperature in combination with high pressure and addition of raw materials. The highest DNA concentrations were observed in non-processed muscle that is not influenced by the sterilization process. Canned whole muscle demonstrated lower DNA yield, and furthermore, the mechanical treatment (canned ground resulted in lower values of DNA concentration that was registered by using all three types of DNA extraction kits. DNeasy mericon Food Kit produced DNA of higher concentration in non-processed sample, Chemagic DNA tissue 10 Kit delivered higher DNA yields than kits DNeasy Blood and Tissue Kit and DNeasy mericon Food Kit in canned samples, although the purity was lower, but still within the range 1.7 - 2.0. DNA was considered to be satisfactorily pure in all three types of samples and using all three types of DNA isolation. In case of the samples enriched of ingredients and treated with sterilization process as whole or ground muscle Chemagic DNA tissue 10 Kit produced in all samples (whole and ground muscle the highest values of DNA concentration, but almost all values of A260/A280 were lower than 1.7. Therefore DNeasy mericon Food Kit

  9. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    Science.gov (United States)

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  11. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  12. Compatibility of DNA IQ™, QIAamp® DNA Investigator, and QIAsymphony® DNA Investigator® with various fingerprint treatments.

    Science.gov (United States)

    Lin, Sze-Wah; Ip, Stephen C Y; Lam, Tze-Tsun; Tan, Tung-Fai; Yeung, Wai-Lung; Tam, Wai-Ming

    2017-03-01

    Latent fingerprint and touch DNA are the two most important contact evidence for individualization in forensic science which provide complementary information that can lead to direct and unequivocal identification of the culprit. In order to retrieve useful information from both fingerprints and DNA, which are usually mingled together, one strategy is to perform fingerprint examination prior to DNA analysis since common DNA sampling technique such as swabbing could disturb or even destroy fingerprint details. Here, we describe the compatibility of three automatic DNA extraction systems, namely, DNA IQ™, QIAamp ® DNA Investigator, and QIAsymphony ® DNA Investigator ® , with respective to the effects of various fingerprint detection techniques. Our results demonstrate that Super Glue fingerprint treatment followed by DNA IQ™ extraction shows better effectiveness in DNA profiling. Aluminum powder dusting offers the least interference to the three DNA extraction systems above. Magnetic powder dusting, on the other hand, strongly impedes DNA recovery. Physical Developer is the most intrusive, which yields profiles with poor quality, including lower peak heights, poor peak height ratios, and poor intra-color balance. In terms of the choice of extraction method, DNA IQ™ system is recommended for sampling after fingerprint treatments, but not the two DNA Investigator systems.

  13. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  14. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    Science.gov (United States)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. DNA-PK dependent targeting of DNA-ends to a protein complex assembled on matrix attachment region DNA sequences

    International Nuclear Information System (INIS)

    Mauldin, S.K.; Getts, R.C.; Perez, M.L.; DiRienzo, S.; Stamato, T.D.

    2003-01-01

    Full text: We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end-binding was observed. Calculation of relative binding activities indicates that DNA-end binding activities to MAR sequences was 7 to 21 fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV, scaffold attachment factor A, topoisomerase II, and poly(ADP-ribose) polymerase preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends. After electroporation of a 32P-labeled DNA probe into human cells and cell fractionation, 87% of the total intercellular radioactivity remained in nuclei after a 0.5M NaCl extraction suggesting the probe was strongly bound in the nucleus. The above observations raise the possibility that DNA-PK targets DNA-ends to a repair and/or DNA damage signaling complex which is assembled on MAR sites in the nucleus

  16. A comparison of pedigree- and DNA-based measures for identifying inbreeding depression in the critically endangered Attwater's Prairie-chicken.

    Science.gov (United States)

    Hammerly, Susan C; Morrow, Michael E; Johnson, Jeff A

    2013-11-01

    The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree- and DNA-based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie-chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree-based inbreeding coefficients (f(pedigree)) was less than that obtained from DNA-based methods (f(DNA)). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (r(DNA)) and f(DNA), respectively, while no correlation was observed with pedigree-based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie-chickens. This study highlights the importance of using DNA-based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings. © 2013 John Wiley & Sons Ltd.

  17. The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer: A systematic review with meta-analysis.

    Science.gov (United States)

    Jiang, Tao; Zhai, Changyun; Su, Chunxia; Ren, Shengxiang; Zhou, Caicun

    2016-10-01

    The aim of the current study was to assess the diagnostic value of circulating cell free DNA (cfDNA) quantification in discriminating non-small cell lung cancer (NSCLC) from healthy individuals. An electronic search was conducted on PubMed, EMBASE, Web of Science, and Cochrane Library. Eligible studies regarding to examine the diagnostic value of cfDNA in the detection of NSCLC were extracted and analyzed. We identified 15 eligible studies with a total of 2125 patients. The pooled results for quantification of cfDNA in lung cancer screening in the included studies were as follows: sensitivity, 81% (95% confidence interval (CI), 76%-84%); specificity, 85% (95% CI, 77%-91%); diagnostic odds ratio, 23.87 (95% CI, 13.37-42.61); and areas under the summary receiver operating characteristic curves were 0.89 (95% CI, 0.86-0.92). Subgroup analyses according to the time of sample collection, sample materials, test method, reference gene and cutoff value did not improve sensitivity, but specificity could be significantly improved when we only included the studies using cfDNA sample before surgery or antitumor treatment and real-time PCR to detect cfDNA and human β-actin as a reference gene. Quantification of cfDNA was a promising and effective biomarker for discriminating NSCLC from healthy individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29

    OpenAIRE

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2014-01-01

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine3+ causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interacti...

  19. Evaluation of mixed-source, low-template DNA profiles in forensic science.

    Science.gov (United States)

    Balding, David J

    2013-07-23

    Enhancements in sensitivity now allow DNA profiles to be obtained from only tens of picograms of DNA, corresponding to a few cells, even for samples subject to degradation from environmental exposure. However, low-template DNA (LTDNA) profiles are subject to stochastic effects, such as "dropout" and "dropin" of alleles, and highly variable stutter peak heights. Although the sensitivity of the newly developed methods is highly appealing to crime investigators, courts are concerned about the reliability of the underlying science. High-profile cases relying on LTDNA evidence have collapsed amid controversy, including the case of Hoey in the United Kingdom and the case of Knox and Sollecito in Italy. I argue that rather than the reliability of the science, courts and commentators should focus on the validity of the statistical methods of evaluation of the evidence. Even noisy DNA evidence can be more powerful than many traditional types of evidence, and it can be helpful to a court as long as its strength is not overstated. There have been serious shortcomings in statistical methods for the evaluation of LTDNA profile evidence, however. Here, I propose a method that allows for multiple replicates with different rates of dropout, sporadic dropins, different amounts of DNA from different contributors, relatedness of suspected and alternate contributors, "uncertain" allele designations, and degradation. R code implementing the method is open source, facilitating wide scrutiny. I illustrate its good performance using real cases and simulated crime scene profiles.

  20. Effects of humic acid on DNA quantification with Quantifiler® Human DNA Quantification kit and short tandem repeat amplification efficiency.

    Science.gov (United States)

    Seo, Seung Bum; Lee, Hye Young; Zhang, Ai Hua; Kim, Hye Yeon; Shin, Dong Hoon; Lee, Soong Deok

    2012-11-01

    Correct DNA quantification is an essential part to obtain reliable STR typing results. Forensic DNA analysts often use commercial kits for DNA quantification; among them, real-time-based DNA quantification kits are most frequently used. Incorrect DNA quantification due to the presence of PCR inhibitors may affect experiment results. In this study, we examined the alteration degree of DNA quantification results estimated in DNA samples containing a PCR inhibitor by using a Quantifiler® Human DNA Quantification kit. For experiments, we prepared approximately 0.25 ng/μl DNA samples containing various concentrations of humic acid (HA). The quantification results were 0.194-0.303 ng/μl at 0-1.6 ng/μl HA (final concentration in the Quantifiler reaction) and 0.003-0.168 ng/μl at 2.4-4.0 ng/μl HA. Most DNA quantity was undetermined when HA concentration was higher than 4.8 ng/μl HA. The C (T) values of an internal PCR control (IPC) were 28.0-31.0, 36.5-37.1, and undetermined at 0-1.6, 2.4, and 3.2 ng/μl HA. These results indicate that underestimated DNA quantification results may be obtained in the DNA sample with high C (T) values of IPC. Thus, researchers should carefully interpret the DNA quantification results. We additionally examined the effects of HA on the STR amplification by using an Identifiler® kit and a MiniFiler™ kit. Based on the results of this study, it is thought that a better understanding of various effects of HA would help researchers recognize and manipulate samples containing HA.

  1. First molecular detection of Leishmania tarentolae-like DNA in Sergentomyia minuta in Spain.

    Science.gov (United States)

    Bravo-Barriga, Daniel; Parreira, Ricardo; Maia, Carla; Blanco-Ciudad, Juan; Afonso, Maria Odete; Frontera, Eva; Campino, Lenea; Pérez-Martín, Juan Enrique; Serrano Aguilera, Francisco Javier; Reina, David

    2016-03-01

    Phlebotomine sand flies (Diptera, Psychodidae) are vectors of multiple Leishmania species, among which Leishmania infantum stands out as a being frequently pathogenic to humans and dogs in Mediterranean countries. In this study, Sergentomyia minuta sand flies were collected using CDC miniature light traps in different 431 biotopes from Southwest Spain. A total of 114 females were tested for the presence of Leishmania DNA by targeting ITS-1 and cyt-B sequences by PCR. Leishmania DNA was detected in one S. minuta. Characterization of the obtained DNA sequences by phylogenetic analyses revealed close relatedness with Leishmania tarentolae Wenyon, 1921 as well as with both human and canine pathogenic strains of Asian origin (China), previously described as Leishmania sp. To our knowledge, this is the first report of phlebotomine sand flies naturally infected with L. tarentolae-like in Spain. The possible infection of sand flies with novel Leishmania species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniosis is endemic.

  2. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  3. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  4. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    Science.gov (United States)

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  6. Principles of DNA architectonics: design of DNA-based nanoobjects

    International Nuclear Information System (INIS)

    Vinogradova, O A; Pyshnyi, D V

    2012-01-01

    The methods of preparation of monomeric DNA blocks that serve as key building units for the construction of complex DNA objects are described. Examples are given of the formation of DNA blocks based on native and modified oligonucleotide components using hydrogen bonding and nucleic acid-specific types of bonding and also some affinity interactions with RNA, proteins, ligands. The static discrete and periodic two- and three-dimensional DNA objects reported to date are described systematically. Methods used to prove the structures of DNA objects and the prospects for practical application of nanostructures based on DNA and its analogues in biology, medicine and biophysics are considered. The bibliography includes 195 references.

  7. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  8. Radiation-induced DNA damage as a function of DNA hydration

    International Nuclear Information System (INIS)

    Swarts, S.G.; Miao, L.; Wheeler, K.T.; Sevilla, M.D.; Becker, D.

    1995-01-01

    Radiation-induced DNA damage is produced from the sum of the radicals generated by the direct ionization of the DNA (direct effect) and by the reactions of the DNA with free radicals formed in the surrounding environment (indirect effect). The indirect effect has been believed to be the predominant contributor to radiation-induced intracellular DNA damage, mainly as the result of reactions of bulk water radicals (e.g., OH·) with DNA. However, recent evidence suggests that DNA damage, derived from the irradiation of water molecules that are tightly bound in the hydration layer, may occur as the result of the transfer of electron-loss centers (e.g. holes) and electrons from these water molecules to the DNA. Since this mechanism for damaging DNA more closely parallels that of the direct effect, the irradiation of these tightly bound water molecules may contribute to a quasi-direct effect. These water molecules comprise a large fraction of the water surrounding intracellular DNA and could account for a significant proportion of intracellular radiation-induced DNA damage. Consequently, the authors have attempted to characterize this quasi-direct effect to determine: (1) the extent of the DNA hydration layer that is involved with this effect, and (2) what influence this effect has on the types and quantities of radiation-induced DNA damage

  9. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    International Nuclear Information System (INIS)

    Siddiqui, M.F.; Iqbal, S.; Naz, N.; Khan, S.; Erum, S.

    2010-01-01

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  10. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, M F; Iqbal, S; Naz, N; Khan, S [Federal Seed Certification and Registration Dept., Islamabad (Pakistan); Erum, S [National Agricultural Research Centre, Islamabad (Pakistan). Plant Genetic Resources Inst.

    2010-04-15

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  11. Failure to detect circulating DNA-anti-DNA complexes by four radioimmunological methods in patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Izui, S.; Lambert, P.H.; Miescher, P.A.

    1977-01-01

    The presence of DNA-anti-DNA complexes in sera from patients with systemic lupus erythematosus (SLE) was investigated by two new radioimmunoassays (RIA) developed for this purpose and by measuring the CLq and DNA binding activity of serum before and after treatment with DNAse. Two direct RIA developed in this study were based on the reactivity of [ 3 H]actinomycin D ([ 3 H]ACT-D) or solid-phase methylated bovine serum albumin (mBSA) with DNA-anti-DNA complexes. DNA-anti-DNA complexes prepared in vitro could be efficiently detected at various antigen-antibody ratios by these two RIA. Increased levels of circulating immune complexes as indicated by the CLq binding test were found in 52% of SLE sera. However, the frequency of specific DNA-anti-DNA complexes detected in SLE sera was very low. Only 6% of sera exhibited an increased value deviating by more than three s.d. from the normal mean when tested with the [ 3 H]ACT-D binding RIA or the solid-phase mBSA RIA. On the other hand, there was no significant difference in the serum CLq or DNA binding activity after treatment with DNAse. These results suggest that DNA-anti-DNA complexes do not occur frequently in circulating blood and represent only a very small portion of the immune complexes detected in serum from patients with SLE. (author)

  12. The role of DNA dependent protein kinase in synapsis of DNA ends.

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S; Brüggenwirth, Hennie T; Hoeijmakers, Jan H J; van Gent, Dik C

    2003-12-15

    DNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks the action of exonucleases and ligases. The DNA termini become accessible after autophosphorylation of DNA-PK(CS), which we demonstrate to require synapsis of DNA ends. Interestingly, the presence of DNA-PK prevents ligation of the two synapsed termini, but allows ligation to another DNA molecule. This alteration of the ligation route is independent of the type of ligase that we used, indicating that the intrinsic architecture of the DNA-PK complex itself is not able to support ligation of the synapsed DNA termini. We present a working model in which DNA-PK creates a stable molecular bridge between two DNA ends that is remodeled after DNA-PK autophosphorylation in such a way that the extreme termini become accessible without disrupting synapsis. We infer that joining of synapsed DNA termini would require an additional protein factor.

  13. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  14. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  15. Differential recruitment of DNA Ligase I and III to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Rothbauer, Ulrich; Cardoso, M. Cristina; Leonhardt, Heinrich

    2006-01-01

    DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair. PMID:16855289

  16. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    Science.gov (United States)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  17. Small molecules, inhibitors of DNA-PK, targeting DNA repair and beyond

    Directory of Open Access Journals (Sweden)

    David eDavidson

    2013-01-01

    Full Text Available Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining (NHEJ a major mechanism for the repair of double strand breaks (DSB in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK. The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA

  18. Cell-associated HIV DNA measured early during infection has prognostic value independent of serum HIV RNA measured concomitantly

    DEFF Research Database (Denmark)

    Katzenstein, Terese L; Oliveri, Roberto S; Benfield, Thomas

    2002-01-01

    Using data from the Danish AIDS Cohort of HIV-infected homosexual men established in the 1980s, the prognostic value of early HIV DNA loads was evaluated. In addition to DNA measurements, concomitant serum HIV RNA levels, CD4 cell counts and CCR5 genotypes were determined. The patients were divided...... of serum HIV RNA (p normal allele (p

  19. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  20. Mitochondrial and Nuclear DNA in Patients with Severe Polytrauma

    Directory of Open Access Journals (Sweden)

    M. Sh Khubutia

    2013-01-01

    Full Text Available The components of mitochondria from the cells damaged by injury are a key component for the development of systemic inflammatory response syndrome (SIRS under aseptic conditions. At the same time, there is a significant increase in the plasma level of mitochondrial DNA (mtDNA, which may be a prognostic marker for infectious complications in patients with severe polytrauma. Objective: to study the time course of changes in the serum levels of mtDNA and nuclear DNA (nDNA in healthy individuals and patients with polytrauma and to reveal its possible association with the development of infectious pulmonary complications and with mortality. Subjects and methods. Seven healthy volunteers and 25 polytrauma with polytrauma of a mean injury severity score (ISS of 40.2±9.2. Sixteen (64% patients developed purulent tracheobronchitis and pneumonia; 5 (20% patients died. The amount of mtDNA and nDNA was determined within the first at 12 and 24 hours, then on days 3 and 5—7 after injury by the authors’ modified procedure using as the exogenous control of a circular DNA molecule. The content of mtDNA and nDNA was expressed as absolute values, by taking the arithmetic mean values as 100% for the volunteers. Results. There was a more than 2.5-fold increase in mtDNA levels in dead patients as compared to survivors (p<0.05; the differences in nDMA levels were insignificant (p=0.1. Within the first 12 hours, the mean mtDNA level in patients with pneumonia was 34 times greater than the reference values and continued to rise in the following 12 hours whereas in those without pneumonia, it was only 17 times higher with its further decrease in the comparable time periods. In the first 12 hours, nDNA was increased in both groups, but 24 hours after injury it was 2555 times more than the reference value only in patients with pneumonia whereas it was decreased 3-fold in those without this condition. Conclusion. This paper is the first to describe the time course of

  1. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model.

