WorldWideScience

Sample records for dna translocation speed

  1. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  2. Single-strand DNA molecule translocation through nanoelectrode gaps

    International Nuclear Information System (INIS)

    Zhao Xiongce; Payne, Christina M; Cummings, Peter T; Lee, James W

    2007-01-01

    Molecular dynamics simulations were performed to investigate the translocation of single-strand DNA through nanoscale electrode gaps under the action of a constant driving force. The application behind this theoretical study is a proposal to use nanoelectrodes as a screening gap as part of a rapid genomic sequencing device. Preliminary results from a series of simulations using various gap widths and driving forces suggest that the narrowest electrode gap that a single-strand DNA can pass is ∼1.5 nm. The minimum force required to initiate the translocation within nanoseconds is ∼0.3 nN. Simulations using DNA segments of various lengths indicate that the minimum initiation force is insensitive to the length of DNA. However, the average threading velocity of DNA varies appreciably from short to long DNA segments. We attribute such variation to the different nature of drag force experienced by the short and long DNA segments in the environment. It is found that DNA molecules deform significantly to fit in the shape of the nanogap during the translocation

  3. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    Science.gov (United States)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  4. High speed translocation of /sup 86/Rb in the phloem of Tradescantia viridis

    Energy Technology Data Exchange (ETDEWEB)

    Penot, M.

    1976-01-01

    An autoradiographic study of the rooted shoots of Tradescantia viridis showed a high speed translocation of /sup 86/Rb applied to a leaf for short periods of time (5 to 2.5 min). The speed of this translocation (between 840 and 1.440 cm h/sup -1/) speaks for the existence of a very rapid phloem component translocating ions to an active sink, represented here by the growing roots. Pretreatment with cycloheximide (48 h, 50 mg 1/sup -1/) decreases the quantity of this long distance transport but not the velocity.

  5. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    Science.gov (United States)

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  6. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  7. Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels

    NARCIS (Netherlands)

    Das, S.; Dubsky, P.; van den Berg, Albert; Eijkel, Jan C.T.

    2012-01-01

    In this Letter we provide a theory to show that high-field electrokinetic translocation of DNA through nanopores or nanochannels causes large transient variations of the ionic concentrations in front and at the back of the DNA due to concentration polarization (CP). The CP causes strong local

  8. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  9. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    Science.gov (United States)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  10. Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation.

    Science.gov (United States)

    Xu, Xiaolong; Li, Chuanping; Zhou, Ya; Jin, Yongdong

    2017-10-27

    Diameter is a major concern for nanopore based sensing. However, directly pulling glass capillary nanopore with diameter down to sub-10 nm is very difficult. So, post treatment is sometimes necessary. Herein, we demonstrate a facile and effective wet-chemical method to shrink the diameter of glass capillary nanopore from several tens of nanometers to sub-10 nm by disodium silicate hydrolysis. Its benefits for DNA translocation are investigated. The shrinking of glass capillary nanopore not only slows down DNA translocation, but also enhances DNA translocation signal and signal-to-noise ratio significantly (102.9 for 6.4 nm glass nanopore, superior than 15 for a 3 nm silicon nitride nanopore). It also affects DNA translocation behaviors, making the approach and glass capillary nanopore platform promising for DNA translocation studies.

  11. A mechanical mechanism for translocation of ring-shaped helicases on DNA and its demonstration in a macroscopic simulation system

    Science.gov (United States)

    Chou, Y. C.

    2018-04-01

    The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.

  12. Altered DNA methylation associated with a translocation linked to major mental illness

    OpenAIRE

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; Anderson, Susan M; Duff, Barbara J; Marioni, Riccardo E; Millar, J Kirsty; McCarthy, Shane E; Ryan, Niamh M; Lawrie, Stephen M; Watson, Andrew R; Blackwood, Douglas H R; Thomson, Pippa A; McIntosh, Andrew M; McCombie, W Richard

    2018-01-01

    Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumin...

  13. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence.

    Directory of Open Access Journals (Sweden)

    Joke J F A van Vugt

    Full Text Available BACKGROUND: Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS: We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type and native RSC from yeast (SWI/SNF-type repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE: Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase

  14. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis.

    Science.gov (United States)

    Calton, Christine M; Bronnimann, Matthew P; Manson, Ariana R; Li, Shuaizhi; Chapman, Janice A; Suarez-Berumen, Marcela; Williamson, Tatum R; Molugu, Sudheer K; Bernal, Ricardo A; Campos, Samuel K

    2017-05-01

    The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

  15. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  16. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.

    Science.gov (United States)

    Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R

    2014-03-07

    The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.

  17. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  18. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans.

    Science.gov (United States)

    Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki

    2009-02-01

    Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.

  19. Theoretical and experimental determination of phloem translocation speeds in gymnosperm and angiosperm trees

    DEFF Research Database (Denmark)

    Liesche, Johannes; Jensen, K.; Minchin, P.

    2013-01-01

    In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Carbohydrate translocation in the phloem is a fundamental aspect of tree physiology with relevance for tree...... crop performance and climate change. In this paper, we present theoretical and experimental data on the carbohydrate transport speed inside the phloem....

  20. Translocation of DNA Molecules through Nanopores with Salt Gradients: The Role of Osmotic Flow

    Science.gov (United States)

    Hatlo, Marius M.; Panja, Debabrata; van Roij, René

    2011-08-01

    Recent experiments of translocation of double-stranded DNA through nanopores [M. Wanunu , Nature Nanotech. 5, 160 (2009)NNAABX1748-338710.1038/nnano.2009.379] reveal that the DNA capture rate can be significantly influenced by a salt gradient across the pore. We show that osmotic flow combined with electrophoretic effects can quantitatively explain the experimental data on the salt-gradient dependence of the capture rate.

  1. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

    2012-12-11

    Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.

  2. Markers of Microbial Translocation and Immune Activation Predict Cognitive Processing Speed in Heavy-Drinking Men Living with HIV

    Directory of Open Access Journals (Sweden)

    Mollie A. Monnig

    2017-09-01

    Full Text Available HIV infection and alcohol use disorder are associated with deficits in neurocognitive function. Emerging evidence points to pro-inflammatory perturbations of the gut-brain axis as potentially contributing to neurocognitive impairment in the context of HIV and chronic heavy alcohol use. This study examined whether plasma markers of microbial translocation (LPS from the gastrointestinal tract and related immune activation (sCD14, EndoCAb were associated with neurocognition in 21 men living with HIV who were virally suppressed on antiretroviral therapy. All participants met federal criteria for heavy drinking and were enrolled in a randomized controlled trial (RCT of a brief alcohol intervention. This secondary analysis utilized blood samples and cognitive scores (learning, memory, executive function, verbal fluency, and processing speed obtained at baseline and three-month follow-up of the RCT. In generalized estimating equation models, LPS, sCD14, and EndoCAb individually were significant predictors of processing speed. In a model with all biomarkers, higher LPS and sCD14 both remained significant predictors of lower processing speed. These preliminary findings suggest that inflammation stemming from HIV and/or alcohol could have negative effects on the gut-brain axis, manifested as diminished processing speed. Associations of microbial translocation and immune activation with processing speed in heavy-drinking PLWH warrant further investigation in larger-scale studies.

  3. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  4. Putative cruciform DNA structures at BCL6 breakpoint region may explain BCL6 translocation in diffuse large B-Cell lymphoma

    International Nuclear Information System (INIS)

    Bhatelia, Khyati D.; Nambiar, Mridula; Choudhary, Bibha; Raghvan, Sathees C.

    2010-01-01

    Cancer is a disease characterized by uncontrolled proliferation of cells, caused by genetic alterations such as chromosomal translocations, which are present in almost all hematological malignancies. Diffuse Large B-cell Lymphoma (DLBL) is the most common non-Hodgkin's lymphoma, comprising 40-50% of all lymphomas both in India and worldwide, and is characterized by BCL6 chromosomal translocation. However, the mechanism of this translocation is completely unknown. By mapping of translocation breakpoints from patients, we have identified three breakpoint cluster regions at 5' UTR of BCL6 gene. Bioinformatics analysis of cluster II, which possesses majority of breakpoints, this region may form cruciform DNA structures. Gel mobility shift assays using oligomeric DNA from the region suggested that a portion of cluster II folded into hairpin structures. Mutations to the wild type sequences disrupted hairpin formation. Circular dichroism studies on BCL6 oligomers resulted in a spectra containing two overlapping peaks at 265 nm and 285 nm, confirming hairpin structure. Further, the structure was destroyed upon heating, and reformed when appropriate conditions were provided. P1 nuclease assay in conjunction with KMnO 4 probing suggested that the structure possessed an eight nucleotide double-stranded stem and a nine nucleotide loop. To further understand the mechanism of BCL6 translocation in vivo, human cells were transfected with episomes harboring cluster II region and the results obtained will be discussed. Hence, our results suggest the formation of a putative cruciform DNA structure at BCL6 breakpoint region and that may facilitate breakage at BCL6 gene explaining chromosomal translocations in DLBL. (author)

  5. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  6. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  7. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Experimental and computational studies on the DNA translocation mechanism of the T4 viral packaging motor

    Science.gov (United States)

    Migliori, Amy; Arya, Gaurav; Smith, Douglas E.

    2012-10-01

    Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the

  9. Role of non-equilibrium conformations on driven polymer translocation.

    Science.gov (United States)

    Katkar, H H; Muthukumar, M

    2018-01-14

    One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/N K , is longer than the relaxation time τ 0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/N K polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with N K Kuhn segments, the condition ⟨τ⟩/N K polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at N K ∼ O(1000).

  10. Ribosomal DNA, tri- and bi-partite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea.

    Science.gov (United States)

    Golczyk, Hieronim; Hasterok, Robert; Szklarczyk, Marek

    2010-12-01

    High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A(3)-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.

  11. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  12. Changes In water translocation in the vascular tissue of grape during fruit development

    International Nuclear Information System (INIS)

    Zhaosen, X.; Forney, C.F.

    2014-01-01

    The relationship between vascular water translocation in grapes and berry growth was investigated. Berry growth, firmness and turgor were measured, and the structure and function of the vascular bundles for water translocation was observed. During phase I fruit development, the dorsal and central vascular bundles rapidly translocated introduced dye in the pedicle. The speed of dye translocation was highest in the dorsal vascular bundles of phase I fruit with a speed of 0.97cm/h. After phase II, both the distribution of dye and the speed of dye translocation in the fruit vascular tissue decreased, with speeds in the dorsal and central vascular bundles being 0.08 cm/h and 0.72 cm/h, respectively. During phase III, the distribution of dye was still lower than phase I. After phase II, the walls of some xylem vessels were indistinct and broken. After phase III, even though the water translocation efficiency of the xylem decreased, sugar accumulation in the berry as well as osmoregulation increased. (author)

  13. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  14. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.

    Science.gov (United States)

    Szczelkun, Mark D

    2011-04-01

    To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

  15. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  16. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus complex.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2 and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.

  17. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  18. Polymer translocation under a pulling force: Scaling arguments and threshold forces

    Science.gov (United States)

    Menais, Timothée

    2018-02-01

    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  19. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.

    Science.gov (United States)

    Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Russell-Pavier, Freddie; Yacoot, Andrew; Picco, Loren; Payton, Oliver; Toor, Amir; Chesney, Alden; Gimzewski, James K; Mishra, Bud; Reed, Jason

    2017-11-21

    Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

  20. Markers of immunity and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian

    2015-01-01

    to be correlated to portal hypertension, a clinically relevant haemodynamic alteration, and appeared to be associated with increased mortality. To assess the consequences of BT on immunity, we developed an assay for the detection of bacterial DNA (bDNA), a novel marker of BT. Using the assay in the second study......Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious......, in 38 patients with ascites, we found no association between bDNA and immunity, in contrast to some previous findings. In the final paper, exploring one possible translocation route, we hypothesized a difference in bDNA levels between the blood from the veins draining the gut on one hand and the liver...

  1. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  2. An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor.

    Science.gov (United States)

    Zhao, Zhengyi; De-Donatis, Gian Marco; Schwartz, Chad; Fang, Huaming; Li, Jingyuan; Guo, Peixuan

    2016-10-01

    Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images. Copyright © 2016 Zhao et al.

  3. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  4. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses

    Science.gov (United States)

    Rao, Venigalla B.; Feiss, Michael

    2016-01-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead’s portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL’s N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage φ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics. PMID:26958920

  5. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species

    OpenAIRE

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G.; O’Brien, Stephen J.; Johnson, Warren E.

    2005-01-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondr...

  6. High-speed DNA-based rolling motors powered by RNase H

    Science.gov (United States)

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.

    2016-01-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  7. Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael

    2012-02-01

    We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations

  8. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  9. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients

    International Nuclear Information System (INIS)

    Nambiar, Mridula; Raghavan, Sathees C; Choudhary, Bibha; Rao, Clementina R

    2008-01-01

    Follicular lymphoma is associated with the t(14;18) translocation, which is one of the most common chromosomal translocations in cancer. Generally, tissues from such patients are preserved as formalin-fixed and paraffin-embedded samples. Most of the time, retrieving the molecular information from such samples is hampered due to quality of preservation, extraction procedures and reaction conditions. In the present study, we isolate the chromosomal DNA from the paraffin-embedded nodal tissues of lymphoma patients and use a highly sensitive nested PCR approach to detect t(14;18) translocation. Our studies show that despite the sheared DNA obtained, appropriate modification of PCR reaction conditions can help in obtaining the desired amplifications. The DNA extraction protocol from paraffin-embedded nodal tissues and modifications in the PCR conditions are discussed. This study would contribute to the successful use of archival tissue samples in obtaining valuable information for cancer research

  10. Amplification of chromosomal translocation junctions from paraffin-embedded tissues of follicular lymphoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Mridula; Raghavan, Sathees C [Department of Biochemistry, Indian Institute of Science, Bangalore-560 012 (India); Choudhary, Bibha [Manipal Institute of Regenerative Medicine, Manipal University, Bangalore-560 071 (India); Rao, Clementina R [Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore-560 029 (India)], E-mail: sathees@biochem.iisc.ernet.in

    2008-09-01

    Follicular lymphoma is associated with the t(14;18) translocation, which is one of the most common chromosomal translocations in cancer. Generally, tissues from such patients are preserved as formalin-fixed and paraffin-embedded samples. Most of the time, retrieving the molecular information from such samples is hampered due to quality of preservation, extraction procedures and reaction conditions. In the present study, we isolate the chromosomal DNA from the paraffin-embedded nodal tissues of lymphoma patients and use a highly sensitive nested PCR approach to detect t(14;18) translocation. Our studies show that despite the sheared DNA obtained, appropriate modification of PCR reaction conditions can help in obtaining the desired amplifications. The DNA extraction protocol from paraffin-embedded nodal tissues and modifications in the PCR conditions are discussed. This study would contribute to the successful use of archival tissue samples in obtaining valuable information for cancer research.

  11. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Science.gov (United States)

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  12. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  13. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  14. DNA Topology and the Initiation of Virus DNA Packaging.

    Directory of Open Access Journals (Sweden)

    Choon Seok Oh

    Full Text Available During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS. The large terminase subunit (TerL contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  15. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G 0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  16. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.

    Science.gov (United States)

    Levin, Mikhail K; Gurjar, Madhura; Patel, Smita S

    2005-05-01

    Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.

  17. DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions.

    Science.gov (United States)

    Panchakshari, Rohit A; Zhang, Xuefei; Kumar, Vipul; Du, Zhou; Wei, Pei-Chi; Kao, Jennifer; Dong, Junchao; Alt, Frederick W

    2018-01-23

    Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.

  18. Problem-elephant translocation: translocating the problem and the elephant?

    Directory of Open Access Journals (Sweden)

    Prithiviraj Fernando

    Full Text Available Human-elephant conflict (HEC threatens the survival of endangered Asian elephants (Elephas maximus. Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  19. Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

    Science.gov (United States)

    Kang, Di; Duan, Ruixue; Tan, Yerpeng; Hong, Fan; Wang, Boya; Chen, Zhifei; Xu, Shaofang; Lou, Xiaoding; Wei, Wei; Yurke, Bernard; Xia, Fan

    2014-11-01

    The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an example, first we have demonstrated that the DSDR is highly accelerated in the beginning of the reaction and it can complete 60% of replacement reactions (160% enhancement compared with aqueous buffer) in the first 300 seconds. Secondly, we calculated that the ΔΔG of the DSDR in 20% ethanol (-18.2 kcal mol-1) is lower than that in pure aqueous buffer (-32.6 kcal mol-1), while the activation energy is lowered by introducing ethanol. Finally, we proved that the DSDR on the electrode surface can also be accelerated using this simple strategy. More importantly, to test the efficacy of this approach in nanodevices with a complicated and slow DNA self-assembly process, we apply this strategy in the hybridization chain reaction (HCR) and prove the acceleration is fairly obvious in 20% ethanol, which demonstrates the feasibility of the proposed strategy in DNA nanotechnology and DNA-based biosensors.The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an

  20. Genetic outcomes from the translocations of the critically endangered woylie

    Directory of Open Access Journals (Sweden)

    Carlo PACIONI, Adrian F.WAYNE, Peter B.S.SPENCER

    2013-06-01

    Full Text Available Translocations are an important conservation strategy for many species. However simply observing demographic growth of a translocated population is not sufficient to infer species recovery. Adequate genetic representation of the source population(s and their long-term viability should also be considered. The woylie Bettongia penicillata ogilbyi has been subject to more formal translocations for conservation than any other marsupial that, up until recently, has resulted in one of the most successful species recoveries in Australia. We used mitochondrial and nuclear DNA markers to assess the genetic outcomes of translocated woylie populations. These populations have lost genetic variability, differentiated from their source population and the supplementation program on two island populations appears to have failed. We discuss the conservation implications that our results have for managing threatened species, outline some general recommendations for the management of present and future translocations and discuss the appropriate sampling design for the establishment of new populations or captive breeding programs that may mitigate the genetic ‘erosion’ seen in our study species. This research provides some practical outcomes and a pragmatic understanding of translocation biology. The findings are directly applicable to other translocation programs [Current Zoology 59 (3: 294-310, 2013].

  1. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast.

    Science.gov (United States)

    Rolloos, Martijn; Hooykaas, Paul J J; van der Zaal, Bert J

    2015-02-09

    Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of interest. In this study, we used the model organism Saccharomyces cerevisiae to investigate whether the Agrobacterium mediated translocation of site-specific endonucleases via the type IV secretion system (T4SS), concomitantly with T-DNA transfer is possible and whether this can improve the gene targeting efficiency. In addition to that, the effect of different chromatin states on targeted integration, was investigated. It was found that Agrobacterium mediated translocation of the homing endonuclease I-SceI has a positive effect on the integration of T-DNA via the homologous repair (HR) pathway. Furthermore, we obtained evidence that nucleosome removal has a positive effect on I-SceI facilitated T-DNA integration by HR. Reversely; inducing nucleosome formation at the site of integration removes the positive effect of translocated I-SceI on T-DNA integration.

  2. Detection of DNA hybridizations using solid-state nanopores

    International Nuclear Information System (INIS)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  3. Detection of DNA hybridizations using solid-state nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Balagurusamy, Venkat S K; Weinger, Paul; Sean Ling, Xinsheng, E-mail: Xinsheng_Ling@brown.edu [Department of Physics, Brown University, Providence, RI 02912 (United States)

    2010-08-20

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  4. Application of DNA RFLP procedures in interspecific gene transfer: The Lr19 translocation of wheat

    International Nuclear Information System (INIS)

    Prins, R.; Marais, G.F.; Marais, A.S.; Pretorius, Z.A.; Janse, B.J.H.

    1998-01-01

    Twenty-nine lines with deletions in the Lr19 ('Indis') translocated chromosome segment were used to physically map Thinopyrum Restriction Fragment Length Polymorphism (RFLP) loci as well as the Sr25 and Sdl loci. The relative distances between marker loci on the translocation were then calculated. The information was then used as an aid to characterize several recombined forms of the translocation. The data confirmed the reported homoeology between the Lr19 segment and chromosome arm 7DL of wheat. Also, it seems that the Lr19 translocation in 'Indis' is very similar to the Lr19 segment in the T4 source and that the former may not derive from Thinopyrum distichum. Near-isogenic lines of the recombined segments were derived and used to study their expression of leaf rust resistance. It became evident that only one potentially useful recombinant was obtained in an earlier attempt to induce allosyndetic pairing between the Lr19 translocation and 7DL of wheat. (author)

  5. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    Science.gov (United States)

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  6. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  7. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    Directory of Open Access Journals (Sweden)

    Huzhang Mao

    2016-03-01

    Full Text Available Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.

  8. Development and identification of a wheat-Roegneria kamoji translocation line T7A/1Rk no.1

    International Nuclear Information System (INIS)

    Bie Tongde; Feng Yigao; Chen Peidu; Xu Chuanmei

    2009-01-01

    Pollen of Triticum aestivum-Roegneria kamoji del1Rk No.1L disomic addition line, treated with 10 Gy 6 0C o γ-rays, was pollinated to T · aestivum cv. Chinese Spring. A reciprocal chromosomal translocation line involving wheat 7A and R.kamoji 1Rk No.1 was identified in M 2 generation using the techniques including C-banding, GISH, sequential C-banding/45S rDNA-FISH, and sequential GISH/45S rDNA-FISH. A 45S rDNA locus and its corresponding red band in GISH pattern were observed specific to the short arm of 1Rk No.1 and could be used as a marker of 1Rk No.1 chromosome. Analyses of chromosome constitution of M 2 population and test-crosses showed that the reciprocal translocation chromosomes were co-segregated in offspring, and the transmitting ratios were both higher through female gametes than through male ones. The results of scab resistance identification in 2004, 2005 and 2006 showed that the translocation line conveyed scab resistance that varied in different years in different district. The experiment also showed that pollen irradiation was an effective method to induce wheat-alien chromosome translocations. (authors)

  9. Identification of 2nd chromosome region translocated onto the W chromosome by RFLP with EST-cDNA clones in the Gensei-kouken strains of the mulberry silkworm, Bombyx mori L

    Directory of Open Access Journals (Sweden)

    Sivaramakurup Sreekumar

    2010-01-01

    Full Text Available In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome. In these improved strains, the females are yellow-blooded and spin yellow cocoons. By using the EST-cDNA clones mapped on the Z chromosome, we identified the sex according to the polymorphic banding pattern or intensity of the signals. Furthermore, by using the clones on the second chromosome, the region of the second chromosome translocated onto the W chromosome was also defined. In both the A95 and A 96 strains selected for the present study, only the mid-portion of the second chromosome was translocated. The differences in length of the fragments translocated in these strains are discussed.

  10. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  11. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  12. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.

    Science.gov (United States)

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G; Rao, Venigalla B

    2014-03-06

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. © 2013.

  13. Structure-Function Analysis of the DNA Translocating Portal of the Bacteriophage T4 Packaging Machine

    Science.gov (United States)

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G.; Rao, Venigalla B.

    2013-01-01

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special five-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1 and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the E. coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and fit the dodecamer into the cryoEM density of the phage portal vertex. The core structure, like that from other phages, is cone-shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. PMID:24126213

  14. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

    Science.gov (United States)

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi

    2018-05-08

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.

  15. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Science.gov (United States)

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  16. High dietary niacin intake is associated with decreased chromosome translocation frequency in airline pilots.

    Science.gov (United States)

    Yong, Lee C; Petersen, Martin R

    2011-02-01

    Experimental studies suggest that B vitamins such as niacin, folate, riboflavin, vitamin B6 and vitamin B12 may protect against DNA damage induced by ionising radiation (IR). However, to date, data from IR-exposed human populations are not available. We examined the intakes of these B vitamins and their food sources in relation to the frequency of chromosome translocations as a biomarker of cumulative DNA damage, in eighty-two male airline pilots. Dietary intakes were estimated by using a self-administered semi-quantitative FFQ. Translocations in peripheral blood lymphocytes were scored by using fluorescence in situ hybridisation whole-chromosome painting. Negative binomial regression was used to estimate rate ratios and 95 % CI, adjusted for age and occupational and lifestyle factors. We observed a significant inverse association between translocation frequency and dietary intake of niacin (P = 0·02): adjusted rate ratio for subjects in the highest tertile compared with the lowest tertile was 0·58 (95 % CI 0·40, 0·83). Translocation frequency was not associated with total niacin intake from food and supplements as well as dietary or total intake of folate, riboflavin or vitamin B6 or B12. However, the adjusted rate ratios were significant for subjects with ≥ median compared with food or a diet high in whole grains but low in red and processed meat may protect against cumulative DNA damage in IR-exposed persons.

  17. Exploring translocation of proteins on DNA by NMR

    International Nuclear Information System (INIS)

    Marius Clore, G.

    2011-01-01

    While an extensive body of knowledge has accumulated on the structures of transcription factors, DNA and their complexes from both NMR and crystallography, much less is known at a molecular level regarding the mechanisms whereby transcription factors locate their specific DNA target site within an overwhelming sea of non-specific DNA sites. Indirect kinetic data suggested that three processes are involved in the search procedure: jumping by dissociation of the protein from the DNA followed by re-association at another site, direct transfer from one DNA molecule or segment to another, and one-dimensional sliding. In this brief perspective I summarize recent NMR developments from our laboratory that have permitted direct characterization of the species and molecular mechanisms involved in the target search process, including the detection of highly transient sparsely-populated states. The main tool in these studies involves the application of paramagnetic relaxation enhancement, supplemented by z-exchange spectroscopy, lineshape analysis and residual dipolar couplings. These studies led to the first direct demonstration of rotation-coupled sliding of a protein along the DNA and the direct transfer of a protein from one DNA molecule to another without dissociating into free solution.

  18. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    Science.gov (United States)

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  19. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor.

    Science.gov (United States)

    Mao, Huzhang; Saha, Mitul; Reyes-Aldrete, Emilio; Sherman, Michael B; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J; Morais, Marc C

    2016-03-01

    Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  1. Threading DNA through nanopores for biosensing applications

    International Nuclear Information System (INIS)

    Fyta, Maria

    2015-01-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. (topical review)

  2. Experience with FISH-detected translocations as an indicator in retrospective dose reconstructions

    International Nuclear Information System (INIS)

    Pressl, S.; Romm, H.; Ganguly, B.B.; Stephan, G.

    2000-01-01

    The prerequisite for the use of translocations as an indicator in retrospective dose reconstructions, is knowledge of the background level, persistence, and the availability of dose response curves for the conversion of translocation frequencies into doses. The results obtained in these areas are summarised. Cells with complete painted chromosome material are evaluated. Those showing any aberrations which involve painted material are stored in a computerised system, and described in detail. The simultaneous painting of whole chromosomes and centromeres has proved to provide a better level of discrimination between translocations and dicentrics. Following irradiation, direct proportionality was observed between DNA content covered by the painted chromosomes (11-19%) and the translocation frequency. The background level of translocations was determined in 42 healthy subjects, aged between 21 and 73 years of age. The statistical analyses of the data revealed no influence from sex and smoking habits on the translocation frequency. A clear increase in translocation yield was, however, observed for age. For the whole genome the frequency is at a level of 3 to 11 per 1000 cells, for all types of translocations. In a radiation accident victim (Estonia) the frequency of translocations was determined over a post-exposure time of four years. For two-way translocations, the half-time was calculated to be 7.0 years, and that for one-way translocations 5.2 years. On the basis of our control data and our dose response curve, the lowest detectable radiation dose is about 0.3 Gy in subjects under 40 years of age, and about 0.5 Gy for those older than 40 years of age. (author)

  3. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  4. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots.

    Science.gov (United States)

    Yong, Lee C; Petersen, Martin R; Sigurdson, Alice J; Sampson, Laura A; Ward, Elizabeth M

    2009-11-01

    Dietary antioxidants may protect against DNA damage induced by endogenous and exogenous sources, including ionizing radiation (IR), but data from IR-exposed human populations are limited. The objective was to examine the association between the frequency of chromosome translocations, as a biomarker of cumulative DNA damage, and intakes of vitamins C and E and carotenoids in 82 male airline pilots. Dietary intakes were estimated by using a self-administered semiquantitative food-frequency questionnaire. Translocations were scored by using fluorescence in situ hybridization with whole chromosome paints. Negative binomial regression was used to estimate rate ratios and 95% CIs, adjusted for potential confounders. Significant and inverse associations were observed between translocation frequency and intakes of vitamin C, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food (P food; total vitamin C or E from food and supplements; or vitamin C or E or multivitamin supplements. The adjusted rate ratios (95% CI) for > or =median compared with or =median compared with food: 0.27 (0.14, 0.55). High combined intakes of vitamins C and E, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food, or a diet high in their food sources, may protect against cumulative DNA damage in IR-exposed persons.