    Science.gov (United States)

    Zhang, Li; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Lu, Changming

    2014-10-01

    Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25% in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias -13.27 to 13.05%). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

  2. Photochemical Acceleration of DNA Strand Displacement by Using Ultrafast DNA Photo-crosslinking.

    Science.gov (United States)

    Nakamura, Shigetaka; Hashimoto, Hirokazu; Kobayashi, Satoshi; Fujimoto, Kenzo

    2017-10-18

    DNA strand displacement is an essential reaction in genetic recombination, biological processes, and DNA nanotechnology. In particular, various DNA nanodevices enable complicated calculations. However, it takes time before the output is obtained, so acceleration of DNA strand displacement is required for a rapid-response DNA nanodevice. Herein, DNA strand displacement by using DNA photo-crosslinking to accelerate this displacement is evaluated. The DNA photo-crosslinking of 3-cyanovinylcarbazole ( CNV K) was accelerated at least 20 times, showing a faster DNA strand displacement. The rate of photo-crosslinking is a key factor and the rate of DNA strand displacement is accelerated through ultrafast photo-crosslinking. The rate of DNA strand displacement was regulated by photoirradiation energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Failure to detect circulating DNA-anti-DNA complexes by four radioimmunological methods in patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Izui, S; Lambert, P H; Miescher, P A [Hopital Cantonal Geneve (Switzerland)

    1977-12-01

    The presence of The DNA-anti-DNA complexes in sera from patients with systemic lupus erythematosus (SLE) was investigated by two new radioimmunoassays (RIA) developed for this purpose and by measuring the CLq and DNA binding activity of serum before and after treatment with DNAse. Two direct RIA developed in this study were based on the reactivity of (/sup 3/H)actinomycin D ((/sup 3/H)ACT-D) or solid-phase methylated bovine serum albumin (mBSA) with DNA-anti-DNA complexes. DNA-anti-DNA complexes prepared in vitro could be efficiently detected at various antigen-antibody ratios by these two RIA. Increased levels of circulating immune complexes as indicated by the CLq binding test were found in 52% of the SLE sera. However, the frequency of specific DNA-anti-DNA complexes detected in the SLE sera was very low. Only 6% of the sera exhibited an increased value deviating by more than three s.d. from the normal mean when tested with the (/sup 3/H)ACT-D binding RIA or the solid-phase mBSA RIA. On the other hand, there was no significant difference in the serum CLq or DNA binding activity after treatment with DNAse. These results suggest that DNA-anti-DNA complexes do not occur frequently in circulating blood and represent only a very small portion of the immune complexes detected in serum from patients with SLE.

  4. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  5. DNA polymerase. beta. reaction with ultraviolet-irradiated DNA incised by correndonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, R; Zarebska, Z [Instytut Onkologii, Warsaw (Poland); Zmudzka, B [Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki

    1980-09-19

    Covalently closed circular Col E1 DNA was ultraviolet-irradiated with a dose of 60 J/m/sup 2/, thus introducing about 3.2 pyrimidine dimers per DNA molecule. Treatment of irradiated Col E1 DNA with Micrococcus luteus correndonuclease resulted, in the vicinity of pyrimidine dimers, in an average of 3.3 incisions per DNA molecule, and converted DNA to the open circular form. Incised Col E1 DNA stimulated no reaction with calf thymus DNA polymerase ..cap alpha.. but was recognized as a template by DNA polymerase ..beta... The latter enzyme incorporated about 1.6 molecules of dTMP (corresponding to 6 molecules of dNMP) per one correndonuclease incision. The length of the DNA polymerase ..beta.. product was comparable to the anticipated length of the DNA region within which the hydrogen bonds were disrupted owing to dimer formation. The enzyme required Mg/sup 2 +/ and four dNTPs for reaction and was resistant to N-ethylmaleimide or p-mercuribenzoate.

  6. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  7. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  8. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  9. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  10. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.

    Directory of Open Access Journals (Sweden)

    Hua Wan

    Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.

  11. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.

    Science.gov (United States)

    Uematsu, Naoya; Weterings, Eric; Yano, Ken-ichi; Morotomi-Yano, Keiko; Jakob, Burkhard; Taucher-Scholz, Gisela; Mari, Pierre-Olivier; van Gent, Dik C; Chen, Benjamin P C; Chen, David J

    2007-04-23

    The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.

  12. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA

    International Nuclear Information System (INIS)

    Verebová, Valéria; Adamcik, Jozef; Danko, Patrik; Podhradský, Dušan; Miškovský, Pavol; Staničová, Jana

    2014-01-01

    Highlights: • Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA. • Anthraquinones quinizarin and danthron lengthen linear DNA. • Anthraquinones quinizarin and danthron possess middle binding affinity to DNA. • Anthraquinones quinizarin and danthron interact with DNA by intercalating mode. - Abstract: The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone), with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode

  13. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Verebová, Valéria [Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice (Slovakia); Adamcik, Jozef [Food and Soft Materials Science, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zürich (Switzerland); Danko, Patrik; Podhradský, Dušan [Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Miškovský, Pavol [Department of Biophysics, Faculty of Sciences, P.J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Sciences, P.J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Staničová, Jana, E-mail: jana.stanicova@uvlf.sk [Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice (Slovakia)

    2014-01-31

    Highlights: • Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA. • Anthraquinones quinizarin and danthron lengthen linear DNA. • Anthraquinones quinizarin and danthron possess middle binding affinity to DNA. • Anthraquinones quinizarin and danthron interact with DNA by intercalating mode. - Abstract: The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone), with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode.

  14. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells

    International Nuclear Information System (INIS)

    Akimoto, Miho; Niikura, Mamoru; Ichikawa, Masami; Yonekawa, Hiromichi; Nakada, Kazuto; Honma, Yoshio; Hayashi, Jun-Ichi

    2005-01-01

    Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (ρ 0 ) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties

  15. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA.

    Science.gov (United States)

    Hizume, Kohji; Kominami, Hiroaki; Kobayashi, Kei; Yamada, Hirofumi; Araki, Hiroyuki

    2017-05-16

    The formation of the pre-replicative complex (pre-RC) during the G1 phase, which is also called the licensing of DNA replication, is the initial and essential step of faithful DNA replication during the subsequent S phase. It is widely accepted that in the pre-RC, double-stranded DNA passes through the holes of two ring-shaped minichromosome maintenance (MCM) 2-7 hexamers; however, the spatial organization of the DNA and proteins involved in pre-RC formation is unclear. Here we reconstituted the pre-RC from purified DNA and proteins and visualized the complex using atomic force microscopy (AFM). AFM revealed that the MCM double hexamers formed elliptical particles on DNA. Analysis of the angle of binding of DNA to the MCM double hexamer suggests that the DNA does not completely pass through both holes of the MCM hexamers, possibly because the DNA exited from the gap between Mcm2 and Mcm5. A DNA loop fastened by the MCM double hexamer was detected in pre-RC samples reconstituted from purified proteins as well as those purified from yeast cells, suggesting a higher-order architecture of the loaded MCM hexamers and DNA strands.

  16. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  17. The problem of sampling families rather than populations: Relatedness among individuals in samples of juvenile brown trout Salmo trutta L

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Eg Nielsen, Einar; Mensberg, Karen-Lise Dons

    1997-01-01

    In species exhibiting a nonrandom distribution of closely related individuals, sampling of a few families may lead to biased estimates of allele frequencies in populations. This problem was studied in two brown trout populations, based on analysis of mtDNA and microsatellites. In both samples mt......DNA haplotype frequencies differed significantly between age classes, and in one sample 17 out of 18 individuals less than 1 year of age shared one particular mtDNA haplotype. Estimates of relatedness showed that these individuals most likely represented only three full-sib families. Older trout exhibiting...

  18. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  19. DNA requirements for interaction of the C-terminal region of Ku80 with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs).

    Science.gov (United States)

    Radhakrishnan, Sarvan Kumar; Lees-Miller, Susan P

    2017-09-01

    Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25bp dsDNA or 25bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35bp blunt ended dsDNA) or 25bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of mobile DNA-protein-DNA bridges on DNA configurations: Coarse-grained Monte-Carlo simulations

    NARCIS (Netherlands)

    Vries, de R.

    2011-01-01

    A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large

  1. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    Science.gov (United States)

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  2. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  3. Dpb11 may function with RPA and DNA to initiate DNA replication.

    Science.gov (United States)

    Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L

    2017-01-01

    Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.

  4. Electrostatics of DNA-DNA juxtapositions: consequences for type II topoisomerase function

    International Nuclear Information System (INIS)

    Randall, Graham L; Pettitt, B Montgomery; Buck, Gregory R; Zechiedrich, E Lynn

    2006-01-01

    Type II topoisomerases resolve problematic DNA topologies such as knots, catenanes, and supercoils that arise as a consequence of DNA replication and recombination. Failure to remove problematic DNA topologies prohibits cell division and can result in cell death or genetic mutation. Such catastrophic consequences make topoisomerases an effective target for antibiotics and anticancer agents. Despite their biological and clinical importance, little is understood about how a topoisomerase differentiates DNA topologies in a molecule that is significantly larger than the topoisomerase itself. It has been proposed that type II topoisomerases recognize angle and curvature between two DNA helices characteristic of knotted and catenated DNA to account for the enzyme's preference to unlink instead of link DNA. Here we consider the electrostatic potential of DNA juxtapositions to determine the possibility of juxtapositions occurring through Brownian diffusion. We found that despite the large negative electrostatic potential formed between two juxtaposed DNA helices, a bulk counterion concentration as small as 50 mM provides sufficient electrostatic screening to prohibit significant interaction beyond an interhelical separation of 3 nm in both hooked and free juxtapositions. This suggests that instead of electrostatics, mechanical forces such as those occurring in anaphase, knots, catenanes, or the writhe of supercoiled DNA may be responsible for the formation of DNA juxtapositions

  5. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    Science.gov (United States)

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  6. DNA Topology and the Initiation of Virus DNA Packaging.

    Directory of Open Access Journals (Sweden)

    Choon Seok Oh

    Full Text Available During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS. The large terminase subunit (TerL contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  7. Raman spectroscopy for DNA quantification in cell nucleus.

    Science.gov (United States)

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate. © 2014 International Society for Advancement of Cytometry.

  8. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  9. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  10. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    Science.gov (United States)

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  11. DNA barcode goes two-dimensions: DNA QR code web server.

    Science.gov (United States)

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  12. DNA barcode goes two-dimensions: DNA QR code web server.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  13. DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dardalhon-Samsonoff, M; Averbeck, D [Institut du Radium, 75 - Paris (France). Lab. Curie

    1980-07-01

    The DNA-membrane complex in Micrococcus radiodurans was shown to be essentially constituted of proteins, lipids and DNA. The complex was dissociated immediately after X-irradiation of cells and restored during post-incubation in complete medium. In X-irradiated protoplasts some DNA remained associated with the complex. Restoration of the complex during post-incubation was only seen in a medium favouring DNA polymerase and ligase activities. Under this condition no DNA synthesis occurred, suggesting that complex restoration may involve ligase activity. The complex restoration in the wild type and the X-ray sensitive mutant UV17 of M. radiodurans was strictly dependent on the X-ray dose. It was correlated with survival and DNA degradation but always preceded the onset of DNA synthesis after X-irradiation. At the same dose the complex restoration was about 2 fold lower in mutant than in wild type cells indicating that the restoration of the complex is related to repair capacity. The results are consistent with the idea that the complex protects X-irradiated DNA of M. radiodurans from further breakdown and, subsequently, permits DNA synthesis and repair to occur.

  14. Conformation-dependent DNA attraction

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  15. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  16. Effect of DNA type on response of DNA biosensor for carcinogens

    Science.gov (United States)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  17. Effect of γ-irradiated DNA on the activity of DNA polymerase

    International Nuclear Information System (INIS)

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  18. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  19. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    Science.gov (United States)

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  1. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage lambda Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    Energy Technology Data Exchange (ETDEWEB)

    X Qiu; D Rau; V Parsegian; L Fang; C Knobler; W Gelbart

    2011-12-31

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In the commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.

  2. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    Science.gov (United States)

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  3. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  4. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  5. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  6. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    Science.gov (United States)

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    Science.gov (United States)

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-12-28

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level.

  9. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  10. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?

    Science.gov (United States)

    Molenaar-de Backer, M W A; Russcher, A; Kroes, A C M; Koppelman, M H G M; Lanfermeijer, M; Zaaijer, H L

    2016-11-01

    Parvovirus B19 (B19V) DNA can be detected in blood over a long period after acute infection. Several reports associate the presence of B19V DNA with disease, irrespective of timing of the initial B19V infection. This study aims to analyze the properties of B19V DNA in blood, differentiating between bare, non-infectious strands of DNA and B19V DNA in viable virions. Ten blood donors with asymptomatic acute B19V infection were followed and sampled up to 22 months after infection. The samples were treated with and without an endonuclease and tested for B19V DNA, to distinguish between DNA in virions and naked DNA. In the acute phase of infection, high levels of B19V DNA were detected, concurrent with B19V IgM antibodies. B19V DNA apparently was encapsidated, as indicated by resistance to endonuclease degradation. Subsequently, B19V DNA remained detectable for more than one year in all donors at low levels (<10 5 IU/mL). Approximately 150days after infection B19V DNA became degradable by an endonuclease, indicating that this concerned naked DNA. In some donors a second endonuclease-resistant peak occurred. Detection of B19V DNA in blood by PCR does not necessarily imply that B19V replication takes place and that infectious B19V virions are present. We propose that remnant B19V DNA strands can be released from tissues without active replication. This finding urges to reconsider an assumed role of B19V infection mainly based on B19V DNA detection in blood, a much debated subject in clinical syndromes such as myocarditis and arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Role of DNA-PK in cellular responses to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  12. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  13. Conformation-dependent DNA attraction.

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  14. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    Science.gov (United States)

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  15. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  16. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  17. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  18. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  19. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  20. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  1. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  2. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  3. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  4. Arbitrarily amplified DNA: New molecular approaches to plant breeding, ecology and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Caetano-Anolles, G [Department of Biology, University of Oslo, Oslo (Norway)

    2001-11-01

    Several DNA fingerprinting techniques that use arbitrary primers to characterize, scan and tag genomic DNA were optimized and used to study plants and microbial pathogens. The generated arbitrarily amplified DNA (AAD) profiles could be tailored in their complexity and polymorphic content, allowing analysis of closely related organisms, such as vegetatively-propagated horticultural crops or clonal fungal populations. AAD markers were used in cultivar and strain identification, map-based cloning, and marker-assisted breeding, sometimes as sequence-tagged sites. Phenetic analysis using parsimony, cluster, and numerical methods was applied successfully to the identification of genetic relationships in turfgrass species such as bermudagrass, woody plants such as dogwoods, and floricultural species such as petunia and chrysanthemum. AAD profiles were used to measure for the first time a genome-wide mutation rate, directly in a plant. Mutation rates in vegetatively propagated bermudagrass were comparable to those in human, mice, fruit flies, and worms. In combination with established tools used in molecular systematics (e.g. rDNA sequence analysis), AAD markers tracked the introduction of exotic dogwood anthracnose-causing fungi in North America. As part of a breeding effort to combat dogwood diseases, AAD was used in pseudo-testcross mapping of the tree at the intra-specific level. Markers were efficiently generated despite the close relatedness of parental dogwood material. Finally, DNA markers and tags were also generated in soybean, and were used to construct high density maps and walk towards defined genomic regions in the positional cloning of the supernodulation nts-1 symbiotic gene. (author)

  5. Arbitrarily amplified DNA: New molecular approaches to plant breeding, ecology and evolution

    International Nuclear Information System (INIS)

    Caetano-Anolles, G.

    2001-01-01

    Several DNA fingerprinting techniques that use arbitrary primers to characterize, scan and tag genomic DNA were optimized and used to study plants and microbial pathogens. The generated arbitrarily amplified DNA (AAD) profiles could be tailored in their complexity and polymorphic content, allowing analysis of closely related organisms, such as vegetatively-propagated horticultural crops or clonal fungal populations. AAD markers were used in cultivar and strain identification, map-based cloning, and marker-assisted breeding, sometimes as sequence-tagged sites. Phenetic analysis using parsimony, cluster, and numerical methods was applied successfully to the identification of genetic relationships in turfgrass species such as bermudagrass, woody plants such as dogwoods, and floricultural species such as petunia and chrysanthemum. AAD profiles were used to measure for the first time a genome-wide mutation rate, directly in a plant. Mutation rates in vegetatively propagated bermudagrass were comparable to those in human, mice, fruit flies, and worms. In combination with established tools used in molecular systematics (e.g. rDNA sequence analysis), AAD markers tracked the introduction of exotic dogwood anthracnose-causing fungi in North America. As part of a breeding effort to combat dogwood diseases, AAD was used in pseudo-testcross mapping of the tree at the intra-specific level. Markers were efficiently generated despite the close relatedness of parental dogwood material. Finally, DNA markers and tags were also generated in soybean, and were used to construct high density maps and walk towards defined genomic regions in the positional cloning of the supernodulation nts-1 symbiotic gene. (author)

  6. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  7. DNA testing in homicide investigations.

    Science.gov (United States)

    Prahlow, Joseph A; Cameron, Thomas; Arendt, Alexander; Cornelis, Kenneth; Bontrager, Anthony; Suth, Michael S; Black, Lisa; Tobey, Rebbecca; Pollock, Sharon; Stur, Shawn; Cotter, Kenneth; Gabrielse, Joel

    2017-10-01

    Objectives With the widespread use of DNA testing, police, death investigators, and attorneys need to be aware of the capabilities of this technology. This review provides an overview of scenarios where DNA evidence has played a major role in homicide investigations in order to highlight important educational issues for police, death investigators, forensic pathologists, and attorneys. Methods This was a nonrandom, observational, retrospective study. Data were obtained from the collective files of the authors from casework during a 15-year period, from 2000 through 2014. Results A series of nine scenarios, encompassing 11 deaths, is presented from the standpoint of the police and death investigation, the forensic pathology autopsy performance, the subsequent DNA testing of evidence, and, ultimately, the final adjudication of cases. Details of each case are presented, along with a discussion that focuses on important aspects of sample collection for potential DNA testing, especially at the crime scene and the autopsy. The presentation highlights the diversity of case and evidence types in which DNA testing played a valuable role in the successful prosecution of the case. Conclusions By highlighting homicides where DNA testing contributed to the successful adjudication of cases, police, death investigators, forensic pathologists, and attorneys will be better informed regarding the types of evidence and situations where such testing is of potential value.