  5. Chromosome translocations in chinese medical X-ray workers analyzed by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: To study long-term radiation effect in occupational workers exposed to low dose X-rays using the method of fluorescence in situ hybridization (FISH). Method: Chromosome translocations of 25 medical X-ray workers were analyzed by FISH with chromosome No. 4 and No. 7 probes according to PAINT (The Protocol for Aberration Identification and Nomenclature Terminology) system. Results: The frequency of genome translocation in X-ray workers was (13.14 ± 1.23)/1000 cells. The rate of complete and incomplete translocation was 1:1.7. According to the calendar year of entry before/after the year of 1965 as the border, the data showed that the incomplete translocation of the after 1965 group was obviously higher than those of the controls (P < 0.01 and P < 0.05, respectively). Conclusion: The chromosome translocation in early Chinese medical X-ray workers is mainly the incomplete one, the frequency of translocation does not dependent on chromosomal DNA content, and incomplete and complete ones increase along with prolongation of working years in their position

  6. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  7. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots1234

    Science.gov (United States)

    Petersen, Martin R; Sigurdson, Alice J; Sampson, Laura A; Ward, Elizabeth M

    2009-01-01

    Background: Dietary antioxidants may protect against DNA damage induced by endogenous and exogenous sources, including ionizing radiation (IR), but data from IR-exposed human populations are limited. Objective: The objective was to examine the association between the frequency of chromosome translocations, as a biomarker of cumulative DNA damage, and intakes of vitamins C and E and carotenoids in 82 male airline pilots. Design: Dietary intakes were estimated by using a self-administered semiquantitative food-frequency questionnaire. Translocations were scored by using fluorescence in situ hybridization with whole chromosome paints. Negative binomial regression was used to estimate rate ratios and 95% CIs, adjusted for potential confounders. Results: Significant and inverse associations were observed between translocation frequency and intakes of vitamin C, β-carotene, β-cryptoxanthin, and lutein-zeaxanthin from food (P food; total vitamin C or E from food and supplements; or vitamin C or E or multivitamin supplements. The adjusted rate ratios (95% CI) for ≥median compared with food: 0.27 (0.14, 0.55). Conclusion: High combined intakes of vitamins C and E, β-carotene, β-cryptoxanthin, and lutein-zeaxanthin from food, or a diet high in their food sources, may protect against cumulative DNA damage in IR-exposed persons. PMID:19793852

  8. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  9. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  10. Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.

    Science.gov (United States)

    Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf

    2016-01-01

    Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sequential action of ATPase, ATP, ADP, Pi and dsDNA in procapsid-free system to enlighten mechanism in viral dsDNA packaging.

    Science.gov (United States)

    Schwartz, Chad; Fang, Huaming; Huang, Lisa; Guo, Peixuan

    2012-03-01

    Many cells and double-stranded DNA (dsDNA) viruses contain an AAA(+) ATPase that assembles into oligomers, often hexamers, with a central channel. The dsDNA packaging motor of bacteriophage phi29 also contains an ATPase to translocate dsDNA through a dodecameric channel. The motor ATPase has been investigated substantially in the context of the entire procapsid. Here, we report the sequential action between the ATPase and additional motor components. It is suggested that the contact of ATPase to ATP resulted in its conformational change to a higher binding affinity toward dsDNA. It was found that ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action that is speculated to push dsDNA to pass the connector channel. Our results suggest that dsDNA packaging goes through a combined effort of both the gp16 ATPase for pushing and the channel as a one-way valve to control the dsDNA translocation direction. Many packaging models have previously been proposed, and the packaging mechanism has been contingent upon the number of nucleotides packaged per ATP relative to the 10.5 bp per helical turn for B-type dsDNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five or six discrete steps of dsDNA translocation. Combination of the two distinct roles of gp16 and connector renews the perception of previous dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP.

  12. Model for how type I restriction enzymes select cleavage sites in DNA

    International Nuclear Information System (INIS)

    Studier, F.W.; Bandyopadhyay, P.K.

    1988-01-01

    Under appropriate conditions, digestion of phage T7 DNA by the type I restriction enzyme EcoK produces an orderly progression of discrete DNA fragments. All details of the fragmentation pattern can be explained on the basis of the known properties of type I enzymes, together with two further assumptions: (i) in the ATP-stimulated translocation reaction, the enzyme bound at the recognition sequence translocates DNA toward itself from both directions simultaneously; and (ii) when translocation causes neighboring enzymes to meet, they cut the DNA between them. The kinetics of digestion at 37 degree C indicates that the rate of translocation of DNA from each side of a bound enzyme is about 200 base pairs per second, and the cuts are completed within 15-25 sec of the time neighboring enzymes meet. The resulting DNA fragments each contain a single recognition site with an enzyme (or subunit) remaining bound to it. At high enzyme concentrations, such fragments can bu further degraded, apparently by cooperation between the specifically bound and excess enzymes. This model is consistent with a substantial body of previous work on the nuclease activity of EcoB and EcoK, and it explains in a simple way how cleavage sites are selected

  13. A recurrent translocation is mediated by homologous recombination between HERV-H elements

    Directory of Open Access Journals (Sweden)

    Hermetz Karen E

    2012-01-01

    Full Text Available Abstract Background Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. Results Array CGH resolved the breakpoints of the 6.97-Megabase (Mb loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. Conclusions Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.

  14. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  15. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  16. Sequence analysis of the breakpoint regions of an X;5 translocation in a female with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, I. van; Holt, S.; Craig, I. [Univ. of Oxford (United Kingdom)] [and others

    1995-08-01

    X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5) (p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient`s DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X. 32 refs., 4 figs., 2 tabs.

  17. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation

    Directory of Open Access Journals (Sweden)

    Jeremy M. Henley

    2012-05-01

    Full Text Available Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.

  18. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.

    Science.gov (United States)

    Friel, Claire T; Howard, Jonathon

    2012-12-01

    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.

  19. Translocation of 11C from leaves of Helianthus: preliminary results

    International Nuclear Information System (INIS)

    Fensom, D.S.; Aikman, D.; Scobie, J.; Drinkwater, A.; Ledingham, K.W.O.

    1977-01-01

    11 C fed to leaves as 11 CO 2 was used to study the dynamics of short-term translocation of photosynthate in Helianthus. As in 14 C studies small amounts of tracer were often detected in the stem close to the fed leaf in th first 5 min, followed by a larger mass flow after 15 min. The speed of mass flow of tracer movement was calculated to be 60 to 400 cm.h -1 depending on the method of calculation. There was no evidence in the premass flow for discrete spots along the stem or petiole where tracer accumulated. Neither was there firm evidence for pulses of tracer moving steadily forward, but there were point fluctuations of greater variability than would be expected by chance alone, which suggest the possibility of aberrations of movement superimposed on the mass flow. Details of these aberrations could not be assessed with certainty from these preliminary experiments owing to the rather low tracer activity. The translocation profiles were sensitive to the prior light conditioning of the plant and above all to chilling. In Helianthus the latter produced temporary restrictions in translocation which lasted for some 10-12 min. (author)

  20. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  1. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  2. Dominant-lethal mutations and heritable translocations in mice

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed

  3. [Association between inflammatory markers and microbial translocation in patients with human immunodeficiency virus infection taking antiretroviral treatment].

    Science.gov (United States)

    Reus Bañuls, Sergio; Portilla Sogorb, Joaquín; Sanchez-Paya, José; Boix Martínez, Vicente; Giner Oncina, Livia; Frances, Rubén; Such, José; Merino Lucas, Esperanza; Gimeno Gascón, Adelina

    2014-01-21

    Inflammatory biomarkers are increased in patients with human immunodeficiency virus (HIV) infection. Antiretroviral treatment (ART) improves some parameters but do not normalize them. The aim of this study is to determine those factors (including microbial translocation) associated with higher inflammation in HIV treated patients. Transversal observational study. HIV patients receiving ART with an HIV viral load (VL)<400 copies/mL. Selection of patients: consecutively between November 2011 and January 2012. Main variable: plasma levels of interleukin 6 (IL-6) and tumour necrosis factor α (TNF-α). Main explanatory variable: microbial translocation markers (16S ribosomal DNA and sCD14). Patients with IL-6 or TNF-α levels above percentile 75 (group 1) were compared with the rest of patients (group 2). Odds ratio (OR) were determined. Eighty-one patients were included (73% male, median age 45 years, 48% stage C). Twenty-six percent had chronic hepatitis C. Median CD4 cell was 493/mm(3) and 30% had detectable HIV VL. 16S ribosomal DNA was detected in 21% of patients. Factors associated with the higher levels of inflammatory markers were 16S ribosomal DNA (OR 77, P<.0001), sCD14 levels (P<.0001) and history of cardiovascular disease (OR 15, P<.01). In multivariate analysis, associations remained for 16S ribosomal DNA (OR 62, P<.0001) and previous cardiovascular disease (OR 25, P<.01). In patients with HIV infection receiving treatment, the higher levels of inflammatory markers are associated with microbial translocation and past cardiovascular events. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  4. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  5. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species.

    Science.gov (United States)

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G; O'Brien, Stephen J; Johnson, Warren E

    2006-02-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2-telomeric region vs. D2-centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species.

  6. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  7. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  8. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    International Nuclear Information System (INIS)

    Darroudi, F.

    2000-01-01

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  9. Non-homologous end joining mediated DNA repair is impaired in the NUP98-HOXD13 mouse model for myelodysplastic syndrome.

    Science.gov (United States)

    Puthiyaveetil, Abdul Gafoor; Reilly, Christopher M; Pardee, Timothy S; Caudell, David L

    2013-01-01

    Chromosomal translocations typically impair cell differentiation and often require secondary mutations for malignant transformation. However, the role of a primary translocation in the development of collaborating mutations is debatable. To delineate the role of leukemic translocation NUP98-HOXD13 (NHD13) in secondary mutagenesis, DNA break and repair mechanisms in stimulated mouse B lymphocytes expressing NHD13 were analyzed. Our results showed significantly reduced expression of non-homologous end joining (NHEJ)-mediated DNA repair genes, DNA Pkcs, DNA ligase4, and Xrcc4 leading to cell cycle arrest at G2/M phase. Our results showed that expression of NHD13 fusion gene resulted in impaired NHEJ-mediated DNA break repair. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Kere, J. [Univ. of Helsinki (Finland)] [and others

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosome from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.

  11. Non-sticky translocation of bio-molecules through Tween 20-coated solid-state nanopores in a wide pH range

    Science.gov (United States)

    Li, Xiaoqing; Hu, Rui; Li, Ji; Tong, Xin; Diao, J. J.; Yu, Dapeng; Zhao, Qing

    2016-10-01

    Nanopore-based sensing technology is considered high-throughput and low-cost for single molecule detection, but solid-state nanopores have suffered from pore clogging issues. A simple Tween 20 coating method is applied to ensure long-term (several hours) non-sticky translocation of various types of bio-molecules through SiN nanopores in a wide pH range (4.0-13.0). We also emphasize the importance of choosing appropriate concentration of Tween 20 coating buffer for desired effect. By coating nanopores with a Tween 20 layer, we are able to differentiate between single-stranded DNA and double-stranded DNA, to identify drift-dominated domain for single-stranded DNA, to estimate BSA volume and to observe the shape of individual nucleosome translocation event without non-specific adsorption. The wide pH endurance from 4.0 to 13.0 and the broad types of detection analytes including nucleic acids, proteins, and biological complexes highlight the great application potential of Tween 20-coated solid-state nanopores.

  12. PolyA Single Strand DNA Translocation Through an Alpha-Hemolysin Pore Stem

    Science.gov (United States)

    OKeeffe, James; Cozmuta, Ioana; Stolc, Viktor

    2003-01-01

    A new model for the polymer-pore interaction energy is introduced, based on an atomic-scale description of coulombic polymer-pore interaction. The enhanced drift velocity, experimentally observed for short polymers, is successfully accounted for, using this interaction energy model. For R/R(sub 0)>4 (R(sub 0)=7 angstroms) the translocation velocity approaches the free space drift velocity v(sub 0). This motivates the need to appropriately derivatize artificial nanopores, where R>R(sub 0).

  13. Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.

    Science.gov (United States)

    Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui

    2010-06-01

    The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.

  14. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Science.gov (United States)

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  15. Markovian description of unbiased polymer translocation

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2012-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  16. Markovian description of unbiased polymer translocation

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, UnED Angra dos Reis, Angra dos Reis, 23953-030, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil)

    2012-10-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  17. Enhanced stimulation of chromosomal translocations and sister chromatid exchanges by either HO-induced double-strand breaks or ionizing radiation in Saccharomyces cerevisiae yku70 mutants

    International Nuclear Information System (INIS)

    Fasullo, Michael; St Amour, Courtney; Zeng Li

    2005-01-01

    DNA double-strand break (DSB) repair occurs by homologous recombination (HR) or non-homologous endjoining (NHEJ). In Saccharomyces cerevisiae, expression of both MAT a and MATα inhibits NHEJ and facilitates DSB-initiated HR. We previously observed that DSB-initiated recombination between two his3 fragments, his3-Δ5' and his3-Δ3'::HOcs is enhanced in haploids and diploids expressing both MAT a and MATα genes, regardless of the position or orientation of the his3 fragments. Herein, we measured frequencies of DNA damage-associated translocations and sister chromatid exchanges (SCEs) in yku70 haploid mutants, defective in NHEJ. Translocation and SCE frequencies were measured in strains containing the same his3 fragments after DSBs were made directly at trp1::his3-Δ3'::HOcs. Wild type and yku70 cells were also exposed to ionizing radiation and radiomimetic agents methyl methanesulfonate (MMS), phleomycin, and 4-nitroquinolone-1-oxide (4-NQO). Frequencies of X-ray-associated and DSB-initiated translocations were five-fold higher in yku70 mutants compared to wild type; however, frequencies of phleomycin-associated translocations were lower in the yku70 haploid mutant. Frequencies of DSB-initiated SCEs were 1.8-fold higher in the yku70 mutant, compared to wild type. Thus, DSB-initiated HR between repeated sequences on non-homologous chromosomes and sister chromatids occurs at higher frequencies in yku70 haploid mutants; however, higher frequencies of DNA damage-associated HR in yku70 mutants depend on the DNA damaging agent

  18. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  19. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  20. Suitability of amphibians and reptiles for translocation.

    Science.gov (United States)

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  1. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy

  2. Gadd45a promotes DNA demethylation through TDG

    OpenAIRE

    Li, Zheng; Gu, Tian-Peng; Weber, Alain R.; Shen, Jia-Zhen; Li, Bin-Zhong; Xie, Zhi-Guo; Yin, Ruichuan; Guo, Fan; Liu, Xiaomeng; Tang, Fuchou; Wang, Hailin; Sch?r, Primo; Xu, Guo-Liang

    2015-01-01

    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)?initiated oxidative demethylation. The conn...

  3. XP11.2 Translocation renal cell carcinoma: Clinical experience of Taipei Veterans General Hospital

    Directory of Open Access Journals (Sweden)

    Chia-Chen Hung

    2011-11-01

    Conclusion: Although RT-PCR and DNA sequencing are the final diagnoses of the molecular identity of Xp11.2 translocation RCC, experienced pathologists could confirm the histologic diagnosis based on the distinctive morphologic features with positive TFE3 immunochemical nuclear stain. Surgical resection is the only treatment. The role of systemic therapy for local recurrence and metastasis remains to be determined.

  4. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  5. [DNA hydroxymethylase 10-11 translocation 2 (TET2) inhibits mouse macrophage activation and polarization].

    Science.gov (United States)

    Li, Bingyi; Huo, Yi; Lin, Zhifeng; Wang, Tao

    2017-09-01

    Objective To study the role of DNA hydroxymethylase 10-11 translocation 2 (TET2) in macrophage activation and polarization. Methods RAW264.7 macrophages were cultured in vitro and stimulated with 100 ng/mL LPS for 0, 1, 2, 4, 6 hours. Real-time quantitative PCR was used to detect TET2 mRNA expression. TET2 expression was knocked down with siRNA and the knock-down efficiency was evaluated by real-time quantitative PCR and Western blotting. Following siRNA transfection for 48 hours, RAW264.7 cells were stimulated by LPS for 4 hours, and then real-time quantitative PCR and ELISA were performed to detect the expressions of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and IL-12. The M1 polarizing markers TNF-α, inducible nitric oxide synthase (iNOS) and IL-12, and M2 polarizing markers mannose receptor (MR), arginase 1 (Arg-1) and chitinase 3-like molecule 1 (Ym1) were tested after M1 or M2 induction by LPS/IFN-γ or IL-4. Results TET2 expression increased after LPS treatment in RAW264.7 cells and reached the peak at 2 hours later. The siRNA effectively reduced the expression of TET2. The expressions of IL-6, TNF-α and IL-12 mRNAs increased after TET2 knock-down and LPS stimulation. The expressions of M1 polarization markers and M2 markers were up-regulated by the corresponding stimulations after TET2 knock-down. Conclusion TET2 has the effect of inhibiting LPS-induced macrophage activation and plays an inhibitory role in macrophage M1 and M2 polarization.

  6. The soluble mannose receptor is released from the liver in cirrhotic patients, but is not associated with bacterial translocation

    DEFF Research Database (Denmark)

    Laursen, Tea L; Rødgaard-Hansen, Sidsel; Møller, Holger J

    2017-01-01

    BACKGROUND & AIMS: Intestinal bacterial translocation is involved in activation of liver macrophages in cirrhotic patients. Macrophages play a key role in liver inflammation and are involved in the pathogenesis of cirrhosis and complications. Bacterial translocation may be determined by presence...... receptor level was elevated in the hepatic vein compared with the portal vein (0.57(interquartile range 0.31) vs 0.55(0.40) mg/L, P=.005). The soluble mannose receptor levels were similar in bacterial DNA-positive and -negative patients. The soluble mannose receptor level in the portal and hepatic veins...

  7. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-11-01

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

  8. Translocation heterozygosity in southern African species of Viscum

    Directory of Open Access Journals (Sweden)

    D. Wiens

    1980-11-01

    Full Text Available Sex-associated and floating translocation complexes are characteristic of dioecious species of  Viscum,  but are virtually absent in monoecious species. The majority of dioecious species has fixed sex-associated translocation complexes with the male being the heterozygous sex. The sex-associated multivalent is usually O4 (ring-of-four or O6 , rarely O8 . Dioecious species without sex-associated translocations are much less common. Most of the dioecious species are also polymorphic for floating translocations, producing one or more additional multivalents ranging from O4 to O12. Floating translocations may be more frequent in species that do not have sex-associated translocations. Supernumerary chromosomes are also present in several species. Sex ratios are at unity in most dioecious species, but female-biased ratios may occur in some species. The high correlation between dioecy and translocation heterozygosity suggests that translocations are primarily associated with the origin and establishment of dioecy. Any róle in the maintenance of biased sex ratios through meiotic drive is probably secondary. Sex-associated translocations may serve to stabilize dioecy by bringing the sex factors into close linkage. Subsequent structural rearrangements within a sex-associated translocation complex may bring the sex factors together in one chromosome pair, releasing floating translocations. The high frequencies of floating translocation heterozygosity in some species indicate that such heterozygosity also has adaptive value.

  9. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    Science.gov (United States)

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  10. Development of a biological dosimeter for translocation scoring based on two-color fluorescence in situ hybridization of chromosome subsets

    Energy Technology Data Exchange (ETDEWEB)

    Popp, S; Cremer, T [Heidelberg Univ. (Germany). Inst. of Human Genetics and Anthropology

    1992-03-01

    Recently fluorescence in situ hybridization protocols have been developed which allow the paining of individual chromosomes using DNA-libraries from sorted human chromosomes. This approach has the particular advantage that radiation induced chromosome translocations can be easily detected, if chromosomes of distinctly different colors take part in the translocation event. To enhance the sensitivity of this approach two metaphase chromosome subsets A and B (A: chromosome 1, 2, 4, 8, 16; B: 3, 5, 9, 10, 13) were simultaneously painted in green and red color. Counterstaining of the chromosomes with DAPI resulted in a third subset which exhibited blue fluorescence only. Green-red, green-blue and red-blue translocation chromosomes could be easily detected after irradiation of lymphocyte cultures with {sup 137}Cs-{gamma}-rays. Analyses of painted chromosomes can be combined with conventional GTG-banding analyses. This new biological dosimeter should become useful to monitor both long term effects of single irradiation events and the cumulative effects of multiple or chronic irradiation exposure. In contrast to translocation scoring based on the analysis of banded chromosomes, this new approach has the particular advantage that a rapid, automated scoring of translocations can now be envisaged. (author).

  11. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  12. Rifaximin has minor effects on bacterial composition, inflammation and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Pedersen, Julie S.; Tavenier, Juliette

    2018-01-01

    .4), and MELD score 12 (±3.9). Patients received rifaximin 550 mg BD (n=36) or placebo BD (n=18). Blood and faecal (n=15) sampling were conducted at baseline and after four weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in faeces was analysed......BACKGROUND & AIMS: Decompensated cirrhosis is characterized by disturbed haemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination...... with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. In a randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS: Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (±8...

  13. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor

    International Nuclear Information System (INIS)

    Gracheva, Maria E; Aksimentiev, Aleksei; Leburton, Jean-Pierre

    2006-01-01

    In this paper, we evaluate the magnitude of the electrical signals produced by DNA translocation through a 1 nm diameter nanopore in a capacitor membrane with a numerical multi-scale approach, and assess the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. We show that the maximum recorded voltage caused by the DNA translocation is about 35 mV, while the maximum voltage signal due to the DNA backbone is about 30 mV, and the maximum voltage of a DNA base is about 8 mV. Signals from individual nucleotides can be identified in the recorded voltage traces, suggesting a 1 nm diameter pore in a capacitor can be used to accurately count the number of nucleotides in a DNA strand. Furthermore, we study the effect of a single base substitution on the voltage trace, and calculate the differences among the voltage traces due to a single base mutation for the sequences C 3 AC 7 , C 3 CC 7 , C 3 GC 7 and C 3 TC 7 . The calculated voltage differences are in the 5-10 mV range. The calculated maximum voltage caused by the translocation of individual bases varies from 2 to 9 mV, which is experimentally detectable

  14. Studies of viral DNA packaging motors with optical tweezers: a comparison of motor function in bacteriophages φ29, λ, and T4

    Science.gov (United States)

    Smith, Douglas E.; Fuller, Derek N.; Raymer, Dorian M.; Rickgauer, Peter; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Catalano, Carlos E.; Kottadiel, Vishal; Rao, Venigalla B.

    2007-09-01

    A key step in the assembly of many viruses is the packaging of double-stranded DNA into a viral procapsid (an empty protein shell) by the action of an ATP-powered portal motor complex. We have developed methods to measure the packaging of single DNA molecules into single viral proheads in real time using optical tweezers. We can measure DNA binding and initiation of translocation, the DNA translocation dynamics, and the filling of the capsid against resisting forces. In addition to studying bacteriophage φ29, we have recently extended these methods to study the E. coli bacteriophages λ and T4, two important model systems in molecular biology. The three systems have different capsid sizes/shapes, genome lengths, and biochemical and structural differences in their packaging motors. Here, we compare and contrast these three systems. We find that all three motors translocate DNA processively and generate very large forces, each exceeding 50 piconewtons, ~20x higher force than generated by the skeletal muscle myosin 2 motor. This high force generation is required to overcome the forces resisting the confinement of the stiff, highly charged DNA at high density within the viral capsids. However, there are also striking differences between the three motors: they exhibit different DNA translocation rates, degrees of static and dynamic disorder, responses to load, and pausing and slipping dynamics.

  15. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  16. Selective detection and quantification of modified DNA with solid-state nanopores.

    Science.gov (United States)

    Carlsen, Autumn T; Zahid, Osama K; Ruzicka, Jan A; Taylor, Ethan W; Hall, Adam R

    2014-10-08

    We demonstrate a solid-state nanopore assay for the unambiguous discrimination and quantification of modified DNA. Individual streptavidin proteins are employed as high-affinity tags for DNA containing a single biotin moiety. We establish that the rate of translocation events corresponds directly to relative concentration of protein-DNA complexes and use the selectivity of our approach to quantify modified oligonucleotides from among a background of unmodified DNA in solution.

  17. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  18. Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif.

    Science.gov (United States)

    Sanghamitra, Nusrat J M; Inaba, Hiroshi; Arisaka, Fumio; Ohtan Wang, Dan; Kanamaru, Shuji; Kitagawa, Susumu; Ueno, Takafumi

    2014-10-01

    Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The β-helical protein needle (β-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of β-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of β-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of β-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism.

  19. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  20. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  1. Financial costs of large carnivore translocations--accounting for conservation.

    Science.gov (United States)

    Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J

    2014-01-01

    Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  2. Financial costs of large carnivore translocations--accounting for conservation.

    Directory of Open Access Journals (Sweden)

    Florian J Weise

    Full Text Available Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars. Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23, and $2,108 per leopard (n = 6. One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%, followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4% of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown with a strong species bias. Four leopards (66.7% were successfully translocated but only eight of the 20 cheetahs (40.0% with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  3. Radiation induced reciprocal translocations and inversions in anopheles albimanus

    International Nuclear Information System (INIS)

    Kaiser, P.E.; Seawright, J.A.; Benedict, M.Q.; Narang, S.

    1982-01-01

    Reciprocal translocations and inversions were induced in Anopheles albimanus Wiedemann by irradiation of males with X rays. A total of 1669 sperm were assayed, and 175 new aberrations were identified as follows: 102 reciprocal translocations (67 autosomal and 35 sex-linked), 45 pericentric inversions, and 28 paracentric inversions. Eleven of the translocations were nearly whole-arm interchanges, and these were selected for the construction of 'capture systems' for compound chromosomes. Two double-heterozygous translocation strains and four homozygous translocation strains were established. Anopheles albimanus females were irradiated, and a pseudolinkage scheme involving mutant markers was employed to identify reciprocal translocations. The irradiation of females was very inefficient; only one translocation was recovered from 1080 ova tested

  4. Theoretical Study of the Transpore Velocity Control of Single-Stranded DNA

    Directory of Open Access Journals (Sweden)

    Weixin Qian

    2014-08-01

    Full Text Available The electrokinetic transport dynamics of deoxyribonucleic acid (DNA molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated using Langevin dynamics simulations. A coarse-grained bead-spring model was developed to simulate the dynamics of a long polymer chain passing through a rectangular cross-section nanopore embedded in a nanochannel, under the influence of a nonuniform electric field. Varying the cross-sectional area of the nanopore was found to allow optimization of the translocation process through modification of the electric field in the flow channel, since a drastic drop in the electric potential at the nanopore was induced by changing the cross-section. Furthermore, the configuration of the polymer chain in the nanopore was observed to determine its translocation velocity. The competition between the strength of the electric field and confinement in the small pore produces various transport mechanisms and the results of this study thus represent a means of optimizing the design of nanofluidic devices for single molecule detection.

  5. Molecular determinants of nucleolar translocation of RNA helicase A

    International Nuclear Information System (INIS)

    Liu Zhe; Kenworthy, Rachael; Green, Christopher; Tang, Hengli

    2007-01-01

    RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role

  6. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Valentina Tosato

    2017-09-01

    Full Text Available In mammalian organisms liquid tumors such as acute myeloid leukemia (AML are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in

  7. Measurement of background translocation frequencies in individuals with clones

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Marcelle J. [California State Univ. (CalState), Hayward, CA (United States)

    1996-08-01

    In the leukemia case the unseparated B and T lymphocytes had a high translocation frequency even after 0.0014, respectively. After purging all clones from the data, the translocation frequencies for Bio 8 and Bio 23 were 0.00750.0014 and 0.0073 metaphases were scored for chromosomal aberrations,, specifically reciprocal translocations, using fluorescence in situ hybridization (FISH). Metaphase spreads were used from two healthy, unexposed individuals (not exposed to radiation, chemotherapy or radiotherapy) and one early B- precursor acute lymphocytic leukemia (ALL) patient (metaphase spreads from both separated T lymphocytes and unseparated B and T lymphocytes were scored). All three individuals had an abnormally high translocation frequency. The high translocation frequencies resulted from clonal expansion of specific translocated chromosomes. I show in this thesis that by purging (discounting or removing) clones from the data of unexposed individuals, one can obtain true background translocation frequencies. In two cases, Bio 8 and Bio 23, the measured translocation frequency for chromosomes 1, 2 and 4 was 0.0124 purging all of the clones from the data. This high translocation frequency may be due to a low frequency of some clones and may not be recognized. The separated T lymphocytes had a higher translocation frequency than expected.

  8. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Contu, Viorica Raluca; Fujiwara, Yuuki; Hase, Katsunori; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2017-01-02

    Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.

  9. Nanofluidic Device with Embedded Nanopore

    Science.gov (United States)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  10. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    International Nuclear Information System (INIS)

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik

    2007-01-01

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells

  11. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  12. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation.

    Science.gov (United States)

    Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong

    2018-04-13

    Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.

  13. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  14. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  15. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  16. Inhibition of RecBCD enzyme by antineoplastic DNA alkylating agents.

    Science.gov (United States)

    Dziegielewska, Barbara; Beerman, Terry A; Bianco, Piero R

    2006-09-01

    To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.

  17. SIRT participates at DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Yong; Joeng, Jae Min; Lee, Kee Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Gil Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    Sir2 maintains genomic stability in multiple ways in yeast. As a NAD{sup +}-dependent histone deacetylase, Sir2 has been reported to control chromatin silencing. In both budding yeast and Drosophila, overexpression of Sir2 extends life span. Previous reports have also demonstrated that Sir2 participate at DNA damage repair. A protein complex containing Sir2 has been reported to translocate to DNA double-strand breaks. Following DNA damage response, SIRT1 deacetylates p53 protein and attenuates its ability as a transcription factor. Consequently, SIRT1 over-expression increases cell survival under DNA damage inducing conditions. These previous observations mean a possibility that signals generated during the process of DNA repair are delivered through SIRT1 to acetylated p53. We present herein functional evidence for the involvement of SIRT1 in DNA repair response to radiation. In addition, this modulation of DNA repair activity may be connected to deacetylation of MRN proteins.