  8. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    International Nuclear Information System (INIS)

    Diao, Y; Hinson, K; Sun, Y; Arsuaga, J

    2015-01-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  9. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    Science.gov (United States)

    Diao, Y.; Hinson, K.; Sun, Y.; Arsuaga, J.

    2015-10-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  10. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  11. Recruitment of DNA methyltransferase I to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M. Cristina; Leonhardt, Heinrich

    2005-01-01

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair. PMID:15956212

  12. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  13. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  14. Modification of DNA radiolysis by DNA-binding proteins: Structural aspects

    International Nuclear Information System (INIS)

    Davidkova, M.; Stisova, V.; Goffinont, S.; Gillard, N.; Castaing, B.; Spotheim-Maurizot, M.

    2006-01-01

    Formation of specific complexes between proteins and their cognate DNA modulates the yields and the location of radiation damage on both partners of the complex. The radiolysis of DNA-protein complexes is studied for: (1) the Escherichia coli lactose operator-repressor complex, (2) the complex between DNA bearing an analogue of an abasic site and the repair protein Fpg of Lactococcus lactis. Experimental patterns of DNA damages are presented and compared to predicted damage distribution obtained using an improved version of the stochastic model RADACK. The same method is used for predicting the location of damages on the proteins. At doses lower than a threshold that depends on the system, proteins protect their specific binding site on DNA while at high doses, the studied complexes are disrupted mainly through protein damage. The loss of binding ability is the functional consequence of the amino-acids modification by OH . radicals. Many of the most probably damaged amino acids are essential for the DNA-protein interaction and within a complex are protected by DNA. (authors)

  15. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  17. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays.

    Science.gov (United States)

    Wu, Min; Li, Jin; Yue, Lei; Bai, Lu; Li, Yaming; Chen, Jieliang; Zhang, Xiaonan; Yuan, Zhenghong

    2018-04-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. DNA adsorption characteristics of hollow spherule allophane nano-particles

    International Nuclear Information System (INIS)

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-01-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5′-monophosphate (5′-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5′-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al–OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. - Highlights: • The interaction between phosphate groups of ss-DNA and Al–OH groups • Higher energy barrier for the adsorption of ss-DNA • The individual ss-DNA with mono-layer coverage of the allophane clustered particle

  19. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  20. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Science.gov (United States)

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  1. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Directory of Open Access Journals (Sweden)

    Seetha V Balasingham

    Full Text Available XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB, a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+/Mn(2+. Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  2. Implementation of digital image encryption algorithm using logistic function and DNA encoding

    Science.gov (United States)

    Suryadi, MT; Satria, Yudi; Fauzi, Muhammad

    2018-03-01

    Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.

  3. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    Science.gov (United States)

    2010-01-01

    DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research addresses how the...Acid dsDNA double stranded DNA MOSAIC Mobile Stream Processing Cluster PCR Polymerase Chain Reaction RAM Random Access Memory ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ...are 5′→3′ and strands with strikethrough are 3′→5′. A dsDNA duplex formed between a strand and its reverse complement is called a

  4. Cascade DNA nanomachine and exponential amplification biosensing.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Binding and thermodynamics of REV peptide-ctDNA interaction.

    Science.gov (United States)

    Upadhyay, Santosh Kumar

    2017-03-01

    The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically

  6. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  7. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  8. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  9. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  10. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes

    DEFF Research Database (Denmark)

    Jeppesen, A N; Hvas, A-M; Grejs, A M

    2017-01-01

    Background Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone...... after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus. The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. Results We found no difference...... in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P

  11. DNA polymorphism in the living fossil Ginkgo biloba from the eastern United States.

    Science.gov (United States)

    Kuddus, Ruhul H; Kuddus, Nayema N; Dvorchik, Igor

    2002-02-01

    Random amplified polymorphic DNA (RAPD) analysis is a valuable tool in studying inter- and intra-specific genetic variations, patterns of gene expression, and for the identification of specific genes using nearly isogenic variants. Here we used RAPD analysis to study the genetic variation in Ginkgo biloba grown in the eastern United States. Our results support the evidence that Southern blot hybridization of RAPD using probes made from cloned DNA fragments allows a more accurate analysis of the RAPD pattern than dye-stained gels or Southern blot hybridization of RAPD blots using probes made from purified PCR products. Using these techniques, we observed a high degree of relatedness among plants grown in certain localities although significant genetic variation may exist in the species, and could be a possible explanation for the observed variations in the efficacy of medications derived from G. biloba extract.

  12. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    Science.gov (United States)

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion. © 2015 International Society on Thrombosis and Haemostasis.

  13. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    Science.gov (United States)

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  14. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  15. Radiation and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Riabchenko, N I

    1979-01-01

    Consideration is given to the effects of ionizing radiation on the structure of DNA. Physical and chemical methods of determining radiation damage to the primary (polynucleotide chain and nitrogenous base) and secondary (helical) structure of DNA are discussed, and the effects of ionizing radiation on deoxyribonucleoprotein complexes are considered. The radiolysis of DNA in vitro and in bacterial and mammalian cells is examined and cellular mechanisms for the repair of radiation-damaged DNA are considered, taking into account single-strand and double-strand breaks, gamma-radiation damage and deoxyribonucleoprotein-membrane complex damage. Postradiation DNA degradation in bacteria and lymphatic cells is also discussed.

  16. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  17. enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Ruifeng Xu

    2014-01-01

    Full Text Available DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97–9.52% in ACC and 0.08–0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83–16.63% in terms of ACC and 0.02–0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

  18. Master equation approach to DNA breathing in heteropolymer DNA

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A

    2007-01-01

    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...

  19. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  20. Karyotypes, constitutive heterochromatin, and genomic DNA values in the blowfly genera Chrysomya, Lucilia, and Protophormia (Diptera: Calliphoridae).

    Science.gov (United States)

    Ullerich, Fritz-Helmut; Schöttke, Michael

    2006-06-01

    The karyotypes and C-banding patterns of Chrysomya species C. marginalis, C. phaonis, C. pinguis, C. saffranea, C. megacephala (New Guinean strain), Lucilia sericata, and Protophormia terraenovae are described. All species are amphogenic and have similar chromosome complements (2n = 12), including an XY-XX sex-chromosome pair varying in size and morphology between species. Additionally, the C-banding pattern of the monogenic species Chrysomya albiceps is presented. The DNA contents of these and of further species Chrysomya rufifacies, Chrysomya varipes, and Chrysomya putoria were assessed on mitotic metaphases by Feulgen cytophotometry. The average 2C DNA value of the male genomes ranged from 1.04 pg in C. varipes to 2.31 pg in C. pinguis. The DNA content of metaphase X chromosomes varied from 0.013 pg (= 1.23% of the total genome) in C. varipes to 0.277 pg (12.20%) in L. sericata; that of Y chromosomes ranged from 0.003 pg (0.27%) in C. varipes to 0.104 pg (5.59%) in L. sericata. In most species, the corresponding 5 large chromosome pairs showed similar relative DNA contents. The data suggest that the interspecific DNA differences in most species are mainly due to quantitative variation of (repetitive) sequences lying outside the centromeric heterochromatin blocks of the large chromosomes. The results are also discussed with regard to phylogenetic relationships of some species.

  1. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    International Nuclear Information System (INIS)

    Lee, C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s→π* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  2. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  3. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Science.gov (United States)

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  5. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Wang

    Full Text Available The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone (MGBG enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  6. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  7. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  9. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  10. Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.

    Science.gov (United States)

    Ferry, Laure; Fournier, Alexandra; Tsusaka, Takeshi; Adelmant, Guillaume; Shimazu, Tadahiro; Matano, Shohei; Kirsh, Olivier; Amouroux, Rachel; Dohmae, Naoshi; Suzuki, Takehiro; Filion, Guillaume J; Deng, Wen; de Dieuleveult, Maud; Fritsch, Lauriane; Kudithipudi, Srikanth; Jeltsch, Albert; Leonhardt, Heinrich; Hajkova, Petra; Marto, Jarrod A; Arita, Kyohei; Shinkai, Yoichi; Defossez, Pierre-Antoine

    2017-08-17

    DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA

  12. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  13. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  14. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  15. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy.

    Science.gov (United States)

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-06-02

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.

  16. DNA moves sequentially towards the nuclear matrix during DNA replication in vivo

    Directory of Open Access Journals (Sweden)

    Aranda-Anzaldo Armando

    2011-01-01

    Full Text Available Abstract Background In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM. There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops. Results In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved. Conclusions Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.

  17. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  18. JavaScript DNA translator: DNA-aligned protein translations.

    Science.gov (United States)

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  19. DNA nanotechnology-enabled biosensors.

    Science.gov (United States)

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Conjugation of Organic Molecules to DNA and Their Application in DNA Nanotechnology

    DEFF Research Database (Denmark)

    Olsen, Eva Maria

    2012-01-01

    Denne PhD afhandling præsenterer fire kapitler, som omhandler det videnskabelige område DNA nanoteknologi. Kapitel 1 er en general introduktion til DNA nanoteknologi, som først beskriver opbygningen af DNA og efter flere underkapitler slutter med en gennemgang af nogle fantastiske dynamiske DNA s...

  1. Sequence analysis of Leukemia DNA

    Science.gov (United States)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  2. Structural Transitions in Supercoiled Stretched DNA

    Science.gov (United States)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role (for more details).

  3. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    Science.gov (United States)

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  4. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Science.gov (United States)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  5. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  6. Diversity among Cynodon accessions and taxa based on DNA amplification fingerprinting.

    Science.gov (United States)

    Assefa, S; Taliaferro, C M; Anderson, M P; de los Reyes, B G; Edwards, R M

    1999-06-01

    The genus Cynodon (Gramineae), comprised of 9 species, is geographically widely distributed and genetically diverse. Information on the amounts of molecular genetic variation among and within Cynodon taxa is needed to enhance understanding of phylogenetic relations and facilitate germplasm management and breeding improvement efforts. Genetic relatedness among 62 Cynodon accessions, representing eight species, was assessed using DNA amplification fingerprinting (DAF). Ten 8-mer oligonucleotides were used to amplify specific Cynodon genomic sequences. The DNA amplification products of individual accessions were scored for presence (1) or absence (0) of bands. Similarity matrices were developed and the accessions were grouped by cluster (UPGMA) and principal coordinate analysis. Analyses were conducted within ploidy level (2x = 18 and 4x = 36) and over ploidy levels. Each primer revealed polymorphic loci among accessions within species. Of 539 loci (bands) scored, 496 (92%) were polymorphic. Cynodon arcuatus was clearly separated from other species by numerous monomorphic bands. The strongest species similarities were between C. aethiopicus and C. arcuatus, C. transvaalensis and C. plectostachyus, and C. incompletus and C. nlemfuensis. Intraspecific variation was least for C. aethiopicus, C. arcuatus, and C. transvaalensis, and greatest for C. dactylon. Accessions of like taxonomic classification were generally clustered, except the cosmopolitan C. dactylon var. dactylon and C. dactylon var. afganicus. Within taxa, accessions differing in chromosome number clustered in all instances indicating the 2x and 4x forms to be closely related. Little, if any, relationship was found between relatedness as indicated by the DAF profiles and previous estimates of hybridization potential between the different taxa.

  7. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  8. Involvement of the yeast DNA polymerase delta in DNA repair in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Giot, L. [State University of New York at Stony Brook, Stony Brook, NY. (United States); Chanet, R.; Simon, M.; Facca, C.; Faye, G.

    1997-08-15

    The POL3 encoded catalytic subunit of DNA polymerase delta possesses a highly conserved C-terminal cysteine-rich domain in Saccharomyces cerevisiae. Mutations in some of its cysteine codons display a lethal phenotype, which demonstrates an essential function of this domain. The thermosensitive mutant pol3-13, in which a serine replaces a cysteine of this domain, exhibits a range of defects in DNA repair, such as hypersensitivity to different DNA-damaging agents and deficiency for induced mutagenesis and for recombination. These phenotypes are observed at 24 degrees, a temperature at which DNA replication is almost normal; this differentiates the functions of POL3 in DNA repair and DNA replication. Since spontaneous mutagenesis and spontaneous recombination are efficient in pol3-13, we propose that POL3 plays an important role in DNA repair after irradiation, particularly in the error-prone and recombinational pathways. Extragenic suppressors of pol3-13 are allelic to sdp5-1, previously identified as an extragenic suppressor of pol3-11. SDP5, which is identical to HYS2, encodes a protein homologous to the p50 subunit of bovine and human DNA polymerase delta. SDP5 is most probably the p55 subunit of Pol delta of S. cerevisiae and seems to be associated with the catalytic subunit for both DNA replication and DNA repair. (author)

  9. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    Science.gov (United States)

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  10. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  11. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  12. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  13. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  14. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  15. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  16. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    Science.gov (United States)

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  17. DNA adducts-chemical addons

    Directory of Open Access Journals (Sweden)

    T R Rajalakshmi

    2015-01-01

    Full Text Available DNA adduct is a piece of DNA covalently bond to a chemical (safrole, benzopyrenediol epoxide, acetaldehyde. This process could be the start of a cancerous cell. When a chemical binds to DNA, it gets damaged resulting in abnormal replication. This could be the start of a mutation and without proper DNA repair, this can lead to cancer. It is this chemical that binds with the DNA is our prime area of concern. Instead of performing the whole body analysis for diagnosing cancer, this test could be carried out for early detection of cancer. When scanning tunneling microscope is used, the DNA results can be obtained earlier. DNA adducts in scientific experiments are used as biomarkers.

  18. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  19. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  20. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  1. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Autoregressive-model-based missing value estimation for DNA microarray time series data.

    Science.gov (United States)

    Choong, Miew Keen; Charbit, Maurice; Yan, Hong

    2009-01-01

    Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.

  3. Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences

    Science.gov (United States)

    Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe

    2010-01-01

    Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...

  4. Forensic DNA testing.

    Science.gov (United States)

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  5. Diagnostic value of stool DNA testing for multiple markers of colorectal cancer and advanced adenoma: a meta-analysis.

    Science.gov (United States)

    Yang, Hua; Xia, Bing-Qing; Jiang, Bo; Wang, Guozhen; Yang, Yi-Peng; Chen, Hao; Li, Bing-Sheng; Xu, An-Gao; Huang, Yun-Bo; Wang, Xin-Ying

    2013-08-01

    The diagnostic value of stool DNA (sDNA) testing for colorectal neoplasms remains controversial. To compensate for the lack of large-scale unbiased population studies, a meta-analysis was performed to evaluate the diagnostic value of sDNA testing for multiple markers of colorectal cancer (CRC) and advanced adenoma. The PubMed, Science Direct, Biosis Review, Cochrane Library and Embase databases were systematically searched in January 2012 without time restriction. Meta-analysis was performed using a random-effects model using sensitivity, specificity, diagnostic OR (DOR), summary ROC curves, area under the curve (AUC), and 95% CIs as effect measures. Heterogeneity was measured using the χ(2) test and Q statistic; subgroup analysis was also conducted. A total of 20 studies comprising 5876 individuals were eligible. There was no heterogeneity for CRC, but adenoma and advanced adenoma harboured considerable heterogeneity influenced by risk classification and various detection markers. Stratification analysis according to risk classification showed that multiple markers had a high DOR for the high-risk subgroups of both CRC (sensitivity 0.759 [95% CI 0.711 to 0.804]; specificity 0.883 [95% CI 0.846 to 0.913]; AUC 0.906) and advanced adenoma (sensitivity 0.683 [95% CI 0.584 to 0.771]; specificity 0.918 [95% CI 0.866 to 0.954]; AUC 0.946) but not for the average-risk subgroups of either. In the methylation subgroup, sDNA testing had significantly higher DOR for CRC (sensitivity 0.753 [95% CI 0.685 to 0.812]; specificity 0.913 [95% CI 0.860 to 0.950]; AUC 0.918) and advanced adenoma (sensitivity 0.623 [95% CI 0.527 to 0.712]; specificity 0.926 [95% CI 0.882 to 0.958]; AUC 0.910) compared with the mutation subgroup. There was no significant heterogeneity among studies for subgroup analysis. sDNA testing for multiple markers had strong diagnostic significance for CRC and advanced adenoma in high-risk subjects. Methylation makers had more diagnostic value than mutation

  6. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  7. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  8. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  9. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  10. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  11. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, Patrick M. [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Acharya, Samir, E-mail: samir.acharya@osumc.edu [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

  12. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    International Nuclear Information System (INIS)

    Grierson, Patrick M.; Acharya, Samir; Groden, Joanna

    2013-01-01

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription

  13. DNA interaction with platinum-based cytostatics revealed by DNA sequencing.

    Science.gov (United States)

    Smerkova, Kristyna; Vaculovic, Tomas; Vaculovicova, Marketa; Kynicky, Jindrich; Brtnicky, Martin; Eckschlager, Tomas; Stiborova, Marie; Hubalek, Jaromir; Adam, Vojtech

    2017-12-15

    The main mechanism of action of platinum-based cytostatic drugs - cisplatin, oxaliplatin and carboplatin - is the formation of DNA cross-links, which restricts the transcription due to the disability of DNA to enter the active site of the polymerase. The polymerase chain reaction (PCR) was employed as a simplified model of the amplification process in the cell nucleus. PCR with fluorescently labelled dideoxynucleotides commonly employed for DNA sequencing was used to monitor the effect of platinum-based cytostatics on DNA in terms of decrease in labeling efficiency dependent on a presence of the DNA-drug cross-link. It was found that significantly different amounts of the drugs - cisplatin (0.21 μg/mL), oxaliplatin (5.23 μg/mL), and carboplatin (71.11 μg/mL) - were required to cause the same quenching effect (50%) on the fluorescent labelling of 50 μg/mL of DNA. Moreover, it was found that even though the amounts of the drugs was applied to the reaction mixture differing by several orders of magnitude, the amount of incorporated platinum, quantified by inductively coupled plasma mass spectrometry, was in all cases at the level of tenths of μg per 5 μg of DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  15. Action of radiation and serotin on DNA and satellite DNA of thermodynamic parameters

    International Nuclear Information System (INIS)

    Sanaya, T.V.

    1987-01-01

    A study was made on the effect of X-rays on thermal denaturation of DNA and satellite DNA of cattle spleen against the background of 10 -3 M serotonin influence. The minimal dose at which the damage of satellite DNA is observed, is equal to 38 Gy; similar damage of DNA requires the double dose. Serotonin with 10 -3 M concentration doesn't change thermodynamic DNA characteristics, but its presence in the moment of irradiation even at 152 Gy dose reveals the clearly pronounced protection effect on satellite DNA damage

  16. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Science.gov (United States)

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Salles-Passador, I.; Fotedar, R.; Fotedar, A.

    1999-01-01

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  18. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    Science.gov (United States)

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  19. Reversibility of partial denaturation of DNA

    International Nuclear Information System (INIS)

    Acuna, M.I.; Mingot, F.; Davila, C.A.

    1976-01-01

    The recovery of hypochromicity in a partially denatured DNA sample when salt concentration is suddenly increased at a intermediate stage of the thermal transition is studied. The results of CsCl gradient analysis, PEG/DEX partition analysis, behaviour in a new thermal transition hydrodynamic properties and transforming ability, support the view that the process is an intramolecular double chain denaturation. The degree of denaturation irreversibility is dependent on single chain molecular weight of DNA (discontinuities denisty) and upon the helicity value at which salt concentration jump is performed. Both dependences are formally interpreted according to Elton's model for base distribution in DNA. Kinetically the process behaves as being an hydrodynamically limited rewinding. (author)

  20. DNA-modified electrodes (Ⅶ)——Preparation and characterization of DNA-bonded and DNA-adsorbed SAM/Au electrodes

    Institute of Scientific and Technical Information of China (English)

    陆琪; 庞代文; 胡深; 程介克; 蔡雄伟; 施财辉; 毛秉伟; 戴鸿平

    1999-01-01

    Two kinds of DNA-modified electrodes were prepared by covalent and adsorptive immobilization of DNA onto self-assembled monolayers of 2, 2’-dithiodiethanol on gold electrodes and characterized by cyclic voltammetry, Xray photoelectron spectroscopy and scanning tunneling microscopy. The results suggest that the methods are satisfactory for the immobilization of DNA on electrodes.

  1. [Association of etheno-DNA adduct and DNA methylation level among workers exposed to diesel engine exhaust].

    Science.gov (United States)

    Shen, M L; He, Z N; Zhang, X; Duan, H W; Niu, Y; Bin, P; Ye, M; Meng, T; Dai, Y F; Yu, S F; Chen, W; Zheng, Y X

    2017-06-06

    Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject. The urinary etheno-DNA adducts were detected using UPLC-MS/MS, including 1,N6-etheno-2'-deoxyadenosine (εdA) and 3,N4-etheno-2'-deoxycytidine(εdC). The DNA methylation levels of P16, RASSF1A, and MGMT were evaluated using bisulfite-pyrosequencing assay. The percentage of methylation was expressed as the 5-methylcytosine (5mC) over the sum of cytosines (%5mC). Spearman correlation and multiple linear regression were applied to analyze the association between etheno-DNA adducts and DNA methylation of P16, RASSF1A, and MGMT. Results: The median ( P (25)- P (75)) of urinary εdA level was 230.00 (98.04-470.91) pmol/g creatinine in DEE exposure group, and 102.10 (49.95-194.48) creatinine in control group. The level of εdA was higher in DEE exposure group than control group ( P 0.05) . Multiple linear regression confirmed the negative correlation between εdA and DNA methylation levels of P16, RASSF1A, and MGMT in non-smoking group (β (95 %CI ) was -0.068 (-0.132--0.003), -0.082 (-0.159--0.004) and -0.048 (-0.090--0.007), P values were 0.039, 0.039 and 0.024, respectively). Moreover, εdC was negative associated with DNA methylation level of MGMT in non-smoking group (β (95 %CI ) was -0.094 (-0.179--0.008), P= 0.032). Conclusion: DEE exposure could induce the increased of εdA and decreased of DNA methylation levels of P16, RASSF1A

  2. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  3. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  4. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  5. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  6. Photocleavage of DNA: irradiation of quinone-containing reagents converts supercoiled to linear DNA

    International Nuclear Information System (INIS)

    Kock, T.; Schuster, G.B.; Ropp, J.D.; Sligar, S.G.

    1993-01-01

    Irradiation (350 nm) of air-saturated solutions of reagents containing an anthraquinone group linked to quaternary alkyl ammonium groups converts supercoiled DNA to circular and to linear DNA. Generation of linear DNA does not occur by accumulation of numerous single-strand cuts but by coincident-site double-strand cleavage of DNA. Irradiation forms the triplet state of the anthraquinone, which reacts either by hydrogen atom abstraction from a sugar of DNA or by electron transfer from a base of the DNA. Subsequent reactions result in chain scission. The quinone is apparently reformed after this sequence and reirradiation leads to double-strand cleavage. (Author)

  7. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  8. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases α and δ by butylphenyl deoxyguanosine triphosphate

    International Nuclear Information System (INIS)

    Dreslor, S.L.; Frattini, M.G.

    1987-01-01

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, α and/or δ. They have studied the inhibition of replication and repair synthesis in permeable human cells by N 2 (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase α strongly and polymerase δ weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 μM and, for repair synthesis, 3-4 μM, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase α by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase δ is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase δ were hampered by the finding that the dependence of δ activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase α and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase δ, but some other characteristics of the cellular processes are more similar to those of polymerase α

  9. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross

  10. A Flexible, Efficient Binomial Mixed Model for Identifying Differential DNA Methylation in Bisulfite Sequencing Data

    Science.gov (United States)

    Lea, Amanda J.

    2015-01-01

    Identifying sources of variation in DNA methylation levels is important for understanding gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating DNA methylation levels. However, modeling bisulfite sequencing data is complicated by dramatic variation in coverage across sites and individual samples, and because of the computational challenges of controlling for genetic covariance in count data. To address these challenges, we present a binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed model association for count data via data augmentation) for approximate parameter estimation and p-value computation. This framework allows us to simultaneously account for both the over-dispersed, count-based nature of bisulfite sequencing data, as well as genetic relatedness among individuals. Using simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show that our method provides well-calibrated test statistics in the presence of population structure. Further, it improves power to detect differentially methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model (the next best approach). Changes in these sites are consistent with known age-related shifts in DNA methylation levels, and are enriched near genes that are differentially expressed with age in the same population. Taken together, our results indicate that MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular salience to analyses of structured populations. MACAU is freely available at www.xzlab.org/software.html. PMID:26599596

  11. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Nakabeppu, Y.; Sekiguchi, M.

    1981-01-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4

  12. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    Science.gov (United States)

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  13. Cell-Free DNA in Metastatic Colorectal Cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G.; Boysen, Anders K.; Pallisgard, Niels

    2017-01-01

    -analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. MATERIALS AND METHODS: A systematic literature search of PubMed and Embase was performed by two......BACKGROUND: Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential...

  14. Highly sensitive DNA sensors based on cerium oxide nanorods

    Science.gov (United States)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  15. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    Science.gov (United States)

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  16. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  17. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  18. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  19. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  20. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  1. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  2. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  3. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  4. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  5. Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA

    International Nuclear Information System (INIS)

    De Wyngaert, M.A.; Hinkle, D.C.

    1979-01-01

    Growth of bacteriophage T7 is inhibited by the antibiotic coumermycin A 1 , an inhibitor of the Escherichia coli DNA gyrase. Since growth of the phage is insensitive to the antibiotic in strains containing a coumermycin-resistent DNA gyrase, this enzyme appears to be required for phage growth. We have investigated the effect of coumermycin on the kinetics of DNA, RNA, and protein synthesis during T7 infection. DNA synthesis is completely inhibited by the antibiotic. In addition, coumermycin significantly inhibits transcription of late but not early genes. Thus, E. coli DNA gyrase may play an important role in transcription as well as in replication of T7 DNA

  6. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    Science.gov (United States)

    Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  7. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    Directory of Open Access Journals (Sweden)

    Yuh Shiwa

    Full Text Available Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03 when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50 when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14 by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45 and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17. These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  8. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  9. Estrogen receptor accessory proteins augment receptor-DNA interaction and DNA bending.

    Science.gov (United States)

    Landel, C C; Potthoff, S J; Nardulli, A M; Kushner, P J; Greene, G L

    1997-01-01

    Increasing evidence suggests that accessory proteins play an important role in the ability of the estrogen receptor (ER) and other nuclear hormone receptors to modulate transcription when bound to cis-acting hormone response elements in target genes. We have previously shown that four proteins, hsp70, protein disulfide isomerase (PDI) and two unknown proteins (p48 and p45), copurify with ER that has been isolated by site-specific DNA chromatography (BERE) and influence the interaction of ER with DNA in vitro. To better define the nature of these effects, we used filter binding and electrophoretic mobility shift assays to study the ability of these proteins to alter the kinetics of ER-DNA interaction and to influence the ability of ER to bend DNA when bound to an estrogen response element (ERE). The results of both assays indicate that ERE-purified ER, with its four associated proteins (hsp70, PDI, p48, p45), has a greater ability to bind to the vitellogenin A2 ERE than ER purified by estradiol-Sepharose chromatography in the absence (ESeph) or presence (EATP) of ATP, in which p48, p45 (ESeph) and hsp70 (EATP) are removed. Surprisingly, the rates of association and dissociation of ER and ERE were essentially the same for all three mixtures, suggesting that one or more ER-associated proteins, especially p45 and p48, may be required for ER to attain maximum DNA binding activity. In addition, circular permutation and phasing analyses demonstrated that the same ER-associated proteins produced higher order ER-DNA complexes that significantly increased the magnitude of DNA distortion, but did not alter the direction of the ER-induced bend of ERE-containing DNA fragments, which was toward the major groove of the DNA helix. These results suggest that p45 and/or p48 and possibly hsp70, play an important role both in the specific DNA binding and bending activities of ER and thus contribute to the overall stimulation of transcription in target genes that contain cis

  10. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    Science.gov (United States)

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  11. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    Science.gov (United States)

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Impact of DNA3'pp5'G capping on repair reactions at DNA 3' ends.

    Science.gov (United States)

    Das, Ushati; Chauleau, Mathieu; Ordonez, Heather; Shuman, Stewart

    2014-08-05

    Many biological scenarios generate "dirty" DNA 3'-PO4 ends that cannot be sealed by classic DNA ligases or extended by DNA polymerases. The noncanonical ligase RtcB can "cap" these ends via a unique chemical mechanism entailing transfer of GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form DNA3'pp5'G. Here, we show that capping protects DNA 3' ends from resection by Escherichia coli exonucleases I and III and from end-healing by T4 polynucleotide 3' phosphatase. By contrast, the cap is an effective primer for DNA synthesis. E. coli DNA polymerase I and Mycobacterium DinB1 extend the DNAppG primer to form an alkali-labile DNApp(rG)pDNA product. The addition of dNTP depends on pairing of the cap guanine with an opposing cytosine in the template strand. Aprataxin, an enzyme implicated in repair of A5'pp5'DNA ends formed during abortive ligation by classic ligases, is highly effective as a DNA 3' decapping enzyme, converting DNAppG to DNA3'p and GMP. We conclude that the biochemical impact of DNA capping is to prevent resection and healing of a 3'-PO4 end, while permitting DNA synthesis, at the price of embedding a ribonucleotide and a pyrophosphate linkage in the repaired strand. Aprataxin affords a means to counter the impact of DNA capping.

  13. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  14. Porphyromonas crevioricanis is an earlier heterotypic synonym of Porphyromonas cansulci and has priority.

    Science.gov (United States)

    Sakamoto, Mitsuo; Ohkuma, Moriya

    2013-02-01

    A DNA-DNA hybridization experiment was carried out to clarify the relationship between Porphyromonas crevioricanis and Porphyromonas cansulci. The taxonomic standing of these two species was unclear so far because of the high 16S rRNA gene sequence similarity value (99.9 %). The DNA-DNA relatedness values between P. crevioricanis JCM 15906(T) and P. cansulci JCM 13913(T) were above 91 % (91-99 %). In addition, P. crevioricanis JCM 15906(T) exhibited high hsp60 gene sequence similarity with P. cansulci JCM 13913(T) (100 %). The hsp60 gene sequence analysis and the DNA-DNA relatedness values demonstrated that P. crevioricanis JCM 15906(T) and P. cansulci JCM 13913(T) are a single species. Based on these data, we propose Porphyromonas cansulci as a later heterotypic synonym of Porphyromonas crevioricanis.

  15. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  16. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.

    Science.gov (United States)

    de Souza, Lesley S; Godwin, James C; Renshaw, Mark A; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs.

  17. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  18. PDB4DNA: Implementation of DNA geometry from the Protein Data Bank (PDB) description for Geant4-DNA Monte-Carlo simulations

    Science.gov (United States)

    Delage, E.; Pham, Q. T.; Karamitros, M.; Payno, H.; Stepan, V.; Incerti, S.; Maigne, L.; Perrot, Y.

    2015-07-01

    This paper describes PDB4DNA, a new Geant4 user application, based on an independent, cross-platform, free and open source C++ library, so-called PDBlib, which enables use of atomic level description of DNA molecule in Geant4 Monte Carlo particle transport simulations. For the evaluation of direct damage induced on the DNA molecule by ionizing particles, the application makes use of an algorithm able to determine the closest atom in the DNA molecule to energy depositions. Both the PDB4DNA application and the PDBlib library are available as free and open source under the Geant4 license.

  19. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  20. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  1. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  2. Protective role of OH scavengers and DNA/chromatin organization in the induction of DNA breaks: mechanistic models and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Ballarini, F.; Rossetti, M.; Scannicchio, D.; Jacob, P.; Molinelli, S.; Ottolenghi, A.; Volata, A.

    2003-01-01

    Radiation-induced DNA damage can be modulated by various factors, including the environment scavenging capacity (SC) and the DNA organization within the cell nucleus (chromatin compactness, DNA-binding proteins etc.). In this context the induction of ssb and dsb by photons and light ions of different energies impinging on different DNA structures (e.g. linear DNA, SV40 'minichromosomes' and cellular DNA) at different OH-radical SC values was modelled with the Monte Carlo PARTRAC code. Presently PARTRAC can transport electrons, photons, protons and alpha particles in liquid water with an 'event-by-event' approach, and can simulate the DNA content of mammalian cells with an 'atom-by-atom' description, from nucleotide pairs to chromatin fibre loops and chromosome territories. Energy depositions in the sugar-phosphate were considered as potential (direct) ssb. The production, diffusion and reaction of chemical species were explicitly simulated; reactions of OH radicals with the sugar-phosphate were assumed to lead to 'indirect' ssb with probability 65%. Two ssb on opposite strands within 10 bp were considered as a dsb. Yields of ssb and dsb/Gy/Dalton were calculated for different DNA structures as a function of the OH mean life time. By Zyuzikov, N.; Michael, B.D. (Gray Cancer Institute, (GB)); Wu, L. (Ch Zyuzdirect damage yields. In general, also depending on radiation quality, linear DNA was found to be more susceptible to strand breakage than SV40 minichromosomes, which in turn showed higher damage yields with respect to cellular DNA. The very good agreement found with available experimental data provided a validation of the model and allowed us to quantify separately the protective effect of OH scavengers and DNA/chromatin organization. Comparisons with data on nucleoids (DNA unfolded and depleted of histones) suggested that the experimental procedures used to obtain such targets might lower the environment SC, due to the loss of cellular scavenging compounds

  3. Design and Assembly of DNA Nano-Objects and 2D DNA Origami Arrays

    Science.gov (United States)

    Liu, Wenyan

    DNA, which plays a central role in biology as the carrier of genetic information, is also an excellent candidate for structural nanotechnology. Researches have proven that a variety of complicated DNA assemblies, such as objects, 2D & 3D crystals, and nanomechanical devices, can be fabricated through the combination of robust branched DNA motifs and sticky ends. This dissertation focuses on the design and construction of DNA nano--objects and 2D DNA origami arrays. In this dissertation, we first describe the formation of a triangular species that has four strands per edge, held together by PX interactions. We demonstrate by nondenaturing gel electrophoresis and by atomic force microscopy (AFM) that we can combine a partial triangle with other strands to form a robust four--stranded molecule. By combining them with a novel three--domain molecule, we also demonstrate by AFM that these triangles can be self--assembled into a linear array. Second, we demonstrate our attempts to design and self--assemble 2D DNA origami arrays using several different strategies. Specifically, we introduce the self--assembly of 2D DNA origami lattices using a symmetric cross--like design. This design strategy resulted in a well--ordered woven latticework array with edge dimensions of 2--3 mum. This size is likely to be large enough to connect bottom-up methods of patterning with top--down approaches. Third, we illustrate the design and construction of DNA nano--objects for exploring the substrate preferences of topoisomerase (topo) II. We designed and fabricated four double rhombus--like DNA molecules, each of which contains a different conformation of crossover in the middle, as possible substrates to establish the structural preferences for topo II. We characterized the formation of each substrate molecule by gel electrophoresis. Finally, we study the effect of M13 DNA knotting on the formation of the DNA origami tiles. We demonstrate by atomic force microscopy (AFM) that knotted M13

  4. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA Polyhedra for Cancer Therapy.