  18. DNA-Dependent Protein Kinase in Non-Homologous End-Joining: Guarding Strategic Positions

    OpenAIRE

    Weterings, Eric

    2005-01-01

    markdownabstract__Abstract__ Careful maintenance of genetic information throughout generations is of vital importance to all living creatures. A battery of both endogenous and exogenous factors continuously threatens genetic integrity by altering the DNA chemistry. As a consequence, DNA damage types are as diverse as their causes. DNA doublestrand breaks (DSBs) are among the most deleterious lesions, since they introduce chromosomal breakage or translocation and are able to trigger carcinogen...

  19. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Science.gov (United States)

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  20. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Directory of Open Access Journals (Sweden)

    Mukesh

    Full Text Available The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  1. MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes

    Directory of Open Access Journals (Sweden)

    Bartov Guy

    2009-02-01

    Full Text Available Abstract Background Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young (MODY-like diabetes and an apparently balanced translocation [46,XY,t(7;10(q22;p12] and sought to identify a novel diabetes locus by characterizing the translocation breakpoints. Results Mutations in coding exons and splice sites of known MODY genes were first ruled out by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH studies demonstrated that the translocation did not disrupt two known diabetes-related genes on 10p12. The translocation breakpoints were further mapped to high resolution using FISH and somatic cell hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the Membrane Protein, Palmitoylated 7 (MPP7 gene, which encodes a protein required for proper cell polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7 is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints. Conclusion The balanced translocation and MODY-like diabetes in the proband could be coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7 expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes and perturbed islet cell polarity in insulin secretion warrant further study.

  2. 11C-methionine translocation in barley

    International Nuclear Information System (INIS)

    Nakanishi, Hiromi; Bughio, Naimatullah; Shigeta Ishioka, Noriko

    2000-01-01

    11 C-methionine was supplied to barley plants through a single leaf or via the roots and real time 11 C movement was monitored using a PETIS (positron emitting tracer imaging system). In Fe-deficient plants, 11 C-methionine was translocated from the tip of the absorbing leaf to the discrimination center' at the basal part of the shoot and then retranslocated to all the chlorotic leaves, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated from the absorbing leaf to the discrimination center and then only to the newest leaf on the main shoot. A negligible amount was also retranslocated to the roots. Although, in Fe-sufficient plants, methionine translocation was observed from absorbing roots to shoots, in Fe-deficient plants, only a little amount was translocated from roots to shoots. In conclusion, methionine from the upper portion of a plant is not used as a precursor of mugineic acid under Fe-deficiency conditions. (author)

  3. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  4. Factors affecting translocation and sclerotial formation in Morchella esculenta

    International Nuclear Information System (INIS)

    Amir, R.; Levanon, D.; Hadar, Y.; Chet, I.

    1995-01-01

    Amir, R., Levanon, D., Hadar, Y., and Chet, I. 1995. Factors affecting translocation and sclerotial formation in Morchella esculenta. Experimental Mycology 19, 61-70. Morchella esculenta was grown on square split plates, forming sclerotia on one side and mycelium on the other. After the fungus ceased to colonize and before sclerotial initials appeared, [ 14 C]3-O-methyl glucose was added to the edge of the plate on the mycelial side. The effect of various activities in the mycelium (source) and sclerotia (sink) on sclerotial formation and translocation were examined using inhibitors and water potential changes of the media. Sodium azide or cycloheximide applied separately to both sides inhibited both sclerotial formation and translocation, showing that processes in the source and sink depend on metabolic activities as well as protein synthesis. The use of nikkomycin inhibited sclerotial formation, without affecting translocation to the sclerotia. Since the hyphal tips swelled and burst, the translocated compounds were lost to the media. In a strain defective in sclerotial formation, used as a control, no translocation took place, showing that there is a connection between sclerotial formation and translocation. Reversal of the water potential gradient between the two media (lower on the mycelial side), reduced the formation of sclerotia and translocation to them. Translocation to Morchella sclerotia takes place via turgor driven mass flow, but is nevertheless affected by activities in both the source and the sink. (author)

  5. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne' , Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  6. DNA in the conservation and management of African antelope

    DEFF Research Database (Denmark)

    Lorenzen, Eline

    2016-01-01

    tool in informed species conservation and sustainable wildlife management. The movement of antelope through translocations, reintroductions, and population augmentations is common practice in wildlife management. DNA-led species identification using genetic barcoding is an effective use of genetic data...... within forensics. DNA barcoding is a taxonomic method that uses a short genetic marker in an organism's DNA to identify it as belonging to a particular species....... databases, and represents a valuable reference database of antelope DNA diversity. For the evolution of antelope, sub-Saharan Africa is a region of particular intrigue. The geographic regions of sub-Saharan Africa represent unique evolutionary scenarios. Molecular data have become an increasingly important...

  7. A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing.

    Science.gov (United States)

    Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A

    2015-10-01

    Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.

  8. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  9. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    Directory of Open Access Journals (Sweden)

    Chad R Sethman

    Full Text Available Sterile alpha and armadillo-motif containing protein (SARM, a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  10. Application of translocation, γ-H2AX, and Sam68 as a biological indicators for the assessment of radiation exposure in nuclear power plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Hee; Park, Hyung Sun; Nam, Seon Young [Korea Hydro Nuclear Power Co., Seoul (Korea, Republic of)

    2014-05-15

    This study showed that confirmation of the initial dose estimated by dicentric analysis is provided by the subsequent FISH analysis for translocation frequency and provides further evidence for the valid use of FISH as a retrospective biological dosimeter. The IAEA manual on cytogenetic dosimetry recommends a halftime value of 3 y to correct for the decrease of dicentrics in case of delayed sampling based on the patient data of Buckton. Support for this comes from the cytogenetic follow up of an individual exposed to tritium, which also indicated a decline in dicentrics with a half-time of ∼3 y. Naturally, the RBE of tritium, as well as other kinds of ionizing radiation, depends on the dose, exposure conditions, and studied parameters. The information about the RBE of tritium that is most important from an applied standpoint is that associated with the range of low doses. In our study, the dose dependence of tritium RBE was not identified because of very low dose Tritium (< 1mSv). However, The strong smooth relationship between translocation yield and age is shown in Table 2. The translocation yields reported here are only slightly lower than already published. The implication is that the increase of yield with age could be due to environmental factors, to a natural aging process or both. In addition, we confirmed that γ-H2AX and Sam68 associated with DNA damage and apoptosis, can be new biological indicators for radiation exposure. Radiation workers are exposed to ionizing radiation from various sources. Ionizing radiation produces several types of DNA lesion, including DNA base alterations, DNA. DNA cross-links, and single- and double-strand breaks. As a protocol for biological dosimetry recommended by IAEA (2001), the analysis of solid stained dicentric chromosomes has been used since the mid 1960s. The intervening years have seen great improvements bringing the technique to a point where dicentric analysis has become a routine component of the radiological

  11. Graphene Nanopres for DNA Fingerprinting

    Science.gov (United States)

    Ahmed, Towfiq; Balatsky, Alexander V.; Haraldsen, J. T.; Schuller, Ivan K.; di Ventra, M.; Wikfeldt, K. T.

    2013-03-01

    The recent progress in nanopore experiments with transverse current is important for the development of fast, accurate and cheap finger-printing techniques for single nucleotide. Despite its enormous potential for the next generation DNA sequencing technology, the presence of large noise in the temporal spectrum of transverse current remains a big challenge for getting highly accurate interpretation of data. In this paper we present our abinitio calculations, and propose graphene based device for DNA fingerprinting. We calculate transmission current through graphene for each DNA base (A,C,G,T). As shown in our work, a proper time-series analysis of a signal provides a higher quality information in identifying single bio-molecule is translocating through the nanopores. This work is supported by LANL, Nordita, US DOE, AFOSR, and NIH.

  12. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  13. TFE3-positive renal cell carcinomas are not always Xp11 translocation carcinomas: Report of a case with a TPM3-ALK translocation.

    Science.gov (United States)

    Thorner, Paul Scott; Shago, Mary; Marrano, Paula; Shaikh, Furqan; Somers, Gino R

    2016-10-01

    Translocation-associated renal cell carcinoma (RCC) is a distinct subtype of RCC with gene rearrangements of the TFE3 or TFEB loci. The TFE3 gene is located at Xp11 and can fuse to a number of translocation partners, resulting in high nuclear expression of TFE3 protein. TFE3 immunostaining is often used as a surrogate marker for a TFE3 translocation. We report a case of an RCC that expressed TFE3 but showed only gain of TFE3 rather than a translocation. Moreover, this case had a t(1;2) translocation fusing ALK and TMP3, identical to that seen in inflammatory myofibroblastic tumour. There was resulting overexpression of ALK protein in a cytoplasmic and membranous pattern. The patient was not treated with chemotherapy but following regional nodal recurrence, an ALK inhibitor was added and the patient remains alive one year later. There are only rare reports of RCC with an ALK-TMP3 fusion, and these tumours can express TFE3 on some unknown basis not related to a TFE3 translocation. Any RCC positive for TFE3 and lacking a translocation should be tested for ALK expression and translocation. Recognition of this subtype of RCC will allow ALK inhibitor therapy to be added, in the hope of improving patient outcome. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF and Endonuclease G (EndoG While Promoting Caspase Activation during Cardiac Ischemia

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    2017-03-01

    Full Text Available The AKT (protein kinase B, PKB family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/− mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C together with apoptosis-inducing factor (AIF and endonuclease G (EndoG, both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.

  15. Global conformational dynamics of a Y-family DNA polymerase during catalysis.

    Directory of Open Access Journals (Sweden)

    Cuiling Xu

    2009-10-01

    Full Text Available Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4 from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.

  16. The portal protein plays essential roles at different steps of the SPP1 DNA packaging process

    International Nuclear Information System (INIS)

    Isidro, Anabela; Henriques, Adriano O.; Tavares, Paulo

    2004-01-01

    A large number of viruses use a specialized portal for entry of DNA to the viral capsid and for its polarized exit at the beginning of infection. These families of viruses assemble an icosahedral procapsid containing a portal protein oligomer in one of its 12 vertices. The viral ATPase (terminase) interacts with the portal vertex to form a powerful molecular motor that translocates DNA to the procapsid interior against a steep concentration gradient. The portal protein is an essential component of this DNA packaging machine. Characterization of single amino acid substitutions in the portal protein gp6 of bacteriophage SPP1 that block DNA packaging identified sequential steps in the packaging mechanism that require its action. Gp6 is essential at early steps of DNA packaging and for DNA translocation to the capsid interior, it affects the efficiency of DNA packaging, it is a central component of the headful sensor that determines the size of the packaged DNA molecule, and is essential for closure of the portal pore by the head completion proteins to prevent exit of the DNA encapsidated. Functional regions of gp6 necessary at each step are identified within its primary structure. The similarity between the architecture of portal oligomers and between the DNA packaging strategies of viruses using portals strongly suggests that the portal protein plays the same roles in a large number of viruses

  17. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  18. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  19. Tailoring particle translocation via dielectrophoresis in pore channels

    Science.gov (United States)

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-01-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126

  20. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    Science.gov (United States)

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  1. 40 CFR 798.5955 - Heritable translocation test in drosophila melanogaster.

    Science.gov (United States)

    2010-07-01

    ... drosophila melanogaster. 798.5955 Section 798.5955 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5955 Heritable translocation test in drosophila melanogaster. (a) Purpose. The heritable translocation test in Drosophila measures the induction of chromosomal translocations in germ cells of insects...

  2. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain.

    Science.gov (United States)

    Northall, Sarah J; Buckley, Ryan; Jones, Nathan; Penedo, J Carlos; Soultanas, Panos; Bolt, Edward L

    2017-09-01

    Hel308 helicases promote genome stability linked to DNA replication in archaea, and have homologues in metazoans. In the crystal structure of archaeal Hel308 bound to a tailed DNA duplex, core helicase domains encircle single-stranded DNA (ssDNA) in a "ratchet" for directional translocation. A winged helix domain (WHD) is also present, but its function is mysterious. We investigated the WHD in full-length Hel308, identifying that mutations in a solvent exposed α-helix resulted in reduced DNA binding and unwinding activities. When isolated from the rest of Hel308, the WHD protein alone bound to duplex DNA but not ssDNA, and DNA binding by WHD protein was abolished by the same mutations as were analyzed in full-length Hel308. Isolated WHD from a human Hel308 homologue (HelQ) also bound to duplex DNA. By disrupting the interface between the Hel308 WHD and a RecA-like domain, a topology typical of Ski2 helicases, we show that this is crucial for ATPase and helicase activities. The data suggest a model in which the WHD promotes activity of Hel308 directly, through binding to duplex DNA that is distinct from ssDNA binding by core helicase, and indirectly through interaction with the RecA-like domain. We propose how the WHD may contribute to ssDNA translocation, resulting in DNA helicase activity or in removal of other DNA bound proteins by "reeling" ssDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  4. Survival of translocated sharp-tailed grouse: Temporal threshold and age effects

    Science.gov (United States)

    Mathews, Steven; Coates, Peter S.; Delehanty, David J.

    2016-01-01

    Context: The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus) is a subspecies of conservation concern in the western United States, currently occupying ≤10% of its historic range. Land and management agencies are employing translocation techniques to restore Columbian sharp-tailed grouse (CSTG) populations. However, establishing self-sustaining populations by translocating grouse often is unsuccessful, owing, in part, to low survivorship of translocated grouse following release.Aims: We measured and modelled patterns of CSTG mortality for 150 days following translocation into historic range, to better understand patterns and causes of success or failure in conservation efforts to re-establish grouse populations.Methods: We conducted two independent multi-year translocations and evaluated individual and temporal factors associated with CSTG survival up to 150 days following their release. Both translocations were reintroduction attempts in Nevada, USA, to establish viable populations of CSTG into their historic range.Key results: We observed a clear temporal threshold in survival probability, with CSTG mortality substantially higher during the first 50 days following release than during the subsequent 100 days. Additionally, translocated yearling grouse exhibited higher overall survival (0.669 ± 0.062) than did adults (0.420 ± 0.052) across the 150-day period and higher survival than adults both before and after the 50-day temporal threshold.Conclusions: Translocated CSTG are especially vulnerable to mortality for 50 days following release, whereas translocated yearling grouse are more resistant to mortality than are adult grouse. On the basis of the likelihood of survival, yearling CSTG are better candidates for population restoration through translocation than are adult grouse.Implications: Management actions that ameliorate mortality factors for 50 days following translocation and translocations that employ yearling grouse will

  5. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  6. Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Benjamin L. Franc

    2003-10-01

    Full Text Available The lipid bilayer of a cell presents a significant barrier for the delivery of many molecular imaging reagents into cells at target sites in the body. Protein translocation domains (PTDs are peptides that breach this barrier. Conjugation of PTDs to imaging agents can be utilized to facilitate the delivery of these agents through the cell wall, and in some cases, into the cell nucleus, and have potential for in vitro and in vivo applications. PTD imaging conjugates have included small molecules, peptides, proteins, DNA, metal chelates, and magnetic nanoparticles. The full potential of the use of PTDs in novel in vivo molecular probes is currently under investigation. Cells have been labeled in culture using magnetic nanoparticles derivatized with a PTD and monitored in vivo to assess trafficking patterns relative to cells expressing a target antigen. In vivo imaging of PTD-mediated gene transfer to cells of the skin has been demonstrated in living animals. Here we review several natural and synthetic PTDs that have evolved in the quest for easier translocation across biological barriers and the application of these peptide domains to in vivo delivery of imaging agents.

  7. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  8. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.; Rungger, I.; Pemmaraju, C. D.; Schwingenschlö gl, Udo; Sanvito, S.

    2012-01-01

    such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap

  9. Delayed reproduction of translocated red-cockaded woodpeckers

    Science.gov (United States)

    James R. McCormick; Richard N. Conner; Daniel Saenz; Brent Burt

    2001-01-01

    Twelve pairs of Red-cockaded Woodpeckers were translocated to the Angelina National Forest from 21 October 1998 to 17 December 1998. Five breeding pairs (consisting of at least one trnnslocated bird) produced eggs/nestlings within the first breeding season after translocation. Clutch initiation dates for all five pairs were later than those of resident breeders. The...

  10. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    Science.gov (United States)

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  11. Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3'-to-5' DNA translocase and helicase that prefers to unwind 3'-tailed RNA:DNA hybrids.

    Science.gov (United States)

    Ordonez, Heather; Shuman, Stewart

    2013-05-17

    We are interested in the distinctive roster of helicases of Mycobacterium, a genus of the phylum Actinobacteria that includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis Lhr as the exemplar of a novel clade of superfamily II helicases, by virtue of its biochemical specificities and signature domain organization. Lhr is a 1507-amino acid monomeric nucleic acid-dependent ATPase that uses the energy of ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single strand DNA and to unwind duplexes en route. The ATPase is more active in the presence of calcium than magnesium. ATP hydrolysis is triggered by either single strand DNA or single strand RNA, yet the apparent affinity for a DNA activator is 11-fold higher than for an RNA strand of identical size and nucleobase sequence. Lhr is 8-fold better at unwinding an RNA:DNA hybrid than it is at displacing a DNA:DNA duplex of identical nucleobase sequence. The truncated derivative Lhr-(1-856) is an autonomous ATPase, 3'-to-5' translocase, and RNA:DNA helicase. Lhr-(1-856) is 100-fold better RNA:DNA helicase than DNA:DNA helicase. Lhr homologs are found in bacteria representing eight different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis) and Proteobacteria (including Escherichia coli).

  12. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane; Demangel, Caroline; Van Ingen, Jakko; Perez, Jorge; Baldeó n, Lucy R.; Abdallah, Abdallah; Caleechurn, Laxmee; Bottai, Daria; Van Zon, Maaike; De Punder, Karin; Van Der Laan, Tridia; Kant, Arie; Bossers-De Vries, Ruth; Willemsen, Peter Th J; Bitter, Wilbert M.; Van Soolingen, Dick; Brosch, Roland; Van Der Wel, Nicole N.; Peters, Peter J.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  13. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  14. Cyclic GMP-AMP Synthase is Activated by Double-stranded DNA-Induced Oligomerization

    OpenAIRE

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T.; Shelton, Catherine L.; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B.; Li, Pingwei

    2013-01-01

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and ...

  15. Archaeal RNA polymerase arrests transcription at DNA lesions.

    Science.gov (United States)

    Gehring, Alexandra M; Santangelo, Thomas J

    2017-01-01

    Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.

  16. Large Scale Parallel DNA Detection by Two-Dimensional Solid-State Multipore Systems.

    Science.gov (United States)

    Athreya, Nagendra Bala Murali; Sarathy, Aditya; Leburton, Jean-Pierre

    2018-04-23

    We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.

  17. A strategy for generation and balancing of autosome: Y chromosome translocations.

    Science.gov (United States)

    Joshi, Sonal S; Cheong, Han; Meller, Victoria H

    2014-01-01

    We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced ( 2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.

  18. [Clinical characteristics and preimplantation genetic diagnosis for male Robertsonian translocations].

    Science.gov (United States)

    Huang, Jin; Lian, Ying; Qiao, Jie; Liu, Ping

    2012-08-18

    To explore the clinical characteristics and the preimplantation genetic diagnosis (PGD) for male Robertsonian translocations. From Jan 2005 to Oct 2011, 96 PGD cycles of 80 male Robertsonian translocations were performed at the Center of Reproductive Medicine of Peking University Third Hospital, Beijing. All the couples were involved in assisted reproductive therapy because of oligozoospermia or repeated abortions. Pregnancy results and clinical characteristics were analyzed in this study. Of all the 80 Robertsonian translocation couples, 62 (77.50%, 62/80) couples suffered from primary infertility due to severe oligoospermia and 8 (10%, 8/80) couples suffered from secondary infertility due to oligoospermia. Moreover, 10 (12.50%, 10/80) couples had recurrent spontaneous abortion. Of all the 80 male Robertsonian translocations, 50 were (13; 14) translocations and 15 (14; 21) translocations. The study showed that 79 PGD cycles had the balanced embryos to transfer and 25 cycles resulted in clinical pregnancies. The clinical pregnancy rate per transfer cycle was 31.65% (25 of 79). Now, 18 couples had 21 viable infants and 3 were ongoing pregnant. Oligozoospermia is the main factor for the infertility of the male Robertsonian translocations. Artificial reproductive techniques can solve their reproductive problems. Moreover, PGD will decrease the risk of recurrent spontaneous abortion and the malformations.

  19. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    Directory of Open Access Journals (Sweden)

    Richard Park

    Full Text Available Many viruses target cytoplasmic polyA binding protein (PABPC to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs. During lytic replication of Epstein Barr Virus (EBV we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E, was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.

  20. Meiotic chromosomal translocations in male mice induced by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Savkovic, N.; Pecevski; Vuksanovic, L.; Radivojevic, D.; Alavantic, D.

    1983-01-01

    The dose-response curve for reciprocal translocations induced by acute exposure of spermatogonial stem cells to X-rays in treated mice and their F-1 sons was examined. Male mice were totally irradiated with doses of 1Gy;5x1Gy and 5Gy. The obtained results show that frequency of the chromosomal translocations in directly treated animals is dose dependent. The percentage of animals irradiated with 1Gy which had the chromosomal translocations was 60, while this percentage in animals irradiated with single and fractionated dose of 5Gy was 100. The frequency of chromosomal translocations varies from 1.5% to 8.0%. Multivalent configurations in F-1 males were observed after exposure to 5Gy only. The incidence of F-1 translocated males was 17.5%.

  1. Translocation of threatened plants as a conservation measure in China.

    Science.gov (United States)

    Liu, Hong; Ren, Hai; Liu, Qiang; Wen, XiangYing; Maunder, Michael; Gao, JiangYun

    2015-12-01

    We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely

  2. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished

    DEFF Research Database (Denmark)

    Schneider, Anja; Häusler, Rainer E; Kolukisaoglu, Uner

    2002-01-01

    The Arabidopsis thaliana tpt-1 mutant which is defective in the chloroplast triose phosphate/phosphate translocator (TPT) was isolated by reverse genetics. It contains a T-DNA insertion 24 bp upstream of the start ATG of the TPT gene. The mutant lacks TPT transcripts and triose phosphate (TP)-spe...

  3. Translocation of cesium in plants after foliar deposition - Experiments and models

    International Nuclear Information System (INIS)

    Proehl, G.; Voigt, G.; Mueller, H.

    1991-01-01

    The translocation of cesium from the foliage to the edible parts as function of the time period between deposition and harvest has been determined for cereals, potatoes, green beans and carrots. From the results the following conclusions can be drawn: 1. The maximum of the cesium translocation is 40 to 50 and 70 to 90 days before harvest for cereals and potatoes respectively. For green beans a maximum was observed after deposition 15 days before harvest; 2. The variations of the translocation factors are less if the translocation is normalized to the yield; 3. The translocation factors are in good agreement with those of other investigators. The agreement between the experimental series is better for a normalization of the translocation factor on the yield; 4. For cereals and potatoes the translocation can be described with gaussian functions which are consistent with the physiological development of cereals and potatoes. Although the approach in ECOSYS tends to over predict slightly the translocation for barley and potatoes there is a good overall agreement between the experiments and this model; 5. According to the investigations available the translocation of cesium can be predicted within a factor of 3 for cereals and a factor of 4 for potatoes. Sources of the uncertainties besides the biological variability and the inherent experimental error are differences in the development of the plants due to weather conditions, farm management and plant diseases. (9 refs., 5 figs.)

  4. Cold-inhibited phloem translocation in sugar beet

    International Nuclear Information System (INIS)

    Grusak, M.A.

    1985-01-01

    Experimental studies were undertaken on a simplified single source leaf-single sink leaf, or single source leaf-double sink leaf sugar beet system to investigate the responsive nature of the long-distance phloem translocation system to localized cooling perturbations on the source leaf petiole. Experiments were performed by using a steady state [ 14 C]-labelling system for the source leaf, and translocation into the sink leaf (leaves) was monitored with a Geiger-Mueller system. A specially designed Peltier apparatus enabled cooling of the source petiole to 1 0 C (or other desired temperatures) at various positions on the petiole, over different lengths, and at different rates of cooling. Initial experiment were designed to test the predictions of a mathematical recovery model of translocation inhibited by cold. The results did not support the mathematical model, but did suggest that vascular anastomoses may be involved in the recovery response. Selective petiolar incision/excision experiments showed that anastomoses were capable of re-establishing translocation following a disruption of flow. Studies with two monitored sink levels suggested that the inhibition to slow-coolings was not due to reduced translocation through the cooled source petiole region, but rather, was due to a repartitioning of flow among the terminal sinks (sink leaves and hypocotyl/crown region above the heat-girdled root). This repartitioning occurred via a redirection of flow through the vascular connections in the crown region of the plant, and appeared to be promoted by rapid, physical signals originating from the cooled region of the petiole

  5. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  6. Transcuticular translocation of radionuclides on plant leaf surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1996-12-31

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten {mu}l of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca{sup *} and Te{sup *} tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc{sup *}, Co{sup *}, Zn{sup *}, Se{sup *}, Rb{sup *}, and Eu{sup *} were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be{sup *}, Mn{sup *}, Sr{sup *}, Y{sup *}, Ba{sup *}, Ce{sup *}, Pm{sup *}, Gd{sup *}, Hf{sup *}, Yb{sup *}, Lu{sup *}, Os{sup *}, Ir{sup *}, and Pt{sup *} remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant

  7. Transcuticular translocation of radionuclides on plant leaf surfaces

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu

    1996-01-01

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten μl of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca * and Te * tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc * , Co * , Zn * , Se * , Rb * , and Eu * were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be * , Mn * , Sr * , Y * , Ba * , Ce * , Pm * , Gd * , Hf * , Yb * , Lu * , Os * , Ir * , and Pt * remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant tissues, though their translocation was considerably influenced by the plant species. (author)

  8. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  9. Probing DNA with micro- and nanocapillaries and optical tweezers

    International Nuclear Information System (INIS)

    Steinbock, L J; Otto, O; Skarstam, D R; Jahn, S; Chimerel, C; Gornall, J L; Keyser, U F

    2010-01-01

    We combine for the first time optical tweezer experiments with the resistive pulse technique based on capillaries. Quartz glass capillaries are pulled into a conical shape with tip diameters as small as 27 nm. Here, we discuss the translocation of λ-phage DNA which is driven by an electrophoretic force through the nanocapillary. The resulting change in ionic current indicates the folding state of single λ-phage DNA molecules. Our flow cell design allows for the straightforward incorporation of optical tweezers. We show that a DNA molecule attached to an optically trapped colloid is pulled into a capillary by electrophoretic forces. The detected electrophoretic force is in good agreement with measurements in solid-state nanopores.

  10. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    International Nuclear Information System (INIS)

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-01-01

    Highlights: → LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. → LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. → LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  11. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhen [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China); Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Xiang, Wenqing; Guo, Yajuan [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Chen, Zhi [The State Key Laboratory for Infectious Disease, Institute of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Liu, Wei, E-mail: liuwei666@zju.edu.cn [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Lu, Daru, E-mail: drlu@fudan.edu.cn [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China)

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  12. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  13. Polymer translocation in the presence of excluded volume and explicit hydrodynamic interactions

    International Nuclear Information System (INIS)

    Guillouzic, Steve; Slater, Gary W.

    2006-01-01

    Molecular Dynamics simulations of polymer translocation are hereby reported. No external force was applied to the polymer during translocation, and the dynamics was dominated by polymer-pore interactions. It was found that hydrodynamic interactions play an important role in the relaxation of the polymer on each side of the membrane but have a negligible impact on the translocation process itself. Also, the scaling laws obtained for the relaxation and translocation times indicate that long translocating polymers may be considered to be following a quasi-equilibrium anomalous diffusion process in the absence of external forces

  14. Effect of vessel voyage speed on survival of biofouling organisms: implications for translocation of non-indigenous marine species.

    Science.gov (United States)

    Coutts, Ashley D M; Piola, Richard F; Hewitt, Chad L; Connell, Sean D; Gardner, Jonathan P A

    2010-01-01

    This study experimentally determined the effect of different vessel voyage speeds (5, 10 and 18 knots = 2.6, 5.1 and 9.3 ms(-1), respectively) and morphological characteristics including growth form (solitary or colonial), profile (erect or encrusting) and structure (soft, hard or flexible) on the survival of a range of common biofouling organisms. A custom built hydrodynamic keel attached to the bottom of a 6 m aluminium powerboat was used to subject pre-fouled settlement plates for this purpose. Vessel speeds of 5 and 10 knots had little effect on the species richness of biofouling assemblages tested, however richness decreased by 50% following 18 knots treatments. Species percentage cover decreased with increasing speed across all speed treatments and this decrease was most pronounced at 10 and 18 knots, with cover reduced by 24 and 85% respectively. Survival was greatest for organisms with colonial, encrusting, hard and/or flexible morphological characteristics, and this effect increased with increasing speed. This study suggests that there is predictive power in forecasting future introductions if we can understand the extent to which such traits explain the world-wide distributions of non-indigenous species. Future introductions are a certainty and can only provide an increasing source of new information on which to test the validity of these predications.

  15. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  16. Dek-can rearrangement in translocation (6;9)(p23;q34)

    NARCIS (Netherlands)

    Soekarman, D.; von Lindern, M.; van der Plas, D. C.; Selleri, L.; Bartram, C. R.; Martiat, P.; Culligan, D.; Padua, R. A.; Hasper-Voogt, K. P.; Hagemeijer, A.