    Science.gov (United States)

    Mou, Quanbing; Ma, Yuan; Pan, Gaifang; Xue, Bai; Yan, Deyue; Zhang, Chuan; Zhu, Xinyuan

    2017-10-02

    Based on their structural similarity to natural nucleobases, nucleoside analogue therapeutics were integrated into DNA strands through conventional solid-phase synthesis. By elaborately designing their sequences, floxuridine-integrated DNA strands were synthesized and self-assembled into well-defined DNA polyhedra with definite drug-loading ratios as well as tunable size and morphology. As a novel drug delivery system, these drug-containing DNA polyhedra could ideally mimic the Trojan Horse to deliver chemotherapeutics into tumor cells and fight against cancer. Both in vitro and in vivo results demonstrate that the DNA Trojan horse with buckyball architecture exhibits superior anticancer capability over the free drug and other formulations. With precise control over the drug-loading ratio and structure of the nanocarriers, the DNA Trojan horse may play an important role in anticancer treatment and exhibit great potential in translational nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins

    Science.gov (United States)

    Dahlke, K.; Sing, C. E.

    2018-02-01

    Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

  6. DNA ligase III is involved in a DNA-PK independent pathway of NHEJ in human cells

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Qin, W.; Wang, H.; Iliakis, G.

    2003-01-01

    Full text: Double strand breaks (DSB) induced by ionizing radiation (IR) and other cytotoxic agents in the genome of higher eukaryotes are thought to be repaired either by homologous recombination repair (HRR), or non-homologous endjoining (NHEJ). We previously reported the operation of two components of NHEJ in vivo: a DNA-PK dependent component that operates with fast kinetics (D-NHEJ), and a DNA-PK independent component that acts as a backup (basic or B-NHEJ) and operates with kinetics an order of magnitude slower. To gain further insight into the mechanisms of B-NHEJ, we investigated DNA endjoining in extracts 180BR, a human cell line deficient in DNA ligase IV, using an in vitro plasmid-based DNA endjoining assay. An anti DNA ligase III antibody inhibited almost completely DNA endjoining activity in these extracts. On the other hand, an anti DNA ligase I antibody had no measurable effect in DNA endjoining activity. Immunodepletion of DNA ligase III from 180BR cell extracts abolished the DNA endjoining activity, which could be restored by addition of purified human DNA ligase IIIb. Full-length DNA ligase III bound to double stranded DNA and stimulated DNA endjoining in both intermolecular and intramolecular ligation. Furthermore, fractionation of HeLa cell extracts demonstrated the presence of an activity stimulating the function of DNA ligase III. Based on these observations we propose that DNA ligase III is the ligase operating in B-NHEJ

  7. Linear Association Between Cellular DNA and Epstein-Barr Virus DNA in a Human Lymphoblastoid Cell Line

    Science.gov (United States)

    Adams, Alice; Lindahl, Tomas; Klein, George

    1973-01-01

    High-molecular-weight DNA from cell line Raji (derived from Burkitt's lymphoma), which contains 50-60 copies of Epstein-Barr virus DNA per cell, was fractionated in neutral solution by several cycles of CsCl gradient centrifugation in fixed-angle rotors. Under the fractionation conditions used, intact Epstein-Barr virus DNA from virus particles can be separated from the less-dense cellular DNA. In contrast, a large proportion of the intrinsic Epstein-Barr virus DNA component of Raji cells remains associated with cellular DNA, as determined by nucleic acid hybridization. This interaction, which is resistant to Pronase and phenol treatment, is not the result of aggregation. When the molecular weight of Raji DNA is reduced by hydrodynamic shear, the amount of virus DNA associated with cell DNA decreases. However, some virus DNA still remains bound to fragments of cellular DNA after shearing. The association is completely destroyed in alkaline solution. Molecular weight analysis of Raji DNA after denaturation showed that the alkali-induced release of Epstein-Barr virus DNA was specific and not the result of random single-strand breaks. These data indicate that Epstein-Barr virus DNA is linearly integrated into Raji cell DNA by alkali-labile bonds. PMID:4355371

  8. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  9. A nuclear DNA-based species determination and DNA quantification assay for common poultry species.

    Science.gov (United States)

    Ng, J; Satkoski, J; Premasuthan, A; Kanthaswamy, S

    2014-12-01

    DNA testing for food authentication and quality control requires sensitive species-specific quantification of nuclear DNA from complex and unknown biological sources. We have developed a multiplex assay based on TaqMan® real-time quantitative PCR (qPCR) for species-specific detection and quantification of chicken (Gallus gallus), duck (Anas platyrhynchos), and turkey (Meleagris gallopavo) nuclear DNA. The multiplex assay is able to accurately detect very low quantities of species-specific DNA from single or multispecies sample mixtures; its minimum effective quantification range is 5 to 50 pg of starting DNA material. In addition to its use in food fraudulence cases, we have validated the assay using simulated forensic sample conditions to demonstrate its utility in forensic investigations. Despite treatment with potent inhibitors such as hematin and humic acid, and degradation of template DNA by DNase, the assay was still able to robustly detect and quantify DNA from each of the three poultry species in mixed samples. The efficient species determination and accurate DNA quantification will help reduce fraudulent food labeling and facilitate downstream DNA analysis for genetic identification and traceability.

  10. pH-induced fabrication of DNA/chitosan/α-ZrP nanocomposite and DNA release

    International Nuclear Information System (INIS)

    Liu Limin; Zhang Haitang; Shen Bo; He Weijiang; Lu Guoyuan; Liu Yuge; Zhu Junjie

    2010-01-01

    With positively charged chitosan as an intermediary, herring sperm DNA was intercalated into the interlayer galleries of negatively charged α-ZrP to form DNA/chitosan/α-ZrP ternary hybrids at pH 5.5. Fourier-transform IR, x-ray diffraction and scanning electron microscopy confirmed not only the coexistence of DNA, chitosan and α-ZrP in the composite but also the layered composite structure with an interlayer distance of 4.25 nm. Circular dichroism (CD) and UV spectroscopic studies disclosed that the restraint of DNA by the layered α-ZrP favors stabilization of the double-helical conformation of DNA and enhances the denaturation temperature. The intercalated DNA can be effectively released from the ternary nanocomposites at pHs higher than 6.5, and the released DNA displayed a similar CD spectrum to that of free DNA. The current research displays the promising potential to obtain a non-viral gene vector by intercalating DNA into negatively charged inorganic layered materials in the presence of a positively charged intermediary.

  11. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  12. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  13. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  14. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  15. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  16. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  17. Hoe hard is DNA bewijs? : Internationaal vergelijkend onderzoek naar de interpretatie van DNA-profielen.

    NARCIS (Netherlands)

    Malsch, Marijke; de Keijser, Jan; Luining, Egge; Weulen Kranenbarg, Marleen; Lenssen, Dominique

    2016-01-01

    DNA-bewijs geldt als ‘hard’: over de conclusies zou weinig discussie mogelijk zijn. Door nieuwe technologieën worden tegenwoordig echter vaker DNA-mengprofielen en onvolledige profielen verkregen. Deze zijn veel minder eenduidig dan volledige DNA-profielen. Op verzoek schreven DNA-deskundigen uit

  18. Value of circulating DNA concentration and integrity as a screening ...

    African Journals Online (AJOL)

    Ebtsam R. Zaher

    2012-07-17

    Jul 17, 2012 ... c Cancer Research and Management Department, Medical Research Institute, Alexandria University, Egypt .... spectrum of DNA fragments with different strand lengths, ...... stem cells and cancer metastasis: state of the issue.

  19. Charge-transfer interactions of Cr species with DNA.

    Science.gov (United States)

    Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria

    2017-10-01

    Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differentiation of Actinobacillus pleuropneumoniae strains by sequence analysis of 16S rDNA and ribosomal intergenic regions, and development of a species specific oligonucleotide for in situ detection

    DEFF Research Database (Denmark)

    Fussing, Vivian; Paster, Bruce J.; Dewhirst, Floyd E.

    1998-01-01

    . The larger RIS's were different between the 3 species tested. The sequence of the 16S ribosomal gene was determined for 8 serotypes of A. pleuropneumoniae. These sequences showed only minor base differences, indicating a close genetic relatedness of these serotypes within the species. An oligonucleotide DNA...... probe designed from the 16S rRNA gene sequence of A. pleuropneumoniae was specific for all strains of the target species and did not cross react with A. lignieresii, the closest known relative of A. pleuropneumoniae. This species-specific DNA probe labeled with fluorescein was used for in situ......The aims of this study were to characterize and determine intraspecies and interspecies relatedness of Actinobacillus pleuropneumoniae to Actinobacillus lignieresii and Actinobacillus suis by sequence analysis of the ribosomal operon and to find a species-specific area for in situ detection of A...

  1. Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter

    Directory of Open Access Journals (Sweden)

    Makoto Komiyama

    2013-02-01

    Full Text Available DNA manipulations using a completely chemistry-based DNA cutter (ARCUT have been reviewed. This cutter, recently developed by the authors, is composed of Ce(IV/EDTA complex and two strands of pseudo-complementary peptide nucleic acid. The site-selective scission proceeds via hydrolysis of targeted phosphodiester linkages, so that the resultant scission fragments can be easily ligated with other fragments by using DNA ligase. Importantly, scission-site and site-specificity of the cutter are freely tuned in terms of the Watson–Crick rule. Thus, when one should like to manipulate DNA according to the need, he or she does not have to think about (1 whether appropriate “restriction enzyme sites” exist near the manipulation site and (2 whether the site-specificity of the restriction enzymes, if any, are sufficient to cut only the aimed position without chopping the DNA at non-targeted sites. Even the human genome can be manipulated, since ARCUT can cut the genome at only one predetermined site. Furthermore, the cutter is useful to promote homologous recombination in human cells, converting a site to desired sequence. The ARCUT-based DNA manipulation should be promising for versatile applications.

  2. Decoding DNA labels by melting curve analysis using real-time PCR.

    Science.gov (United States)

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  3. Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Katarina Znidar

    2016-01-01

    Full Text Available In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFNβ mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16.F10 cells in culture, IFNβ mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI, DEAD (Asp-Glu-Ala-Asp box polypeptide 60 (DDX60, and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16.F10 cells, inducing effects in vitro and potentially in vivo.

  4. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods

    Directory of Open Access Journals (Sweden)

    Sedlackova Tatiana

    2013-02-01

    Full Text Available Abstract Background Specific applications and modern technologies, like non-invasive prenatal testing, non-invasive cancer diagnostic and next generation sequencing, are currently in the focus of researchers worldwide. These have common characteristics in use of highly fragmented DNA molecules for analysis. Hence, for the performance of molecular methods, DNA concentration is a crucial parameter; we compared the influence of different levels of DNA fragmentation on the accuracy of DNA concentration measurements. Results In our comparison, the performance of the currently most commonly used methods for DNA concentration measurement (spectrophotometric, fluorometric and qPCR based were tested on artificially fragmented DNA samples. In our comparison, unfragmented and three specifically fragmented DNA samples were used. According to our results, the level of fragmentation did not influence the accuracy of spectrophotometric measurements of DNA concentration, while other methods, fluorometric as well as qPCR-based, were significantly influenced and a decrease in measured concentration was observed with more intensive DNA fragmentation. Conclusions Our study has confirmed that the level of fragmentation of DNA has significant impact on accuracy of DNA concentration measurement with two of three mostly used methods (PicoGreen and qPCR. Only spectrophotometric measurement was not influenced by the level of fragmentation, but sensitivity of this method was lowest among the three tested. Therefore if it is possible the DNA quantification should be performed with use of equally fragmented control DNA.

  5. Complex DNA structures and structures of DNA complexes

    International Nuclear Information System (INIS)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-01-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe 1 H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful

  6. Complex DNA structures and structures of DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  7. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting

    NARCIS (Netherlands)

    van Keulen, G; Meijer, WG

    Methods used to date for the isolation of DNA from polyacrylamide gels are elution based, time-consuming and with low yield in DNA. This paper describes an improved system employing polyacrylamide gels made of a meltable matrix. The new system was successfully applied to in situ DNA footprinting

  8. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    Science.gov (United States)

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  9. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  10. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  11. Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations.

    Science.gov (United States)

    Martin, Michael D; Jay, Flora; Castellano, Sergi; Slatkin, Montgomery

    2017-08-01

    We develop and evaluate methods for inferring relatedness among individuals from low-coverage DNA sequences of their genomes, with particular emphasis on sequences obtained from fossil remains. We suggest the major factors complicating the determination of relatedness among ancient individuals are sequencing depth, the number of overlapping sites, the sequencing error rate and the presence of contamination from present-day genetic sources. We develop a theoretical model that facilitates the exploration of these factors and their relative effects, via measurement of pairwise genetic distances, without calling genotypes, and determine the power to infer relatedness under various scenarios of varying sequencing depth, present-day contamination and sequencing error. The model is validated by a simulation study as well as the analysis of aligned sequences from present-day human genomes. We then apply the method to the recently published genome sequences of ancient Europeans, developing a statistical treatment to determine confidence in assigned relatedness that is, in some cases, more precise than previously reported. As the majority of ancient specimens are from animals, this method would be applicable to investigate kinship in nonhuman remains. The developed software grups (Genetic Relatedness Using Pedigree Simulations) is implemented in Python and freely available. © 2017 John Wiley & Sons Ltd.

  12. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  13. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  14. Investigation of DNA Integration into Reproductive Organs Following Intramuscular Injection of DNA in Mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Vahedi

    2012-10-01

    Full Text Available Background: DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host genome, and elicitation of adverse immune responses. Methods: In this study, we examined the potential integration and bio-distribution of pcDNA3.1+PA, a new vaccine candidate with GenBank accession # EF550208, encoding the PA63 gene, in reproductive organs of mice; ovaries and uterus in female, and testis in male. Animals of both sexes were injected intramuscularly with pcDNA3.1+PA. Host genome integration and tissue distribution were examined using PCR and RT-PCR two times monthly for six months. Results: RT-PCR confirmed that pcDNA3.1+PA was not integrated into the host genome and did not enter reproductive organs. Conclusions: This finding has important implications for the use of pcDNA3.1+PA plasmid as a vaccine and opens new perspectives in the DNA vaccine area.

  15. DNA damage induced by the direct effect of He ion particles

    International Nuclear Information System (INIS)

    Urushibara, A.; Shikazono, N.; Watanabe, R.; Fujii, K.; O'Neill, P.; Yokoya, A.

    2006-01-01

    We present here evidence showing that the yields of DNA lesions induced by He 2+ ions strongly depend on Linear energy transfer (LET). In this study, hydrated plasmid DNA was irradiated with He 2+ ions with LET values of 19, 63 and 95 keVμm -1 . The yields of prompt single-strand breaks (SSBs) are very similar at the varying LET values, whereas the yields of prompt double-strand breaks (DSBs) increase with increasing LET. Further, base lesions were revealed as additional strand breaks by post-irradiation treatment of the DNA with endonuclease III (Nth) and formamido-pyrimidine-DNA glycosylase (Fpg). The reduction in the yield of these enzymatically induced SSBs and DSBs becomes significant as the LET increases. These results suggest that the clustering of DNA lesions becomes more probable in regions of high LET. (authors)

  16. DNA methylation results depend on DNA integrity – role of post mortem interval

    Directory of Open Access Journals (Sweden)

    Mathias eRhein

    2015-05-01

    Full Text Available Major questions of neurological and psychiatric mechanisms involve the brain functions on a molecular level and cannot be easily addressed due to limitations in access to tissue samples. Post mortem studies are able to partly bridge the gap between brain tissue research retrieved from animal trials and the information derived from peripheral analysis (e.g. measurements in blood cells in patients. Here, we wanted to know how fast DNA degradation is progressing under controlled conditions in order to define thresholds for tissue quality to be used in respective trials. Our focus was on the applicability of partly degraded samples for bisulfite sequencing and the determination of simple means to define cut-off values.After opening the brain cavity, we kept two consecutive pig skulls at ambient temperature (19-21°C and removed cortex tissue up to a post mortem interval (PMI of 120h. We calculated the percentage of degradation on DNA gel electrophoresis of brain DNA to estimate quality and relate this estimation spectrum to the quality of human post-mortem control samples. Functional DNA quality was investigated by bisulfite sequencing of two functionally relevant genes for either the serotonin receptor 5 (SLC6A4 or aldehyde dehydrogenase 2 (ALDH2.Testing our approach in a heterogeneous collective of human blood and brain samples, we demonstrate integrity of measurement quality below the threshold of 72h PMI.While sequencing technically worked for all timepoints irrespective of conceivable DNA degradation, there is a good correlation between variance of methylation to degradation levels documented in the gel (R2=0.4311, p=0.0392 for advancing post mortem intervals (PMI. This otherwise elusive phenomenon is an important prerequisite for the interpretation and evaluation of samples prior to in-depth processing via an affordable and easy assay to estimate identical sample quality and thereby comparable methylation measurements.

  17. The importance of pKa in an analysis of the interaction of compounds with DNA.

    Science.gov (United States)

    Saha, Mouli; Nandy, Promita; Chakraborty, Mousumi; Das, Piyal; Das, Saurabh

    2018-05-01

    pK a of a compound is crucial for determining the contributions of different forms of it towards overall binding with DNA. Hence it is important to use correct pK a values in DNA interaction studies. This study takes a look at the importance of pK a values to realize binding of compounds with DNA. Since pK a of a compound determined in the presence of DNA is quite different from that determined in its absence hence, presence of different forms of a compound during interaction with DNA is different from that realized if the determination of pK a is done in normal aqueous solution in absence of DNA. Hence, calculations determining contributions of different forms of a compound interacting with DNA are affected accordingly. Two simple analogues of anthracyclines, alizarin and purpurin, were used to investigate the influence DNA has on pK a values. Indeed, they were different in presence of DNA than when determined in normal aqueous solution. pK a1 for alizarin and purpurin determined in the absence and presence of calf thymus DNA were used in equations that determine contributions of two forms (neutral and anionic) towards overall binding with DNA. The study concludes that correct pK a values, determined correctly i.e. under appropriate conditions, must be used for DNA binding experiments to evaluate contributions of individual forms. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    Science.gov (United States)

    Cline, J; Braman, J C; Hogrefe, H H

    1996-09-15

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.