    1992-01-01

    The translocation (6;9)(p23;q34) is mainly found in specific subtypes of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The diagnosis of this translocation is not easy since the cytogenetic change is quite subtle. The two genes involved in this translocation were recently isolated

  17. Variant Philadelphia translocations with different breakpoints in six chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Dilhan Kuru

    2011-09-01

    Full Text Available Objective: The Philadelphia (Ph chromosome, consisting of the t(9;22(q34;q11 translocation, is observed in ~90% of patients with chronic myeloid leukemia (CML. Variant Ph translocations are observed in 5%-10% of CML patients. In variant translocations 3 and possibly more chromosomes are involved. Herein we report 6 CML patients with variant Ph translocations.Materials and Methods: Bone marrow samples were examined using conventional cytogenetic meth ods. Fluorescence in situ hybridization (FISH with whole-chromosome paints and BCR-ABL 1D probes were used to confirm and/or complement the findings, and identify rearrangements beyond the resolution of conventional cytogenetic methods. Results: Variant Ph translocations in the 6 patients were as follows: t(7;22(p22;q11, t(9;22;15(q34;q11;q22, t(15;22(p11;q11, t(1;9;22;3(q24;q34;q11;q21, t(12;22(p13;q11, and t(4;8;9;22(q11;q13;q34;q11.Conclusion: Among the patients, 3 had simple and 3 had complex variant Ph translocations. Two of the presented cases had variant Ph chromosomes not previously described, 1 of which had a new complex Ph translocation involving chromosomes 1, 3, 9, 22, and t(1;9;22;3(q24;q34;q11;q21 apart from a clone with a classical Ph, and the other case had variant Ph translocation with chromosomes 4, 8, 9, and 22, and t(4;8;9;22(q11;q13;q34;q11 full complex translocation. Number of studies reported that some patients with variant Ph translocation were poor responders to imatinib. All of our patients with variant Ph translocations had suboptimal responses to imatinib, denoting a poor prognosis also. Variant Ph translocations may be important as they are associated with prognosis and therapy for CML patients.

  18. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  19. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients

    International Nuclear Information System (INIS)

    Walker, B A; Wardell, C P; Brioli, A; Boyle, E; Kaiser, M F; Begum, D B; Dahir, N B; Johnson, D C; Ross, F M; Davies, F E; Morgan, G J

    2014-01-01

    Secondary MYC translocations in myeloma have been shown to be important in the pathogenesis and progression of disease. Here, we have used a DNA capture and massively parallel sequencing approach to identify the partner chromosomes in 104 presentation myeloma samples. 8q24 breakpoints were identified in 21 (20%) samples with partner loci including IGH, IGK and IGL, which juxtapose the immunoglobulin (Ig) enhancers next to MYC in 8/23 samples. The remaining samples had partner loci including XBP1, FAM46C, CCND1 and KRAS, which are important in B-cell maturation or myeloma pathogenesis. Analysis of the region surrounding the breakpoints indicated the presence of superenhancers on the partner chromosomes and gene expression analysis showed increased expression of MYC in these samples. Patients with MYC translocations had a decreased progression-free and overall survival. We postulate that translocation breakpoints near MYC result in colocalization of the gene with superenhancers from loci, which are important in the development of the cell type in which they occur. In the case of myeloma these are the Ig loci and those important for plasma cell development and myeloma pathogenesis, resulting in increased expression of MYC and an aggressive disease phenotype

  20. Substrate interactions and promiscuity in a viral DNA packaging motor.

    Science.gov (United States)

    Aathavan, K; Politzer, Adam T; Kaplan, Ariel; Moffitt, Jeffrey R; Chemla, Yann R; Grimes, Shelley; Jardine, Paul J; Anderson, Dwight L; Bustamante, Carlos

    2009-10-01

    The ASCE (additional strand, conserved E) superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life. A subset of these enzymes consists of multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses and tailed bacteriophages. Although their mechanism of mechanochemical conversion is beginning to be understood, little is known about how these motors engage their nucleic acid substrates. Questions remain as to whether the motors contact a single DNA element, such as a phosphate or a base, or whether contacts are distributed over several parts of the DNA. Furthermore, the role of these contacts in the mechanochemical cycle is unknown. Here we use the genome packaging motor of the Bacillus subtilis bacteriophage varphi29 (ref. 4) to address these questions. The full mechanochemical cycle of the motor, in which the ATPase is a pentameric-ring of gene product 16 (gp16), involves two phases-an ATP-loading dwell followed by a translocation burst of four 2.5-base-pair (bp) steps triggered by hydrolysis product release. By challenging the motor with a variety of modified DNA substrates, we show that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5'-3' strand in the direction of packaging. As well as providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, nonspecific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily.

  1. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize

    Institute of Scientific and Technical Information of China (English)

    Moming Zhao; Shuzhen Zhang; Sen Wang; Honglin Huang

    2012-01-01

    Uptake,translocation and debromination of three polybrominated diphenyl ethers(PBDEs),BDE-28,-47 and-99,in maize were studied in a hydroponic experiment.Roots took up most of the PBDEs in the culture solutions and more highly brominated PBDEs had a stronger uptake capability.PBDEs were detected in the stems and leaves of maize after exposure but rarely detected in the blank control plants.Furthermore,PBDE concentrations decreased from roots to stems and then to leaves,and a very clear decreasing gradient was found in segments upwards along the stem.These altogether provide substantiating evidence for the acropetal translocation of PBDEs in maize.More highly brominated PBDEs were translocated with more difficulty.Radial translocation of PBDEs from nodes to sheath inside maize was also observed.Both acropetal and radial translocations were enhanced at higher transpiration rates,suggesting that PBDE transport was probably driven by the transpiration stream.Debromination of PBDEs occurred in all parts of the maize,and debromination patterns of different parent PBDEs and in different parts of a plant were similar but with some differences.This study for the first time provides direct evidence for the acropetal translocation of PBDEs within plants,elucidates the process of PBDE transport and clarifies the debromination products of PBDEs in maize.

  2. MiT family translocation renal cell carcinoma.

    Science.gov (United States)

    Argani, Pedram

    2015-03-01

    The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Simulations of polymer translocation

    NARCIS (Netherlands)

    Vocks, H.

    2008-01-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze --- i.e., translocate ---

  4. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  5. The chromosomal risk in sperm from heterozygous Robertsonian translocation carriers is related to the sperm count and the translocation type.

    Science.gov (United States)

    Ferfouri, Fatma; Selva, Jacqueline; Boitrelle, Florence; Gomes, Denise Molina; Torre, Antoine; Albert, Martine; Bailly, Marc; Clement, Patrice; Vialard, François

    2011-12-01

    To study the chromosomal risk in sperm from Robertsonian translocation (RobT) carriers as a function of the sperm count and translocation type. Prospective study. Departments of reproductive biology, cytogenetics, gynecology, and obstetrics. A total of 29 RobT patients (8 normozoospermic and 21 oligozoospermic) and 20 46,XY patients (10 normozoospermic and 10 oligozoospermic). Sperm fluorescence in situ hybridization with probes for translocation malsegregation and chromosome 13, 18, 21, X, and Y probes for studying the interchromosomal effect (ICE). Translocation malsegregation and ICE aneuploidy rates. In RobT carriers, the sperm translocation malsegregation rate was significantly lower in normozoospermic patients (9.7%) than in oligozoospermic patients (18.0%). Considering only oligozoospermic patients, sperm malsegregation rates were significantly lower for rob(14;21) than for rob(13;14) (11.4% vs. 18.9%). In turn, the rates were significantly lower for rob(13;14) than for rare RobTs (18.9% vs. 25.3%). In sperm from normozoospermic RobT, an ICE was suggested by higher chromosome 13 and 21 aneuploidy rates than in control sperm. Conversely, chromosome 13 and 21 sperm aneuploidy rates were lower in oligozoospermic RobT patients than in oligozoospermic 46,XY patients, but higher than in control subjects. Both translocation type and sperm count influence the RobT malsegregation risk. Of the chromosomes analyzed (13, 18, 21, X, and Y), only chromosomes 13 and 21 were found to be associated with an ICE. Relative to the RobT effect, idiopathic alterations in spermatogenesis in 46,XY patients appear to be more harmful for meiosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Mechanism for translocation of fluoroquinolones across lipid membranes

    DEFF Research Database (Denmark)

    Cramariuc, O.; Rog, T.; Javanainen, M.

    2012-01-01

    Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone...... antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins....... Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach...

  7. Nonabsorbable Antibiotics Reduce Bacterial and Endotoxin Translocation in Hepatectomised Rats

    Directory of Open Access Journals (Sweden)

    S. K. Kakkos

    1997-01-01

    Full Text Available There is increasing evidence that septic complications, occurring after major hepatectomies, may be caused by gram negative bacteria, translocating from the gut. We investigated in rats, the effect of extended hepatectomy on the structure and morphology of the intestinal mucosa as well as on the translocation of intestinal bacteria and endotoxins. We also examined the effect of nonabsorbable antibiotics on reducing the intestinal flora and consequently the phenomenon of translocation by administering neomycin sulphate and cefazoline. Hepatectomy was found to increase translocation, while administration of nonabsorbable antibiotics decreased it significantly. In addition, hepatectomy increased the aerobic cecal bacterial population, which normalised in the group receiving antibiotics. Among the histological parameters evaluated, villus height demonstrated a significant reduction after hepatectomy, while the number of villi per cm and the number of mitoses per crypt, remained unchanged. Our results indicate that administration of nonabsorbable antibiotics presents a positive effect on bacterial and endotoxin translocation after extended hepatectomy, and this may be related to reduction of colonic bacterial load as an intraluminal effect of antibiotics.

  8. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    Science.gov (United States)

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  9. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    Directory of Open Access Journals (Sweden)

    Liqiang Song

    Full Text Available The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  10. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE

    Directory of Open Access Journals (Sweden)

    Mirjana Pavlovic

    2010-01-01

    Full Text Available The discoveries of natural and the development of manufactured highly efficient catalytic antibodies (abzymes opens the door to many practical applications. One of the most fascinating is the use of such antibodies in human therapy and prevention (vaccination, of cancer, AIDS, autoimmune diseases. A special entity of naturally occurring DNA hydrolytic anti-DNA antibodies is emerging within past decades linked to autoimmune and lymphoproliferative disorders, such as systemic lupus erythematosus (SLE, multiple sclerosis (MS, Sjogren Syndrome (SS, B - Chronic lymphocytic leucosis (B-CLL, and Multiple Myeloma (MM. The origin of the antibodies is unknown. The underlying mechanisms of these activities are suggested to be penetration into the living cells and translocation in the nucleus, with recognition of the specific binding sites at particular (ss or ds DNA. There are controversies in the literature whether hydrolysis is a sequence-specific event. The interplay between anti-DNA antibodies and DNA is not yet elucidated. This molecular “twist” also suggests that anti-DNA antibodies with DNA hydrolytic capacity could be the organism's immune response to a microbial attack, with microbial DNA, or specific genes within microbial DNA sequence, as a target for neutralization. The catalytic antibody-based approach can become a key tool in selective chemotherapeutic strategies.

  11. DNA unwinding by ring-shaped T4 helicase gp41 is hindered by tension on the occluded strand.

    Science.gov (United States)

    Ribeck, Noah; Saleh, Omar A

    2013-01-01

    The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, 'occluded' strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.

  12. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    Science.gov (United States)

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  13. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70.

    Science.gov (United States)

    Boboila, Cristian; Jankovic, Mila; Yan, Catherine T; Wang, Jing H; Wesemann, Duane R; Zhang, Tingting; Fazeli, Alex; Feldman, Lauren; Nussenzweig, Andre; Nussenzweig, Michel; Alt, Frederick W

    2010-02-16

    Class switch recombination (CSR) in B lymphocytes is initiated by introduction of multiple DNA double-strand breaks (DSBs) into switch (S) regions that flank immunoglobulin heavy chain (IgH) constant region exons. CSR is completed by joining a DSB in the donor S mu to a DSB in a downstream acceptor S region (e.g., S gamma1) by end-joining. In normal cells, many CSR junctions are mediated by classical nonhomologous end-joining (C-NHEJ), which employs the Ku70/80 complex for DSB recognition and XRCC4/DNA ligase 4 for ligation. Alternative end-joining (A-EJ) mediates CSR, at reduced levels, in the absence of C-NHEJ, even in combined absence of Ku70 and ligase 4, demonstrating an A-EJ pathway totally distinct from C-NHEJ. Multiple DSBs are introduced into S mu during CSR, with some being rejoined or joined to each other to generate internal switch deletions (ISDs). In addition, S-region DSBs can be joined to other chromosomes to generate translocations, the level of which is increased by absence of a single C-NHEJ component (e.g., XRCC4). We asked whether ISD and S-region translocations occur in the complete absence of C-NHEJ (e.g., in Ku70/ligase 4 double-deficient B cells). We found, unexpectedly, that B-cell activation for CSR generates substantial ISD in both S mu and S gamma1 and that ISD in both is greatly increased by the absence of C-NHEJ. IgH chromosomal translocations to the c-myc oncogene also are augmented in the combined absence of Ku70 and ligase 4. We discuss the implications of these findings for A-EJ in normal and abnormal DSB repair.

  14. Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate.

    Science.gov (United States)

    Rodriguez, A V; Baigorí, M D; Alvarez, S; Castro, G R; Oliver, G

    2001-10-16

    Phosphatidylinositol-specific phospholipase C (PI-PLC) activity was investigated in 25 different lactic acid bacteria (LAB) strains belonging to the genera Lactobacillus, Weisella, and Enterococcus. PI-PLC activity was detected in 44% of the strains studied in culture medium without carbon source. From the PI-PLC positive strains, Lactobacillus rhamnosus ATCC 7469 was selected for translocation studies. Healthy mice were orally administered with a daily dose of 2.0 x 10(9) of viable L. rhamnosus suspension. Viable bacteria were detected in liver and spleen of mice fed with LAB for 7 days. Bacterial colonies isolated from liver were biochemically characterized, and further subjected to randomly amplified polymorphic DNA. Amplification patterns of five strains displayed identical profiles to L. rhamnosus. PI-PLC activity was determined in the strains recovered from liver.

  15. Absorption and translocation of phosphorus-32 in guava leaves

    International Nuclear Information System (INIS)

    Natale, William

    1997-01-01

    Phosphorus is easily absorbed by the leaves and translocated. The objective of this work was to evaluate the absorption and translocation of P by guava leaves, with time. When a solution containing 2% MAP and specific activity 0.15 μCi/ml was applied. MAP labelled with 32 P was applied in the 3 rd pair of leaves. These and other leaves, roots and stem were collected separately and analyzed accordingly. The results showed that 20 days after application 12% of the applied P was absorbed by the guava leaves. The translocation of P started immediately after its absorption reaching 20% 2fter 20 days. (author). 19 refs., 4 tabs

  16. Translocation of a polymer through a nanopore across a viscosity gradient.

    Science.gov (United States)

    de Haan, Hendrick W; Slater, Gary W

    2013-04-01

    The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.

  17. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  18. Rapamycin causes activation of protein phosphatase-2A1 and nuclear translocation of PCNA in CD4+ T cells

    International Nuclear Information System (INIS)

    Morrow, Peter W.; Tung, H.Y. Lim; Hemmings, Hugh C.

    2004-01-01

    Rapamycin is a powerful immunosuppressant that causes cell cycle arrest in T cells and several other cell types. Despite its important clinical role, the mechanism of action of rapamycin is not fully understood. Here, we show that rapamycin causes the activation of protein phosphatase-2A 1 which forms a complex with proliferation cell nuclear antigen (PCNA) in a CD 4+ T cell line. Rapamycin also induces PCNA translocation from the cytoplasm to the nucleus, an effect which is antagonized by okadaic acid, an inhibitor of type 2A protein phosphatases. These findings provide evidence for the existence of a signal transduction pathway that links a rapamycin-activated type 2A protein phosphatase to the control of DNA synthesis, DNA repair, cell cycle, and cell death via PCNA

  19. Translocation of 14C in adventitiously rooting Calluna vulgaris on peat

    International Nuclear Information System (INIS)

    Wallen, B.

    1983-01-01

    Seasonal variation in translocation of 14 C-labelled assimilates showed that 14 C-translocation within woody tissue was mainly limited to the phytomass produced during the last eight years. Independent of overgrowth of basal stem segments or decumbent sections by Sphagnum, or of subsequent adventitious rooting, the allocation followed a negative exponential from the assimilating units down the plant, and reached negligible values in 8-yr-old wood. Translocation to fine roots was however, mainly restricted to the shallow roots. Already at ca. 10 cm depth, the fine roots contained only about 5% of the concentration in the fine roots in the surface. During spring and autumn translocation to below ground parts dominated. During summer the main translocation was within the above ground green shoots and flowers. Here most of the allocated 14 C was irreversibly bound. There were only weak indications of accumulation of moblie 14 C-compounds in the woody parts near the soil surface. (author)

  20. Tourette syndrome in a pedigree with a 7;18 translocation: Identification of a YAC spanning the translocation breakpoint at 18q22.3

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian-Sell, L.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Comings, D.E. [City of Hope Medical Center, Duarte, CA (United States)

    1996-11-01

    Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional chromosome translocation. Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation. 41 refs., 3 figs., 1 tab.

  1. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit.

    Science.gov (United States)

    Clipson, Alexandra; Barrans, Sharon; Zeng, Naiyan; Crouch, Simon; Grigoropoulos, Nicholas F; Liu, Hongxiang; Kocialkowski, Sylvia; Wang, Ming; Huang, Yuanxue; Worrillow, Lisa; Goodlad, John; Buxton, Jenny; Neat, Michael; Fields, Paul; Wilkins, Bridget; Grant, John W; Wright, Penny; Ei-Daly, Hesham; Follows, George A; Roman, Eve; Watkins, A James; Johnson, Peter W M; Jack, Andrew; Du, Ming-Qing

    2015-07-01

    A proportion of MYC translocation positive diffuse large B-cell lymphomas (DLBCL) harbour a BCL2 and/or BCL6 translocation, known as double-hit DLBCL, and are clinically aggressive. It is unknown whether there are other genetic abnormalities that cooperate with MYC translocation and form double-hit DLBCL, and whether there is a difference in clinical outcome between the double-hit DLBCL and those with an isolated MYC translocation. We investigated TP53 gene mutations along with BCL2 and BCL6 translocations in a total of 234 cases of DLBCL, including 81 with MYC translocation. TP53 mutations were investigated by PCR and sequencing, while BCL2 and BCL6 translocation was studied by interphase fluorescence in situ hybridization. The majority of MYC translocation positive DLBCLs (60/81 = 74%) had at least one additional genetic hit. In MYC translocation positive DLBCL treated by R-CHOP ( n  = 67), TP53 mutation and BCL2, but not BCL6 translocation had an adverse effect on patient overall survival. In comparison with DLBCL with an isolated MYC translocation, cases with MYC/TP53 double-hits had the worst overall survival, followed by those with MYC/BCL2 double-hits. In MYC translocation negative DLBCL treated by R-CHOP ( n  = 101), TP53 mutation, BCL2 and BCL6 translocation had no impact on patient survival. The prognosis of MYC translocation positive DLBCL critically depends on the second hit, with TP53 mutations and BCL2 translocation contributing to an adverse prognosis. It is pivotal to investigate both TP53 mutations and BCL2 translocations in MYC translocation positive DLBCL, and to distinguish double-hit DLBCLs from those with an isolated MYC translocation.

  2. Can Characteristics of Reciprocal Translocations Predict the Chance of Transferable Embryos in PGD Cycles?

    Directory of Open Access Journals (Sweden)

    Elsbeth Dul

    2014-04-01

    Full Text Available Translocation carriers have an increased risk of miscarriage or the birth of a child with congenital anomalies. Preimplantation genetic diagnosis (PGD is performed in translocation carriers to select for balanced embryos and, thus, increase the chance of an ongoing pregnancy. However, a common experience is that reciprocal translocation carriers produce a high percentage of unbalanced embryos, which cannot be transferred. Therefore, the pregnancy rates in PGD in this patient group are low. In a cohort of 85 reciprocal translocation carriers undergoing PGD we have searched for cytogenetic characteristics of the translocations that can predict the percentage of balanced embryos. Using shape algorithms, the most likely segregation mode per translocation was determined. Shape algorithm, breakpoint location, and relative chromosome segment sizes proved not to be independent predictors of the percentage of balanced embryos. The ratio of the relative sizes of the translocated segments of both translocation chromosomes can give some insight into the chance of transferable embryos: Very asymmetrical translocations have a higher risk of unbalanced products (p = 0.048. Counseling of the couples on the pros and cons of all their reproductive options remains very important.

  3. Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies

    Science.gov (United States)

    di Ventra, Massimiliano

    2012-02-01

    Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport

  4. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer.

    Science.gov (United States)

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-04-12

    Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.

  5. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction.

    Science.gov (United States)

    Pang, Lijuan; Qiu, Tao; Cao, Xu; Wan, Mei

    2011-07-01

    Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  7. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response.

    Science.gov (United States)

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-03-13

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  9. Microbial translocation is correlated with HIV evolution in HIV-HCV co-infected patients.

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Tudesq

    Full Text Available Microbial translocation (MT is characterized by bacterial products passing into the blood through the gut barrier and is a key phenomenon in the pathophysiology of Human Immunodeficiency Virus (HIV infection. MT is also associated with liver damage in Hepatitis C Virus (HCV patients. The aim of the study was to assess MT in plasma of HIV-HCV co-infected patients. 16S rDNA (16 S Ribosomal DNA subunit marker and other markers of MT such as Lipopolysaccharide (LPS-binding protein (LBP, soluble CD14 (sCD14, intestinal fatty acid binding protein (I-FABP were used. Clinical, biological and immunological characteristics of the population were studied in order to correlate them with the intensity of the MT. We demonstrate that indirect markers of MT, LBP and CD14s, and a marker of intestinal permeability (I-FABP are significantly higher in HIV-HCV co-infected patients than in healthy controls (17.0 vs 2.6 μg/mL, p < 0.001; 1901.7 vs 1255.0 ng/mL, p = 0.018; 478.3 vs 248.1 pg/mL, p < 0.001, respectively, while a direct marker of MT (16S rDNA copies is not different between these two populations. However, plasma 16S rDNA was significantly higher in co-infected patients with long-standing HIV infections (RGM = 1.47 per 10 years, CI95% = [1.04:2.06], p = 0.03. Our findings show that in HIV-HCV co-infected patients, plasma 16S rDNA levels, directly reflecting MT, seem to be linked to the duration of HIV infection, while elevated levels of LBP and sCD14 reflect only a persistence of immune activation. The levels of these markers were not correlated with HCV evolution.

  10. Slowing down and stretching DNA with an electrically tunable nanopore in a p–n semiconductor membrane

    International Nuclear Information System (INIS)

    Melnikov, Dmitriy V; Gracheva, Maria E; Leburton, Jean-Pierre

    2012-01-01

    We have studied single-stranded DNA translocation through a semiconductor membrane consisting of doped p and n layers of Si forming a p–n-junction. Using Brownian dynamics simulations of the biomolecule in the self-consistent membrane–electrolyte potential obtained from the Poisson–Nernst–Planck model, we show that while polymer length is extended more than when its motion is constricted only by the physical confinement of the nanopore. The biomolecule elongation is particularly dramatic on the n-side of the membrane where the lateral membrane electric field restricts (focuses) the biomolecule motion more than on the p-side. The latter effect makes our membrane a solid-state analog of the α-hemolysin biochannel. The results indicate that the tunable local electric field inside the membrane can effectively control dynamics of a DNA in the channel to either momentarily trap, slow down or allow the biomolecule to translocate at will. (paper)

  11. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization.

    Science.gov (United States)

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T; Shelton, Catherine L; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B; Li, Pingwei

    2013-12-12

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Complex three-way translocation involving MLL, ELL, RREB1, and CMAHP genes in an infant with acute myeloid leukemia and t(6;19;11)(p22.2;p13.1;q23.3)

    DEFF Research Database (Denmark)

    Tuborgh, A; Meyer, C; Marschalek, R

    2013-01-01

    until progression to acute myeloid leukemia, AML-M5. The leukemic cells harbored a novel apparent 3-way translocation t(6;19;11)(p22.2;p13.1;q23.3). We utilized advanced molecular cytogenetic methods including 24-color karyotyping, high-resolution array comparative genomic hybridization (aCGH) and DNA...... in the initial stages of disease before clear morphological signs of bone marrow involvement. The patient responded well to therapy and remains in remission>6 years from diagnosis. This apparent 3-way translocation is remarkable because of its rarity and presentation with myeloid sarcoma, and may, as more cases...

  13. Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function

    OpenAIRE

    Thomson, Pippa A; Duff, Barbara; Blackwood, Douglas H R; Romaniuk, Liana; Watson, Andrew; Whalley, Heather C; Li, Xiang; Dauvermann, Maria R; Moorhead, T William J; Bois, Catherine; Ryan, Niamh M; Redpath, Holly; Hall, Lynsey; Morris, Stewart W; van Beek, Edwin J R

    2016-01-01

    Rare genetic variants of large effect can help elucidate the pathophysiology of brain disorders. Here we expand the clinical and genetic analyses of a family with a (1;11)(q42;q14.3) translocation multiply affected by major psychiatric illness and test the effect of the translocation on the structure and function of prefrontal, and temporal brain regions. The translocation showed significant linkage (LOD score 6.1) with a clinical phenotype that included schizophrenia, schizoaffective disorde...

  14. Construindo uma política feminista translocal da tradução Enacting a Translocal Feminist Politics of Translation

    Directory of Open Access Journals (Sweden)

    Sonia E Alvarez

    2009-12-01

    Full Text Available Nosso projeto coletivo Translocalities/Translocalidades: Feminist Politics of Translation in the Latin/a Américas (Políticas Feministas de Tradução na América Latina explora como discursos e práticas feministas viajam por uma variedade de lugares e direções e acabam se tornando paradigmas interpretativos para a leitura/escrita de questões de classe, gênero, sexualidade, migração, saúde, cidadania, política e circulação de identidades e textos. Sustentamos que a tradução é política e teoricamente indispensável para forjar epistemologias e alianças políticas feministas, antirracistas e pós-coloniais/pós-ocidentais, pois as Américas Latinas - enquanto formação cultural transfronteiriça e não territorialmente delimitada - devem ser entendidas como translocais em dois sentidos. O primeiro sentido que usamos - o de translocalidade - parte de movimentos além das concepções da "política da localização" empregadas pelo feminismo terceiro-mundista estadunidense. Mais do que "migrar" e "se assimilar", muitas pessoas nas Américas Latinas cada vez mais se movem de um lado para outro entre localidades, entre lugares historicamente situados e culturalmente específicos, ainda que porosos, atravessando múltiplas fronteiras, e não apenas entre nações (como deixa a entender o termo "migração transnacional", por exemplo. Empregamos a expressão translocal, então, em um segundo sentido, que chamamos de translocalidades, precisamente para capturar esses cruzamentos e movimentos multidirecionaisOur collective project on Translocalities/Translocalidades: Feminist Politics of Translation in the Latin/a Américas explores how feminist discourses and practices travel across a variety of sites and directionalities to become interpretive paradigms to read/write issues of class, gender, race, sexuality, migration, health, social movements, citizenship, politics, and the circulation of identities and texts. Translation is

  15. Crystallographic snapshot of cellulose synthesis and membrane translocation.

    Science.gov (United States)

    Morgan, Jacob L W; Strumillo, Joanna; Zimmer, Jochen

    2013-01-10

    Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.

  16. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  17. Mycobacterium smegmatis Ku binds DNA without free ends.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-12-01

    Ku is central to the non-homologous end-joining pathway of double-strand-break repair in all three major domains of life, with eukaryotic homologues being associated with more diversified roles compared with prokaryotic and archaeal homologues. Ku has a conserved central 'ring-shaped' core domain. While prokaryotic homologues lack the N- and C-terminal domains that impart functional diversity to eukaryotic Ku, analyses of Ku from certain prokaryotes such as Pseudomonas aeruginosa and Mycobacterium smegmatis have revealed the presence of distinct C-terminal extensions that modulate DNA-binding properties. We report in the present paper that the lysine-rich C-terminal extension of M. smegmatis Ku contacts the core protein domain as evidenced by an increase in DNA-binding affinity and a decrease in thermal stability and intrinsic tryptophan fluorescence upon its deletion. Ku deleted for this C-terminus requires free DNA ends for binding, but translocates to internal DNA sites. In contrast, full-length Ku can directly bind DNA without free ends, suggesting that this property is conferred by its C-terminus. Such binding to internal DNA sites may facilitate recruitment to sites of DNA damage. The results of the present study also suggest that extensions beyond the shared core domain may have independently evolved to expand Ku function.

  18. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  19. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  20. Occurence of translocations between irradiated and intact chromosomes of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Myasnyankina, E.N.; Abeleva, Eh.A.; Generalova, M.V.

    1980-01-01

    Two translocations between irradiated father and intact mother autosomes are obtained in Drosophila melanogaster. Five out of 283 regular translocations (between the second and the third chromosomes of an irradiated male) are accompanied by a recombination over the second or the third chromosomes. Nine flies out of twenty considered to be recombinants, could originate due to mutations. The data obtained prove that intact female autosomes can take part in the exchange with homologic (recombinations) and heterologic (translocations) irradiated male autosomes

  1. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  2. Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions.

    Science.gov (United States)

    Leblon, G; Zickler, D; Lebilcot, S

    1986-02-01

    In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.

  3. Connecting the dots: could microbial translocation explain commonly reported symptoms in HIV disease?

    Science.gov (United States)

    Wilson, Natalie L; Vance, David E; Moneyham, Linda D; Raper, James L; Mugavero, Michael J; Heath, Sonya L; Kempf, Mirjam-Colette

    2014-01-01

    Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. Published by Elsevier Inc.

  4. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, L.; MartInez-AbraIn, A.; Mayol, J.; Ruiz-Olmo, J.; Mañas, F.; Jimenez, J.; Gomez, J.A.; Oro, D.

    2016-07-01

    Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations) are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild) and translocation effort (propagule size and program duration). After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years. (Author)

  5. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Directory of Open Access Journals (Sweden)

    Rummel, L.

    2016-06-01

    Full Text Available Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild and translocation effort (propagule size and program duration. After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years.

  6. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    Science.gov (United States)

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  7. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  8. A somatic origin of homologous Robertsonian translocations and isochromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A. (Univ. of Zurich (Switzerland)); Basaran, S.; Yueksel-Apak, M. (Univ. of Istanbul (Turkey)); Neri, G. (Universita Cattolica, Rome (Italy)); Serville, F. (Hopital d' Enfants Pellegrin, Bordeaux (France)); Balicek, P.; Haluza, R. (Univ. Hospital of Hradeck Kralove, Hradec Kralove (Czech Republic)); Farah, L.M.S. (Escuola Paulista de Medicina, Sao Paulo (Brazil)) (and others)

    1994-02-01

    One t(14q 14q), three t(15q 15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange. 75 refs., 1 fig., 4 tabs.

  9. Biological mechanisms and translocation kinetics of particulate plutonium

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Stevens, W.; Atherton, D.R.; Roswell, R.L.; Smith, J.M.

    1981-01-01

    The dissolution and elimination of particulate 239 Pu from its initial sites of deposition in phagocytic organs (the liver, spleen, and lung), as well as its translocation and redeposition in soft tissue organs and skeleton have been investigated. Beagles were injected intravenously with particulate Pu and sacrificed sequentially at times ranging from 33 to 830 days after injection. Equations that describe the overall retention of Pu in liver, spleen, lung, and bone were calculated. Plutonium mobilized from these organs either re-entered the blood stream and redeposited in the skeleton and liver parenchyma or was excreted. The protracted translocation of Pu to bone surfaces potentially exposes all cells involved in osteogenesis to continuous α-radiation, a situation that could enhance the hazard of developing osteosarcoma. A kinetic model that describes the translocation of Pu from the phagocytic compartments to blood and its subsequent redistribution to bone, liver, and other organs was formulated

  10. Evaluating descriptors for the lateral translocation of membrane proteins.

    Science.gov (United States)

    Domanova, Olga; Borbe, Stefan; Mühlfeld, Stefanie; Becker, Martin; Kubitz, Ralf; Häussinger, Dieter; Berlage, Thomas

    2011-01-01

    Microscopic images of tissue sections are used for diagnosis and monitoring of therapy, by analysis of protein patterns correlating to disease states. Spatial protein distribution is influenced by protein translocation between different membrane compartments and quantified by comparison of microscopic images of biological samples. Cholestatic liver diseases are characterized by translocation of transport proteins, and quantification of their dislocation offers new diagnostic options. However, reliable and unbiased tools are lacking. The nowadays used manual method is slow, subjective and error-prone. We have developed a new workflow based on automated image analysis and improved it by the introduction of scale-free descriptors for the translocation quantification. This fast and unbiased method can substitute the manual analysis, and the suggested descriptors perform better than the earlier used statistical variance.

  11. Translocation as a conservation tool for Agassiz's desert tortoises: Survivorship, reproduction, and movements

    Science.gov (United States)

    K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn

    2012-01-01

    We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...

  12. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    Science.gov (United States)

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  13. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    Science.gov (United States)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  14. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    Science.gov (United States)

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  15. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  16. Timing of translocation influences birth rate and population dynamics in a forest carnivore

    Science.gov (United States)

    Facka, Aaron N; Lewis, Jeffrey C.; Happe, Patricia; Jenkins, Kurt J.; Callas, Richard; Powell, Roger A.

    2016-01-01

    Timing can be critical for many life history events of organisms. Consequently, the timing of management activities may affect individuals and populations in numerous and unforeseen ways. Translocations of organisms are used to restore or expand populations but the timing of translocations is largely unexplored as a factor influencing population success. We hypothesized that the process of translocation negatively influences reproductive rates of individuals that are moved just before their birthing season and, therefore, the timing of releases could influence translocation success. Prior to reintroducing fishers (Pekania pennanti) into northern California and onto the Olympic Peninsula of Washington, we predicted that female fishers released in November and December (early) would have a higher probability of giving birth to kits the following March or April than females released in January, February, and March (late), just prior to or during the period of blastocyst implantation and gestation. Over four winters (2008–2011), we translocated 56 adult female fishers that could have given birth in the spring immediately after release. Denning rates, an index of birth rate, for females released early were 92% in California and 38% in Washington. In contrast, denning rates for females released late were 40% and 11%, in California and Washington, a net reduction in denning rate of 66% across both sites. To understand how releasing females nearer to parturition could influence population establishment and persistence, we used stochastic population simulations using three-stage Lefkovitch matrices. These simulations showed that translocating female fishers early had long-term positive influences on the mean population size and on quasi-extinction thresholds compared to populations where females were released late. The results from both empirical data and simulations show that the timing of translocation, with respect to life history events, should be considered during

  17. Effects of an attractive wall on the translocation of polymer under driving

    International Nuclear Information System (INIS)

    Cao Weiping; Wang Chao; Sun Lizhen; Luo Mengbo

    2012-01-01

    The effects of an attractive wall at the trans side on the translocation of an eight-site bond-fluctuation model (BFM) polymer through a pore in a membrane under driving are simulated by the dynamic Monte Carlo method. The attractive wall shows two contrary effects: its excluded volume effect reduces configuration entropy and thus hinders the translocation of the polymer, while its attraction decreases the energy and thus accelerates the translocation. At a critical polymer-wall interaction ε* ≈- 1, we find that the two effects compensate each other and the translocation time τ is roughly independent of the separation distance between the wall and the pore. The value ε* ≈- 1 is roughly equal to the critical adsorption point for the BFM polymer. Moreover, the value of the critical attraction is roughly independent of chain length N and chemical potential difference Δμ. At last, a scaling relation τ ∼ N α is observed for polymer translocation at a high value of NΔμ. Though the translocation time is highly dependent on the polymer-wall interaction and pore-wall separation distance, the exponent α is always about 1.30 ± 0.05 so long as NΔμ is large enough. (paper)

  18. Genetic analysis of γ-ray induced W-translocation strain on Bombyx nori

    International Nuclear Information System (INIS)

    Onuma, Akio; Murakami, Akio

    1976-01-01

    In the process of analyzing a γ-ray induced mutant of Bombyx nori oo cyte, new type translocation strains of W chromosomes and No.5 chromosomes were detected. The constitution of their translocated chromosomes was assumed to be Z/(W-V) + sup(pe)-V + sup(oc)/v. Owing to such chromosome constitution, it was considered that non-disjunction was induced at meiosis, and Z/(W-V) + sup(pe)/V, Z/(W-V) + sup(pe), V/V were produced besides Z/(W-V) + sup(pe)-V + sup(oc)/V in the female chromosomes (gene) of the next progeny, while V/V and Z/Z, V + sup(oc)/V were produced besides Z/Z, V/V in male. Death of some male eggs in this translocation strain was also observed. No dissociated individual of translocated chromosomes was segregated in the next progeny of the female moth with Z/(W-V) + sup(pe), V/V chromosome constitution and the marker stock male moth, while a few dissociated individuals appeared in the next progeny of Z/(W-V) + sup(pe)-V + sup(oc)/V female moth group. This fact seemed to be resulted from the complicated translocated chromosome constitution of the translocation strain. (Kobatake, H.)

  19. A kinetic Monte Carlo approach to investigate antibiotic translocation through bacterial porins

    International Nuclear Information System (INIS)

    Ceccarelli, Matteo; Ruggerone, Paolo; Vargiu, Attilio V

    2012-01-01

    Many relevant biological processes take place on time scales not reachable by standard all-atom computer simulations. The translocation of antibiotics through non-specific bacterial porins is an example. Microscopic effects compete to determine penetration routes and, consequently, free energy barriers to be overcome. Since bacteria can develop resistance to treatment also by reducing their antibiotic permeability, to understand the microscopic aspects of antibiotic translocation is an important step to rationalize drug design. Here, to investigate the translocation we propose a complete numerical model that combines the diffusion-controlled rate theory and a kinetic Monte Carlo scheme based on both experimental data and microscopically well-founded all-atom simulations. Within our model, an antibiotic translocating through an hour-glass-shaped channel can be described as a molecule moving on a potential of mean force featuring several affinity sites and a high central barrier. The implications of our results for the characterization of antibiotic translocation at in vivo concentrations are discussed. The presence of an affinity site close to the mouth of the channel seems to favor the translocation of antibiotics, the affinity site acting as a particle reservoir. Possible connections between results and the appearance of mutations in clinical strains are also outlined. (paper)

  20. The Enzymology of Protein Translocation across the Escherichia coli Plasma Membrane

    NARCIS (Netherlands)

    Wickner, William; Driessen, Arnold J.M.; Hartl, Franz-Ulrich

    1991-01-01

    Converging physiological, genetic, and biochemical studies have established the salient features of preprotein translocation across the plasma membrane of Escherichia coli. Translocation is catalyzed by two proteins, a soluble chaperone and a membrane-bound translocase. SecB, the major chaperone for

  1. Atlas of alien and translocated indigenous aquatic animals in southern Africa

    CSIR Research Space (South Africa)

    De Moor, IJ

    1988-01-01

    Full Text Available This report serves as an introduction to the problem of alien and translocated aquatic animals in southern Africa is given followed by checklists of the different species which have been introduced into or translocated within the subcontinent...

  2. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-stranded break repair model for T-DNA integration.

    Science.gov (United States)

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-06-01

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  4. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  5. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  6. Evolution of mitochondrial DNA and its relation to basal metabolic rate.

    Science.gov (United States)

    Feng, Ping; Zhao, Huabin; Lu, Xin

    2015-08-01

    Energy metabolism is essential for the survival of animals, which can be characterized by maximum metabolic rate (MMR) and basal metabolic rate (BMR). Because of the crucial roles of mitochondria in energy metabolism, mitochondrial DNA (mtDNA) has been subjected to stronger purifying selection in strongly locomotive than weakly locomotive birds and mammals. Although maximum locomotive speed (an indicator of MMR) showed a negative correlation with the evolutionary rate of mtDNA, it is unclear whether BMR has driven the evolution of mtDNA. Here, we take advantage of the large amount of mtDNA and BMR data in 106 mammals to test whether BMR has influenced the mtDNA evolution. Our results showed that, in addition to the locomotive speed, mammals with higher BMR have subjected to stronger purifying selection on mtDNA than did those with lower BMR. The evolution of mammalian mtDNA has been modified by two levels of energy metabolism, including MMR and BMR. Our study provides a more comprehensive view of mtDNA evolution in relation to energy metabolism.

  7. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system

    OpenAIRE

    van der Woude, Irene; Willy Visser, H.; ter Beest, Martin B.A.; Wagenaar, Anno; Ruiters, Marcel H.J.; Engberts, Jan B.F.N.; Hoekstra, Dick

    1995-01-01

    Parameters that affect cellular transfection as accomplished by introducing DNA via carriers composed of cationic synthetic amphiphiles, have been investigated with the aim to obtain insight into the mechanism of DNA translocation. Such insight may be exploited in optimizing carrier properties of synthetic amphiphiles for molecules other than nucleic acids. In the present work, the interaction of vesicles composed of the cationic amphiphile dioleyloxy-propyl-trimethylammonium chloride (DOTMA)...

  8. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  9. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    Science.gov (United States)

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  10. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Crystallization and preliminary X-ray crystallographic studies of DnaJ from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhao, Shasha; Jin, Li; Niu, Siqiang; Yang, Wei; Zhang, Shaocheng; Guo, Zhen; Zhang, Hongpeng; Huang, Ailong; Yin, Yibing; Wang, Deqiang

    2013-01-01

    DnaJ from Streptococcus pneumoniae (SpDnaJ) is involved in the infectious disease process and is being developed as a potential vaccine to prevent bacterial infection. Here the expression, purification, crystallization and preliminary crystallographic analysis of SpDnaJ are reported. DnaJ, cooperating with DnaK and GrpE, promotes the folding of unfolded hydrophobic polypeptides, dissociates protein complexes and translocates protein across membranes. Additionally, DnaJ from Streptococcus pneumoniae (SpDnaJ) is involved in the infectious disease process and is being developed as a potential vaccine to prevent bacterial infection. Here the expression, purification, crystallization and preliminary crystallographic analysis of SpDnaJ are reported. The crystals belong to space groups I222 or I2 1 2 1 2 1 and the diffraction resolution is 3.0 Å with unit-cell parameters a = 47.68, b = 104.45, c = 234.57 Å. The crystal most likely contains one molecule in the asymmetric unit, with a V M value of 3.24 Å 3 Da −1 and a solvent content of 62.1%

  12. Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into ATPase structure and function.

    Science.gov (United States)

    Kondabagil, Kiran; Dai, Li; Vafabakhsh, Reza; Ha, Taekjip; Draper, Bonnie; Rao, Venigalla B

    2014-11-01

    The packaging motor of bacteriophage T4 translocates DNA into the capsid at a rate of up to 2000 bp/s. Such a high rate would require coordination of motor movements at millisecond timescale. Designing a cysteine-less gp17 is essential to generate fluorescently labeled motors and measure distance changes between motor domains by FRET analyses. Here, by using sequence alignments, structural modeling, combinatorial mutagenesis, and recombinational rescue, we replaced all nine cysteines of gp17 and introduced single cysteines at defined positions. These mutant motors retained in vitro DNA packaging activity. Single mutant motors translocated DNA molecules in real time as imaged by total internal reflection fluorescence microscopy. We discovered, unexpectedly, that a hydrophobic or nonpolar amino acid next to Walker B motif is essential for motor function, probably for efficient generation of OH(-) nucleophile. The ATPase Walker B motif, thus, may be redefined as "β-strand (4-6 hydrophobic-rich amino acids)-DE-hydrophobic/nonpolar amino acid". Copyright © 2014 Elsevier Inc. All rights reserved.

  13. CHROMOSOMAL SUBLOCALIZATION OF THE 2 13 TRANSLOCATION BREAKPOINT IN ALVEOLAR RHABDOMYOSARCOMA

    NARCIS (Netherlands)

    SHAPIRO, DN; VALENTINE, MB; SUBLETT, JE; SINCLAIR, AE; TEREBA, AM; SCHEFFER, H; BUYS, CHCM; LOOK, AT

    A characteristic balanced reciprocal chromosomal translocation [t(2;13)(q35;q14)] has been identified in more than 50% of alveolar rhabdomyosarcomas. As the first step in characterization of the genes involved in this translocation, we constructed somatic cell hybrids that retained either the

  14. Studies on translocation of tritiated assimilates into potatoes and wheat grains

    International Nuclear Information System (INIS)

    Mueller, J.; Diabate, S.; Strack, S.; Raskob, W.

    1993-01-01

    Tritium released in the enviroment may be converted to organically bound tritium (OBT), mainly by photosynthesis in green leaves. Tritiated assimilates can be translocated from leaves to storage organs of crop plants. This should be considered in models calculating the dose due to the ingestion pathway. This paper describes experiments with wheat and potatoes, which have been designed to study the translocation of tritiated assimilates. Additionally, gas exchange measurements have been performed with the leaves of those plants. A model has been developed to estimate the generation of OBT and the translocation of tritiated assimilates into edible plant parts. (orig.) [de

  15. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation

    Science.gov (United States)

    Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina

    2012-01-01

    Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169

  16. Concentrating Genomic Length DNA in a Microfabricated Array

    DEFF Research Database (Denmark)

    Chen, Yu; Abrams, Ezra S.; Boles, T. Christian

    2015-01-01

    the DNA molecules to minimal coil size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot, where concentration occurs, as a function of PEG concentration and flow speed using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions...

  17. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    Science.gov (United States)

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Increased frequency of chromosome translocations in airline pilots with long-term flying experience.

    Science.gov (United States)

    Yong, L C; Sigurdson, A J; Ward, E M; Waters, M A; Whelan, E A; Petersen, M R; Bhatti, P; Ramsey, M J; Ron, E; Tucker, J D

    2009-01-01

    Chromosome translocations are an established biomarker of cumulative exposure to external ionising radiation. Airline pilots are exposed to cosmic ionising radiation, but few flight crew studies have examined translocations in relation to flight experience. We determined the frequency of translocations in the peripheral blood lymphocytes of 83 airline pilots and 50 comparison subjects (mean age 47 and 46 years, respectively). Translocations were scored in an average of 1039 cell equivalents (CE) per subject using fluorescence in situ hybridisation (FISH) whole chromosome painting and expressed per 100 CE. Negative binomial regression models were used to assess the relationship between translocation frequency and exposure status and flight years, adjusting for age, diagnostic x ray procedures, and military flying. There was no significant difference in the adjusted mean translocation frequency of pilots and comparison subjects (0.37 (SE 0.04) vs 0.38 (SE 0.06) translocations/100 CE, respectively). However, among pilots, the adjusted translocation frequency was significantly associated with flight years (p = 0.01) with rate ratios of 1.06 (95% CI 1.01 to 1.11) and 1.81 (95% CI 1.16 to 2.82) for a 1- and 10-year incremental increase in flight years, respectively. The adjusted rate ratio for pilots in the highest compared to the lowest quartile of flight years was 2.59 (95% CI 1.26 to 5.33). Our data suggests that pilots with long-term flying experience may be exposed to biologically significant doses of ionising radiation. Epidemiological studies with longer follow-up of larger cohorts of pilots with a wide range of radiation exposure levels are needed to clarify the relationship between cosmic radiation exposure and cancer risk.

  19. Nuchal translucency thickness and outcome in chromosome translocation diagnosed in the first trimester.

    Science.gov (United States)

    Sepulveda, W; Be, C; Youlton, R; Carstens, E; Reyes, M

    2001-09-01

    In order to determine the significance of nuchal translucency thickness on the subsequent natural history of first-trimester fetuses with a chromosome translocation, seven consecutive cases diagnosed between 11 and 13 weeks of gestation were reviewed. Nuchal translucency measurements were successfully obtained before chorionic villus sampling (CVS) in all cases. Three fetuses had an unbalanced translocation and all were associated with increased nuchal translucency and multiple anomalies at the detailed second-trimester scan. There were no survivors in this group. The remaining four fetuses had a balanced translocation; all had normal nuchal translucency thickness and no structural anomalies were detected in the second trimester. Three of these fetuses were born at > or =35 weeks of gestation and were phenotypically normal. However, an unexpected single fetal demise occurred in a dichorionic twin pregnancy at 28 weeks of gestation. It is concluded that nuchal translucency measurements provide important prognostic information on pregnancy outcome in first-trimester fetuses with a chromosome translocation. In parents with a known balanced translocation, the detection of increased nuchal translucency at 11-14 weeks of gestation is associated with unbalanced translocations, structural anomalies and poor pregnancy outcome. Copyright 2001 John Wiley & Sons, Ltd.

  20. Breeding few-seed/seedless watermelon via chromosome reciprocal translocation induced by gamma-ray

    International Nuclear Information System (INIS)

    Ming, W.; Xingping, Z.; Xian, Z.; Kechi, N.; Shuai, Z.; Juenlian, Z.

    1988-01-01

    The development of autotriploid watermelon was a great advance in the field of watermelon breeding. However, some disadvantages still existed with this type of seedless watermelon. Partial sterility may be induced in diploid watermelon via chromosome reciprocal translocation. We used gamma-rays to irradiate the seeds of homozygous translocation strains with one translocation ring composed of 4 chromosomes (symbol (4) ). Watermelon strains were 'Asahi Yamato', 'Mioyaka', and 'Fumin' saent to us by H. Kihara in 1977. In order to further induce multiple reciprocal translocations for developing new few-seed/seedless watermelon strains, the seeds of the above 3 strains were sown for further selfing in 1978. The seeds of each selfed fruit were grown as a single plant line in 1979 for evaluation of their characters. In addition, some crosses between common diploid watermelon cultivars and translocations were carried out to test the seed setting rate of the heterozygous translocation strains. Some of the crosses were 'Sugar Baby' x 'Asahi Yamato AT-1' and 'Akakotama' x Asahi Yamato AT-2'. The plump seed setting rate of the F1 of these crosses were ca. 50%

  1. Preimplantation genetic diagnosis outcomes and meiotic segregation analysis of robertsonian translocation carriers.

    Science.gov (United States)

    Ko, Duck Sung; Cho, Jae Won; Lee, Hyoung-Song; Kim, Jin Yeong; Kang, Inn Soo; Yang, Kwang Moon; Lim, Chun Kyu

    2013-04-01

    To investigate the meiotic segregation patterns of cleavage-stage embryos from robertsonian translocation carriers and aneuploidy of chromosome 18 according to meiotic segregation patterns. Retrospective study. Infertility center and laboratory of reproductive biology and infertility. Sixty-two couples with robertsonian translocation carriers. One blastomere was biopsied from embryos and diagnosed with the use of fluorescence in situ hybridization (FISH). Translocation chromosomes were analyzed with the use of locus-specific and subtelomeric FISH probes. Aneuploidy of chromosome 18 was assessed simultaneously with translocation chromosomes. Preimplantation genetic diagnosis (PGD) outcomes, meiotic segregation patterns of robertsonian translocation, and aneuploidy of chromosome 18 depending on meiotic segregation patterns. Two hundred seventy embryos of 332 transferrable embryos were transferred in 113 cycles, and 27 healthy babies were born. The alternate segregation was significantly higher in male carriers than in female carriers (43.9% vs. 29.9%, respectively), and adjacent segregation was higher in female carriers than in male carriers (44.7% vs. 38.7%, respectively). Aneuploidy of chromosome 18 was significantly increased in 3:0-segregated or chaotic embryos. Forty-seven alternate embryos were excluded from embryo replacement owing to aneuploidy of chromosome 18. In carriers of robertsonian translocation, meiotic segregation showed differences between men and women. Frequent meiotic errors caused by premature predivision or nondisjunction and less stringent checkpoint in women might cause such differences between sexes. Aneuploidy of chromosome 18 might be influenced by meiotic segregation of translocation chromosomes. Factors that cause malsegregation, such as 3:0 or chaotic segregation, seem to play a role in aneuploidy of chromosome 18. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  3. Non-small cell lung cancer with EML4-ALK translocation in Chinese male never-smokers is characterized with early-onset.

    Science.gov (United States)

    Guo, Yongjun; Ma, Jie; Lyu, Xiaodong; Liu, Hai; Wei, Bing; Zhao, Jiuzhou; Fu, Shuang; Ding, Lu; Zhang, Jihong

    2014-11-18

    The translocations of the anaplastic lymphoma kinase (ALK) gene with the echinoderm microtubule-associated protein-like 4 (EML4) gene on chromosome 2p have been identified in non-small-cell lung cancers (NSCLCs) as oncogenic driver mutations. It has been suggested that EML4-ALK fusion is associated with the resistance in NSCLCs to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), such as gefitinib and erlotinib. In contrast, ALK tyrosine kinase inhibitor (ALK TKI) crizotinib has shown superior effects in combating NSCLCs with EML4-ALK. Thus, characterization of EML4-ALK fusion genes and clinical features of resulting carcinomas would be a great benefit to disease diagnosis and designing customized treatment plans. Studies have suggested that EML4-ALK translocation occurs more frequently in never-smokers with NSCLC, especially in female patients. However, it is not clear whether this is the case in male patients, too. In this study, we have determined the frequency of EML4-ALK translocation in male never-smokers with NSCLC in a cohort of Chinese patients. The clinical features associated with EML4-ALK translocation were also investigated. A cohort of 95 Chinese male never-smokers with NSCLC was enrolled in this study. EML4-ALK fusion genes were detected using one-step real time RT-PCR and DNA sequencing. We further determined the expression levels of ALK mRNA by RT-PCR and ALK protein by immunohistochemistry in these specimens. The clinical features of EML4-ALK-positive carcinomas were also determined. We have identified EML4-ALK fusion genes in 8 out of 95 carcinoma cases, accounting for 8.42% in Chinese male never-smokers with NSCLC. It is significantly higher than that in all Chinese male patients (3.44%) regardless smoking habit. It is also significantly higher than that in all Chinese smokers (8/356 or 2.25%) or in smokers worldwide (2.9%) by comparing to published data. Interestingly, EML4-ALK fusion genes are more frequently found in

  4. Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient

    NARCIS (Netherlands)

    Huizing, M.; Iacobazzi, V.; IJlst, L.; Savelkoul, P.; Ruitenbeek, W.; van den Heuvel, L.; Indiveri, C.; Smeitink, J.; Trijbels, F.; Wanders, R.; Palmieri, F.

    1997-01-01

    The carnitine-acylcarnitine carrier (CAC) catalyzes the translocation of long-chain fatty acids across the inner mitochondrial membrane. We cloned and sequenced the human CAC cDNA, which has an open reading frame of 903 nucleotides. Northern blot studies revealed different expression levels of CAC

  5. Driven translocation of Polymer through a nanopore: effect of heterogeneous flexibility

    Science.gov (United States)

    Adhikari, Ramesh; Bhattacharya, Aniket

    2014-03-01

    We have studied translocation of a model bead-spring polymer through a nanopore whose building blocks consist of alternate stiff and flexible segments and variable elastic bond potentials. For the case of uniform spring potential translocation of a symmetric periodic stiff-flexible chain of contour length N and segment length m (mod(N,2m)=0), we find that the end-to-end distance and the mean first passage time (MFPT) have weak dependence on the length m. The characteristic periodic pattern of the waiting time distribution captures the stiff and flexible segments of the chain with stiff segments taking longer time to translocate. But when we vary both the elastic bond energy, and the bending energy, as well as the length of stiff/flexible segments, we discover novel patterns in the waiting time distribution which brings out structural information of the building blocks of the translocating chain. Partially supported by UCF Office of Research and Commercialization & College of Science SEED grant.

  6. Variants forms of Philadelphia translocation in two patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Valent, A.; Zamecnikova, A.; Krizan, P.; Karlic, H.; Nowotny, H.

    1996-01-01

    During a 4-year period (December 1990-December 1994), among other diagnoses hundred cases of chronic myeloid leukemia (CML) were analyzed in our departments. We focused our attention on two cases with a variant form of Philadelphia translocation. Cytogenetic and molecular genetic studies were performed to resolve the status of BCR and ABL in the bone marrow or peripheral blood cells of the two CML patients with complex translocations involving chromosomes, 3, 9, 22 and 9, 12, 22 respectively. In the first case the presence of Ph chromosome was detected cytogenetically, BCR-ABL translocation was detected by Southern hybridization. In the second phase, only the PCR method showed BCR-ABL rearrangement. The second case, with a random variant form of Ph translocation, could be detected using different methods of clinical molecular genetics. (author)

  7. Laser desorption mass spectrometry for high-throughput DNA analysis and its applications

    Science.gov (United States)

    Chen, C. H. Winston; Golovlev, Valeri V.; Taranenko, N. I.; Allman, S. L.; Isola, Narayana R.; Potter, N. T.; Matteson, K. J.; Chang, Linus Y.

    1999-05-01

    Laser desorption mass spectrometry (LDMS) has been developed for DNA sequencing, disease diagnosis, and DNA fingerprinting for forensic applications. With LDMS, the speed of DNA analysis can be much faster than conventional gel electrophoresis. No dye or radioactive tagging to DNA segments for detection is needed. LDMS is emerging as a new alternative technology for DNA analysis.

  8. Dudleya Variegata Translocation - San Diego [ds654

    Data.gov (United States)

    California Department of Resources — At Mission Trails Regional Park, a translocation project of Dudleya variegata was conducted in efforts to save the population from a private property undergoing...

  9. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  10. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

    Science.gov (United States)

    Agius, L

    1994-02-15

    In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase

  11. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations.

    Science.gov (United States)

    Chen, Chun-Kai; Wu, Dennis; Yu, Hsing-Tse; Lin, Chieh-Yu; Wang, Mei-Li; Yeh, Hsin-Yi; Huang, Hong-Yuan; Wang, Hsin-Shin; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-03-01

    The presence of reciprocal and Robertsonian chromosomal rearrangement is often related to recurrent miscarriage. Using preimplantation genetic diagnosis, the abortion rate can be decreased. Cases treated at our center were reviewed. A retrospective analysis for either Robertsonian or reciprocal translocations was performed on all completed cycles of preimplantation genetic diagnosis at our center since the first reported case in 2004 until the end of 2010. Day 3 embryo biopsies were carried out, and the biopsied cell was checked by fluorescent in situ hybridization using relevant informative probes. Embryos with a normal or balanced translocation karyotype were transferred on Day 4. Thirty-eight preimplantation genetic diagnosis cycles involving 17 couples were completed. A total of 450 (82.6%) of the total oocytes were MII oocytes, and 158 (60.0%) of the two-pronuclei embryos were biopsied. In 41.4% of the fluorescent in situ hybridization analyses, the results were either normal or balanced. Embryos were transferred back after 21 cycles. Three babies were born from Robertsonian translocation carriers and another two from reciprocal translocation carriers. The miscarriage rate was 0%. Among the reciprocal translocation group, the live delivery rate was 8.3% per ovum pick-up cycle and 18.2% per embryo transfer cycle. Among the Robertsonian translocation group, the live delivery rate was 14.3% per ovum pick-up cycle and 20.0% per embryo transfer cycle. There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis. Copyright © 2014. Published by Elsevier B.V.