  19. Clearance of a monoclonal anti-DNA antibody following administration of DNA in normal and autoimmune mice

    International Nuclear Information System (INIS)

    Jones, F.S.; Pisetsky, D.S.; Kurlander, R.J.

    1986-01-01

    To study the assembly of DNA-anti-DNA complexes in vivo, we have measured the clearance from blood and organ localization of a murine IgG2a monoclonal anti-DNA antibody, called 6/0, following the infusion of DNA intravenously or intraperitoneally. Intraperitoneal DNA caused a profound acceleration of 6/0 anti-DNA clearance that was dose dependent and demonstrable after the infusion of as little as 1.9 microgram per gram of body weight of single-stranded DNA. The antibody was cleared primarily in the liver without increased deposition in the kidney. Intraperitoneal infusions of DNA also accelerated the clearance of 6/0 in autoimmune MRL-lpr/lpr mice. In contrast, intravenous DNA given in comparable doses caused only a slight increase in 6/0 antibody clearance; this accelerated clearance was seen only at low antigen doses and only during the first 10 min following DNA infusion. Using double-radiolabeling techniques, 6/0 and Cl.18, an IgG2ak myeloma protein without anti-DNA activity, were found to disappear from blood at a comparable rate in both B6D2 mice and MRL-lpr/lpr mice. These results suggest that the DNA-anti-DNA immune complexes can form in vivo but that this process is profoundly affected by the manner in which DNA enters the circulation. In addition, the results suggest that DNA-dependent clearance is not a major pathway for anti-DNA metabolism in normal or at least one strain of autoimmune mice

  20. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    Science.gov (United States)

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues

  1. Vitamin C for DNA damage prevention

    International Nuclear Information System (INIS)

    Sram, Radim J.; Binkova, Blanka; Rossner, Pavel

    2012-01-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2′-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  2. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  3. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  4. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  5. Antibodies to UV irradiated DNA: the monitoring of DNA damage by ELISA and indirect immunofluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wani, A A; Gibson-D' Ambrosio, R E; D' Ambrosio, S M [Ohio State Univ., Columbus (USA). Dept. of Radiology

    1984-10-01

    The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC). Fifty per cent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody, whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the UV dose to DNA and the concentration of antigen immobilized on the plate. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establishes that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated cells.

  6. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    Science.gov (United States)

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited

  7. EBV DNA polymerase inhibition of tannins from Eugenia uniflora.

    Science.gov (United States)

    Lee, M H; Chiou, J F; Yen, K Y; Yang, L L

    2000-06-30

    Nasopharyngeal carcinoma (NPC) is one of the high population malignant tumors among Chinese in southern China and southeast Asia. Epstein-Barr virus (EBV) is a human B lymphotropic herpes virus which is known to be closely associated with NPC. EBV DNA polymerase is a key enzyme during EBV replication and is measured by its radioactivity. The addition of phorbol 12-myristate 13-acetate to Raji cell cultures led to a large increase in EBV DNA polymerase, which was purified by sequential DEAE-cellulose, phosphocellulose and DNA-cellulose column chromatography. Four tannins were isolated from the active fractions of Eugenia uniflora L., which were tested for the inhibition of EBV DNA polymerase. The results showed the 50% inhibitory concentration (IC(50)) values of gallocatechin, oenothein B, eugeniflorins D(1) and D(2) were 26.5 62.3, 3.0 and 3.5 microM, respectively. Furthermore, when compared with the positive control (phosphonoacetic acid), an inhibitor of EBV replication, the IC(50) value was 16.4 microM. In view of the results, eugeniflorins D(1) and D(2) are the potency principles in the inhibition of EBV DNA polymerase from E. uniflora.

  8. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  9. Fluorescence Microscopy of Nanochannel-Confined DNA.

    Science.gov (United States)

    Westerlund, Fredrik; Persson, Fredrik; Fritzsche, Joachim; Beech, Jason P; Tegenfeldt, Jonas O

    2018-01-01

    Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

  10. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage

    Science.gov (United States)

    Lebedeva, Natalya Sh.; Yurina, Elena S.; Gubarev, Yury A.; Syrbu, Sergey A.

    2018-06-01

    The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3‧,3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4‧,4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).

  11. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  12. Supercoil Formation During DNA Melting

    Science.gov (United States)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  13. Comparison of five DNA quantification methods

    DEFF Research Database (Denmark)

    Nielsen, Karsten; Mogensen, Helle Smidt; Hedman, Johannes

    2008-01-01

    Six commercial preparations of human genomic DNA were quantified using five quantification methods: UV spectrometry, SYBR-Green dye staining, slot blot hybridization with the probe D17Z1, Quantifiler Human DNA Quantification kit and RB1 rt-PCR. All methods measured higher DNA concentrations than...... Quantification kit in two experiments. The measured DNA concentrations with Quantifiler were 125 and 160% higher than expected based on the manufacturers' information. When the Quantifiler human DNA standard (Raji cell line) was replaced by the commercial human DNA preparation G147A (Promega) to generate the DNA...... standard curve in the Quantifiler Human DNA Quantification kit, the DNA quantification results of the human DNA preparations were 31% higher than expected based on the manufacturers' information. The results indicate a calibration problem with the Quantifiler human DNA standard for its use...

  14. DNA in the Criminal Justice System: The DNA Success Story in Perspective.

    Science.gov (United States)

    Mapes, Anna A; Kloosterman, Ate D; de Poot, Christianne J

    2015-07-01

    Current figures on the efficiency of DNA as an investigative tool in criminal investigations only tell part of the story. To get the DNA success story in the right perspective, we examined all forensic reports from serious (N = 116) and high-volume crime cases (N = 2791) over the year 2011 from one police region in the Netherlands. These data show that 38% of analyzed serious crime traces (N = 384) and 17% of analyzed high-volume crime traces (N = 386) did not result in a DNA profile. Turnaround times (from crime scene to DNA report) were 66 days for traces from serious crimes and 44 days for traces from high-volume crimes. Suspects were truly identified through a match with the Offender DNA database of the Netherlands in 3% of the serious crime cases and in 1% of the high-volume crime cases. These data are important for both the forensic laboratory and the professionals in the criminal justice system to further optimize forensic DNA testing as an investigative tool. © 2015 American Academy of Forensic Sciences.

  15. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  16. DNA-Controlled Assembly of Soft Nanoparticles

    DEFF Research Database (Denmark)

    Vogel, Stefan

    2015-01-01

    This book covers the emerging topic of DNA nanotechnology and DNA supramolecular chemistry in its broader sense. By taking DNA out of its biological role, this biomolecule has become a very versatile building block in materials chemistry, supramolecular chemistry and bio-nanotechnology. Many nove......-covalent systems, DNA origami, DNA based switches, DNA machines, and alternative structures and templates. This broad coverage is very appealing since it combines both the synthesis of modified DNA as well as designer concepts to successfully plan and make DNA nanostructures....

  17. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  18. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism

    Science.gov (United States)

    Gubaev, Airat; Weidlich, Daniela; Klostermeier, Dagmar

    2016-01-01

    The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors. PMID:27557712

  19. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  20. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  1. DNA Profiling of Convicted Offender Samples for the Combined DNA Index System

    Science.gov (United States)

    Millard, Julie T

    2011-01-01

    The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…

  2. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  3. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    Science.gov (United States)

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  4. Evaluation of FTA ® paper for storage of oral meta-genomic DNA.

    Science.gov (United States)

    Foitzik, Magdalena; Stumpp, Sascha N; Grischke, Jasmin; Eberhard, Jörg; Stiesch, Meike

    2014-10-01

    The purpose of the present study was to evaluate the short-term storage of meta-genomic DNA from native oral biofilms on FTA(®) paper. Thirteen volunteers of both sexes received an acrylic splint for intraoral biofilm formation over a period of 48 hours. The biofilms were collected, resuspended in phosphate-buffered saline, and either stored on FTA(®) paper or directly processed by standard laboratory DNA extraction. The nucleic acid extraction efficiencies were evaluated by 16S rDNA targeted SSCP fingerprinting. The acquired banding pattern of FTA-derived meta-genomic DNA was compared to a standard DNA preparation protocol. Sensitivity and positive predictive values were calculated. The volunteers showed inter-individual differences in their bacterial species composition. A total of 200 bands were found for both methods and 85% of the banding patterns were equal, representing a sensitivity of 0.941 and a false-negative predictive value of 0.059. Meta-genomic DNA sampling, extraction, and adhesion using FTA(®) paper is a reliable method for storage of microbial DNA for a short period of time.

  5. The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    Nygaard, Anneli Dowler; Garm Spindler, Karen-Lise; Pallisgaard, Niels

    2013-01-01

    BACKGROUND: Lung cancer is one of the most common malignant diseases worldwide and associated with considerable morbidity and mortality. New agents targeting the epidermal growth factor system are emerging, but only a subgroup of the patients will benefit from the therapy. Cell free DNA (cf......DNA) in the blood allows for tumour specific analyses, including KRAS-mutations, and the aim of the study was to investigate the possible prognostic value of plasma mutated KRAS (pmKRAS) in patients with non-small cell lung cancer (NSCLC). MATERIAL AND METHODS: Patients with newly diagnosed, advanced NSCLC eligible....... RESULTS: The study included 246 patients receiving a minimum of 1 treatment cycle, and all but four were evaluable for response according to RECIST. Forty-three patients (17.5%) presented with a KRAS mutation. OS was 8.9 months and PFS by intention to treat 5.4 months. Patients with a detectable plasma...

  6. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    Science.gov (United States)

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  7. Energy required to pinch a DNA plectoneme

    Science.gov (United States)

    Barde, Céline; Destainville, Nicolas; Manghi, Manoel

    2018-03-01

    DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the kBT range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.

  8. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  9. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  10. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  11. DNA Profiles of MTG (Moderat Tahan Gano) Oil Palm Variety Based on SSR Marker

    Science.gov (United States)

    Putri, L. A. P.; Setiado, H.; Hardianti, R.

    2017-03-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. The objectives of this study were to know DNA profile of commercial MTG (Moderat Tahan Gano) oil palm variety collections. A total of 10 trees MTG oil palm variety were used for analysis. In this experiment, the DNA profile diversity was assessed using mEgCIR0174 and SSR-1 loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 alleles of pcr product of mEgCIR0174 (198, 203 and 208 bp) and SSR-1 (201, 217 and 232 bp). These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of MTG (Moderat Tahan Gano) oil palm variety derived from different crossing or difference to desease resistance trait or misslabeled.

  12. Reaction of misonidazole with DNA radicals and its effect on the template activity of DNA

    International Nuclear Information System (INIS)

    Endoh, Daiji; Kuwabara, Mikinori; Sato, Fumiaki; Yoshii, Giichi.

    1985-01-01

    After calf thymus DNA was gamma-irradiated in the solid state in vacuo and subsequently dissolved in aqueous solution containing misonidazole (3 mM) under hypoxic condition, the frequency of single-strand breaks and alkali-labile sites in DNA and the amount of misonidazole bound to DNA were measured. The presence of misonidazole converted the precursor radicals, which otherwise results in single-strand breaks, to alkali-labile sites, and the amount of alkali-labile sites increased linearly with increasing radiation dose. The amount of misonidazole bound to DNA also increased linearly with increasing radiation dose. The biological meaning of the changes in the frequency of single-strand breaks and alkali-labile sites by the reaction of misonidazole with DNA radicals and of binding misonidazole with DNA was examined using a model system to measure the template activity of DNA for RNA synthesis in vitro. The conversion of DNA radicals to alkali-labile sites protected the radiation-induced decrease in the template activity of DNA, while the adduct formation of misonidazole had no effect on it. (author)

  13. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  14. DNA nanotechnology: a future perspective

    Science.gov (United States)

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  15. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Kuo, Hsiao-Ping

    2008-03-01

    Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with Bacillus amyloliquefaciens BCRC 11601(T) and Bacillus velezensis BCRC 17467(T). This strain was previously identified as B. amyloliquefaciens, based on DNA-DNA hybridization, but its DNA relatedness value with B. velezensis BCRC 17467(T) was 89 %. To investigate the relatedness of strain BCRC 14193, B. amyloliquefaciens and B. velezensis, the partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) was determined. B. velezensis BCRC 17467(T) shared high gyrB gene sequence similarity with B. amyloliquefaciens BCRC 14193 (98.4 %) and all of the B. amyloliquefaciens strains available (95.5-95.6 %). DNA-DNA hybridization experiments revealed high relatedness values between B. velezensis BCRC 17467(T) and B. amyloliquefaciens BCRC 11601(T) (74 %) and the B. amyloliquefaciens reference strains (74-89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose Bacillus velezensis as a later heterotypic synonym of Bacillus amyloliquefaciens.

  16. DNA Origami: Folded DNA-Nanodevices That Can Direct and Interpret Cell Behavior

    Science.gov (United States)

    Kearney, Cathal J.; Lucas, Christopher R.; O'Brien, Fergal J.; Castro, Carlos E.

    2016-01-01

    DNA origami is a DNA-based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2-D and 3-D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargos including drugs, antibodies, nucleic acid sequences, small molecules and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing and synthetic nanopore formation. In this Progress Report, we will review the advances in the DNA origami field since its inception several years ago and then focus on how these DNA-nanodevices can be designed to interact with cells to direct or probe their behavior. PMID:26840503

  17. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species.

    Science.gov (United States)

    Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V

    2017-07-21

    DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.

  18. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  19. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    International Nuclear Information System (INIS)

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  20. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders.

    Science.gov (United States)

    Andreeva, Liudmila; Hiller, Björn; Kostrewa, Dirk; Lässig, Charlotte; de Oliveira Mann, Carina C; Jan Drexler, David; Maiser, Andreas; Gaidt, Moritz; Leonhardt, Heinrich; Hornung, Veit; Hopfner, Karl-Peter

    2017-09-21

    Cytosolic DNA arising from intracellular pathogens triggers a powerful innate immune response. It is sensed by cyclic GMP-AMP synthase (cGAS), which elicits the production of type I interferons by generating the second messenger 2'3'-cyclic-GMP-AMP (cGAMP). Endogenous nuclear or mitochondrial DNA can also be sensed by cGAS under certain conditions, resulting in sterile inflammation. The cGAS dimer binds two DNA ligands shorter than 20 base pairs side-by-side, but 20-base-pair DNA fails to activate cGAS in vivo and is a poor activator in vitro. Here we show that cGAS is activated in a strongly DNA length-dependent manner both in vitro and in human cells. We also show that cGAS dimers form ladder-like networks with DNA, leading to cooperative sensing of DNA length: assembly of the pioneering cGAS dimer between two DNA molecules is ineffective; but, once formed, it prearranges the flanking DNA to promote binding of subsequent cGAS dimers. Remarkably, bacterial and mitochondrial nucleoid proteins HU and mitochondrial transcription factor A (TFAM), as well as high-mobility group box 1 protein (HMGB1), can strongly stimulate long DNA sensing by cGAS. U-turns and bends in DNA induced by these proteins pre-structure DNA to nucleate cGAS dimers. Our results suggest a nucleation-cooperativity-based mechanism for sensitive detection of mitochondrial DNA and pathogen genomes, and identify HMGB/TFAM proteins as DNA-structuring host factors. They provide an explanation for the peculiar cGAS dimer structure and suggest that cGAS preferentially binds incomplete nucleoid-like structures or bent DNA.

  1. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase

    International Nuclear Information System (INIS)

    Heller, E.P.; Goldthwait, D.A.

    1983-01-01

    Oligonucleosomes were isolated from [ 14 C]thymidine-labeled HeLa cells by digestion of the nuclei with micrococcal nuclease and were then alkylated with [ 3 H]methylnitrosourea. Nucleosome core particles were also prepared by further digestion of the oligonucleosomes. The distribution of 3 H-labeled methyl groups in the linker versus the core DNA was established by a determination of 3 H: 14 C ratios in oligonucleosome and core DNA. The ratios in the core DNA of 145 and 165 base pair DNA fragments were 5.2 and 5.4, respectively, while the ratio in the oligonucleosomal DNA was 8.2. Assuming an equal mixture (as determined) of 145 and 165 base pair fragments of DNA in the 185 base pair repeat, the relative concentration of 3 H methyl groups in the linker versus the core DNA was 4.2. Thus, 45% of the 3 H methyl groups were in the linker DNA, and 55% were in the core DNA. Some shielding of the DNA was evident during alkylation. The concentrations of alkyl groups on the linker and core DNA were 67 and 12% of that found on free DNA alkylated under comparable conditions. No evidence for preferential shielding of the major or minor groove was observed. The purified 3-methyladenine DNA glycosylase I of Escherichia coli released approximately 37% of the 3-methyladenine from the linker DNA and 13% from the core DNA. The limited enzymatic removal of 3-methyladenine in vitro compared to the efficient removal in vivo suggests that conformational changes of the oligonucleosome and core structure must occur for total repair

  2. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    DNA and TM values may provide the information about the human organism’s cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly – at survival of the cells, including the cells with the damaged DNA.

  3. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. Copyright © 2015. Published by Elsevier B.V.

  4. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  5. DNA: Structure and function

    DEFF Research Database (Denmark)

    Sinden, Richard R.; E. Pearson, Christopher; N. Potaman, Vladimir

    1998-01-01

    This chapter discusses the structure and function of DNA. DNA occupies a critical role in cells, because it is the source of all intrinsic genetic information. Chemically, DNA is a very stable molecule, a characteristic important for a macromolecule that may have to persist in an intact form...

  6. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  7. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}.