  12. Short-Term Space-Use Patterns of Translocated Mojave Desert Tortoise in Southern California.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii, we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.

  13. Translocation of the radioactive caesium via the calyx in persimmon fruit

    International Nuclear Information System (INIS)

    Sekizawa, Haruhito; Sato, Mari; Aihara, Takashi; Murakami, Toshifumi; Hachinohe, Mayumi; Hamamatsu, Shioka

    2016-01-01

    To elucidate pathways of radioactive caesium contamination of persimmon fruit, we investigated translocation via the calyx. We treated calyces of immature and mature fruits (at either stage and both stages) with water containing caesium-137 (1000 Bq/kg) and measured concentrations in the calyx, pericarp, and flesh with a germanium semiconductor detector. All treated fruits had higher levels of radioactive caesium in all tissues than untreated fruits at harvest. The translocated radioactive caesium was retained in the fruit and not retranslocated. These results indicate that radioactive caesium is translocated via the calyx of persimmon at all stages of fruit development and is accumulated in the flesh. (author)

  14. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    International Nuclear Information System (INIS)

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-01-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  15. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoxi [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Wang, Dang; Cai, Kaimei; Zhang, Huan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xie, Lilan; Li, Yi [College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan 430415 (China); Chen, Huanchun; Xiao, Shaobo [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  16. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    International Nuclear Information System (INIS)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V.; Lishmanov, Yu.B.; Grigorev, E.G.; Aparcin, K.A.

    2009-01-01

    The purpose of this study was to obtain scintigraphic images depicting translocation of 99m Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. 99m Tc-labelled E. coli bacteria ( 99m Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of 99m Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. 99m Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This approach to study bacterial

  17. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    Directory of Open Access Journals (Sweden)

    Paul C Whitford

    Full Text Available Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  18. Studies on the translocation and distribution characteristics of carbon assimilates in blackberry

    International Nuclear Information System (INIS)

    Wang Shuyu; Liu Hongjia

    1990-08-01

    The translocation and distribution characteristics of carbon assimilates were studied with the method of 14 CO 2 feeding. The results indicated that there were different translocation and distribution characteristics of carbon assimilates among the upper, middle and lower leaves in a shoot during annual cycle. Taking away leaves, sun-shading and drought could raise the exporting ratio of carbon assimilates in the feeding leaves and could change the distributing model of the tree. Most of the carbon assimilates were translocated to basic born branch after sun-shading and drought

  19. The application of DNA microarrays in gene expression analysis

    NARCIS (Netherlands)

    Hal, van N.L.W.; Vorst, O.; Houwelingen, van A.M.M.L.; Kok, E.J.; Peijnenburg, A.A.C.M.; Aharoni, A.; Tunen, van A.J.; Keijer, J.

    2000-01-01

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed.

  20. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    International Nuclear Information System (INIS)

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin

    2006-01-01

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions

  1. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  3. Chromosomal Translocations in Black Flies (Diptera: Simuliidae-Facilitators of Adaptive Radiation?

    Directory of Open Access Journals (Sweden)

    Peter H Adler

    Full Text Available A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential

  4. Nitrogen uptake and translocation by Chara

    NARCIS (Netherlands)

    Vermeer, C.P.; Escher, M.; Portielje, R.; Klein, de J.J.M.

    2003-01-01

    The potential for above-ground and below-ground uptake and subsequent internal translocation of ammonium (NH4+) and nitrate (NO3-) by the macroalga Chara spp. was investigated. In a two compartment experimental set-up separating above-ground and below-ground algal parts, the charophytes were exposed

  5. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes.

    Science.gov (United States)

    Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie

    2017-02-13

    Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.

  6. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  8. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  9. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  10. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    Science.gov (United States)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  11. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity

    Science.gov (United States)

    2011-01-01

    Background A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis) were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Results Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Conclusions Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival) among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness. PMID:21284886

  12. Wildlife translocation: the conservation implications of pathogen exposure and genetic heterozygosity

    Directory of Open Access Journals (Sweden)

    Penedo M Cecilia T

    2011-02-01

    Full Text Available Abstract Background A key challenge for conservation biologists is to determine the most appropriate demographic and genetic management strategies for wildlife populations threatened by disease. We explored this topic by examining whether genetic background and previous pathogen exposure influenced survival of translocated animals when captive-bred and free-ranging bighorn sheep (Ovis canadensis were used to re-establish a population that had been extirpated in the San Andres Mountains in New Mexico, USA. Results Although the free-ranging source population had significantly higher multi-locus heterozygosity at 30 microsatellite loci than the captive bred animals, neither source population nor genetic background significantly influenced survival or cause of death. The presence of antibodies to a respiratory virus known to cause pneumonia was associated with increased survival, but there was no correlation between genetic heterozygosity and the presence of antibodies to this virus. Conclusions Although genetic theory predicts otherwise, increased heterozygosity was not associated with increased fitness (survival among translocated animals. While heterosis or genetic rescue effects may occur in F1 and later generations as the two source populations interbreed, we conclude that previous pathogen exposure was a more important marker than genetic heterozygosity for predicting survival of translocated animals. Every wildlife translocation is an experiment, and whenever possible, translocations should be designed and evaluated to test hypotheses that will further improve our understanding of how pathogen exposure and genetic variability influence fitness.

  13. [The influence of combinations of alien translocations on in vitro androgenesis in near-isogenic lines of spring bread wheat].

    Science.gov (United States)

    Sibikeeva, Yu E; Sibikeev, S N

    2014-07-01

    The features of in vitro androgenesis were studied in Cultured anthers of spring bread wheats L503 and Dobrynya, having 7DS-7DL-7Ae#1 L translocation with genes Lrl9/Sr25 (Lrl9 translocation) from Agropyron elongatum (Host.) P.B. and their near-isogenic lines carrying combinations of Lrl9 translocation with translocations: 1BL-IR#1S with genes Pm8/Sr31/Lr26/Yr9 (Lr26translocation) from Secale cereal L., 4BS-4BL-2R#1L with genes Lr25/Pm7 (Lr25 translocation) from Secale cereal, 3DS-3DL-3Ae#1L with genes Lr24/Sr24 (Lr24 translocation) from Agropyron elongatum and 6BS-6BL-6U#1L with gene Lr9 (Lr9 translocation) from Aegilops umbellulata Zhuk. In comparison with those varieties having received the Lrl9 translocation, the following was established: (1) the combination of translocations Lr19+26 increased embryo frequency and green plant regeneration; (2) the combination of translocations Lr19+9 decreased embryo frequency but increased green plant regeneration; (3) the combination of translocations Lr19+24 decreased embryo frequency but increased green and albino plant regeneration; (4) the combination of translocations Lr19+25 increased embryo frequency and green plant regeneration but decreased albino plant regeneration. Thus, on near-isogenic lines of spring bread wheat, the influences of genotypes of four alien translocation combinations on in vitro androgenesis were determined.

  14. Translocality, Network Structure, and Music Worlds: Underground Metal in the United Kingdom.

    Science.gov (United States)

    Emms, Rachel; Crossley, Nick

    2018-02-01

    Translocal music worlds are often defined as networks of local music worlds. However, their networked character and more especially their network structure is generally assumed rather than concretely mapped and explored. Formal social network analysis (SNA) is beginning to attract interest in music sociology but it has not previously been used to explore a translocal music world. In this paper, drawing upon a survey of the participation of 474 enthusiasts in 148 live music events, spread across 6 localities, we use SNA to explore a significant "slice" of the network structure of the U.K.'s translocal underground heavy metal world. Translocality is generated in a number of ways, we suggest, but one way, the way we focus upon, involves audiences traveling between localities to attend gigs and festivals. Our analysis of this network uncovers a core-periphery structure which, we further find, maps onto locality. Not all live events enjoy equal standing in our music world and some localities are better placed to capture more prestigious events, encouraging inward travel. The identification of such structures, and the inequality they point to, is, we believe, one of several benefits of using SNA to analyze translocal music worlds. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  15. Translocation Study of Some Zooxanthellae Clade to the Survival and Growth of Goniastrea Aspera After Bleaching

    OpenAIRE

    Purnomo, Pujiono W

    2014-01-01

    Inter-host translocation technique of zooxanthellae was attempted to prove Buddemier and Futin's (1993) theory on adaptation. The recent trend of coral products trading must be anticipated by its mass production through artificial techniques, the alternation of natural resources. Translocation bio-technique of zooxanthellae on coral was expected to resolve the problem and the translocation study should provide fundamental answer to coral recovery. The study of zooxanthellae translocation was ...

  16. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    Science.gov (United States)

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  17. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    International Nuclear Information System (INIS)

    Guerra-Rebollo, Marta; Mateo, Francesca; Franke, Kristin; Huen, Michael S.Y.; Lopitz-Otsoa, Fernando; Rodríguez, Manuel S.; Plans, Vanessa; Thomson, Timothy M.

    2012-01-01

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: ► RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. ► Upon γ-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. ► The ribosomal protein RPSA anchors RNF8 to the nucleolus. ► RNF8 may play previously unsuspected roles in protein synthesis.

  18. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  19. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  20. ISOLASI cDNA SUCROSE TRANSPORTER (SUT DARI BATANG TANAMAN TEBU (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    - Slameto

    2010-09-01

    Full Text Available Sucrose Transporter (SUT is kind of protein transporter that control in sucrose translocation. Sucrose Transporter is intermediate in translocation of sucrose from apoplasmic to simplasmic. SUT facilitates sucrose transportation from vascular tissues to parenchyma cells toward in node sugarcane stem. This research was purposed to isolate cDNA SUT from sugarcane stem, and cloned in Escherichia coli strain DH5α. Total RNA of sugarcane stem was isolated by single step method, then add with oligo dT in order to obtain the first strand of SUT cDNA then used as template for PCR. The primer used for PCR is 5’ –ggg ctg att gtg gcc atg tc- ‘3 (SUT-F and 5’ –tgc cct ttg tct ccg gaa cc- ‘3 (SUT-R. PCR was programmed as follow denaturation at 94°C for 2 minutes and 30 second, annealing at 54°C for 30 s, extension at 72°C 2 min and 7 min, and storage at 4°C for unlimited, It was for 30 cycles. Complementary DNA SUT from PCR ligalized to pTOPO bunt-end, then it cloned in to E. coli strain DH5α. The cloning resulted then be sequenced in order to observe the homologues with other nucleotides sequences of some plant using BLASTn program in GENE BANK NCBI and the level of homology determined by Genetyx program. The concentrated of total RNA isolated was 5,024 μg/μl, with purity of 1,85. Complementary DNA SUT fragment from PCR with size 2037 bp appropriated to the both of primer was used. Complementary DNA SUT fragment showed by analyzed some of restriction enzyme e.g. EcoRI, PstI and BamHI. Homologues of this cDNA SUT fragment was 100% to SoSUT 2A of sugarcane stem and 84% to OsSUT of rice plant (Casu et al ., 2003.

  1. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    Science.gov (United States)

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of uptake and translocation of radioactive herbicides in a parasitic-host system

    International Nuclear Information System (INIS)

    Diaz S, Jorge; Lopez G, Francisca; Garcia T, Luis

    1999-01-01

    Uptake and translocation of [14C]-propyzamide applied to the sunflower seed by coating or soaking, of [14C]-imazapyr and [14C]-glyphosate both applied at post emergence, were studied in sunflower (Helianthus annuus L.) parasitising or not by nodding broom rape (Orobanche cumana Wallr.). Sunflower seed absorbed 9.8 and 3.4% of [14C]-propyzamide applied by coating or soaking, respectively, and less than 1% was translocated to the nodding broom rape. In sunflower plants infested and not infested with nodding broom rape, nearly 90% of [14C]-imazapyr was absorbed and 26% was translocated to the parasitic weed. Uptake of [14C]-glyphosate was similar (50%) for infested or not infested sunflower plants and only the 6% was translocated to the nodding broom rape

  3. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  4. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  5. Microbial Translocation in HIV Infection is Associated with Dyslipidemia, Insulin Resistance, and Risk of Myocardial Infarction

    DEFF Research Database (Denmark)

    Pedersen, Karin Kaereby; Pedersen, Maria; Trøseid, Marius

    2013-01-01

    Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals.......Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals....

  6. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  7. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor

  8. Carbon and nitrogen translocation between seagrass ramets

    NARCIS (Netherlands)

    Marbà, N.; Hemminga, M.A.; Mateo, M.A.; Duarte, C.M.; Maas, Y.E.M.; Terrados, J.; Gacia, E.

    2002-01-01

    The spatial scale and the magnitude of carbon and nitrogen translocation was examined in 5 tropical (Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Thalassodendron ciliatum, Thalassia hemprichii) and 3 temperate (Cymodocea nodosa, Posidonia oceanica, Zostera noltii) seagrass species

  9. Spatial behaviour and survival of translocated wild brown hares

    Directory of Open Access Journals (Sweden)

    Fischer, C.

    2012-01-01

    Full Text Available The fragility of many populations of brown hares in Western Europe is a concern for managers, hunters and naturalists. We took advantage of a locally high density population to use wild individuals to restock areas where the species had disappeared or was close to disappearing. The aim of the project was to assess the evolution of the spatial behaviour after release using radio–tracking. Over 150 wild brown hares were translocated, one third of which were fitted with radio collars. In addition, fifteen individuals were radio–tagged and released back into the source population as a control. Most individuals settled in less than two months and their seasonal home range, once settled, was similar to that observed in the source population. Mean duration of tracking was not significantly different between the two groups. Moreover, two years after the last translocation, tagged individuals can still be observed, but most hares present are not tagged, which indicates natural reproduction of the released individuals. The translocation of wild individuals thus appears to give encouraging results.

  10. Meiotic delay of translocation carrying spermatocytes responsible for reduced transmission

    International Nuclear Information System (INIS)

    Buul, P.P.W. van

    1991-01-01

    Using in vivo pulse labelling of spermatocytes from mice irradiated with different doses of X-rays (6 and 7 Gy). The authors demonstrated that cells having translocations derived from irradiated stem cells tend to spend longer time at the meiotic prophase than normal cells. At the 2 Gy level this effect is much less pronounced. The recorded delay forms a good explanation for the reduced transmission of translocations to the next generation observed by others. (author)

  11. Effects of age and sex ratios on offspring recruitment rates in translocated black rhinoceros.

    Science.gov (United States)

    Gedir, Jay V; Law, Peter R; du Preez, Pierre; Linklater, Wayne L

    2018-06-01

    Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short-term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer-term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females-a metric integrating survival, fecundity, and offspring recruitment at sexual maturity-to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (recruitment failure of juveniles and young adults (4-5.9 years old). Where translocation of juveniles is necessary, they should be released into female-biased populations, where they have higher ORRs. Our study offers the unique advantage of a long-term analysis across a large number of replicate populations-a science-by-management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long-term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population growth and species recovery, particularly

  12. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K

    2000-07-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (autho000.

  13. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K.

    2000-01-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (author)

  14. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    International Nuclear Information System (INIS)

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-01-01

    Highlights: ► GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. ► NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. ► Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  15. A comparative study on the uptake and translocation of organochlorines by Phragmites australis

    Energy Technology Data Exchange (ETDEWEB)

    San Miguel, Angélique; Ravanel, Patrick [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France); Raveton, Muriel, E-mail: muriel.raveton@ujf-grenoble.fr [Laboratoire d’Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09 (France)

    2013-01-15

    Highlights: ► This study compares uptake/translocation of organochlorine congeners in macrophytes. ► First, root OC uptake was strongly linked with the partitioning/diffusion process. ► With time exposure, bioconcentration increased with OC solubility and volatility. ► Translocation was linked to the combination of water flow and vapor flux transfers. ► The most volatile OCs might be phytovolatilized from foliar surfaces. -- Abstract: Organochlorines (OCs) are persistent chemicals found in various environmental compartments. The differences in the uptake of {sup 14}C-labeled 1,4-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and γ-hexachlorocyclohexane (γHCH) by Phragmites australis were investigated under hydroponic conditions. The first step in sorption appears to be correlated with the hydrophobic nature of the compounds, since log-linear correlations were obtained between root concentration factor and partition coefficient (LogK{sub ow}). After 7 days of exposure, plant uptake of DCB, TCB, γHCH was significant with bioconcentration factors reaching 14, 19 and 15, respectively. Afterwards, uptake and translocation were seen to be more complex, with a loss of the simple relationship between uptake and LogK{sub ow}. Linear correlations between the bioconcentration/translocation factors and the physico-chemical properties of OCs were shown, demonstrating that translocation from roots to shoots increases with solubility and volatility of the OCs. This suggests that OC-translocation inside plants might result from the combination of two processes, xylem sap flow and vapor fluxes. {sup 14}C-phytovolatilization was measured and was correlated with the volatility of the compounds; the more volatile OCs being most the likely to be phytovolatilized from foliar surfaces (p = 0.0008). Thus, OC-uptake/translocation appears to proceed at a rate that depends mostly on the OCs hydrophobicity, solubility and volatility.

  16. PAK1 translocates into nucleus in response to prolactin but not to estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Oladimeji, Peter, E-mail: Peter.Oladimeji@rockets.utoledo.edu; Diakonova, Maria, E-mail: mdiakon@utnet.utoledo.edu

    2016-04-22

    Tyrosyl phosphorylation of the p21-activated serine–threonine kinase 1 (PAK1) has an essential role in regulating PAK1 functions in breast cancer cells. We previously demonstrated that PAK1 serves as a common node for estrogen (E2)- and prolactin (PRL)-dependent pathways. We hypothesize herein that intracellular localization of PAK1 is affected by PRL and E2 treatments differently. We demonstrate by immunocytochemical analysis that PAK1 nuclear translocation is ligand-dependent: only PRL but not E2 stimulated PAK1 nuclear translocation. Tyrosyl phosphorylation of PAK1 is essential for this nuclear translocation because phospho-tyrosyl-deficient PAK1 Y3F mutant is retained in the cytoplasm in response to PRL. We confirmed these data by Western blot analysis of subcellular fractions. In 30 min of PRL treatment, only 48% of pTyr-PAK1 is retained in the cytoplasm of PAK1 WT clone while 52% re-distributes into the nucleus and pTyr-PAK1 shuttles back to the cytoplasm by 60 min of PRL treatment. In contrast, PAK1 Y3F is retained in the cytoplasm. E2 treatment causes nuclear translocation of neither PAK1 WT nor PAK1 Y3F. Finally, we show by an in vitro kinase assay that PRL but not E2 stimulates PAK1 kinase activity in the nuclear fraction. Thus, PAK1 nuclear translocation is ligand-dependent: PRL activates PAK1 and induces translocation of activated pTyr-PAK1 into nucleus while E2 activates pTyr-PAK1 only in the cytoplasm. - Highlights: • Prolactin but not estrogen causes translocation of PAK1 into nucleus. • Tyrosyl phosphorylation of PAK1 is required for nuclear localization. • Prolactin but not estrogen stimulates PAK1 kinase activity in nucleus.

  17. Long-distance translocations to create a second millerbird population and reduce extinction risk

    Science.gov (United States)

    Holly Freifeld,; Sheldon Plentovich,; Chris Farmer,; Charles Kohley,; Peter Luscomb,; Work, Thierry M.; Daniel Tsukayama,; George Wallace,; Mark MacDonald,; Sheila Conant,

    2016-01-01

    Translocation is a conservation tool used with increasing frequency to create additional populations of threatened species. In addition to following established general guidelines for translocations, detailed planning to account for unique circumstances and intensive post-release monitoring to document outcomes and guide management are essential components of these projects. Recent translocation of the critically endangered Nihoa millerbird (Acrocephalus familiaris kingi) provides an example of this planning and monitoring. The Nihoa millerbird is a passerine bird endemic to Nihoa Island in the remote Northwestern Hawaiian Islands. The closely related, ecologically similar Laysan millerbird (Acrocephalus familiaris familiaris) went extinct on Laysan Island in the early 20th century when the island was denuded by introduced rabbits. To reduce extinction risk, we translocated 50 adult Nihoa millerbirds more than 1000 km by sea to Laysan, which has recovered substantially in the past century and has ample habitat and a rich prey-base for millerbirds. Following five years of intensive background research and planning, including development of husbandry techniques, fundraising, and regulatory compliance, translocations occurred in 2011 and 2012. Of 11 females in each cohort, 8 (2011 cohort) and 11 (2012 cohort) produced at least one brood of fledglings during their first year on Laysan. At the conclusion of monitoring in September 2014, 37 of the translocated birds were known to survive, and the population was estimated at 164 birds. The reintroduction of millerbirds to Laysan represents a milestone in the island's ongoing restoration.

  18. Correlation of leaf damage with uptake and translocation of glyphosate in velvetleaf (Abutilon theophrasti)

    International Nuclear Information System (INIS)

    Feng, P.C.C.; Ryerse, J.S.; Sammons, R.D.

    1998-01-01

    Uptake and translocation of glyphosate in three commercial formulations were examined in velvetleaf, a dicotyledonous weed that is commonly treated with glyphosate. The formulations included Roundup(R) (MON35085), Roundup Ultra, and Touchdown(R) as sold in Canada. A minimal amount of 14C-glyphosate was spiked into a lethal rate of each formulation, and the short-term (3 to 72 h) uptake into the treated leaf and subsequent translocation into the plant were measured. Time-course studies showed very rapid uptake and translocation of glyphosate in the Ultra formulation. In comparison, the uptake and translocation of glyphosate in Touchdown was much slower but continued throughout the 72-h period. Glyphosate in the Roundup formulation showed intermediate uptake and translocation. Tissue necrosis at the application sites of Ultra and Roundup was visible within 24 h after treatment. Examinations using stereo and fluorescence microscopy revealed extensive cell death and tissue disruption. Tissue necrosis from Ultra and Roundup was also observed in blank formulations containing no glyphosate and therefore was likely caused by the surfactants. In contrast, the application sites of Touchdown produced little to no leaf damage. Our results demonstrated a direct correlation between tissue necrosis and rapid rates of glyphosate uptake and translocation. (author)

  19. Translocation of Candida albicans is related to the blood flow of individual intestinal villi.

    Science.gov (United States)

    Gianotti, L; Alexander, J W; Fukushima, R; Childress, C P

    1993-08-01

    Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P flow is an important determinant of the magnitude of microbial translocation, even within individual villi.

  20. Production of reciprocal translocation lines and genetical analysis of tetravalent behavior in barley

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Tokuhiko

    1988-03-01

    The seeds of a barley cultivar, Chikurinibaraki No.1 and of an early mutant line, Ea 52, derived from it were exposed to the external irradiation of gamma ray and thermal neutrons, and to the internal irradiation with the alpha ray from the nuclear reaction B-10 (n, alpha) Li-7 generated by the thermal neutron irradiation of B-10 imbibed seeds. The reciprocal translocation induced by these irradiation was detected and bred in the pedigrees of irradiated materials by the selection in terms of the partial sterility of seeds. The examination of seed fertility and chromosome pairing at the MI of meiosis of the F/sub 1/ hybrid between the selected lines and the original cultivar was also used. Consequently, 50 homozygous lines of reciprocal translocation were confirmed. The tester lines for translocated chromosomes were established by the cytological examination of the chromosome pairing in the hybrids between each two of the tester lines. The investigation of the inheritance of translocation heterozygotes showed that most of the newly obtained lines differently behaved from the expectation on the genetical basis of reciprocal translocation. (Kako, I.).

  1. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    Science.gov (United States)

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  2. Production of reciprocal translocation lines and genetical analysis of tetravalent behavior in barley

    International Nuclear Information System (INIS)

    Makino, Tokuhiko

    1988-01-01

    The seeds of a barley cultivar, Chikurinibaraki No.1 and of an early mutant line, Ea 52, derived from it were exposed to the external irradiation of gamma ray and thermal neutrons, and to the internal irradiation with the alpha ray from the nuclear reaction B-10 (n, alpha) Li-7 generated by the thermal neutron irradiation of B-10 imbibed seeds. The reciprocal translocation induced by these irradiation was detected and bred in the pedigrees of irradiated materials by the selection in terms of the partial sterility of seeds. The examination of seed fertility and chromosome pairing at the MI of meiosis of the F 1 hybrid between the selected lines and the original cultivar was also used. Consequently, 50 homozygous lines of reciprocal translocation were confirmed. The tester lines for translocated chromosomes were established by the cytological examination of the chromosome pairing in the hybrids between each two of the tester lines. The investigation of the inheritance of translocation heterozygotes showed that most of the newly obtained lines differently behaved from the expectation on the genetical basis of reciprocal translocation. (Kako, I.)

  3. Toponomics method for the automated quantification of membrane protein translocation.

    Science.gov (United States)

    Domanova, Olga; Borbe, Stefan; Mühlfeld, Stefanie; Becker, Martin; Kubitz, Ralf; Häussinger, Dieter; Berlage, Thomas

    2011-09-19

    Intra-cellular and inter-cellular protein translocation can be observed by microscopic imaging of tissue sections prepared immunohistochemically. A manual densitometric analysis is time-consuming, subjective and error-prone. An automated quantification is faster, more reproducible, and should yield results comparable to manual evaluation. The automated method presented here was developed on rat liver tissue sections to study the translocation of bile salt transport proteins in hepatocytes. For validation, the cholestatic liver state was compared to the normal biological state. An automated quantification method was developed to analyze the translocation of membrane proteins and evaluated in comparison to an established manual method. Firstly, regions of interest (membrane fragments) are identified in confocal microscopy images. Further, densitometric intensity profiles are extracted orthogonally to membrane fragments, following the direction from the plasma membrane to cytoplasm. Finally, several different quantitative descriptors were derived from the densitometric profiles and were compared regarding their statistical significance with respect to the transport protein distribution. Stable performance, robustness and reproducibility were tested using several independent experimental datasets. A fully automated workflow for the information extraction and statistical evaluation has been developed and produces robust results. New descriptors for the intensity distribution profiles were found to be more discriminative, i.e. more significant, than those used in previous research publications for the translocation quantification. The slow manual calculation can be substituted by the fast and unbiased automated method.

  4. Nectar reabsorption and sugar translocation in male and female flowers of Cucurbita pepo

    International Nuclear Information System (INIS)

    Stpiczynska, M.; Nepi, M.

    2005-01-01

    Full text: The production and secretion of nectar has an energy cost that can be a substantial part of the energy economy of the plant. Plants may therefore recover part of the energy allocated to nectar secretion by reabsorbing nectar not collected by pollinators. This energy-saving strategy has been demonstrated by several authors by different methods. Here we demonstrate nectar reabsorption and sugar translocation in Cucurbita pepo by means of microautoradiography. Our results confirm that the dynamics of nectar reabsorption is different in male and female flowers. Differences in the dynamics of nectar reabsorption and sugar translocation were also found in pollinated and unpollinated female flowers. Pollinated female flowers reabsorbed sugar very quickly and translocated it to developing fruits in which ovules were the main sugar sink. Sugar translocation was slower and ovules did not label in unpollinated female flowers. (author)

  5. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  6. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  7. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Science.gov (United States)

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-05-13

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  8. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Directory of Open Access Journals (Sweden)

    Nathan Zauberman

    2008-05-01

    Full Text Available Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  9. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  10. Vitamin C for DNA damage prevention

    International Nuclear Information System (INIS)

    Sram, Radim J.; Binkova, Blanka; Rossner, Pavel

    2012-01-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2′-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  11. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  12. Identification of genome-specific transcripts in wheat–rye translocation lines

    Directory of Open Access Journals (Sweden)

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  13. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  14. Translocation 1;7 in dyshematopoiesis: possibly induced with a nonrandom geographic distribution

    International Nuclear Information System (INIS)

    Scheres, J.M.; Hustinx, T.W.; Holdrinet, R.S.; Geraedts, J.P.; Hagemeijer, A.; van der Blij-Philipsen, M.

    1984-01-01

    Eight patients with various hematologic disorders had an identical chromosomal aberration in their bone marrow or unstimulated peripheral blood, a translocation t(1;7) interpreted as t(1;7)(p11;p11). The translocation chromosome replaced one normal chromosome number7; therefore, the karyotype of the abnormal cells was trisomic for 1q and monosomic for 7q. Including four cases from the literature, a total of 12 patients (4 women, 8 men) with this translocation are known at the moment. The translocation does not seem to be associated with a specific disorder, but almost all patients had a preleukemic syndrome during some stage of their disease. It is very remarkable that 11 of the 12 patients lived in the Netherlands, and 7 patients had a history of iatrogenic exposure to alkylating agents or irradiation; one patient was a radiation worker and another one had a history of toxic exposure to chloramphenicol. It is suggested, therefore, that the t(1;7) is a possibly induced chromosomal aberration with a clearly nonrandom geographic distribution

  15. Langevin dynamics simulation on the translocation of polymer through α-hemolysin pore

    International Nuclear Information System (INIS)

    Sun, Li-Zhen; Luo, Meng-Bo

    2014-01-01

    The forced translocation of a polymer through an α-hemolysin pore under an electrical field is studied using a Langevin dynamics simulation. The α-hemolysin pore is modelled as a connection of a spherical vestibule and a cylindrical β-barrel and polymer-pore attraction is taken into account. The results show that polymer-pore attraction can help the polymer enter the vestibule and the β-barrel as well; however, a strong attraction will slow down the translocation of the polymer through the β-barrel. The mean translocation time for the polymer to thread through the β-barrel increases linearly with the polymer length. By comparing our results with that of a simple pore without a vestibule, we find that the vestibule helps the polymer enter and thread through the β-barrel. Moreover, we find that it is easier for the polymer to thread through the β-barrel if the polymer is located closer to the surface of the vestibule. Some simulation results are explained qualitatively by theoretically analyzing the free-energy landscape of polymer translocation. (paper)

  16. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias.

    NARCIS (Netherlands)

    Bergh, A. von; Emanuel, B.; Zelderen-Bhola, S. van; Smetsers, A.F.C.M.; Soest, R. van; Stul, M.; Vranckx, H.; Schuuring, E.; Hagemeijer, A.; Kluin, P.

    2000-01-01

    Reciprocal translocations involving the MLL gene on chromosome band 11q23 have been observed in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In AML, identification of MLL breakpoints is an important prognostic factor. Breakpoints are clustered in an 8 kb DNA fragment

  17. hPEPT1 Affinity and Translocation of Selected Gln-Sar and Glu-Sar Dipeptide Derivatives

    DEFF Research Database (Denmark)

    Eriksson, A. H.; Elm, Peter L.; Begtrup, Mikael

    2005-01-01

    using 14C-labeled Gly-Sar. Translocation was measured as fluorescence ratios induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All compounds showed high affinity to hPEPT1, but only the amides l-Gln(N,N-dimethyl)-Sar and l-Gln(N-piperidinyl)-Sar were...... been suggested. However, these are not necessarily predictive of compounds that are actually translocated by hPEPT1. More information on affinity to and translocation via hPEPT1 of side-chain-modified dipeptides may be gained by conducting a study of selected dipeptide derivatives with variety in size...... translocated by hPEPT1. hPEPT1 is very susceptible to modifications of the N-terminal amino acid side chain of dipeptidomimetic substrates, in terms of achieving compounds with high affinity for the transporter. However, as affinity is not predictive of translocation, derivatization in this position must...

  18. The Genetics of a Probable Insertional Translocation in SORDARIA BREVICOLLIS.

    Science.gov (United States)

    Bond, D J

    1979-05-01

    A chromosome rearrangement has been isolated and characterized in Sordaria brevicollis. Crosses to spore color mutants on each of the seven linkage groups have enabled the breakpoints to be mapped. The simplest hypothesis to account for the results is that a piece of linkage group VI has been translocated to linkage group V and inserted 2.7 map units from its centromere. Previous reports of markers on this linkage group with centromere distances greater than 2.7 units make it unlikely that the translocation is quasiterminal.

  19. Live birth from a patient with a three-way balanced translocation t(5 ...

    African Journals Online (AJOL)

    Objectives: Array comparative genomic hybridisation (array-CGH) was used to screen embryos for chromosome imbalances. Methods: Embryo biopsy, preimplantation genetic diagnosis using a 24sure+ kit to detect translocations in embryos. Results: Of 10 embryos tested, 2 were found to have an unbalanced translocation, ...

  20. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway.

    Science.gov (United States)

    Shu, Chang; Li, Xin; Li, Pingwei

    2014-12-01

    Microbial nucleic acids induce potent innate immune responses by stimulating the expression of type I interferons. Cyclic GMP-AMP synthase (cGAS) is a cytosolic dsDNA sensor mediating the innate immunity to microbial DNA. cGAS is activated by dsDNA and catalyze the synthesis of a cyclic dinucleotide cGAMP with 2',5' and 3',5'phosphodiester linkages. cGAMP binds to the adaptor STING located on the endoplasmic reticulum membrane and mediates the recruitment and activation of the protein kinase TBK1 and transcription factor IRF3. Phosphorylated IRF3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The crystal structures of cGAS and its complex with dsDNA, STING and its complex with various cyclic dinucleotides have been determined recently. Here we summarize the results from these structural studies and provide an overview about the mechanism of cGAS activation by dsDNA, the catalytic mechanism of cGAS, and the structural basis of STING activation by cGAMP. Published by Elsevier Ltd.

  1. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  2. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  3. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M

    2018-01-01

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  4. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning

    KAUST Repository

    Teng, Haotian

    2018-04-10

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  5. Mycobacterium tuberculosis UvrB Is a Robust DNA-Stimulated ATPase That Also Possesses Structure-Specific ATP-Dependent DNA Helicase Activity.

    Science.gov (United States)

    Thakur, Manoj; Kumar, Mohan B J; Muniyappa, K

    2016-10-18

    Much is known about the Escherichia coli nucleotide excision repair (NER) pathway; however, very little is understood about the proteins involved and the molecular mechanism of NER in mycobacteria. In this study, we show that Mycobacterium tuberculosis UvrB (MtUvrB), which exists in solution as a monomer, binds to DNA in a structure-dependent manner. A systematic examination of MtUvrB substrate specificity reveals that it associates preferentially with single-stranded DNA, duplexes with 3' or 5' overhangs, and linear duplex DNA with splayed arms. Whereas E. coli UvrB (EcUvrB) binds weakly to undamaged DNA and has no ATPase activity, MtUvrB possesses intrinsic ATPase activity that is greatly stimulated by both single- and double-stranded DNA. Strikingly, we found that MtUvrB, but not EcUvrB, possesses the DNA unwinding activity characteristic of an ATP-dependent DNA helicase. The helicase activity of MtUvrB proceeds in the 3' to 5' direction and is strongly modulated by a nontranslocating 5' single-stranded tail, indicating that in addition to the translocating strand it also interacts with the 5' end of the substrate. The fraction of DNA unwound by MtUvrB decreases significantly as the length of the duplex increases: it fails to unwind duplexes longer than 70 bp. These results, on one hand, reveal significant mechanistic differences between MtUvrB and EcUvrB and, on the other, support an alternative role for UvrB in the processing of key DNA replication intermediates. Altogether, our findings provide insights into the catalytic functions of UvrB and lay the foundation for further understanding of the NER pathway in M. tuberculosis.

  6. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Rebollo, Marta; Mateo, Francesca; Franke, Kristin [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Huen, Michael S.Y. [Department of Anatomy, Centre for Cancer Research, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong Special Administrative Region (Hong Kong); Lopitz-Otsoa, Fernando; Rodriguez, Manuel S. [Proteomics Unit, CIC bioGUNE CIBERehd, ProteoRed, Technology Park of Bizkaia, Building 801A, 48160 Derio (Spain); Plans, Vanessa [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Thomson, Timothy M., E-mail: titbmc@ibmb.csic.es [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2012-11-01

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to {gamma}-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did {gamma}-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: Black-Right-Pointing-Pointer RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. Black-Right-Pointing-Pointer Upon {gamma}-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. Black-Right-Pointing-Pointer The ribosomal protein RPSA anchors RNF8 to the nucleolus. Black-Right-Pointing-Pointer RNF8 may play previously unsuspected roles in protein synthesis.

  7. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    Science.gov (United States)

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  8. Polymer translocation through a nanopore: a showcase of anomalous diffusion.

    Science.gov (United States)

    Milchev, A; Dubbeldam, Johan L A; Rostiashvili, Vakhtang G; Vilgis, Thomas A

    2009-04-01

    We investigate the translocation dynamics of a polymer chain threaded through a membrane nanopore by a chemical potential gradient that acts on the chain segments inside the pore. By means of diverse methods (scaling theory, fractional calculus, and Monte Carlo and molecular dynamics simulations), we demonstrate that the relevant dynamic variable, the transported number of polymer segments, s(t), displays an anomalous diffusive behavior, both with and without an external driving force being present. We show that in the absence of drag force the time tau, needed for a macromolecule of length N to thread from the cis into the trans side of a cell membrane, scales as tauN(2/alpha) with the chain length. The anomalous dynamics of the translocation process is governed by a universal exponent alpha= 2/(2nu + 2 - gamma(1)), which contains the basic universal exponents of polymer physics, nu (the Flory exponent) and gamma(1) (the surface entropic exponent). A closed analytic expression for the probability to find s translocated segments at time t in terms of chain length N and applied drag force f is derived from the fractional Fokker-Planck equation, and shown to provide analytic results for the time variation of the statistical moments and . It turns out that the average translocation time scales as tau proportional, f(-1)N(2/alpha-1). These results are tested and found to be in perfect agreement with extensive Monte Carlo and molecular dynamics computer simulations.

  9. Single-Molecule Studies of Bacterial Protein Translocation

    NARCIS (Netherlands)

    Kedrov, Alexej; Kusters, Ilja; Driessen, Arnold J. M.

    2013-01-01

    In prokaryotes, a large share of the proteins are secreted from the cell through a process that requires their translocation across the cytoplasmic membrane. This process is mediated by the universally conserved Sec system with homologues in the endoplasmic reticulum and thylakoid membranes of

  10. Free energy evaluation in polymer translocation via Jarzynski equality

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe, E-mail: fmondaini@if.ufrj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Petrópolis, 25.620-003, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970, Rio de Janeiro, RJ (Brazil)

    2014-05-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations, which provide free energy estimates for unbiased three-dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite-size scaling properties.

  11. Free energy evaluation in polymer translocation via Jarzynski equality

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2014-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations, which provide free energy estimates for unbiased three-dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite-size scaling properties.

  12. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples.

    Science.gov (United States)

    Miller, D N; Bryant, J E; Madsen, E L; Ghiorse, W C

    1999-11-01

    We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed

  13. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance.

    Science.gov (United States)

    Li, Xiaojun; Jiang, Xiaoling; Chen, Xiangdong; Song, Jie; Ren, Cuicui; Xiao, Yajuan; Gao, Xiaohui; Ru, Zhengang

    2017-01-01

    Agropyron elongatum (Host.) Neviski (synonym, Thinopyrum ponticum Podp., 2n = 70) has been used extensively as a valuable source for wheat breeding. Numerous chromosome fragments containing valuable genes have been successfully translocated into wheat from A. elongatum. However, reports on the transfer of powdery mildew resistance from A. elongatum to wheat are rare. In this study, a novel wheat-A. elongatum translocation line, 11-20-1, developed and selected from the progenies of a sequential cross between wheat varieties (Lankaoaizaoba, Keyu 818 and BainongAK 58) and A. elongatum, was evaluated for disease resistance and characterized using molecular cytogenetic methods. Cytological observations indicated that 11-20-1 had 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization analysis using whole genomic DNA from A. elongatum as a probe showed that the short arms of a pair of wheat chromosomes were replaced by a pair of A. elongatum chromosome arms. Fluorescence in situ hybridization, using wheat D chromosome specific sequence pAs1 as a probe, suggested that the replaced chromosome arms of 11-20-1 were 5DS. This was further confirmed by wheat SSR markers specific for 5DS. EST-SSR and EST-STS multiple loci markers confirmed that the introduced A. elongatum chromosome arms belonged to homoeologous group 5. Therefore, it was deduced that 11-20-1 was a wheat-A. elongatum T5DL∙5AgS translocation line. Both resistance observation and molecular marker analyses using two specific markers (BE443538 and CD452608) of A. elongatum in a F2 population from a cross between line 11-20-1 and a susceptible cultivar Yannong 19 verified that the A. elongatum chromosomes were responsible for the powdery mildew resistance. This work suggests that 11-20-1 likely contains a novel resistance gene against powdery mildew. We expect this line to be useful for the genetic improvement of wheat.

  14. Development of a high-throughput method for the systematic identification of human proteins nuclear translocation potential

    Directory of Open Access Journals (Sweden)

    Kawai Jun

    2009-09-01

    Full Text Available Abstract Background Important clues to the function of novel and uncharacterized proteins can be obtained by identifying their ability to translocate in the nucleus. In addition, a comprehensive definition of the nuclear proteome undoubtedly represents a key step toward a better understanding of the biology of this organelle. Although several high-throughput experimental methods have been developed to explore the sub-cellular localization of proteins, these methods tend to focus on the predominant localizations of gene products and may fail to provide a complete catalog of proteins that are able to transiently locate into the nucleus. Results We have developed a method for examining the nuclear localization potential of human gene products at the proteome scale by adapting a mammalian two-hybrid system we have previously developed. Our system is composed of three constructs co-transfected into a mammalian cell line. First, it contains a PCR construct encoding a fusion protein composed of a tested protein, the PDZ-protein TIP-1, and the transactivation domain of TNNC2 (referred to as ACT construct. Second, our system contains a PCR construct encoding a fusion protein composed of the DNA binding domain of GAL4 and the PDZ binding domain of rhotekin (referred to as the BIND construct. Third, a GAL4-responsive luciferase reporter is used to detect the reconstitution of a transcriptionally active BIND-ACT complex through the interaction of TIP-1 and rhotekin, which indicates the ability of the tested protein to translocate into the nucleus. We validated our method in a small-scale feasibility study by comparing it to green fluorescent protein (GFP fusion-based sub-cellular localization assays, sequence-based computational prediction of protein sub-cellular localization, and current sub-cellular localization data available from the literature for 22 gene products. Conclusion Our reporter-based system can rapidly screen gene products for their ability

  15. Detection of reciprocal chromosome translocations as an indicator of organism exposure to ionizing radiation by FISH-WCP method

    International Nuclear Information System (INIS)

    Holeckova, B.; Sivikova, K.; Dianovsky, J.; Piesova, E.; Lakatosova, M.

    2006-01-01

    Chromosome translocations are considered to be the gold standard for assessing ionizing radiation exposure. Because translocations are inherently more stable through cell division than dicentrics, translocations have become the aberration of choice for evaluating many types of exposure. Fluorescence in situ hybridization with whole chromosome painting probes (FISH-WCP) has been shown to be a rapid method of detecting chromosomal rearrangements, and appears to be especially useful for analysis of induced translocations. The present paper shortly describes FISH-WCP method for detection of reciprocal translocations as indicators of exposure to ionizing radiation. (authors)

  16. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  17. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  18. Importance of No. 21 chromosome in translocation t(8:21) in acute myelocytic leukemia (AML) to the genesis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T; Minamihisamatsu, M

    1986-05-01

    The results are reported of the chromosome analysis of 17 cases of acute myelocytic leukemia (AML), mostly belonging to M2 of the FAB classification, especially on the translocation t(8:21) and its variant translocations. The presence of two cases with simple variant translocation not involving No. 8 chromosome seems to suggest that No. 21 chromosome is more important to the genesis of AML than the No. 8 chromosome. This assumption appears to be supported by findings on cases with complex translocation: In two cases with complex translocation, the portion translocated from No. 21 chromosome onto No. 8 was firmly maintained in the specific site (q21) on No. 8 whereas the portion translocated from No. 8 chromosome onto No. 21 was involved in further translocation with another chromosome, onto which it was re-translocated. The results of the present cytogenetic study indicate that the analysis of variant translocations in various specific chromosome translocations in leukemia and other malignant disorders is very useful to elucidate the problem as to whether the genesis of such disorders lies in either one or both of the pair of chromosomes involved in the specific translocations of the respective diseases.

  19. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  20. OK-432 reduces mortality and bacterial translocation in irradiated and granulocyte-colony stimulating factor (G-CSF)-treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Masako; Uzawa, Akiko; Ogyu, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan); Suzuki, Gen

    2001-06-01

    Acute radiation induces bacterial translocation from the gut, followed by systemic infection and sepsis. In order to reduce the mortality after acute whole body irradiation, it is essential to control bacterial translocation. In this study, we established a bacterial translocation assay as a sensitive method to detect minor mucosal injury by radiation. By utilizing this assay, we evaluated the adverse effects, if any, of hematopoietic reagents on the mucosal integrity in the respiratory and gastro-intestinal tracts. Bacterial translocation to the liver and spleen occurred after whole-body irradiation if the dose exceeded 6 Gy. The administration of G-CSF unexpectedly increased the bacterial translocation in 8 Gy-irradiated mice. The pharmaceutical preparation of low-virulent Streptococcus pyogenes, OK-432, significantly reduced the endotoxin levels in peripheral blood without any reduction of bacterial translocation. A combined treatment with G-CSF and OK-432 decreased bacterial translocation and prevented death. This result indicates that the early administration of G-CSF has an adverse effect on bacterial translocation, and that a combined treatment of G-CSF and OK-432 attenuates the adverse effect of G-CSF and improves the survival rate after acute irradiation. (author)

  1. Comparison between fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis in translocation carriers.

    Science.gov (United States)

    Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y

    2015-02-01

    To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.

  2. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta.

    Science.gov (United States)

    Zhang, Xian-Ming; Chen, Jia; Xia, Yu-Gui; Xu, Qiang

    2005-03-01

    In our previous study, quercetin was found to induce apoptosis of murine melanoma B16-BL6 cells. The cellular and molecular mechanism of quercetin-induced apoptosis was investigated in the present study. Nuclear morphology was determined by fluorescence microscopy. DNA fragmentation was analyzed by electrophoresis and quantified by the diphenylamine method. The transmembrane potential of mitochondria was measured by flow cytometry. Bcl-2, Bcl-X(L), PKC-alpha, PKC-beta, and PKC-delta were detected by Western blotting. Caspase activity was determined spectrophotometrically. Quercetin induced the condensation of nuclei of B16-BL6 cells in a dose-dependent pattern as visualized by Hoechst 33258 and propidium iodide dying. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly enhanced apoptosis induced by quercetin, while doxorubicin, a PKC inhibitor, markedly decreased it. Both PMA and doxorubicin showed a consistent effect on the fragmentation of nuclear DNA caused by various dosages of quercetin. Quercetin dose-dependently led to loss of the mitochondrial membrane potential, which was also significantly reinforced or antagonized by PMA and doxorubicin, respectively. Moreover, PMA showed reinforcement, while doxorubicin showed significant antagonization, of the quercetin-mediated decrease in the expression of Bcl-2. Quercetin promoted caspase-3 activity in a dose-dependent manner, which was also regulated by PMA and doxorubicin with a pattern similar to that seen in their effect on apoptosis, mitochondrial membrane potential and Bcl-2 expression, but none of these were directly affected by PMA and doxorubicin. Free fatty acid and chlorpromazine, a PKC activator and inhibitor, respectively, did not interfere with these effects of quercetin. B16-BL6 cells expressed PKC-alpha, PKC-beta, and PKC-delta. Quercetin dose-dependently inhibited the expression of PKC-alpha but not that of PKC-beta and PKC-delta. Doxorubicin almost completely blocked the effect of

  3. Monitoring translocations by M-FISH and three-color FISH painting techniques. A study of two radiotherapy patients

    International Nuclear Information System (INIS)

    Pouzoulet, F.; Roch-Lefevre, S.; Giraudet, AL.

    2007-01-01

    To compare translocation rate using either M-FISH or FISH-3 in two patients treated for head and neck cancer, with a view to retrospective dosimetry. Translocation analysis was performed on peripheral blood lymphocyte cultures from blood samples taken at different times during the radiotherapy (0 Gy, 12 Gy and 50 Gy) and a few months after the end of the treatment (follow-up). Estimated translocation yield varied according to the FISH technique used. At 50 Gy and follow-up points, the translocation yields were higher with FISH-3 than with M-FISH. This difference can be attributed to three events. First, an increase in complex aberrations was observed for 50 Gy and follow-up points compared with 0 Gy and 12 Gy points. Second, at the end of treatment for patient A, involvement of chromosomes 2, 4, 12 in translocations was less than expected according to the Lucas formula. Third, a clone bearing a translocation involving a FISH-3 painted chromosome was detected. More translocations were detected with M-FISH than with FISH-3, and so M-FISH is expected to improve the accuracy of chromosome aberration analyses in some situations. (author)

  4. Chromosomal translocation in a mongoloid male child and his normal mother

    Directory of Open Access Journals (Sweden)

    Willy Beçak

    1963-09-01

    Full Text Available The presence of a translocation 21/13-15 is related in 46 chromosomes, karyotypes of a mongoloid male child (Down's syndrome. The abnormal chromosome was transmitted by the mother of the patient. The possible deficiency of translocated chromosome 21 and the possible origin of the anomaly in the family was discussed and the presence of a markedly large Y chromosome in the karyotypes of the patient as in those of his father was also noted.

  5. Effect of dose rate on the translocation yield in rat spermatogonia

    International Nuclear Information System (INIS)

    Vyglenov, A.; Rudnitski, T.; Kokhmanska-Tvardovska, A.

    1987-01-01

    The effectiveness of chronic gamma-irradiation with dose rate 1.10 -4 Gy/min on the yield of reciprocal translocations in rat spermatogonia was studied. Comparsion was made with acute gamma-irradiation at emissive power 1,23 Gy/min. Emissive power decrease by four orders reduced 12 times the extent of genetic injury - from 34,9 down to 3 translocations per cellx10 -5 /cGy. In this respect, the rat is close to the laboratory mouse

  6. Stem-spermatogonial survival and incidence of reciprocal translocations in the γ-irradiated boar

    International Nuclear Information System (INIS)

    Erickson, B.H.; Martin, P.G.

    1984-01-01

    To assess the effects of γ-radiation on stem-cell survival and incidence of reciprocal translocations, boar testes were irradiated with 100, 200, or 400 rad. Stem-cell survival was markedly affected by 100 rad (51% of control) and reduced to 34% of control by 400 rad. Production of differentiating spermatogonia renewal was incomplete at 12 weeks. Incidence of translocations peaked at 200 rad and the number occurring at 100 and 400 rad was similar. Kinetics of porcine spermatogonial renewal differs considerably from those of the rodent and, relative to the rodent, this may account for the boar's higher sensitivity to stem-cell killing and lower sensitivity to translocation

  7. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  8. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Inadomi, Chiaki, E-mail: inadomic@nagasaki-u.ac.jp [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Murata, Hiroaki [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Ihara, Yoshito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509 (Japan); Goto, Shinji; Urata, Yoshishige [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yodoi, Junji [Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Kondo, Takahito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Sumikawa, Koji [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  9. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Directory of Open Access Journals (Sweden)

    Supriya Khedkar

    2016-06-01

    Full Text Available Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter or the origin of replication (oriC; (b translocation maps may reflect chromosome topologies; and (c symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.

  10. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Science.gov (United States)

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-06-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. Copyright © 2016 Khedkar and Seshasayee.

  11. The efficacy of translocating little penguins Eudyptula minor during an oil spill

    International Nuclear Information System (INIS)

    Hull, Cindy L.; Hindell, Mark A.; Moyle, Diane I.; Gales, Rosemary P.; Brothers, Nigel P.; Meggs, Ross A.

    1998-01-01

    As a consequence of the ship The Iron Baron running aground at Low Head in northern Tasmania, Australia, an unknown number of little penguins Eudyptula minor were contaminated with bunker fuel oil. Of these, 1894 were brought into captivity and cleaned of oil. The area was still contaminated with oil when the penguins were ready for release and, rather than prolong captivity with its associated risk of disease and stress at a time when breeding was imminent, a translocation strategy was trialled, the results of which are reported here. Twenty-five penguins equipped with VHF transmitters were translocated 360 km to the east coast of Tasmania, and their movements tracked from the air. Two birds returned to the capture site in 3 days, insufficient time for clean-up to be completed, prompting a new release site 120 km further south. A further six penguins were tracked at nearby Ninth Island to monitor foraging behaviour. Fifty-six per cent of the birds released at the translocation sites returned to Low Head in 4 months. This is a conservative estimate, and subsequent monitoring found no differences in the survival rate of translocated and control birds. (author)

  12. Sustainable Development Mechanism of Food Culture’s Translocal Production Based on Authenticity

    Directory of Open Access Journals (Sweden)

    Guojun Zeng

    2014-10-01

    Full Text Available Food culture is a kind of non-material culture with authenticity. To achieve sustainable development of translocal heritage and food culture, we must protect its authenticity. By selecting the cases of the Dongbeiren Flavor Dumpling Restaurant and the Daozanjia Northeast Dumpling Restaurant and using the in-depth interview method, this study discusses how northeastern Cuisine in Guangzhou balances the inheritance and innovation of authenticity, how producers and customers negotiate, and how to realize sustainable development. The main conclusions are: first, there are two different paths of translocal food culture production, which are “authentic food culture production” and “differentiated food culture production”. Second, what translocal enterprises produce is not objective authenticity, but constructive authenticity, or even existential authenticity. Third, compared with differentiated food culture production, authentic food culture production is helpful for the sustainable development of local food culture production. It protects the locality while transmitting and developing the local culture. Fourth, translocal food culture production is a process in which the producers and consumers continue to interact to maintain a state of equilibrium, which informs the sustainable development mechanism with a high degree of authenticity.

  13. Uptake and translocation of [14C]-monoethanolamine in barley plants

    International Nuclear Information System (INIS)

    Eckert, H.; Bergmann, H.; Reissmann, P.

    1988-01-01

    Uptake and translocation of 14 C-monoethanolamine (EA) and its hydrochloride were investigated after application to an unwounded part of the fifth leaf from the main shoot of intact spring barley plants. After 48 and 72 h, resp., the free EA base was both absorbed rapidly and translocated out of the feeding leaf. The absorbed 14 C preferably migrated to the tillers, which resulted in an approximately uniform distribution of the radioactivity in the above ground parts of the plant after the uptake phase (similar 14 C concentrations in the main shoot and tillers), whereas only few radioactivity moved to the roots. On the other hand, the protonated EA (EA-HCl) exhibited both a reduced uptake and a restricted mobility. The bulk of radioactivity remained in the main shoot. As a consequence of the principally analogous metabolism of EA and its protonated form, the translocation differences are compensated during ontogenesis. When the plants reached maturity, similar distribution patterns could be found in which the kernels represented a considerable sink. (author)

  14. Glycosylation is essential for translocation of carp retinol-binding protein across the endoplasmic reticulum membrane

    International Nuclear Information System (INIS)

    Devirgiliis, Chiara; Gaetani, Sancia; Apreda, Marianna; Bellovino, Diana

    2005-01-01

    Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH 2 -terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process

  15. Experimental observation of G banding verifying X-ray workers' chromosome translocation detected by FISH

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: FISH is the most effective way of detecting chromosome aberration and many factors affect its accuracy. G-banding is used to verify the results of early X-ray workers' chromosome translocation examined by FISH. Methods: The chromosome translocations of early X-ray workers have been analysed by FISH (fluorescence in situ hybridization) and G-banding, yields of translocation treated with statistics. Results: The chromosome aberrations frequencies by tow methods are closely related. Conclusion: FISH is a feasible way to analyse chromosome aberrations of X-ray workers and reconstruct dose

  16. Melanotic Xp11 Translocation Renal Cancer Managed With Radical Nephrectomy and IVC Tumor Thrombectomy

    Directory of Open Access Journals (Sweden)

    Iyad S. Khourdaji

    2017-01-01

    Full Text Available Melanotic Xp11 translocation renal cancer is a rarely observed neoplasm primarily affecting adolescents and young adults. Given the paucity of data describing this malignancy, its natural history and subsequent long-term management are not well understood. We report a case of melanotic Xp11 translocation with tumor thrombus extension managed with radical nephrectomy and inferior vena cava (IVC tumor thrombectomy. To our knowledge, this is the first case report to describe use of conventional tumor thrombectomy techniques in a patient with melanotic Xp11 translocation renal cancer.

  17. Impact of personal and environmental factors on the rate of chromosome aberrations named translocations - Part 1: age, gender, smoking, alcohol; Impact des facteurs individuels et environnementaux sur le taux d'aberrations chromosomiques de type translocations - Partie 1: age, sexe, tabac, alcool

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, E.; Gruel, G.; Martin, C.; Roch-Lefevre, S.; Vaurijoux, A.; Voisin, P.; Roy, L. [IRSN, Laboratoire de Dosimetrie Biologique, 92 - Fontenay-aux-Roses (France)

    2010-04-15

    The assessment of exposure to ionizing radiation, carried out long time after exposure, is currently performed by scoring of translocations, a specific type of chromosomal aberrations. The translocations rate observed in peripheral blood lymphocytes of exposed subjects is compared to that observed in a control population. However, the translocation specificity towards radiation exposure is not clearly identified. To avoid any hasty conclusion, it is necessary to identify all the factors likely to induce translocation. To our knowledge, no study has thus far examined the effects of all these different factors on translocation rates. A review of the literature thus allowed us to assess the impact of host factors and lifestyle on the production of translocations. This study confirms that age appears to be the factor having the greatest impact on the rate of translocations, especially over 60 years. To date, the factor 'age' is already considered in estimating the impact of radiation on the rate of translocation for all age groups. However, the study also shows that this rate varies significantly when the patient is exposed simultaneously and significantly towards many lifestyle agents. A precise threshold translocation rate should thus be established as a function of known behavioral exposures, below which it is impossible to conclude that radiological exposure has occurred. The effects of chemicals on the translocation rate after occupational exposure will be the subject of a second part. (authors)

  18. Effects of benzo[a]pyrene-DNA adducts on a reconstituted replication system

    International Nuclear Information System (INIS)

    Brown, W.C.; Romano, L.J.