    Science.gov (United States)

    Suzuki, Motoshi; Niimi, Atsuko; Limsirichaikul, Siripan; Tomida, Shuta; Miao Huang, Qin; Izuta, Shunji; Usukura, Jiro; Itoh, Yasutomo; Hishida, Takashi; Akashi, Tomohiro; Nakagawa, Yoshiyuki; Kikuchi, Akihiko; Pavlov, Youri; Murate, Takashi; Takahashi, Takashi

    2009-07-01

    Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.

  8. DNA Nanotechnology for Cancer Therapy

    Science.gov (United States)

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  9. Action of some drugs on enzymes involved in DNA-repair and semiconservative DNA-synthesis

    International Nuclear Information System (INIS)

    Wawra, E.; Klein, W.; Kocsis, F.; Weniger, P.

    1975-07-01

    Different antirheumatic and cytostatic drugs had been tested by measurement of the thymidine incorporation into DNA of spleen cells under conditions, under which either DNA-synthesis or repair after gamma- or UV-irradiation takes place. There are substances, which inhibit either only the semiconservative DNA-synthesis (vinblastine, isonicotinic acid hydracide) or only DNA-repair after gamma-irradiation (mixture of penicillin-G and procaine-penicillin-G) or both (cyclophosphamide, phenylbutazone, procarbazine, nalidixic acid). Vincristine shows no effect on the thymidine incorporation in DNA, but by density gradient centrifugation it has been found that it influences the ligase reaction. Two DNA polymerases had been isolated from spleen cells, one of the low molecular and one of the high molecular weight type. The influences of the described drugs on these enzymes and on a deoxyribonuclease I from beef pancreas have been tested in ''in vitro'' systems. In all cases, it has been found that there is no effect or only a very small one, compared with the action of well known inhibitors as e.g. ethidium bromide and p-chloromercuribenzoate, and this cannot be responsible for the suppressions found in DNA-repair and semiconservative DNA-synthesis. (author)

  10. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1985-07-01

    Radiation damage to DNA results from the direct interaction of radiation with DNA where positive ions, electrons and excited states are formed in the DNA, and the indirect effect where radical species formed in the surrounding medium by the radiation attack the DNA. The primary mechanism proposed for radiation damage, by the direct effect, is that positive and negative ions formed within the DNA strand migrate through the stacked DNA bases. The ions can then recombine, react with the DNA bases most likely to react by protonation of the anion and deprotonation or hydroxylation of the cation or transfer out of the DNA chain to the surrounding histone protein. This work as aimed at understanding the possible reactions of the DNA base ion radicals, as well as their initial distribution in the DNA strand. 31 refs

  11. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  12. Properties of an endonuclease activity in Micrococcus luteus acting on γ-irradiated DNA and on apurinic DNA

    International Nuclear Information System (INIS)

    Schaefer, G.; Haas, P.; Coquerelle, Th.; Hagen, U.

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against γ-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against γ-irradiated DNA was stimulated five-fold with 5 mM Mg ++ , whereas that against apurinic sites was less dependent on the Mg ++ concentration. 100 mM KCl inhibited the γ-ray endonuclease, but not the apurinic endonuclease activity. In γ-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM. (author)

  13. The effects of indium-111 decay on pBR322 DNA

    International Nuclear Information System (INIS)

    Sahu, S.K.; Adelstein, S.J.; Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.

    1995-01-01

    We have compared the effectiveness in causing DNA strand breaks of 111 In bound to DNA or free in aqueous solution with that of γ rays. Supercoiled DNA from pBR322 plasmid labeled with [ 3 H]thymidine was purified and mixed with 111 InCl 3 in the absence of presence of diethylenetriaminepentaacetic dianhydride (DTPA), a metal chelator which prevents the binding of indium to DNA. The reaction mixtures were stored at 4 degrees C to accumulate radiation dose from the decay of 111 In. The DNA was then resolved by gel electrophoresis into supercoiled, nicked circular and linear forms, representing undamaged DNA, single-strand breaks (SSBs) and double-strand breaks (DSBs), respectively. The D o values of pBR322 DNA exposed to γ radiation from an external 137 Cs source and the decay of 111 In dispersed in solution (+DTPA) are 3.1 ± 0.1 and 2.8 ± 0.1 Gy, respectively. In terms of accumulated 111 In disintegrations cm -3 of plasmid DNA solution, the D o value is 15.3 (± 0.7) x 10 10 disintegrations in the absence of DTPA and 38.2 (± 1.1) x 10 10 disintegrations in its presence. Since only 14.6 ± 5% of the 111 In was bound to DNA in the absence of DTPA, an effective D o for bound 111 In of 3.4 (± 1.1) x 10 10 disintegrations is obtained. The 11-fold (range 9- to 17-fold) increased effectiveness of this Auger electron emitter when in proximity to DNA appears to be due mainly to the higher yield of SSBs. 34 refs., 4 figs., 3 tabs

  14. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    Science.gov (United States)

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-04-07

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells

  16. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    Directory of Open Access Journals (Sweden)

    Felipe Merino

    2015-06-01

    Full Text Available Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  17. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  18. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  19. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  20. Molecular DNA Analysis in Forensic Identification.

    Science.gov (United States)

    Dumache, Raluca; Ciocan, Veronica; Muresan, Camelia; Enache, Alexandra

    2016-01-01

    Serological and biochemical identification methods used in forensics have several major disadvantages, such as: long time in processing biological sample and lack of sensitivity and specificity. In the last 30 years, DNA molecular analysis has become an important tool in forensic investigations. DNA profiling is based on the short tandem repeats (STR) and aids in human identification from biological samples. Forensic genetics, can provide information on the events which occurred at the crime scene or to supplement other methods of forensic identification. Currently, the methods used in identification are based on polymerase chain reaction (PCR) analyses. This method analyses the autosomal STRs, the Y-chromosome, and the mitochondrial DNA. Correlation of biological samples present at the crime scene with identification, selection, and the probative value factor is therefore the first aspect to be taken into consideration in the forensic genetic analysis. In the last decade, because of the advances in the field of molecular biology, new biomarkers such as: microRNAs (miR), messenger RNA (mRNA), and DNA methylation have been studied and proposed to be used in the forensic identifications of body fluids.

  1. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  2. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  3. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  4. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida

    International Nuclear Information System (INIS)

    Sidorenko, Julia; Jatsenko, Tatjana; Saumaa, Signe; Teras, Riho; Tark-Dame, Mariliis; Horak, Rita; Kivisaar, Maia

    2011-01-01

    The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif r mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.

  5. Genomic signal processing for DNA sequence clustering.

    Science.gov (United States)

    Mendizabal-Ruiz, Gerardo; Román-Godínez, Israel; Torres-Ramos, Sulema; Salido-Ruiz, Ricardo A; Vélez-Pérez, Hugo; Morales, J Alejandro

    2018-01-01

    Genomic signal processing (GSP) methods which convert DNA data to numerical values have recently been proposed, which would offer the opportunity of employing existing digital signal processing methods for genomic data. One of the most used methods for exploring data is cluster analysis which refers to the unsupervised classification of patterns in data. In this paper, we propose a novel approach for performing cluster analysis of DNA sequences that is based on the use of GSP methods and the K-means algorithm. We also propose a visualization method that facilitates the easy inspection and analysis of the results and possible hidden behaviors. Our results support the feasibility of employing the proposed method to find and easily visualize interesting features of sets of DNA data.

  6. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  7. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  8. Radiation-induced electron migration along DNA

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-04-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to nonrandom types of damage along DNA manifested distal to the sites of the initial energy deposition. Electron migration along DNA is significantly influenced by the DNA base sequence and DNA conformation. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along DNA. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation

  9. Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles

    Directory of Open Access Journals (Sweden)

    Greta Zubaite

    2017-02-01

    Full Text Available Protein expression in vitro has broad applications in directed evolution, synthetic biology, proteomics and drug screening. However, most of the in vitro expression systems rely on relatively high DNA template concentrations to obtain sufficient amounts of proteins, making it harder to perform in vitro screens on gene libraries. Here, we report a technique for the generation of condensed DNA particles that can serve as efficient templates for in vitro gene expression. We apply droplet microfluidics to encapsulate single-DNA molecules in 3-picoliter (pL volume droplets and convert them into 1 μm-sized DNA particles by the multiple displacement amplification reaction driven by phi29 DNA polymerase. In the presence of magnesium ions and inorganic pyrophosphate, the amplified DNA condensed into the crystalline-like particles, making it possible to purify them from the reaction mix by simple centrifugation. Using purified DNA particles, we performed an in vitro transcription-translation reaction and successfully expressed complex enzyme β-galactosidase in droplets and in the 384-well format. The yield of protein obtained from DNA particles was significantly higher than from the corresponding amount of free DNA templates, thus opening new possibilities for high throughput screening applications.

  10. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.

    Science.gov (United States)

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-07-26

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.

  11. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    OpenAIRE

    Leem, S H; Ropp, P A; Sugino, A

    1994-01-01

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in ...

  12. Counting DNA: estimating the complexity of a test tube of DNA.

    Science.gov (United States)

    Faulhammer, D; Lipton, R J; Landweber, L F

    1999-10-01

    We consider the problem of estimation of the 'complexity' of a test tube of DNA. The complexity of a test tube is the number of different kinds of strands of DNA in the test tube. It is quite easy to estimate the number of total strands in a test tube, especially if the strands are all the same length. Estimation of the complexity is much less clear. We propose a simple kind of DNA computation that can estimate the complexity.

  13. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Monophosphate end groups produced in radiation induced strand breakage in DNA

    International Nuclear Information System (INIS)

    Kay, E.; Ward, J.F.

    1976-01-01

    A solution of DNA was gamma-irradiated and treated with monophosphatase for studies on the amount of inorganic phosphate released as a function of time. Studies were also conducted on: effect of alkali on yield of monophosphate end groups; induction of DNA strand breaks by treatment with DNAase; initial G values for monophosphate termini; and effect of alkali on radioinduced DNA damage

  15. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  16. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  17. Whose DNA is this?

    DEFF Research Database (Denmark)

    Taroni, Franco; Biedermann, Alex; Vuille, Joëlle

    2013-01-01

    This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during...... evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly...... talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases...

  18. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilizati...

  19. DNA damage by Auger emitters

    International Nuclear Information System (INIS)

    Martin, R.F.; d'Cunha, Glenn; Gibbs, Richard; Murray, Vincent; Pardee, Marshall; Allen, B.J.

    1988-01-01

    125 I atoms can be introduced at specific locations along a defined DNA target molecule, either by site-directed incorporation of an 125 I-labelled deoxynucleotide or by binding of an 125 I-labelled sequence-selective DNA ligand. After allowing accumulation of 125 I decay-induced damage to the DNA, application of DNA sequencing techniques enables positions of strand breaks to be located relative to the site of decay, at a resolution corresponding to the distance between adjacent nucleotides [0.34 nm]. Thus, DNA provides a molecular framework to analyse the extent of damage following [averaged] individual decay events. Results can be compared with energy deposition data generated by computer-simulation methods developed by Charlton et al. The DNA sequencing technique also provides information about the chemical nature of the termini of the DNA chains produced following Auger decay-induced damage. In addition to reviewing the application of this approach to the analysis of 125 I decay induced DNA damage, some more recent results obtained by using 67 Ga are also presented. (author)

  20. Repair of abasic sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, Grigory L.; Sleeth, Kate M.; Dianova, Irina I.; Allinson, Sarah L

    2003-10-29

    Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase {beta} adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase {delta}/{epsilon} and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase {delta}/{epsilon} is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.

  1. GEOGRAPHIC DISTRIBUTION OF MOLECULAR VARIANCE WITHIN THE BLUE MARLIN (MAKAIRA NIGRICANS): A HIERARCHICAL ANALYSIS OF ALLOZYME, SINGLE-COPY NUCLEAR DNA, AND MITOCHONDRIAL DNA MARKERS.

    Science.gov (United States)

    Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E

    1999-04-01

    This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.

  2. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database

    Directory of Open Access Journals (Sweden)

    But Paul

    2010-06-01

    Full Text Available Abstract Background Thousands of plants and animals possess pharmacological properties and there is an increased interest in using these materials for therapy and health maintenance. Efficacies of the application is critically dependent on the use of genuine materials. For time to time, life-threatening poisoning is found because toxic adulterant or substitute is administered. DNA barcoding provides a definitive means of authentication and for conducting molecular systematics studies. Owing to the reduced cost in DNA authentication, the volume of the DNA barcodes produced for medicinal materials is on the rise and necessitates the development of an integrated DNA database. Description We have developed an integrated DNA barcode multimedia information platform- Medicinal Materials DNA Barcode Database (MMDBD for data retrieval and similarity search. MMDBD contains over 1000 species of medicinal materials listed in the Chinese Pharmacopoeia and American Herbal Pharmacopoeia. MMDBD also contains useful information of the medicinal material, including resources, adulterant information, medical parts, photographs, primers used for obtaining the barcodes and key references. MMDBD can be accessed at http://www.cuhk.edu.hk/icm/mmdbd.htm. Conclusions This work provides a centralized medicinal materials DNA barcode database and bioinformatics tools for data storage, analysis and exchange for promoting the identification of medicinal materials. MMDBD has the largest collection of DNA barcodes of medicinal materials and is a useful resource for researchers in conservation, systematic study, forensic and herbal industry.

  3. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  4. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  5. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  6. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  7. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  8. DNA adducts as molecular dosimeters

    International Nuclear Information System (INIS)

    Lucier, G.W.

    1990-01-01

    There is compelling evidence that DNA adducts play an important role in the actions of many pulmonary carcinogens. During the last ten years sensitive methods (antibodies and 32 P-postlabeling) have been developed that permit detection of DNA adducts in tissues of animals or humans exposed to low levels of some genotoxic carcinogens. This capability has led to approaches designed to more reliably estimate the shape of the dose-response curve in the low dose region for a few carcinogens. Moreover, dosimetry comparisions can, in some cases, be made between animals and humans which help in judging the adequacy of animal models for human risk assessments. There are several points that need to be considered in the evaluation of DNA adducts as a molecular dosimeter. For example, DNA adduct formation is only one of many events that are needed for tumor development and some potent carcinogens do not form DNA adducts; i.e., TCDD. Other issues that need to be considered are DNA adduct heterogeneity, DNA repair, relationship of DNA adducts to somatic mutation and cell specificity in DNA adduct formation and persistence. Molecular epidemiology studies often require quantitation of adducts in cells such as lymphocytes which may or may not be reliable surrogates for adduct concentrations in target issues. In summary, accurate quantitation of low levels of DNA adducts may provide data useful in species to species extrapolation of risk including the development of more meaningful human monitoring programs

  9. DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    Full Text Available BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb has only one subunit of HU coded by ORF Rv2986c (hupB gene. One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb and another which expresses only the N terminal region (first 95 amino acid of hupB (HupB(MtbN. Gel retardation assays revealed that HupB(MtbN is almost like E. coli HU (heat stable nucleoid protein in terms of its DNA binding, with a binding constant (K(d for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region of HupB(Mtb imparts greater specificity in DNA binding. HupB(Mtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.

  10. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  11. Cytofluorophotometrical study of the DNA content of the uterine cervical carcinoma and the vaginal epithelium

    International Nuclear Information System (INIS)

    Tokumoto, Yoshiaki

    1987-01-01

    The Feulgen DNA content in cells of uterine cervical carcinoma and that of its adjacent vaginal epithelium were measured by microfluorophotometry. The Feulgen DNA content in cells of uterine cervical carcinoma was increased and showed a greater variation of its DNA values compared with diploid cells. The Feulgen DNA content in cells of normal vaginal epithelium adjacent to cervical carcinoma was also increased compared with diploid cells in 6 out of 8 cases. The relativity between the cellular DNA content of cervical carcinoma and that of its adjacent normal vaginal epithelium was found. In 10 out of 14 cases of uterine cervical carcinoma, the mean value of cellular DNA content was increased after by therapuetic irradiation with 10 Gy. Radiation effects on the DNA content of vaginal epithelial cells were similar to those on the DNA content of carcinoma cells. (author)

  12. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality.

    Science.gov (United States)

    Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders

    2013-07-01

    Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.

  13. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    Directory of Open Access Journals (Sweden)

    Sabrina Schreiner

    2017-05-01

    Full Text Available Chronic hepatitis B virus (HBV infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR, a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

  14. Authentication of forensic DNA samples.

    Science.gov (United States)

    Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon

    2010-02-01

    Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.

  15. Lower sperm DNA fragmentation after r-FSH administration in functional hypogonadotropic hypogonadism.

    Science.gov (United States)

    Ruvolo, Giovanni; Roccheri, Maria Carmela; Brucculeri, Anna Maria; Longobardi, Salvatore; Cittadini, Ettore; Bosco, Liana

    2013-04-01

    An observational clinical and molecular study was designed to evaluate the effects of the administration of recombinant human FSH on sperm DNA fragmentation in men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In the study were included 53 men with a non-classical form of hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia. In all patients, sperm DNA fragmentation index (DFI), assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) in situ DNA nick end-labelling (TUNEL) assay, was evaluated before starting the treatment with 150 IU of recombinant human FSH, given three times a week for at least 3 months. Patients' semen analysis and DNA fragmentation index were re-evaluated after the 3-month treatment period. After recombinant human FSH therapy, we did not find any differences in terms of sperm count, motility and morphology. The average DNA fragmentation index was significantly reduced (21.15 vs 15.2, p15 %), while no significant variation occurred in the patients with DFI values ≤ 15 %. Recombinant human FSH administration improves sperm DNA integrity in hypogonadotropic hypogonadism and idiopathic oligoasthenoteratozoospermia men with DNA fragmentation index value >15 % .

  16. Identity of the xerophilic species Aspergillus penicillioides: Integrated analysis of the genotypic and phenotypic characters.

    Science.gov (United States)

    Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta

    1999-02-01

    We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A

  17. Novel DNA materials and their applications.

    Science.gov (United States)

    Yang, Dayong; Campolongo, Michael J; Nhi Tran, Thua Nguyen; Ruiz, Roanna C H; Kahn, Jason S; Luo, Dan

    2010-01-01

    The last two decades have witnessed the exponential development of DNA as a generic material instead of just a genetic material. The biological function, nanoscale geometry, biocompatibility, biodegradability, and molecular recognition capacity of DNA make it a promising candidate for the construction of novel functional nanomaterials. As a result, DNA has been recognized as one of the most appealing and versatile nanomaterial building blocks. Scientists have used DNA in this way to construct various amazing nanostructures, such as ordered lattices, origami, supramolecular assemblies, and even three-dimensional objects. In addition, DNA has been utilized as a guide and template to direct the assembly of other nanomaterials including nanowires, free-standing membranes, and crystals. Furthermore, DNA can also be used as structural components to construct bulk materials such as DNA hydrogels, demonstrating its ability to behave as a unique polymer. Overall, these novel DNA materials have found applications in various areas in the biomedical field in general, and nanomedicine in particular. In this review, we summarize the development of DNA assemblies, describe the innovative progress of multifunctional and bulk DNA materials, and highlight some real-world nanomedical applications of these DNA materials. We also show our insights throughout this article for the future direction of DNA materials. © 2010 John Wiley & Sons, Inc.

  18. The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA.

    Science.gov (United States)

    Su'etsugu, Masayuki; Harada, Yuji; Keyamura, Kenji; Matsunaga, Chika; Kasho, Kazutoshi; Abe, Yoshito; Ueda, Tadashi; Katayama, Tsutomu

    2013-12-01

    DnaA activity for replication initiation of the Escherichia coli chromosome is negatively regulated by feedback from the DNA-loaded form of the replicase clamp. In this process, called RIDA (regulatory inactivation of DnaA), ATP-bound DnaA transiently assembles into a complex consisting of Hda and the DNA-clamp, which promotes inter-AAA+ domain association between Hda and DnaA and stimulates hydrolysis of DnaA-bound ATP, producing inactive ADP-DnaA. Using a truncated DnaA mutant, we previously demonstrated that the DnaA N-terminal domain is involved in RIDA. However, the precise role of the N-terminal domain in RIDA has remained largely unclear. Here, we used an in vitro reconstituted system to demonstrate that the Asn-44 residue in the N-terminal domain of DnaA is crucial for RIDA but not for replication initiation. Moreover, an assay termed PDAX (pull-down after cross-linking) revealed an unstable interaction between a DnaA-N44A mutant and Hda. In vivo, this mutant exhibited an increase in the cellular level of ATP-bound DnaA. These results establish a model in which interaction between DnaA Asn-44 and Hda stabilizes the association between the AAA+ domains of DnaA and Hda to facilitate DnaA-ATP hydrolysis during RIDA. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  20. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  1. C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein Is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA*

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.

    2009-01-01

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688

  2. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  3. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  4. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering.

    Science.gov (United States)

    Nørholm, Morten H H

    2010-03-16

    The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  5. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  6. DNA-Based Applications in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2010-01-01

    Full Text Available Biological molecules such as deoxyribonucleic acid (DNA have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  7. DNA cards: determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Vidal-Taboada, Jose M; Lafuente, Amalia

    2007-08-01

    As pharmacogenetic studies frequently require establishment of DNA banks containing large cohorts with multi-centric designs, inexpensive methods for collecting and storing high-quality DNA are needed. The aims of this study were two-fold: to compare the amount and quality of DNA obtained from two different DNA cards (IsoCode Cards or FTA Classic Cards, Whatman plc, Brentford, Middlesex, UK); and to evaluate the effects of time and storage temperature, as well as the influence of anticoagulant ethylenediaminetetraacetic acid on the DNA elution procedure. The samples were genotyped by several methods typically used in pharmacogenetic studies: multiplex PCR, PCR-restriction fragment length polymorphism, single nucleotide primer extension, and allelic discrimination assay. In addition, they were amplified by whole genome amplification to increase genomic DNA mass. Time, storage temperature and ethylenediaminetetraacetic acid had no significant effects on either DNA card. This study reveals the importance of drying blood spots prior to isolation to avoid haemoglobin interference. Moreover, our results demonstrate that re-isolation protocols could be applied to increase the amount of DNA recovered. The samples analysed were accurately genotyped with all the methods examined herein. In conclusion, our study shows that both DNA cards, IsoCode Cards and FTA Classic Cards, facilitate genetic and pharmacogenetic testing for routine clinical practice.

  8. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Directory of Open Access Journals (Sweden)

    Masudur Rahman

    2016-10-01

    Full Text Available Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material.

  9. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Science.gov (United States)

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324

  10. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage

    Directory of Open Access Journals (Sweden)

    Carol Coughlan

    2015-01-01

    Full Text Available Evidence is increasing that the integrity of sperm DNA may also be related to implantation failure and recurrent miscarriage (RM. To investigate this, the sperm DNA fragmentation in partners of 35 women with recurrent implantation failure (RIF following in vitro fertilization, 16 women diagnosed with RM and seven recent fathers (control were examined. Sperm were examined pre- and post-density centrifugation by the sperm chromatin dispersion (SCD test and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay. There were no significant differences in the age of either partner or sperm concentration, motility or morphology between three groups. Moreover, there were no obvious differences in sperm DNA fragmentation measured by either test. However, whilst on average sperm DNA fragmentation in all groups was statistically lower in prepared sperm when measured by the SCD test, this was not seen with the results from the TUNEL assay. These results do not support the hypothesis that sperm DNA fragmentation is an important cause of RIF or RM, or that sperm DNA integrity testing has value in such patients. It also highlights significant differences between test methodologies and sperm preparation methods in interpreting the data from sperm DNA fragmentation tests.

  11. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  12. Ethical, Legal and Social Issues in Japan on the Determination of Blood Relationship via DNA Testing.

    Science.gov (United States)

    Toya, Waki

    2017-01-01

    DNA paternity testing has recently become more widely available in Japan. The aim of this paper is to examine the issues surrounding (1) the implementing agency, whether the testing is conducted in a commercial direct-to-consumer (DTC) setting or a judicial non-DTC setting, and (2) the implementation conditions and more specifically the legal capacity of the proband (test subject). Literature research in Japanese and English was conducted. Some countries prohibit commercial DNA testing without the consent of the proband or her or his legally authorized representative. But as in some cases, the results of DTC paternity testing have proven to be unreliable. I propose a complete prohibition of DTC DNA paternity testing in Japan. In many cases of paternity testing, the proband is a minor. This has led to debate about whether proxy consent is sufficient for paternity testing or whether additional safeguards (such as a court order) are required. In cases where commercial DNA testing has been conducted and the test results are produced in court as evidence, the court must judge whether or not to admit these results as evidence. Another important issue is whether or not paternity testing should be legally mandated in certain cases. If we come to the conclusion that DNA test results are the only way to conclusively establish a parent-child relationship, then our society may prioritize even more genetic relatedness over other conceptions of a parent-child relationship. This prioritization could adversely affect families created through assisted reproductive technology (ART), especially in situations where children are not aware of their biological parentage. This paper argues for a complete prohibition of DTC DNA paternity testing in Japan, and highlights that broader ethical and legal deliberation on such genetic services is required.

  13. The proofreading 3'→5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis

    International Nuclear Information System (INIS)

    Khare, Vineeta; Eckert, Kristin A.

    2002-01-01

    The 3'→5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'→5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity

  14. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  15. Properties of an endonuclease activity in Micrococcus luteus acting on. gamma. -irradiated DNA and on apurinic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G; Haas, P; Coquerelle, Th; Hagen, U [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und fuer Toxikologie von Spaltstoffen

    1980-01-01

    A protein fraction from Micrococcus luteus with endonuclease activity against ..gamma..-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against ..gamma..-irradiated DNA was stimulated five-fold with 5 mM Mg/sup + +/, whereas that against apurinic sites was less dependent on the Mg/sup + +/ concentration. 100 mM KCl inhibited the ..gamma..-ray endonuclease, but not the apurinic endonuclease activity. In ..gamma..-irradiated DNA the protein recognized 1.65 endonuclease sensitive sites per radiation-induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The was evaluated resulting in a Ksub(m)-value of 73 nM.

  16. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  17. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  18. Studying DNA Looping by Single-Molecule FRET

    OpenAIRE

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can als...

  19. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  20. A Universal Fast Colorimetric Method for DNA Signal Detection with DNA Strand Displacement and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available DNA or gene signal detection is of great significance in many fields including medical examination, intracellular molecular monitoring, and gene disease signal diagnosis, but detection of DNA or gene signals in a low concentration with instant visual results remains a challenge. In this work, a universal fast and visual colorimetric detection method for DNA signals is proposed. Specifically, a DNA signal amplification “circuit” based on DNA strand displacement is firstly designed to amplify the target DNA signals, and then thiol modified hairpin DNA strands and gold nanoparticles are used to make signal detection results visualized in a colorimetric manner. If the target DNA signal exists, the gold nanoparticles aggregate and settle down with color changing from dark red to grey quickly; otherwise, the gold nanoparticles’ colloids remain stable in dark red. The proposed method provides a novel way to detect quickly DNA or gene signals in low concentrations with instant visual results. When applied in real-life, it may provide a universal colorimetric method for gene disease signal diagnosis.

  1. Origin of DNA in human serum and usefulness of serum as a material for DNA typing.

    Science.gov (United States)

    Takayama, T; Yamada, S; Watanabe, Y; Hirata, K; Nagai, A; Nakamura, I; Bunai, Y; Ohya, I

    2001-06-01

    The aims of this study were to clarify the origin of DNA in human serum and to investigate whether serum is a material available for DNA typing in routine forensic practice. Blood was donated from 10 healthy adult volunteers and stored for up to 8 days, at 4 degrees C and at room temperature. The serum DNA concentration at zero time was in the range of 5.6 to 21.8 ng/ml with a mean of 12.2+/-1.6 ng/ml. The concentrations increased with storage time. On agarose gel electrophoresis, all serum samples showed ladder patterns and the size of each band was an integer multiple of approximately 180 bp considered to be characteristic of apoptosis. DNA typing from DNA released by apoptosis was possible. Exact DNA typing of D1S80, HLA DQA1, PM, CSF1PO, TPOX, TH01 and vWA was possible for each sample. These results indicate that serum contains fragmented DNA derived from apoptosis of leukocytes, especially neutrophils, and that fragmented DNA is an appropriate material for DNA typing.

  2. DNA Self-Assembly: From Chirality to Evolution

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2013-04-01

    Full Text Available Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.

  3. Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

    Science.gov (United States)

    Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.

    1995-10-01

    Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.

  4. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication.

    Science.gov (United States)

    Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu

    2006-10-01

    In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.

  5. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  6. Environmental DNA (eDNA sampling improves occurrence and detection estimates of invasive burmese pythons.

    Directory of Open Access Journals (Sweden)

    Margaret E Hunter

    Full Text Available Environmental DNA (eDNA methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR for the Burmese python (Python molurus bivittatus, Northern African python (P. sebae, boa constrictor (Boa constrictor, and the green (Eunectes murinus and yellow anaconda (E. notaeus. Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive

  7. Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons.

    Science.gov (United States)

    Hunter, Margaret E; Oyler-McCance, Sara J; Dorazio, Robert M; Fike, Jennifer A; Smith, Brian J; Hunter, Charles T; Reed, Robert N; Hart, Kristen M

    2015-01-01

    Environmental DNA (eDNA) methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR) for the Burmese python (Python molurus bivittatus), Northern African python (P. sebae), boa constrictor (Boa constrictor), and the green (Eunectes murinus) and yellow anaconda (E. notaeus). Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive constrictors

  8. Preliminary perspectives on DNA collection in anti-human trafficking efforts.

    Science.gov (United States)

    Katsanis, Sara H; Kim, Joyce; Minear, Mollie A; Chandrasekharan, Subhashini; Wagner, Jennifer K

    2014-01-01

    Forensic DNA methodologies have potential applications in the investigation of human trafficking cases. DNA and relationship testing may be useful for confirmation of biological relationship claims in immigration, identification of trafficked individuals who are missing persons, and family reunification of displaced individuals after mass disasters and conflicts. As these applications rely on the collection of DNA from non-criminals and potentially vulnerable individuals, questions arise as to how to address the ethical challenges of collection, security, and privacy of collected samples and DNA profiles. We administered a survey targeted to victims' advocates to gain preliminary understanding of perspectives regarding human trafficking definitions, DNA and sex workers, and perceived trust of authorities potentially involved in DNA collection. We asked respondents to consider the use of DNA for investigating adoption fraud, sex trafficking, and post-conflict child soldier cases. We found some key differences in perspectives on defining what qualifies as "trafficking." When we varied terminology between "sex worker" and "sex trafficking victim" we detected differences in perception on which authorities can be trusted. Respondents were supportive of the hypothetical models proposed to collect DNA. Most were favorable of DNA specimens being controlled by an authority outside of law enforcement. Participants voiced concerns focused on privacy, misuse of DNA samples and data, unintentional harms, data security, and infrastructure. These preliminary data indicate that while there is perceived value in programs to use DNA for investigating cases of human trafficking, these programs may need to consider levels of trust in authorities as their logistics are developed and implemented.

  9. Prognostic Value of Plasma Epstein-Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era.

    Science.gov (United States)

    Chen, Wen-Hui; Tang, Lin-Quan; Guo, Shan-Shan; Chen, Qiu-Yan; Zhang, Lu; Liu, Li-Ting; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2016-02-01

    This study aimed to evaluate the prognostic value of plasma Epstein-Barr Virus DNA (EBV DNA) for local and regionally advanced nasopharyngeal carcinoma (NPC) patients treated with concurrent chemoradiotherapy in intensity-modulated radiotherapy (IMRT) era.In this observational study, 404 nonmetastatic local and regionally advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy were recruited. Blood samples were collected before treatment for examination of plasma EBV DNA levels. We evaluated the association of pretreatment plasma EBV DNA levels with progression-free survival rate (PFS), distant metastasis-free survival rate (DMFS), and overall survival rate (OS).Compared to patients with an EBV DNA level advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy. Future ramdomized clinical trials are needed to further evaluate whether plasma EBV DNA levels could be applied to guide concurrent chemotherapy regimen for local and regionally advanced NPC patients.

  10. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  11. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  12. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Coppedè, Fabio; Migliore, Lucia

    2015-01-01

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  13. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  14. Ultraviolet light-denatured DNA/anti-ultraviolet light-denatured DNA immune-complex nephritis in rabbits

    International Nuclear Information System (INIS)

    Sweny, P.

    1980-01-01

    Two groups of preimmunized rabbits were studied during a 3-month course of daily intravenous injections of uv DNA in amounts sufficient to neuralize circulating antibody. One group was given high-molecular-weight uv DNA, and the other group, US uv DNA. Rabbits receiving US uv DNA formed potentially more damaging immune complexes, since this group of animals developed greater rises in blood urea and greater falls in C3. Both groups of animals developed evidence of immune complex-mediated glomerular nephritis as evidenced by heavy granular deposits of IgG and C3 in the glomeruli. The results suggest that immune complexes formed with US uv DNA may be more nephrotoxic

  15. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA).

    Science.gov (United States)

    Revill, Peter; Locarnini, Stephen

    2016-10-01

    It has been over 50 years since the discovery of hepatitis B virus (HBV), yet 240 million people worldwide live with chronic HBV, resulting in up to 800000 deaths per year. A cure is yet to be achieved, due largely to a viral nuclear reservoir of transcriptionally active covalently closed circular DNA (cccDNA). While current antiviral therapies are effective at reducing viral replication, they have no impact on the existing cccDNA reservoir. Identifying mechanisms to either eliminate (complete cure) or inactivate (functional cure) HBV cccDNA are a major focus of HBV research worldwide. This review discusses recent advances in efforts to eliminate and/or regulate cccDNA, as well as future directions that may be considered in efforts to cure chronic HBV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. A duplex DNA-gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins.

    Science.gov (United States)

    Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa

    2016-03-21

    Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.

  17. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.

    OpenAIRE

    Belyavsky, A; Vinogradova, T; Rajewsky, K

    1989-01-01

    A procedure for the construction of general cDNA libraries is described which is based on the amplification of total cDNA in vitro. The first cDNA strand is synthesized from total RNA using an oligo(dT)-containing primer. After oligo(dG) tailing the total cDNA is amplified by PCR using two primers complementary to oligo(dA) and oligo(dG) ends of the cDNA. For insertion of the cDNA into a vector a controlled trimming of the 3' ends of the cDNA by Klenow enzyme was used. Starting from 10 J558L ...

  20. Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.

    Science.gov (United States)

    Kang, Qing; Parkin, Brian; Giraldez, Maria D; Tewari, Muneesh

    2016-04-01

    Digital PCR (dPCR) is gaining popularity as a DNA mutation quantification method for clinical specimens. Fragmentation prior to dPCR is required for non-fragmented genomic DNA samples; however, the effect of fragmentation on DNA analysis has not been well-studied. Here we evaluated three fragmentation methods for their effects on dPCR point mutation assay performance. Wild-type (WT) human genomic DNA was fragmented by heating, restriction digestion, or acoustic shearing using a Covaris focused-ultrasonicator. dPCR was then used to determine the limit of blank (LoB) by quantifying observed WT and mutant allele counts of the proto-oncogenes KRAS and BRAF in the WT DNA sample. DNA fragmentation by heating to 95°C, while the simplest and least expensive method, produced a high background mutation frequency for certain KRAS mutations relative to the other methods. This was due to heat-induced mutations, specifically affecting dPCR assays designed to interrogate guanine to adenine (G>A) mutations. Moreover, heat-induced fragmentation overestimated gene copy number, potentially due to denaturation and partition of single-stranded DNA into different droplets. Covaris acoustic shearing and restriction enzyme digestion showed similar LoBs and gene copy number estimates to one another. It should be noted that moderate heating, commonly used in genomic DNA extraction protocols, did not significantly increase observed KRAS mutation counts.