    1991-01-01

    The authors have used a partially reconstituted replication system consisting of T7 DNA polymerase and T7 gene 4 protein to examine the effect of benzo[a]pyrene (B[a]P) adducts on DNA synthesis and gene 4 protein activities. The gene 4 protein is required for T7 DNA replication because of its ability to act as both a primase and helicase. They show here that total synthesis decreases as the level of adducts per molecule of DNA increases, suggesting that the B[a]P adducts are blocking an aspect of the replication process. By challenging synthesis on oligonucleotide-primed B[a]P-modified DNA with unmodified DNA, they present evidence that the T7 DNA polymerase freely dissociates after encountering an adduct. Prior studies have shown that the gene 4 protein alone does not dissociate from the template during translocation upon encountering an adduct. However, when gene 4 protein primed DNA synthesis is challenged, they observe an increase in synthesis but to a lesser extent than observed on oligonucleotide-primed synthesis. Finally, they have examined DNA synthesis on duplex templates and show the B[a]P adducts inhibit synthesis by the T7 DNA polymerase and gene 4 protein to the same extent regardless of whether the adducts are positioned in the leading or lagging strand, while synthesis by the polymerase alone is inhibited only when the adducts are in the template strand

  19. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  20. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    International Nuclear Information System (INIS)

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-01-01

    Highlights: ► SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. ► When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. ► Upon irradiation, SIRT1 interacts with GAPDH. ► SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. ► SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  1. Effect of neonatal undernutrition on various forms of DNA-dependent DNA polymerases in cerebellum and liver of rat

    International Nuclear Information System (INIS)

    Baksi, K.; Kumar, A.

    1978-01-01

    Effect of neonatal undernutrition on the two forms of DNA polymerases obtained by DEAF-cellulose column chromatography of the solubilized nuclei and the high speed supernatant fractions of cerebellum and liver of rats has been studied. The form of DNA polymerase eluting with 0.1 M potassium phosphate buffer (pH 7.5) was significantly reduced, whereas that eluting with 0.3 M buffer (pH 7.5) was devoid of neonatal undernutrition effect. The properties of the separated DNA polymerases, both from cerebellum and liver, of control and undernourished groups were also studied. [Me- 3 H]thymidine-5--'triphosphate has been used in the study. (author)

  2. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    International Nuclear Information System (INIS)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. As an exogeneous factor of possible influence, the meiotic effects of two types of radiation (fission neutrons and X-rays) administered at relatively low doses 2 and 3 hours before prometaphase-metaphase II (probably during metaphase-anaphase I), were determined in Rb4Bnr/+-males. (Auth.)

  3. Melanotic MiT family translocation neoplasms: Expanding the clinical and molecular spectrum of this unique entity of tumors.

    Science.gov (United States)

    Saleeb, Rola M; Srigley, John R; Sweet, Joan; Doucet, Cedric; Royal, Virginie; Chen, Ying-Bei; Brimo, Fadi; Evans, Andrew

    2017-11-01

    MiT family translocation tumors are a group of neoplasms characterized by translocations involving MiT family transcription factors. The translocation renal cell carcinomas, TFE3 (Xp11.2) and TFEB (t6;11) are known members of this family. Melanotic Xp11 translocation renal cancer is a more recently described entity. To date only 14 cases have been described. It is characterized by a distinct set of features including a nested epithelioid morphology, melanin pigmentation, labeling for markers of melanocytic differentiation, lack of labeling for markers of renal tubular differentiation, predominance in a younger age population and association with aggressive clinical behavior. There are noted similarities between that entity and TFE3 associated PEComas. There are no cases reported of equivalent melanotic TFEB translocation renal cancer. We report 2 rare cases of melanotic translocation renal neoplasms. The first is a melanotic TFE3 translocation renal cancer with an indolent clinical course, occurring in a patient more than 3-decades older than the usual average age in which such tumors have been described. The other case is, to our knowledge, the first reported melanotic TFEB translocation cancer of the kidney. Both cases exhibit the same H&E morphology as previously reported in melanotic translocation renal cancers and label accordingly with HMB45 and Melan-A. While the TFE3 melanotic tumor lacked any evidence of renal tubular differentiation, the TFEB melanotic cancer exhibited some staining for renal tubular markers. Based on the unique features noted above, these two cases expand the clinical and molecular spectrum of the melanotic translocation renal cancers. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Black bears in Arkansas: Characteristics of a successful translocation

    Science.gov (United States)

    Smith, Kimberly G.; Clark, Joseph D.

    1994-01-01

    In 1958, the Arkansas Game and Fish Commission began translocating black bears (Ursus americanus) from Minnesota to the Interior Highlands (Ozark and Ouachita mountains) of Arkansas where bears had been extirpated early in this century. This project continued for 11 years with little public imput, during which time an estimated 254 bears were released. We estimate there are now >2,500 bears in the Interior Highlands of Arkansas, Missouri, and Oklahoma, making it one of the most successful translocations of a Carnivora. Factors that contributed to the success include use of wild-captured animals, elimination of major factors associated with extirpation, release into prime habitats within the former range, multiple release sites, release of 20–40 animals/year for eight years, and release of mostly males prior to release of mostly females. Studies on two allopatric populations demonstrate that they are now diverging in some demographic characteristics, including litter size, cub survivorship, and adult sex-ratio. Translocation of black bears to the Interior Highlands is successful in terms of numbers of animals, but it will not be truly successful until people accept black bears as part of the regional fauna. To that end, those associated with management and research of bears in Arkansas are now focussing on public education and control of nuisance bears.

  5. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores.

    Science.gov (United States)

    Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit

    2010-11-17

    The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.

  6. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores

    International Nuclear Information System (INIS)

    Singer, Alon; Kuhn, Heiko; Frank-Kamenetskii, Maxim; Meller, Amit

    2010-01-01

    The ability to detect and measure dsDNA thermal fluctuations is of immense importance in understanding the underlying mechanisms responsible for transcription and replication regulation. We describe here the ability of solid-state nanopores to detect sub-nanometer changes in DNA structure as a result of chemically enhanced thermal fluctuations. In this study, we investigate the subtle changes in the mean effective diameter of a dsDNA molecule with 3-5 nm solid-state nanopores as a function of urea concentration and the DNA's AT content. Our studies reveal an increase in the mean effective diameter of a DNA molecule of approximately 0.6 nm at 8.7 M urea. In agreement with the mechanism of DNA local denaturation, we observe a sigmoid dependence of these effects on urea concentration. We find that the translocation times in urea are markedly slower than would be expected if the dynamics were governed primarily by viscous effects. Furthermore, we find that the sensitivity of the nanopore is sufficient to statistically differentiate between DNA molecules of nearly identical lengths differing only in sequence and AT content when placed in 3.5 M urea. Our results demonstrate that nanopores can detect subtle structural changes and are thus a valuable tool for detecting differences in biomolecules' environment.

  7. Energetics of Ortho-7 (oxime drug translocation through the active-site gorge of tabun conjugated acetylcholinesterase.

    Directory of Open Access Journals (Sweden)

    Vivek Sinha

    Full Text Available Oxime drugs translocate through the 20 Å active-site gorge of acetylcholinesterase in order to liberate the enzyme from organophosphorus compounds' (such as tabun conjugation. Here we report bidirectional steered molecular dynamics simulations of oxime drug (Ortho-7 translocation through the gorge of tabun intoxicated enzyme, in which time dependent external forces accelerate the translocation event. The simulations reveal the participation of drug-enzyme hydrogen bonding, hydrophobic interactions and water bridges between them. Employing nonequilibrium theorems that recovers the free energy from irreversible work done, we reconstruct potential of mean force along the translocation pathway such that the desired quantity represents an unperturbed system. The potential locates the binding sites and barriers for the drug to translocate inside the gorge. Configurational entropic contribution of the protein-drug binding entity and the role of solvent translational mobility in the binding energetics is further assessed.

  8. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  9. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination

    Directory of Open Access Journals (Sweden)

    Hsiu-Fang Fan

    2018-05-01

    Full Text Available Tethered particle motion/microscopy (TPM is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA–protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.

  10. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  11. Physiological control of the distribution of translocated amino acids and amides in young soybean plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C D; Gorham, P R

    1959-01-01

    Each of 10 C/sup 14/-labelled amino acids or amides was introduced into young soybean plants through the cut petiole of one primary leaf. The compounds used were asparagine, glutamine, urea, aspartic acid, glutamic acid, glycine, serine, alanine, norleucine, and arginine. The rates of uptake of all the solutions except arginine were in the range 1.0 to 1.5 ..mu..l per minute. After 1 to 5 minutes, the distribution of C/sup 14/ throughout the plants was determined. Each amino acid was translocated as such without conversion to other compounds. From the point of introduction, translocation of each amino acid or amide was mainly downward toward the root; very little was translocated upward. The amount of asparagine or glutamine that was translocated into the primary leaf opposite the cut petiole increased as the leaf aged, while the amount of the other eight compounds decreased as the leaf aged. When asparagine and serine were administered together, serine moved into the young primary leaf while asparagine was excluded. Both excision of the roots and chilling the roots decreased the velocity of downward translocation of aspartic acid indicating that the roots exert a strong demand which favors translocation in a downward direction more than an upward direction in the stem. 17 references, 1 figure, 5 tables.

  12. Movements and survival of black-footed ferrets associated with an experimental translocation in South Dakota

    Science.gov (United States)

    Biggins, D.E.; Godbey, J.L.; Horton, B.M.; Livieri, T.M.

    2011-01-01

    Black-footed ferrets (Mustela nigripes) apparently were extirpated from all native habitats by 1987, and their repatriation requires a combination of captive breeding, reintroductions, and translocations among sites. Improvements in survival rates of released ferrets have resulted from experience in quasi-natural environments during their rearing. Reestablishment of a self-sustaining wild population by 1999 provided the 1st opportunity to initiate new populations by translocating wild-born individuals. Using radiotelemetry, we compared behaviors and survival of 18 translocated wild-born ferrets and 18 pen-experienced captive-born ferrets after their release into a prairie dog colony not occupied previously by ferrets. Translocated wild-born ferrets moved significantly less and had significantly higher short-term survival rates than their captive-born counterparts. Using markrecapture methods, we also assessed potential impacts to the established donor population of removing 37% of its estimated annual production of kits. Annual survival rates for 30 ferret kits remaining at the donor subcomplex were higher than rates for 54 ferret kits at the control subcomplex (unmanipulated) for males (+82%) and females (+32%). Minimum survival of translocated kits did not differ significantly from survival of those at the control subcomplex. Direct translocation of young, wild-born ferrets from site to site appears to be an efficient method to establish new populations. ?? 2011 American Society of Mammalogists.

  13. Stabilization, not polymerization, of microtubules inhibits the nuclear translocation of STATs in adipocytes

    International Nuclear Information System (INIS)

    Gleason, Evanna L.; Hogan, Jessica C.; Stephens, Jacqueline M.

    2004-01-01

    Signal transducers and activators of transcriptions (STATs) are a family of latent transcription factors which are activated by a variety of growth factors and cytokines in many cell types. However, the mechanism by which these transcription factors translocate to the nucleus is poorly understood. The goal of this study was to determine the requirement of microfilaments and microtubules for cytokine induced STAT activation in cultured adipocytes. We used seven different actin-specific and microtubule-specific agents that are well-established effectors of these cytoskeletal networks. Our results clearly demonstrate that inhibition of microfilaments or the prevention of microtubule polymerization has no effect on the ability of STATs to be tyrosine phosphorylated or to translocate to the nucleus. However, we observed that paclitaxel, a microtubule stabilizer, resulted in a significant decrease in the nuclear translocation of STATs without affecting the cytosolic tyrosine phosphorylation of these transcription factors. In summary, our results demonstrate that the dynamic instability, but not the polymerization, of microtubules contributes to nuclear translocation of STAT proteins in adipocytes

  14. On the distinction of the mechanisms of DNA cleavage by restriction enzymes—The I-, II-, and III-type molecular motors

    Science.gov (United States)

    Pikin, S. A.

    2008-09-01

    A comparative physical description is given for the functioning of various restriction enzymes and for their processes of DNA cleavage. The previously proposed model system of kinetic equations is applied to the I-and III-type enzymes, which use ATP molecules as an energy source, while the II-type enzymes work thanks to catalytic reactions with participation of an electric field. All the enzymes achieved bending and twisting DNA, providing for either the linear motion of the II-type enzyme along the DNA chain or the DNA translocation by the I-and III-type enzymes due to moving chiral kinks. A comparative estimation of the considered linear and angular velocities is performed. The role of stalling forces for enzyme-DNA complexes, which induce the observed cutting of the DNA either inside the enzyme (II) or in some “weak” places outside enzymes I and III, which results in the supercoiling of the DNA, is shown. The role of ionic screening for the described processes is discussed.

  15. The application of DNA microarrays in gene expression analysis.

    Science.gov (United States)

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  16. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    Science.gov (United States)

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  17. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations

    Directory of Open Access Journals (Sweden)

    Chun-Kai Chen

    2014-03-01

    Conclusion: There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis.

  18. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  19. Free energy and scalings for polymer translocation through a nanopore: A molecular dynamics simulation study combined with milestoning

    International Nuclear Information System (INIS)

    Xue, Xiang-Gui; Zhao, Li; Lu, Zhong-Yuan; Li, Ze-Sheng

    2012-01-01

    Coarse-grained molecular dynamics simulations combined with milestoning method are used to study the stochastic process of polymer chain translocation though a nanopore. We find that the scalings for polymer translocation process (the chain is initialized with the first monomer in the nanopore) and for polymer escape process (the chain is initialized with the middle monomer in the nanopore) are different. The translocation process is mainly controlled by the entropic barrier, while the polymer escape process is driven by the effective force due to free energy difference. -- Highlights: ► We study polymer translocating through a nanopore by CGMD combined with milestoning. ► We find that the scalings for polymer translocation and for polymer escape are different. ► The translocation process is mainly controlled by the entropic barrier. ► The polymer escape process is driven by the effective force due to free energy difference.

  20. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  1. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Ahmad, F.; Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-01-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ( 60 Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  2. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F. [Brandon Univ., Manitoba (Canada); Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-03-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ({sup 60}Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  3. Contraction-associated translocation of protein kinase C in rat skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Cleland, P J; Rattigan, S

    1987-01-01

    Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short...... tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism....

  4. Thermodynamics of the Interaction between Alzheimer's Disease Related Tau Protein and DNA

    Science.gov (United States)

    Camero, Sergio; Benítez, María J.; Cuadros, Raquel; Hernández, Félix; Ávila, Jesús; Jiménez, Juan S.

    2014-01-01

    Tau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer's disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau. In this contribution, we are addressing the physicochemical nature of DNA-Tau interaction including the plausible influence of phosphorylation. By means of surface plasmon resonance (SPR) we measured the equilibrium constant and the free energy, enthalpy and entropy changes associated to the Tau-DNA complex formation. Our results show that unphosphorylated Tau binding to DNA is reversible. This fact is in agreement with the protective role attributed to nuclear Tau, which stops binding to DNA once the insult is over. According to our thermodynamic data, oscillations in the concentration of dephosphorylated Tau available to DNA must be the variable determining the extent of Tau binding and DNA protection. In addition, thermodynamics of the interaction suggest that hydrophobicity must represent an important contribution to the stability of the Tau-DNA complex. SPR results together with those from Tau expression in HEK cells show that phosphorylation induces changes in Tau protein which prevent it from binding to DNA. The phosphorylation-dependent regulation of DNA binding is analogous to the Tau-microtubules binding inhibition induced by phosphorylation. Our results suggest that hydrophobicity may control Tau location and DNA interaction and that impairment of this Tau-DNA interaction, due to Tau hyperphosphorylation, could contribute to Alzheimer's pathogenesis. PMID:25126942

  5. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation

    Directory of Open Access Journals (Sweden)

    Luisina De Tullio

    2017-10-01

    Full Text Available Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second in the 3′→5′ direction along ssDNA saturated with replication protein A (RPA. We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates.

  6. Analysis of Translocation-Competent Secretory Proteins by HDX-MS

    DEFF Research Database (Denmark)

    Tsirigotaki, A.; Papanastasiou, M.; Trelle, M. B.

    2017-01-01

    Protein folding is an intricate and precise process in living cells. Most exported proteins evade cytoplasmic folding, become targeted to the membrane, and then trafficked into/across membranes. Their targeting and translocation-competent states are nonnatively folded. However, once they reach...... the appropriate cellular compartment, they can fold to their native states. The nonnative states of preproteins remain structurally poorly characterized since increased disorder, protein sizes, aggregation propensity, and the observation timescale are often limiting factors for typical structural approaches...... such as X-ray crystallography and NMR. Here, we present an alternative approach for the in vitro analysis of nonfolded translocation-competent protein states and their comparison with their native states. We make use of hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS), a method based...

  7. ADN bacteriano en pacientes con cirrosis y ascitis estéril: Papel como marcador de translocación bacteriana y herramienta pronóstica Bacterial DNA in patients with cirrhosis ans sterile ascites: Its role as a marker of bacterial translocation and prognosis tool

    Directory of Open Access Journals (Sweden)

    J. M. González-Navajas

    2007-10-01

    Full Text Available Durante la última década hemos presenciado un aumento de la cantidad de datos relativos a la presencia de translocación bacteriana en los modelos experimentales de cirrosis. Sin embargo, los estudios clínicos se han visto limitados por la falta de métodos no invasivos para estudiar dicho fenómeno. En los últimos años, las investigaciones realizadas en nuestro laboratorio se han centrado en la detección del ADN bacteriano en el suero y el líquido ascítico de los pacientes con cirrosis y ascitis estéril, y en las implicaciones clínicas que ello conlleva. Al principio, gracias a un método basado en la reacción en cadena de la polimerasa (PCR y el secuenciamiento automatizado de nucleótidos, pudimos detectar e identificar la presencia de fragmentos de ADN bacteriano en dichos pacientes con ascitis no neutrocítica y con cultivo negativo. Desde entonces hemos acumulado una serie de datos que indican que la presencia de ADN bacteriano podría desempeñar un papel importante no sólo como marcador de translocación bacteriana, sino también como factor pronóstico a corto plazo. Expondremos aquí el pasado, el presente y el futuro de esta línea de investigación.During the last decade, we have witnessed an increase in the amount of data related with the presence of bacterial translocation in experimental models of cirrhosis. However, clinical studies have been limited by the lack of non-invasive methods to study this phenomenon. Over the past years, the research developed in our laboratory has been focused on the detection of bacterial DNA in serum and ascitic fluid of patients with cirrhosis and sterile ascites, the clinical and immunological implications of such finding. Initially, by means of a polymerase chain reaction (PCR-based method and automated nucleotide sequencing, we were able to detect and identify the presence of fragments of bacterial DNA in the mentioned patients with culture-negative, non-neutrocytic ascites. Since

  8. Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold.

    Science.gov (United States)

    Shlyahovsky, Bella; Li, Yang; Lioubashevski, Oleg; Elbaz, Johann; Willner, Itamar

    2009-07-28

    A series of logic gates, "AND", "OR", and "XOR", are designed using a DNA scaffold that includes four "footholds" on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective "footholds", or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold.

  9. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Krebs, H O; Hoffschulte, H K; Müller, M

    1989-05-01

    We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.

  10. 40 CFR 798.5460 - Rodent heritable translocation assays.

    Science.gov (United States)

    2010-07-01

    ... fertile animals for cytological confirmation as translocation heterozygotes. (3) Animal selection—(i... administration include oral, inhalation, admixture with food or water, and IP or IV injection. (e) Test.... Criteria for determining normal and semisterile males are usually established for each new strain because...

  11. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes

    NARCIS (Netherlands)

    van Roy, N.; Laureys, G.; van Gele, M.; Opdenakker, G.; Miura, R.; van der Drift, P.; Chan, A.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell

  12. Investigations on the question of radiation-induced intracellular ion translocations in the liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Wenning, J

    1975-01-01

    Radiation-induced ion translocations in cellular and/or subcellular units can be detected in the course of the examination of whole organs. The present paper attempts to study this problem in the liver of rats. The size and ion composition of the extracellular space and its subunits (interstice, intravascular space, biliary discharge system) must therefore be known in order to obtain purely cellular electrolyte values. They can be determined with the aid of dilution methods and by applying Donnan's law. For measuring radiation-induced ion translocations in nuclei and mitochondria, they must be isolated in an aqueous phase. Processing in 0.25 mol l/sup -1/ saccharose yields the best results with regard to ion losses, since the vitality of the membranes is largely preserved when using this method. During suspension, some of the nuclei and mitochondria obtained in sacharose solution show considerable ion translocations, depending on the composition of the medium. Irradiation up to 10 kR showed that relatively low doses (100 R) already cause further changes of the electrolyte concentrations of nuclei and mitochondria. In-vivo irradiation of the liver also caused definite potassium-sodium translocations in the nucleus and the mitochondria at doses as low as 100 R. These intracellular electrolyte translocations cannot be detected in examinations of the whole organ. All in all, it is shown that intracellular ion translocations can be found at relatively low radiation doses already. The present paper discusses the possible methods by which they can be detected.

  13. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China); Ren, Huan, E-mail: renhuan@ems.hrbmu.edu.cn [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China)

    2016-02-05

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.

  14. Robertsonian translocation 13/14 associated with rRNA genes ...

    African Journals Online (AJOL)

    Robertsonian translocation 13/14 associated with rRNA genes overexpression and intellectual disability. Alexander A. Dolskiy, Natalya A. Lemskaya, Yulia V. Maksimova, Asia R. Shorina, Irina S. Kolesnikova, Dmitry V. Yudkin ...

  15. Microbial translocation and cardiometabolic risk factors in HIV infection

    DEFF Research Database (Denmark)

    Trøseid, Marius; Manner, Ingjerd W; Pedersen, Karin K

    2014-01-01

    of microbial translocation are closely associated with several cardiovascular risk factors such as dyslipidemia, insulin resistance, hypertension, coagulation abnormalities, endothelial dysfunction, and carotid atherosclerosis. Future studies should investigate whether associations between microbial...

  16. Longing Itineraries: Building the Translocal Community

    Directory of Open Access Journals (Sweden)

    Gustavo López Angel

    2017-06-01

    Full Text Available Migration has reshaped social practices, the sense of belonging has been rethought, and the membership is renegotiated and contended; this is why strategies for their sustainability have been generated. The translocal community operates through multilocated relationships that reveal the ways in which migrants are adapting to the new demands of the community. We emphasize the emotional impulse of nostalgia as one of the vehicles of sustainability for the community. The community is redefined and understood in a set of socio-cultural relationships its members generate, and where the locality is not central, but the connection. A new dimension of the social community space is not just the community gathered in a specific place, but also that agreements, commitments, and acknowledgments are exhibited and settled in the cyberspace; this cyberspace gives cohesion and brings a dynamic element to preserve the community, despite the fact that it is even less concrete than the spatial notion of territory. Facebook, YouTube and a blog are the web platforms of the virtual space where "neighbors, compatriots and citizens" (categories of ascription from the migration get together, where there is a reproduction of social practices (even the most ancient and fundamental ones, to give a new dimension to a translocal, multilocated and ciberlocated community.

  17. Introduction: translocal development, development corridors and development chains.

    NARCIS (Netherlands)

    Zoomers, E.B.; Westen, A.C.M. van

    2011-01-01

    This paper offers an introduction to this Special Issue of International Development Planning Review. It uses the concepts of translocal development, development corridors and development chains to secure a better grasp of what development means in the context of globalisation and how ‘local

  18. A New Noncanonical Anionic Peptide That Translocates a Cellular Blood–Brain Barrier Model

    Directory of Open Access Journals (Sweden)

    Sara Neves-Coelho

    2017-10-01

    Full Text Available The capacity to transport therapeutic molecules across the blood–brain barrier (BBB represents a breakthrough in the development of tools for the treatment of many central nervous system (CNS-associated diseases. The BBB, while being protective against infectious agents, hinders the brain uptake of many drugs. Hence, finding safe shuttles able to overcome the BBB is of utmost importance. Herein, we identify a new BBB-translocating peptide with unique properties. For years it was thought that cationic sequences were mandatory for a cell-penetrating peptide (CPP to achieve cellular internalization. Despite being anionic at physiological pH, PepNeg (sequence (SGTQEEY is an efficient BBB translocator that is able to carry a large cargo (27 kDa, while maintaining BBB integrity. In addition, PepNeg is able to use two distinct methods of translocation, energy-dependent and -independent, suggesting that direct penetration might occur when low concentrations of peptide are presented to cells. The discovery of this new anionic trans-BBB peptide allows the development of new delivery systems to the CNS and contributes to the need to rethink the role of electrostatic attraction in BBB-translocation.

  19. Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Siyang; Gao, Song; Kondabagil, Kiran; Xiang, Ye; Rossmann, Michael G.; Rao, Venigalla B. (CUA); (Purdue)

    2012-04-04

    Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a 'small terminase' and a 'large terminase' component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.

  20. The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    Science.gov (United States)

    Fairfield, Eleanor A.; Hutchings, Kimberly; Gilroy, Danielle L.; Kingma, Sjouke A.; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands. PMID:27405249

  1. Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation

    Science.gov (United States)

    Baruffi, Marcelo Razera; de Souza, Deise Helena; Bicudo da Silva, Rosana Aparecida; Ramos, Ester Silveira; Moretti-Ferreira, Danilo

    2012-01-01

    Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process. PMID:23074688

  2. Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation

    Directory of Open Access Journals (Sweden)

    Marcelo Razera Baruffi

    2012-01-01

    Full Text Available Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19(p21.2;q13.4. Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY. Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.

  3. DNA rearrangement in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene

    International Nuclear Information System (INIS)

    Tsujimoto, Y.; Bashir, M.M.; Givol, I.; Cossman, J.; Jaffe, E.; Croce, C.M.

    1987-01-01

    In most human lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in an order suggesting that an inversion also occurred during the translocation process. The coding region of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date

  4. Translocation of 14C-photosynthates under normal and moisture stress conditions in finger millet (Eleusine coracana) gaertin

    International Nuclear Information System (INIS)

    Udayakumar, M.; Rama Rao, S.; Krishna Sastry, K.S.

    1981-01-01

    Translocation of photosynthates into different sinks was studied following feeding a single leaf with 14 CO 2 in 40 day old stressed and non-stressed plants of Eleusine coracana. The rate of efflux of 14 C-photosynthates was twice as much in non-stressed plants compared to stressed plants. Young developing leaves, stem apex and stem which are the potential sinks under non-stressed conditions received very little activity under stress conditions. Percent activity in the roots was enhanced under stress suggesting the pattern of translocation was altered under stress conditions. In the plants subjected to moisture stress, after feeding with 14 CO 2 the rate of efflux of 14 C-photosynthates from the fed leaf decreased and the pattern of translocation was altered. Though the effect of stress seems to be directly on the translocation system, the photosynthetic rate appears to be more sensitive to stress than translocation. (author)

  5. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    Science.gov (United States)

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  6. A case of posttraumatic splenic translocation into the thorax

    International Nuclear Information System (INIS)

    Sosnowski, P.; Sikorski, L.; Ziemianski, A.

    1993-01-01

    A case of the left diaphragmatic hernia due to blunt thoracic and abdominal trauma is presented. Characteristic radiological signs of splenic translocation into the thorax contributed to quick diagnosis and immediate surgical intervention. (author)

  7. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia; Lepore, Rosalba; Raimondo, Domenico; Cecconi, Fabio; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics

  8. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Fasullo, M.; Dave, P.

    1994-01-01

    Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MATlocus. The difference in levels of stimulation between MATa/MATalpha diploid and MATalpha haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/square metre), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MATalpha gene was introduced by DNA transformation into a MATa/matalpha: LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATa gene was introduced by DNA transformation into a MATalpha haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV. The increase in radiation stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. It is suggested that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes

  9. A Proteome Translocation Response to Complex Desert Stress Environments in Perennial Phragmites Sympatric Ecotypes with Contrasting Water Availability.

    Science.gov (United States)

    Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia

    2017-01-01

    After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.

  10. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  11. Nuclear translocation of the cytoplasmic domain of HB-EGF induces gastric cancer invasion

    Directory of Open Access Journals (Sweden)

    Shimura Takaya

    2012-05-01

    Full Text Available Abstract Background Membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF yields soluble HB-EGF, which is an epidermal growth factor receptor (EGFR ligand, and a carboxy-terminal fragment of HB-EGF (HB-EGF-CTF after ectodomain shedding. We previously reported that HB-EGF-CTF and unshed proHB-EGF which has the cytoplasmic domain of proHB-EGF (HB-EGF-C, translocate from the plasma membrane to the nucleus and regulate cell cycle after shedding stimuli. However, the significance of nuclear exported HB-EGF-C in human gastric cancer is unclear. Methods We investigated the relationship between intracellular localization of HB-EGF-C and clinical outcome in 96 gastric cancer patients treated with gastrectomy. Moreover, we established stable gastric cancer cell lines overexpressing wild-type HB-EGF (wt-HB-EGF and mutated HB-EGF (HB-EGF-mC, which prevented HB-EGF-C nuclear translocation after shedding. Cell motility between these 2 gastric cancer cell lines was investigated using a transwell invasion assay and a wound healing assay. Results Of the 96 gastric cancer cases, HB-EGF-C immunoreactivity was detected in both the nucleus and cytoplasm in 19 cases (19.8 % and in the cytoplasm only in 25 cases (26.0 %. The nuclear immunoreactivity of HB-EGF-C was significantly increased in stage pT3/4 tumors compared with pT1/2 tumors (T1/2 vs. T3/4: 11.1 % vs. 36.4 %, P  Conclusions Both the function of HB-EGF as an EGFR ligand